A Pure Mathematical Proof of the 4-Colour Theorem

Jun Wang*
Master of Condensed Matter Physics of Sun Yat-sen University, China

*Corresponding Author
Jun Wang, Master of Condensed Matter Physics of Sun Yat-sen University, China.

Submitted: 2023, Sep 06 Accepted: 2023, Oct 02 Published: 2023, Oct 09

Citation: Wang, J. (2023). A Pure Mathematical Proof of the 4-Colour Theorem. Biomed Sci Clin Res, 2(4), 357-363.

Abstract

This work "A Pure Mathematical Proof of the 4-Colour Theorem" is related to the previous proof assited by computer. "Triangulations of Euler Convex Polygon" provides a fresh beginning point for the proof. The central concept is to discover an extended invariance property of Standard Graph's boundary, which is described as "3-Colour All Phase States (3CP)" in this work and it is demonstrated that the Standard Graph's boundary and sub-bound are 3CP and 4-colorable (4-3CP) via the Expanded Operation e $(+$, pi) and e(-, pi). It's exciting that this regularity was discovered for the first time and the 4-3CP invariance can naturally derive the 4-Colour Theorem. The majority of the definitions, theorems and proof strategies are shown in this work.

Keywords: 4-Colour Theorem, Standard Graph, Bound, Sub-bound, 3CP, e(+, pi), e(-, pi), Triangulations

1. Introduction

The 4-Colour Theorem states that every map can be coloured using only four colours and no two adjacent regions have the same colour. The initial problem was first posed in the mid-19th century by Francis Guthrie. Guthrie noticed that four colours were sufficient to colour the map, and he wondered if this was true for every map. Many mathematicians attempted to solve the problem, but rigorous mathematical proof remained elusive. It became one of the most famous mathematical problems of the 20th century and Kenneth Appel and Wolfgang Haken finally solved computer-aided proof in 1976. This proof was considered controversial due to the extent of the computer assistance required [1].

The 4-Colour Theorem has important applications in real-world situations, such as in scheduling and timetabling problems. It also demonstrates the power and elegance of mathematical reasoning, as well as the importance of collaboration and innovation in solving complex problems.

We describe a specific class of graphs (see Appendix A) called Standard Graphs (SG), which are constructed by the Expanded Operations e(+, pi) and e(-, pi), which are used to replace planar graphs since they may have a significant number of unsaturated links and lack uniformity [2]. The Proof begins with "Triangulations of Euler Convex Polygons": convex polygons can be sliced into multiple triangles (Euler obtains the famous Catalan Number by counting the number of triangulations of convex polygons. In this article, we defined all the possible triangulations sets of convex polygons (denoted by "bound") as "All Phase States (AP)". If the boundary of any Standard Graph (SG) is All Phase States (AP) and 4-colorable, the 4-Colour

Theorem will be established. Unfortunately, the All Phase States (AP) property of the boundary cannot keep Invariance during the Expanded Operation e(+, pi) (denoted by "IEO"), which implies that the All Phase States (AP) property is incomplete [3]. Thus the boundary of the Standard Graph must have a cryptic property that can satisfy both the

All Phase States (AP) and IEO. Finally, I find that the Standard Graph's boundary satisfy 3CP and 4-colorable (denoted by "4$3 \mathrm{CP}{ }^{\prime \prime}$) and it is proven 4-3CP is IEO. This article's primary goal is to attest the Standard Graph's boundary $\mathrm{J}(\mathrm{m})$ and all its subbounds set $\left\{\mathrm{J}\left(\mathrm{m}^{\prime}\right)\right\}$ are 4-3CP.

2. Bound

Set a cycle $C(P m, L m), P m=\{p 1, p 2, \cdots, p m\}, L m=\{p 1 p 2$, $\mathrm{p} 2 \mathrm{p} 3, \cdots, \mathrm{pm}-1 \mathrm{pm}, \mathrm{pmp} 1\}, \mathrm{m} \geqq 3$, cycle C divides the plane into two connected domain: inside and outside, then we call the cycle C be a bound (see Figure 1), denoted by $\mathrm{J}(\mathrm{m})$ or $\mathrm{J}(\mathrm{Pm})$.
$|\mathrm{J}(\mathrm{m})|=\mathrm{m}$ is the number of points of $\mathrm{J}(\mathrm{m}),\|\mathrm{J}(\mathrm{m})\|=\mathrm{m}$ is the number of links of $\mathrm{J}(\mathrm{m})$. There are two types of link: real link "-" (p1-p2, p2-p3, \cdots) and virtual link "•••" (p1 $\cdots \cdot p 4, ~ p 3 \cdots \cdot{ }^{\circ} 5$, -••)

