
   Volume 3 | Issue 2 | 1J Math Techniques Comput Math, 2024

Citation: Alejandro, J. R. (2024). A Real Approximation to Riemann Hypothesis. J Math Techniques Comput Math, 3(2), 
01-12.

A Real Approximation to Riemann Hypothesis

*Corresponding Author
Jose Rodrigo Alejandro, Department of Mathematics, Mexico

Submitted: 2024, Jan 17; Accepted: 2024, Feb 19; Published: 2024, Feb 22 

Jose Rodrigo Alejandro*

Department of Mathematics, Mexico

Abstract
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made computationally to obtain criteria of convergence. By the other hand its discusses some algebraic identities to 
establish where the function zeta Riemann gives place to ζ(s) = 0.
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1. Introduction
Riemann Hypothesis Establish Next Assessment
The Riemann hypothesis asserts that all interesting solutions of the equation ζ(s) = 0 lie on a certain vertical straight line. Cite: Clay 
Mathematics Institute; December of 2023.
Riemann function is defined as next:
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tute; December of 2023.

Riemann function is defined as next:

ζ(s) = Σ∞
n=1

1
ns

Where s = σ + it ∈ C such that ℜ(s) > 1

Remember that the meaning of a number powered by a complex number have
any definition. For that reason lets use the meaning established on Appendix
1 ; then i = ±

√
−1 = ±1 and therefore for the development of this work

s = σ ± t

Like the problem were established with the idea to define such equation with
complex powers then I will develop next argumentation using a famous corol-
lary about analytic functions.
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established on Appendix 1 ; then i = ±                     and therefore for the development of this work

Like the problem were established with the idea to define such equation with complex powers then I will develop next argumentation 
using a famous corollary about analytic functions.

2. Methodology 
Definition. Formally, a function f is real analytic on an open set D in the real line if for any s0 ∈ D one can write
Definition. Formally, a function f is real analytic on an open set D in the
real line if for any s0 ∈ D one can write

f(s) = Σ∞
n=0an(s− s0)

n = a0 + a1(s− s0) + a2(s− s0)
2 + a3(s− s0)

3...

in which the coefficients a0, a1, ... are real numbers and the series is convergent
to f(s) for s in a neighbourhood of s0.

Proof.

Lets take the series of powers:

S = Σ∞
n=0an(s− s0)

n = a0 + a1(s− s0) + a2(s− s0)
2 + a3(s− s0)

3...

when r = s− s0 and n → ∞; S must fulfilled the condition |r| < 1 to converge.

Rewriting S expression with r we have:

S = Σ∞
n=0anr

n = a0 + a1r + a2r
2 + a3r

3...

Now consider next equation:

an =
1

(n+ 1)s(s− s0)n
=

1

(n+ 1)srn

Substituting on S equation we have:

S = Σ∞
n=0(

1

(n+ 1)srn
)rn =

1

1sr0
+

1

(1 + 1)sr1
r+

1

(2 + 1)sr2
r2+

1

(3 + 1)sr3
r3...

Simplifying we have:

S = Σ∞
n=0

1

(n+ 1)s
rn =

1

1s
+

1

2s
+

1

3s
+

1

4s
+ ...

with η = n+ 1 and substituting on S we have:

S = Σ∞
η−1=0

1

(η − 1 + 1)s
= Σ∞

η=1

1

ηs
= ζ(s)

This equation is also know as ”Riemann zeta function”; being the particular
case of series of powers when all terms (s − s0)

n are equal to 1 (hint: another
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{ 1

ηs
}

evaluating η ∈ {1, 2, 3, ..., i, ...} we have:

1
1s ,

1
2s ,

1
3s , ...,

1
is , ...

like

1
1s > 1

2s > 1
3s > ... > 1

is > ...

Hence the sequence is decreasing

Now taking the limit of η when tends to infinite we have:

limη→∞{ 1
ηs } = 0

By definition of quotient between ∞.

Considering that index i increase by one unit at time, then we can conclude
that the sequence is monotone.