Figure 1: Bound
although the two points aren't linked by a real link, the virtual link is exist between them cause they are colored differently. Set a bound $\mathrm{J}(\mathrm{m})$, we get points set $\mathrm{Pm} \subseteq \mathrm{Pm}$ to form some new bounds $\mathrm{J}(\mathrm{m}$ '), $\mathrm{J} 1, \mathrm{~J} 2, \cdots$, (without cut links and loops), which are called sub-bounds of $\mathrm{J}(\mathrm{m})$. The $\mathrm{J}\left(\mathrm{m}^{\prime}\right)$, $\mathrm{J} 1, \mathrm{~J} 2, \cdots$ is sub-bounds set $\left\{\mathrm{J}\left(\mathrm{m}^{\prime}\right)\right\}$ of $\mathrm{J}(\mathrm{m})$. The sub-bounds set $\{\mathrm{J} 1, \mathrm{~J} 2, \cdots\}$ is called
com-bound $\mathrm{J}\left(\mathrm{m}^{\prime}\right)=\mathrm{J}(\mathrm{m})-\mathrm{J}\left(\mathrm{m}^{\prime}\right)=\mathrm{J} 1+\mathrm{J} 2+\cdots$ of $\mathrm{J}\left(\mathrm{m}^{\prime}\right)$ in $\mathrm{J}(\mathrm{m})$.
BWe defined a triangulation of convex polygons as a link state
and provided samples of $\mathrm{J}(3)-\mathrm{J}(7)$ in Table 1. If the bound $\mathrm{J}(\mathrm{m})$ contains all link states, we call $\mathrm{J}(\mathrm{m})$
all phase states(AP). The all link states number of $\mathrm{J}(\mathrm{m}+2)$ is $C(m)=1 m+1$ is Catalan Number).

Set $\left\{\mathrm{J}\left(\mathrm{m}^{\prime}\right)\right\}$ be a sub-bound set of $\mathrm{J}(\mathrm{m})$, it is simple to demonstrate that all of the sub-bounds set $\left\{\mathrm{J}\left(\mathrm{m}^{\prime}\right)\right\}$ are AP if and only if $\mathrm{J}(\mathrm{m})$ is AP. The sub-bounds set $\left\{\mathrm{J}\left(\mathrm{m}^{\prime}\right)\right\}$ is AP, which means that the sub-bound $\mathrm{J}\left(\mathrm{m}^{\prime}\right) \in\left\{\mathrm{J}\left(\mathrm{m}^{\prime}\right)\right\}$ is AP and independent.
1 Link state of $\mathbf{J}(3)$ or e

Table 1: Link states of $\mathbf{J}(3)-J(7)$

Table 2: An example of the 3-Colour All Phase States (3CP)

4. The 3-Colour All Phase States (3CP)

Let J(Pm) be the boundary of Standard Graph SG (see Figure 2), Y is the colouring solution set family of $\mathrm{J}(\mathrm{Pm})$, if Y can make the bound $\mathrm{J}(\mathrm{Pm})$ be AP and $\exists 3 \mathrm{Y} \in \mathrm{Y}$, we call $\mathrm{J}(\mathrm{Pm}) 3$-Colour All Phase State (3CP). An example of 3CP is provided bellow (Table 2):

Figure 2: $\mathrm{J}(\mathrm{Pm})$ of SG
If we have enough time to test all of the Standard Graph conditions, we will discover that the boundary of every Standard Graph is 3CP and 4-colorable. It's exciting that this regularity was discovered for the first time and the $4-3 \mathrm{CP}$ invariance can naturally derive the 4-Colour Theorem.