Finally with η > 0 therefore ηs is positive ∀s ∈ ℜ; hence 1
ηs > 0

Due to early properties about ζ(s) series; Cauchy condensation test can be
used to evaluate convergence of this series.

Lets consider the series

Σ∞
η=02

η 1
η2η = 20 1

02(0)
+ 21 1

12(1)
+ 22 1

22(2)
+ 23 1

32(3)
+ 24 1

42(4)
+ ...

= 11
1 + 2 1

1 + 4 1
24 + 8 1

36 + 16 1
48 + 32 1

510 + ...

= 3.2512193300475...

And lets name this number like ζtest.

The next condition establish if ζ(s) series converge:

Σ∞
η=1

1
ηs ≤ Σ∞

η=02
η 1
η2η

3

particular case of series of powers is the ”geometric series” on this case all co-
efficients an are equal).

Lets prove that Zeta Riemann function is a monotone decreasing sequence,

{ 1

ηs
}

evaluating η ∈ {1, 2, 3, ..., i, ...} we have:

1
1s ,

1
2s ,

1
3s , ...,

1
is , ...

like

1
1s > 1

2s > 1
3s > ... > 1

is > ...

Hence the sequence is decreasing

Now taking the limit of η when tends to infinite we have:

limη→∞{ 1
ηs } = 0

By definition of quotient between ∞.

Considering that index i increase by one unit at time, then we can conclude
that the sequence is monotone.

Finally with η > 0 therefore ηs is positive ∀s ∈ ℜ; hence 1
ηs > 0

Due to early properties about ζ(s) series; Cauchy condensation test can be
used to evaluate convergence of this series.

Lets consider the series

Σ∞
η=02

η 1
η2η = 20 1

02(0)
+ 21 1

12(1)
+ 22 1

22(2)
+ 23 1

32(3)
+ 24 1

42(4)
+ ...

= 11
1 + 2 1

1 + 4 1
24 + 8 1

36 + 16 1
48 + 32 1

510 + ...

= 3.2512193300475...

And lets name this number like ζtest.

The next condition establish if ζ(s) series converge:

Σ∞
η=1

1
ηs ≤ Σ∞

η=02
η 1
η2η

3

particular case of series of powers is the ”geometric series” on this case all co-
efficients an are equal).

Lets prove that Zeta Riemann function is a monotone decreasing sequence,

{ 1

ηs
}

evaluating η ∈ {1, 2, 3, ..., i, ...} we have:

1
1s ,

1
2s ,

1
3s , ...,

1
is , ...

like

1
1s > 1

2s > 1
3s > ... > 1

is > ...

Hence the sequence is decreasing

Now taking the limit of η when tends to infinite we have:

limη→∞{ 1
ηs } = 0

By definition of quotient between ∞.

Considering that index i increase by one unit at time, then we can conclude
that the sequence is monotone.

Finally with η > 0 therefore ηs is positive ∀s ∈ ℜ; hence 1
ηs > 0

Due to early properties about ζ(s) series; Cauchy condensation test can be
used to evaluate convergence of this series.

Lets consider the series

Σ∞
η=02

η 1
η2η = 20 1

02(0)
+ 21 1

12(1)
+ 22 1

22(2)
+ 23 1

32(3)
+ 24 1

42(4)
+ ...

= 11
1 + 2 1

1 + 4 1
24 + 8 1

36 + 16 1
48 + 32 1

510 + ...

= 3.2512193300475...

And lets name this number like ζtest.

The next condition establish if ζ(s) series converge:

Σ∞
η=1

1
ηs ≤ Σ∞

η=02
η 1
η2η

3

particular case of series of powers is the ”geometric series” on this case all co-
efficients an are equal).

Lets prove that Zeta Riemann function is a monotone decreasing sequence,

{ 1

ηs
}

evaluating η ∈ {1, 2, 3, ..., i, ...} we have:

1
1s ,

1
2s ,

1
3s , ...,

1
is , ...

like

1
1s > 1

2s > 1
3s > ... > 1

is > ...

Hence the sequence is decreasing

Now taking the limit of η when tends to infinite we have:

limη→∞{ 1
ηs } = 0

By definition of quotient between ∞.