5. The 4-3CP Conjecture

The conjecture is described as follows :
4-3CP Conjecture: \forall standard graph $\mathrm{SG}, \mathrm{J}(\mathrm{m})$ is the boundary of SG, let Y is the colouring solution set family of $\mathrm{J}(\mathrm{m}),\left\{\mathrm{J}^{\prime}(\mathrm{m})\right\}$ is sub-bounds set of $\mathrm{J}(\mathrm{m})$, Y can make :
(1) $|Y| \leqq 4$,
(2) $\mathrm{J}(\mathrm{m})$ be 3 CP ,
(3) $\left\{\mathrm{J}^{\prime}(\mathrm{m})\right\}$ be 3 CP ,
(4) \exists a 3-colour solution set $3 \mathrm{Y}\left(\mathrm{J}^{\prime}(\mathrm{m})\right)$ and $\left\{\mathrm{J}^{\prime}(\mathrm{m})\right\}$ be 3 CP ,
(5) Let $x, p 1, p 2 \in J^{\prime}(m)$, link $x-p 1, x-p 2$ form sub-bounds $\mathrm{J}_{1}{ }_{1}(\mathrm{x}-\mathrm{p} 1), \mathrm{J}_{2}{ }_{2}(\mathrm{x}-\mathrm{p} 2)$, and $\mathrm{J}_{1}{ }_{1}+\mathrm{J}^{\prime}{ }_{2}$, if x scans on $\mathrm{p} 1 \rightarrow \mathrm{p} 2, \exists 3 \mathrm{Y}\left(\mathrm{J}^{\prime} 1+\right.$ $\mathrm{J}^{\prime} 2$) and $\mathrm{J}_{1}+\overline{\mathrm{J}_{2}}$ is 3CP .

1. Proof

By Exhaustive Method, it's easy to see:
(1) Element $\mathrm{e}=\mathrm{SG}(1), \mathrm{J}(3)$ conform to 4-3CP Conjecture.
(2) $\mathrm{SG}(2)$, J(4) conform to 4-3CP Conjecture.
(3) $\mathrm{SG}(3), \mathrm{J}(3)$ conform to 4-3CP Conjecture.

Set a Standard Graph SG, the boundary $\mathrm{J}(\mathrm{Pm})$ of SG , the colouring solution set family Y of $\mathrm{J}(\mathrm{Pm}),|\mathrm{Y}| \leqq 4, \mathrm{~J}(\mathrm{Pm})$ and it's sub-bounds $\mathrm{J}\left(\mathrm{Pm}^{\prime}\right)$ conform to the 4-3CP Conjecture. Then add an element e(ade) (points a, d, e form a triangle) on the $\mathrm{J}(\mathrm{Pm})$ to form a new boundary denoted by $\mathrm{J}(\mathrm{a}+\mathrm{Pm})=\mathrm{J}(\mathrm{Pm})+\mathrm{e}($ ade $)$
(d, e $\square J(P m)$, d-e, a is new). According to the Points Scanning Method (see Appendix C), it's easy to prove $\mathrm{J}(\mathrm{a}+\mathrm{Pm}$) is 3CP and 4-colorable, so 4-3CP Conjecture (2) is proven.

Next, we shall prove the sub-bounds set $\left\{\mathrm{J}\left(\mathrm{a}+\mathrm{Pm}{ }^{\prime}\right)\right\}$ of $\mathrm{J}(\mathrm{a}+$ $\mathrm{Pm})$ is 3 CP and 4-colorable: When $|\mathrm{Y}|=3, \mathrm{~J}(\mathrm{Pm})$ is AP equals to $J(P m)$ is $3 C P$. Since $J(P m)$ is AP, so the sub-bounds set $\left\{J\left(\mathrm{Pm}^{\prime}\right)\right\}$ is $A P$, and $\mathrm{Y}\left(\mathrm{J}\left(\mathrm{Pm}^{\prime}\right)\right) \in \mathrm{Y},\left|\mathrm{Y}\left(\mathrm{J}\left(\mathrm{Pm}^{\prime}\right)\right)\right|=|\mathrm{Y}|=3$, so $\left\{\mathrm{J}\left(\mathrm{Pm}^{\prime}\right)\right\}$ is 3CP.

Then we shall prove when $|\mathrm{Y}|=4$, the sub-bounds set $\{\mathrm{J}(\mathrm{a}+$ $\left.\left.\mathrm{Pm}^{\prime}\right)\right\}$ of $\mathrm{J}(\mathrm{a}+\mathrm{Pm})$ is 3 CP .
6. When the New Point a \in 3-Colour Sub-Bound of $\mathbf{J}(a+\mathrm{Pm})$ Take any n points $\mathrm{Pn}=\{\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3, \cdots, \mathrm{pn}\} \subseteq \mathrm{Pm}$, link p1-p2, p2-p3, \cdots, pn-1-pn, form
($\mathrm{n}-1$) sub-bounds $\mathrm{J}(\mathrm{p} 1-\mathrm{p} 2)$, $\mathrm{J}(\mathrm{p} 2-\mathrm{p} 3), \cdots, \mathrm{J}(\mathrm{pn}-1-\mathrm{pn})$, and take any point $\mathrm{x}, \mathrm{x} \in \mathrm{Pn}, \mathrm{x} \neq \mathrm{p} 1, \mathrm{pn}$, link x with p 1 , pn form two subbounds $\mathrm{J}(\mathrm{x} \rightarrow \mathrm{pn})$ and $\mathrm{J}(\mathrm{p} 1 \rightarrow \mathrm{x})$; link x with d , e form $\mathrm{J}(\mathrm{x} \rightarrow \mathrm{pnd})$, $\mathrm{J}(\mathrm{x} \rightarrow \mathrm{ep} 1)$ and $\mathrm{e}(\mathrm{xde})$ (see Figure 3).

Figure 3: $a \in 3$-colour sub-bound of $\mathrm{J}(\mathrm{a}+\mathrm{Pm}), \mathrm{a}=\mathrm{x}$
According to $\mathrm{J}(\mathrm{Pm})$ and the sub bounds of $\mathrm{J}(\mathrm{Pm})$ are $4-3 \mathrm{CP}$: $\mathrm{J}(\mathrm{p} 1-\mathrm{p} 2), \mathrm{J}(\mathrm{p} 2-\mathrm{p} 3), \cdots, \mathrm{J}(\mathrm{pn}-1-\mathrm{pn})$ and $\mathrm{J}(\mathrm{x} \rightarrow \mathrm{pn}), \mathrm{J}(\mathrm{p} 1 \rightarrow \mathrm{x})$ and $\mathrm{J}(\mathrm{x} \rightarrow \mathrm{pnd}), \mathrm{J}(\mathrm{x} \rightarrow \mathrm{ep} 1)$, $\mathrm{e}(\mathrm{xde})$ are 3 CP . According to $4-3 \mathrm{CP}$ Conjecture, when x scans on $\operatorname{Pn}(\mathrm{x} \neq \mathrm{p} 1, \mathrm{pn})$, the colouring solution set family $\mathrm{Y}(\mathrm{Pn})(\mathrm{Y}(\mathrm{Pn}) \in \mathrm{Y})$ must have a 3-colouring solution set $3 Y(P n)$ make $J(p 1-p 2)$,
$\mathrm{J}(\mathrm{p} 2-\mathrm{p} 3), \cdots, \mathrm{J}(\mathrm{pn}-1-\mathrm{pn})$ and $\mathrm{J}(\mathrm{x} \rightarrow \mathrm{pnd}), \mathrm{J}(\mathrm{x} \rightarrow \mathrm{ep} 1)$, $\mathrm{e}(\mathrm{xde})$ are 3CP.

If $\mathrm{y}(\mathrm{a})=\mathrm{y}(\mathrm{x}), 3 \mathrm{Y}(\mathrm{Pn})$ will make $|\mathrm{Y}(\mathrm{J}(\mathrm{a}+\mathrm{Pn}))|=3$ and make $\mathrm{J}(\mathrm{a} \rightarrow \mathrm{pnd}), \mathrm{J}(\mathrm{a} \rightarrow \mathrm{ep} 1)$ and $\mathrm{J}(\mathrm{p} 1-\mathrm{p} 2), \mathrm{J}(\mathrm{p} 2-\mathrm{p} 3), \cdots, \mathrm{J}(\mathrm{pn}-1-\mathrm{pn})$ are 3 CP , which means $\{\mathrm{J}(\mathrm{a}+\mathrm{Pn})\}$ are 3 CP . So, \square a 3 -colouring solution set $3 \mathrm{Y}(\mathrm{J}(\mathrm{a}+\mathrm{Pn}))$ make $\{\mathrm{J}(\mathrm{a}+\mathrm{Pn})\}$ be 3 CP .
$4-3 \mathrm{CP}$ Conjecture (4) is proven.
7. When the New Point a \notin 3-Colour Sub-Bound of $\mathbf{J}(\mathbf{a}+\mathbf{P m})$