Considering that index i increase by one unit at time, then we can conclude
that the sequence is monotone.

Finally with η > 0 therefore ηs is positive ∀s ∈ ℜ; hence 1
ηs > 0

Due to early properties about ζ(s) series; Cauchy condensation test can be
used to evaluate convergence of this series.

Lets consider the series

Σ∞
η=02

η 1
η2η = 20 1

02(0)
+ 21 1

12(1)
+ 22 1

22(2)
+ 23 1

32(3)
+ 24 1

42(4)
+ ...

= 11
1 + 2 1

1 + 4 1
24 + 8 1

36 + 16 1
48 + 32 1

510 + ...

= 3.2512193300475...

And lets name this number like ζtest.

The next condition establish if ζ(s) series converge:

Σ∞
η=1

1
ηs ≤ Σ∞

η=02
η 1
η2η

3

particular case of series of powers is the ”geometric series” on this case all co-
efficients an are equal).

Lets prove that Zeta Riemann function is a monotone decreasing sequence,

{ 1

ηs
}

evaluating η ∈ {1, 2, 3, ..., i, ...} we have:

1
1s ,

1
2s ,

1
3s , ...,

1
is , ...

like

1
1s > 1

2s > 1
3s > ... > 1

is > ...

Hence the sequence is decreasing

Now taking the limit of η when tends to infinite we have:

limη→∞{ 1
ηs } = 0

By definition of quotient between ∞.

Considering that index i increase by one unit at time, then we can conclude
that the sequence is monotone.

Finally with η > 0 therefore ηs is positive ∀s ∈ ℜ; hence 1
ηs > 0

Due to early properties about ζ(s) series; Cauchy condensation test can be
used to evaluate convergence of this series.

Lets consider the series

Σ∞
η=02

η 1
η2η = 20 1

02(0)
+ 21 1

12(1)
+ 22 1

22(2)
+ 23 1

32(3)
+ 24 1

42(4)
+ ...

= 11
1 + 2 1

1 + 4 1
24 + 8 1

36 + 16 1
48 + 32 1

510 + ...

= 3.2512193300475...

And lets name this number like ζtest.

The next condition establish if ζ(s) series converge:

Σ∞
η=1

1
ηs ≤ Σ∞

η=02
η 1
η2η

3

particular case of series of powers is the ”geometric series” on this case all co-
efficients an are equal).

Lets prove that Zeta Riemann function is a monotone decreasing sequence,

{ 1

ηs
}

evaluating η ∈ {1, 2, 3, ..., i, ...} we have:

1
1s ,

1
2s ,

1
3s , ...,

1
is , ...

like

1
1s > 1

2s > 1
3s > ... > 1

is > ...

Hence the sequence is decreasing

Now taking the limit of η when tends to infinite we have:

limη→∞{ 1
ηs } = 0

By definition of quotient between ∞.

Considering that index i increase by one unit at time, then we can conclude
that the sequence is monotone.

Finally with η > 0 therefore ηs is positive ∀s ∈ ℜ; hence 1
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Like Σ∞
η=02

η 1
η2η = ζtest (i.e. converge to the number ζtest)

Therefore ζ(s) is convergent.

Next table shows the result to evaluate ζtest from η = 0 until η = 9.

n 2n n2n 1
n2n 2n 1

n2n

0 1 1 1 1
1 2 1 1 2
2 4 16 0.0625 0.25
3 8 6561 0.000152415790276 0.001219326322207
4 16 4294967296 2.3283064365387E-10 3.72529029846191E-09
5 32 2.3283064365387E+022 4.294967296E-23 1.37438953472E-21
6 64 6.33402866629733E+049 1.57877403574267E-50 1.01041538287531E-48
7 128 1.48781564719761E+108 6.72126282502512E-109 8.60321641603216E-107
8 256 1.55251809230071E+231 6.44114876959713E-232 1.64893408501687E-229
9 512 NUM! NUM! NUM!

Table 1. Evaluation of ζtest for different values of η.