Figure 4: $\mathrm{a} \notin 3$-colour sub-bound of $\mathrm{J}(\mathrm{a}+\mathrm{Pm})$
Since point a $\notin 3$-colour sub-bound of $\mathrm{J}(\mathrm{a}+\mathrm{Pm})$, we shall to prove all sub-bound $J(a+P m ')$ with point a are AP.Take any n +2 points $\operatorname{Pn}=\{d, e, p 1, p 2, p 3, \cdots, p n\} \subseteq$ Pm, link e-p1, p1p2, p2-p3, \cdots, pn-1-pn, pn-d, form ($\mathrm{n}+2$) sub-bounds $\mathrm{J}(\mathrm{p} 1-\mathrm{p} 2)$, J(e-p1),
$\mathrm{J}(\mathrm{p} 2-\mathrm{p} 3), \cdots, \mathrm{J}(\mathrm{pn}-1-\mathrm{pn}), \mathrm{J}(\mathrm{pn}-\mathrm{d})$ and $\mathrm{J}(\mathrm{a}+\mathrm{Pn})$. (see Figure 4) According to the boundary $\mathrm{J}(\mathrm{Pm})$ and the sub bounds of $\mathrm{J}(\mathrm{Pm})$ are $3 \mathrm{CP}: \mathrm{J}(\mathrm{Pn}), \mathrm{J}(\mathrm{e}-\mathrm{p} 1), \mathrm{J}(\mathrm{p} 1-\mathrm{p} 2)$, $\mathrm{J}(\mathrm{p} 2-\mathrm{p} 3), \cdots, \mathrm{J}(\mathrm{pn}-1-\mathrm{pn})$, $\mathrm{J}(\mathrm{pn}-\mathrm{d})$ are $3 \mathrm{CP}, \exists 3$-colouring solution set $3 \mathrm{Y}(\mathrm{J}(\mathrm{Pn})) \in \mathrm{Y}$, make $\left\{\mathrm{J}\left(\mathrm{P}_{\mathrm{n}}\right)\right\}$ be 3CP. According to the Points Scanning Method: If $y(a) \notin 3 Y(J(P n))$ and $y(a) \in Y, J(a+P n)$ is AP, so all sub-bound $\mathrm{J}(\mathrm{a}+\mathrm{Pm}$ ') with point a are AP.

Sum up 5.1.1, 5.1.2, we can see 4-3CP Conjecture (3) is proven.

8. Proof of 4-3CP Conjecture (5)

Set $\mathrm{Pm}^{\prime} \subseteq \mathrm{Pm}, \mathrm{Pm}$ ' divide $\mathrm{J}(\mathrm{m})$ into m' parts, let x is a point between $\mathrm{p} 1 \rightarrow \mathrm{p} 2(\mathrm{x} \neq \mathrm{p} 1, \mathrm{p} 2)$ on $\mathrm{J}(\mathrm{m})$, we call p 1 , p 2 are fixed points, x is scanning point. Link $x-p 1, x-p 2, \cdots, x-p m$ ', form a sub-bounds set $\left\{\operatorname{Ji}(\mathrm{x}) \mid \mathrm{x} \in \mathrm{Ji}(\mathrm{x}), \mathrm{i}=1,2, \cdots, \mathrm{~m}^{\prime}\right\}$ of $\mathrm{J}(\mathrm{m})$. (assume $\mathrm{m}^{\prime}=5$, see Figure 5)

Figure 5: sub-bounds set $\{\operatorname{Ji}(\mathrm{x}) \mid \mathrm{x} \in \mathrm{Ji}(\mathrm{x}), \mathrm{Ji}(\mathrm{x}) \in \mathrm{J} 1, \cdots, \mathrm{~J} 6\}$ of $\mathrm{J}(\mathrm{m})$ According to $4-3 \mathrm{CP}$ Conjecture (5), when x scans on $\mathrm{p} 1 \rightarrow \mathrm{p} 2, \exists 3 \mathrm{Y}(\mathrm{J} 1+\mathrm{J} 2)$, and $\mathrm{J} 3, \cdots, \mathrm{Jm}^{\prime}, \mathrm{Jm}$ ' +1 are 3 CP . Then add a new point a on $\mathrm{J}(\mathrm{m})$, when point a is on $\mathrm{J} 1, \mathrm{~J} 2, \exists \mathrm{y}(\mathrm{a}) \in \mathrm{Y}(\mathrm{J} 1(\mathrm{x})$ $+\mathrm{J} 2(\mathrm{x}))$, keep $|\mathrm{Y}(\mathrm{J} 1(\mathrm{x})+\mathrm{J} 2(\mathrm{x}))|=3$, and J3, $\cdots \cdot \mathrm{Jm}^{\prime}, \mathrm{Jm}{ }^{\prime}+1$ are 3 CP ; when point a is on J3, $\cdots \cdot, \mathrm{Jm}$ ', Jm' $+1, \exists \mathrm{y}(\mathrm{a}) \in \mathrm{Y}$, keep J3, ${ }^{\bullet \cdot}, \mathrm{Jm}^{\prime}, \mathrm{Jm}$ ' +1 are 3 CP ; when point a is a fixed point as $\mathrm{p} 1, \mathrm{p} 2$, we also could prove that, when x scans on $\mathrm{p} 1 \rightarrow \mathrm{p} 2, \exists 3 \mathrm{Y}(\mathrm{J} 1+$ J 2), and J3, $\cdots \cdot, \mathrm{Jm}$ ', Jm' +1 are 3 CP (we will prove in detail in next article), so $\mathrm{J}(\mathrm{m}+\mathrm{a})$
can keep when x scans on $\mathrm{p} 1 \rightarrow \mathrm{p} 2, \exists 3 \mathrm{Y}(\mathrm{J} 1+\mathrm{J} 2)$, and $\mathrm{J} 3, \cdots$, Jm ', Jm ' +1 are 3 CP . So $4-3 \mathrm{CP}$ Conjecture (5) is proven.