Can be established that ζ(s) series converges to ζtest because the coefficients
of each term are for main value 2η 1

η2η to small when η = 8; to know a power

of around 10−229; on LibreOffice Calc is not possible to obtain more values for
η > 8 (note: the value 00 = 1 is not defined on this software and is necessary
to introduce number 1 at hand).

Early situation can be understood like; the series increase when next term
is added; for η > 8 ζtest series increase an amount infinitely small, reaching
practically a constant value. Hence ζ(s) converge because ζtest is constant.

Some useful number to compare early result are:

ζtest − π = 0.109626676457704...

ζtest
π = 1.03489525490596...

eζtest = 25.8218060334812...

πζtest = 41.3374113001018...

Lets note that converge criteria to an open set D(s, s0) = {s| d(s, s0) < ϵ};
must be established taking into account the value of ζtest.

The value of s has been approximated manually calculating ζ(s) on Libre-
Office Calc using a laptop Dell Vostro 14 - 3000 series with a memory of 7.5
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capacity of 1.0 TB and Ubuntu 20.04.6 LTS for different values of η and comparing its result vs the value of ζtest. The value given 
was s = 1.4. Higher values for η were not considered due to a freeze on the graphic interface.

GiB; processor Intel Core i5-7200 CPU 2.5 GHz x 4; graphics Mesa Intel HD
Graphics 620 (KBL GT2); disk capacity of 1.0 TB and Ubuntu 20.04.6 LTS
for different values of η and comparing its result vs the value of ζtest. The
value given was s = 1.4. Higher values for η were not considered due to a
freeze on the graphic interface.

η = 5000 η = 10000 η = 20000
ζ(s = 1.3) 3.67302377623045 3.72163325170118 3.76111828801966
ζ(s = 1.4) 3.02268924184343 3.04275137310375 3.05795640541761
ζ(s = 1.5) 2.58409249158088 2.59237584867299 2.59823338983623

Table 2. Values of ζ(s) for different values of s and η

For s < 1.4, ζ(s) converge sooner, i.e. for η < 5000; while for s > 1.4; ζ(s)
converge because for η > 20000; this result suggest that Cauchy condensation
test can be satisfied fully; i.e. when η tends to infinite.

The criterion used on this work was next:

S convergence to ζ(s) for a minimum value of s = 1.4

Lets call this value like constant of convergence or sconvergence.

Like was established before; for any value of s ≤ sconvergence ζ(s) not con-
verge. If convergence criteria is modified to consider all points that fulfilled
Cauchy condensation test; when η is finite (η < 5000); ζ(s) convergence do-
minion could be extended

ζ(s = 0.1); η = 3 3.1878966365702
ζ(s = −0.9); η = 11 3.22114303824938

Table 3. Values of ζ(s) for different values of s and η small.

Now lets develop topological criteria about open sets to satisfy convergence of
ζ(s).

Lets take two values s1 and s2 on the zone of convergence such that:

sconvergence ≤ s1 ≤ s1

sconvergence ≤ s2 ≤ s2

On convergence zone s1 and s2 exist to be part of ℜ and satisfy convergence
regarding sconvergence criteria.

Subtracting second term of first we have:

5
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Lets take two values s1 and s2 on the zone of convergence such that:

On convergence zone s1 and s2 exist to be part of ℜ and satisfy convergence regarding sconvergence criteria.

Subtracting second term of first we have:

0 ≤ d(s1, s2) = s1 − s2 ≤ s1 − s2 = ϵ

Hence S converge to ζ(s); ∀s ∈ D(s, s0) = {s| d(s, s0) < ϵ ; ζ(s) ≤ ζtest and
s ≥ sconvergence}

Therefore ζ(s) is analytical on the conditions described early.

Graph 1. Cartesian plane and zones of convergence finite (left) and infinite(right)
for ζ(s) regarding Cauchy condensation test.

Principle of Analytic Continuation, or Identity Theorem. Let f and g
be analytic in a region A. Suppose that there is a sequence s1, s2, ... of dis-
tinct points of A converging to s0 ∈ A, such that f(sn) = g(sn) for all
n = 1, 2, 3, ... Then f = g on all of A. The conclusion is valid, in particular
if f = g on some neighbourhood of some point in A.

Consider first the equation of the k-sphere:

r2 = Σk
i=1(xi − ci)

2

Clearing r from k-sphere equation and substituting on ζ(s) we have:

ζ(s) = Σ∞
r=1

1
rs = Σ∞

r=1
1

(
√

Σk
i=1(xi−ci)2)sr

...(1)

where every sub-index r indicate the integer value of the radius for each term;
such that xi ∈ [ci, r] with i, r ∈ {1, 2, ...} for each term. Lets call this function
ζk−sphere(s).
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Lets call this function ζk−sphere(s).

Now lets prove this function is analytic by rewriting such equation as the general term of series of power:
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Note that like we´ve been substituted k-sphere equation into η term as well
as defined conditions to establish convergence for both ζ(s) and ζk−sphere(s);
convergence to an open set D ∈ ℜ must be established with the conditions
given for both equations.

Lets define the arbitrary sequence s1, s2, ... of m distinct points of ℜ converg-
ing to s0 = sconvergene ∈ ℜ

Let be

{sm} = sconvergence · (m
1
m )

the term of such series.
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Note that like we´ve been substituted k-sphere equation into η term as well as defined conditions to establish convergence for both 
ζ(s) and ζk−sphere(s); convergence to an open set D ∈ ℜ must be established with the conditions given for both equations.
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when s = 0 and taking a0 = 1; ∀a ∈ N we have:
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calling second term like ζ(s) therefore:
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besides with
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calling second term like ζk−sphere(s)

lims→∞ζk−sphere(s) = 0

therefore

lims→∞ζ(s) = lims→∞ζk−sphere(s) = 0

to fulfilled condition to be analytic and converge to an open set D(s, s0) ∈
ℜ; can be used the former requirements defined to establish the theorem of
analytic continuation (identity theorem) taking into account that:

S converge to ζ(s); ∀s ∈

D(s, s0) = {s| d(s, s0) < ϵ = 1 ; ζ(s) ≤ ζtest ; lims→∞ζ(s) = lims→∞ζk−sphere(s) =
0 and s ≥ sconvergence}

i.e. for a k-sphere located everywhere inside the zone of convergence of s; the
condition ζ(s) = 0 is satisfied; to know the condition of Riemann Hypothesis.

In particular when

s = σ + it = σ ± t

with σ = 1
2

t ∈ ℜ defines the zone of convergence for the open set D(s, s0) when theorem
of function analytic for ζ(s) is satisfied.

Note that this condition maintains without consideration about the dimen-
sionality of such k-sphere.

In particular s cannot be equal to 1
2 due to convergence criteria about sconvergence.

In other words every s1, s2, ... ∈ ℜk that tends to infinite and defines the
power of the r term; i.e. the radius of a k -sphere in ℜk is a zero of ζ(s).

About the obtainment of ζ(s) and its relation with ζk−sphere(s).

Lets take k-sphere equation

r2 = Σk
i=1(xi − ci)

2

Now taking the inverse multiplicative from both sides we have
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i.e. for a k-sphere located everywhere inside the zone of convergence of s; the condition ζ(s) = 0 is satisfied; to know the condition 
of Riemann Hypothesis.

In particular when

t ∈ ℜ defines the zone of convergence for the open set D(s, s0) when theorem of function analytic for ζ(s) is satisfied.

Note that this condition maintains without consideration about the dimensionality of such k-sphere.

In particular s cannot be equal to 1/2 due to convergence criteria about sconvergence.

In other words every s1, s2, ... ∈ ℜk that tends to infinite and defines the power of the r term; i.e. the radius of a k -sphere in ℜk is a 
zero of ζ(s).

About the obtainment of ζ(s) and its relation with ζk−sphere(s).

Lets take k-sphere equation

Now taking the inverse multiplicative from both sides we have
1
r2 = 1

Σk
i=1(xi−ci)2

Applying square root from both sides we have

1
r = 1√

Σk
r=1(xi−ci)2

And powering to s we have

1
rs = 1

(
√

Σk
i=1(xi−ci)2)s

Giving values to r ∈ {1, 2, 3, ...} we have

1
1s = 1

(
√

Σk
i=1(xi−ci)2)s

1
2s = 1

(
√

Σk
i=1(xi−ci)2)s

1
3s = 1

(
√

Σk
i=1(xi−ci)2)s

. . .

and adding all terms we will have:

ζ(s) = Σ∞
r=1

1
rs = Σ∞

r=1
1

(
√

Σk
i=1(xi−ci)2)sr

= ζk−sphere(s)

From early procedure we can see that ζ(s) have an identity linked with k-
sphere.

Endnote: If well analytic function requisite would be proved by Cauchy cri-
terion must be understood that if the power by a complex number is not a
mathematical operation with a clear definition, then this operation cannot be
developed.

Same situation happens for the ”theoretical problem” to define a negative
length for some geometrical object. To end this work its present a brief dis-
cussion about square, Cartesian plane and the meaning of i =

√
−1.

Appendix 1. The geometrical meaning of i =
√
−1

Next operation is a famous result of ”The System of Complex Numbers”

i2 = i · i = (0, 1) · (0, 1)

= (0 · 0− 1 · 1, 1 · 0 + 0 · 1)

= (−1, 0) = −1

12
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Early result is established using the rule of complex multiplication defined as:
Early result is established using the rule of complex multiplication defined as:

(x1, y1)(x2, y2) = (x1x2 − y1y2, x1y2 + y1x2)

In particular note that the result of such multiplication without to consider
any other ”complex algebraic operation” to establish the number i is

i2 = (−1, 0)

By the other hand; lets note that to define the result of

(−1, 0) = −1 ...(α)
is necessary to use a ”projection function”; i.e. early result is expressed more
properly by

fprojection(a, b) = (a)

Hence for α

fprojection(−1, 0) = (−1)

This detail has not been disregarded in the elaboration of this work.

Due to this problem an alternative explanation has been developed to argu-
ment the value of number i and its use to define ”power operation”.

Equation to obtain the area of an square can be used sometimes to represent
geometrically the square root operation.

If we considerate that

ASquare = Side · Side = Side2

Then clearing ”Side” variable using square root we have:

√
Area = Side

This means that the result to request the ”square root” to a number that rep-
resent the area of an square gives like result the length of the side that forms
such geometrical object.

This operation can be used without to take into account a system of reference
to be draw; i.e. can be used to measure squares drawn with help of compass,
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In specific when we use the Cartesian plane to draw an square we could find
the problem show on next diagram:

Graph 2. Theoretical Squares of Negatives Sides on Cartesian System. Geoge-
bra 2023.

We can see that draw an square into quadrants II and IV shows the problem
to deal with at least one side length of negative value.

On the elaboration of this work has been sought to not pass by any ”math-
ematical operation” that could be important to define some ”mathematical
procedure” not established formally; for the author of this work this situa-
tion is particularly important; taking into consideration only mathematical
operations that could have some geometrical and algebraic representation; for
example the equation to describe conic sections; in the sense that is usually
considered on algebraic geometry.

For this reason; to considerate without a proof the use of the operation ”ab-
solute value” to define the length of such sides into the Cartesian plane has
been avoided.

Instead has been considered that the length of such sides when is established
negative; is an useful result (and more elemental) product to use the ”scale”
of the Cartesian plane.

The geometrical representation of the square, endowed with the algebraic
equation to define the length of the side of an square described early, gives
like result next relations:

AQII = Area of square of quadrant II = Sidex · Sidey = (−1) · (1) = −1

also considering euclidean distance we have:

(−1, 0) and (0, 0)
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For this reason; to considerate without a proof the use of the operation ”ab- solute value” to define the length of such sides into the 
Cartesian plane has been avoided.

Instead has been considered that the length of such sides when is established negative; is a useful result (and more elemental) 
product to use the “scale” of the Cartesian plane.

The geometrical representation of the square, endowed with the algebraic equation to define the length of the side of an square 
described early, gives like result next relations:

also considering euclidean distance we have:

√
(−1− 0)2 + (0− 0)2 = −1

√
(−1− 0)2 = −1

√
(−1)2 = −1

AQIV = Area of square of quadrant IV = Sidey · Sidex = (−1) · (1) = −1

also considering euclidean distance we have:

(0,−1) and (0, 0)

√
(0− 0)2 + (−1− 0)2 = −1

√
(−1− 0)2 = −1

√
(−1)2 = −1

While when we obtain the square root for the first two equations we have:

√
AreaQII =

√
Sidex · Sidey =

√
(−1) · (1) =

√
−1

√
AreaQIV =

√
Sidey · Sidex =

√
(−1) · (1) =

√
−1

Remember that

i =
√
−1

By early argumentation was established that

i = ±(−1) = ±1

For the elaboration of this work Argand´s discussion about complex number
i was considered ”incomplete” and ”product of a theoretical misinterpretation
about the use of the Cartesian plane”.

In specific can be argue that the meaning of the term
√
(−1, 0) is not defined

when is requested the square root of a 2-tuple.

This criterion establish that Complex Analysis program must be reappraise to
avoid future mistakes; for example: the requisites to define an analytic func-
tion establish somewhere that a ”pretended” Cauchy criterion about partial
derivatives must be satisfied; when this differentiation principle around com-
plex functions is not very well defined and therefore is not workable.

15
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Same situation occurs about ”zero of analytic functions” and other equation
”commonly used” in complex analysis.

Appendix 2. The identity n · Ln(x) = Ln · (xn)

I will show why is not possible to use Ln to clear coefficients of power from
some equation.

Ln(xn) = n Ln(x) ...(1)

Remember that

Ln(x) =
∫ x

1
dt
t

(1) could be rewrite like

∫ xn

1
dt
t = n

∫ x

1
dt
t

Using definition of Riemann´s Integral on early equality we have:

Definition Riemann´s Integral is such that

∫ b

a
f(x)dx = limm→∞Σm

i=1f(xi)∆x

where

xi ∈ x0 = a, x1, x2, ..., xm = b; ∆x = b−a
m

Applying this definition to Ln property we have

∆xleft =
xn−1
m and ∆xright =

x−1
m

while

xileft
= (xn−1)i

m and xiright
= (x−1)i

m

substituting on Riemann sum we have

limm→∞Σm
i=1

1
(xn−1)i

m

(x
n−1
m ) = n limm→∞Σm

i=1
1

(x−1)i
m

(x−1
m )

expanding we have

limm→∞( 1
(xn−1)1

m

(x
n−1
m ) + 1

(xn−1)2
m

(x
n−1
m ) + 1

(xn−1)3
m

(x
n−1
m ) + ...)

=

16

n(limm→∞( 1
(x−1)1

m

(x−1
m ) + 1

(x−1)2
m

(x−1
m ) + 1

(x−1)3
m

(x−1
m ) + ...))

simplifying

limm→∞( 11 + 1
2 + 1

3 + ...)

=

n(limm→∞( 11 + 1
2 + 1

3 + ...))

therefore

( 11 + 1
2 + 1

3 + ...) = n( 11 + 1
2 + 1

3 + ...)

in particular

1 = n ; 1
2 = n

2 ; ...

Being false ∀n ∈ ℜ when n ̸= 1

This definition is commonly used on complex analysis and in particular in
analysis of Riemann functions to clear coefficients of powers.

1 References

Basic Complex Analysis; Chapter 1 and 6. Marsden, J.E.; Hoffman, M.J.; W.
H. Freeman and Company; 2ed. 1987.

Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse; Riemann, G.
F. B.; Monatsberichte der Berliner Akademie; 1859

Zeta-functions: An introduction to Algebraic Geometry; Thomas, Alan David;
Research notes in mathematics; London : Pitman; 1977
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This definition is commonly used on complex analysis and in particular in analysis of Riemann functions to clear coefficients of 
powers.
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