So $\mathrm{Y}(\mathrm{a}+\mathrm{m})$ can make:
(1) $|\mathrm{Y}(\mathrm{a}+\mathrm{m})|=|\mathrm{Y}| \leqq 4$,

1) the bound $\mathrm{J}(\mathrm{a}+\mathrm{m})$ be 3 CP ,
2) \forall sub-bounds set $\left\{J^{\prime}(\mathrm{a}+\mathrm{m})\right\}$ be 3 CP ,
3) \exists a 3 -colour solution set $3 Y\left(J^{\prime}(a+m)\right)$, and $\left\{J^{\prime}(a+m)\right\}$ be 3CP.
4) Let $x, p 1, p 2 \in J^{\prime}(a+m)$, link $x-p 1$, $x-p 2$ form sub-bounds $\mathrm{J}^{\prime} 1(\mathrm{x}-\mathrm{p} 1), \mathrm{J}^{\prime} 2(\mathrm{x}-\mathrm{p} 2), \mathrm{J}_{1}+\mathrm{J}_{2}$, if x scans on $\mathrm{p} 1 \rightarrow \mathrm{p} 2, \exists 3 \mathrm{Y}\left(\mathrm{J}^{\prime} 1+\right.$ $\mathrm{J}^{\prime} 2$) and $\mathrm{J}^{\prime} 1+\mathrm{J}^{\prime} 2$ is 3 CP .
Above all, we have proven 4-3CP Invariance during the Expanded Operation e(+,
pi), It's easy to see $4-3 \mathrm{CP}$ Invariance during the Expanded Operation e(-, pi) is also
true.

So 4-3CP Conjecture is proven!

9. Appendix A: Definition Table (Table 3)

| Definition | Definition Description |
| :--- | :--- | :--- |

Appendix B
Axiom system :
Axiom 1: On 2D plane or spherical surface, any planar graph without cut links and loops is standard graph $\mathrm{SG}(\mathrm{n})$ or sub-graph $\mathrm{SG}(\mathrm{n}$ ') of $\mathrm{SG}(\mathrm{n})$. Theorem system :

SG , let Y is the colouring solution set family of $\mathrm{J}(\mathrm{m}),\left\{\mathrm{J}^{\prime}(\mathrm{m})\right\}$ is sub-bounds set of $\mathrm{J}(\mathrm{m}), \mathrm{Y}$ can make :
(1) $|Y| \leqq 4$,
(2) $\mathrm{J}(\mathrm{m})$ be 3 CP ,
(3) $\left\{\mathrm{J}^{\prime}(\mathrm{m})\right\}$ be 3 CP ,
(4) \exists a 3-colour solution set $3 \mathrm{Y}\left(\mathrm{J}^{\prime}(\mathrm{m})\right)$ and $\left\{\mathrm{J}^{\prime}(\mathrm{m})\right\}$ be 3 CP ,
(5) Let $x, p 1, p 2 \in J^{\prime}(m)$, link $x-p 1, x-p 2$ form sub-bounds

J'1(x-p1), J'2(x-p2), and
$\mathrm{J}_{1}{ }_{1}+\overline{\mathrm{J}_{2}}$, if x scans on $\mathrm{p} 1 \rightarrow \mathrm{p} 2$, ヨ $3 \mathrm{Y}\left(\mathrm{J}^{\prime} 1+\mathrm{J}^{\prime} 2\right)$ and $\mathrm{J}_{1}+\overline{\mathrm{J}_{2}}{ }_{2}$ is 3CP.
Inference system:
Inference 1: If the bound $\mathrm{J}(\mathrm{m})$ is AP \square the sub-bounds sets $\left\{\mathrm{J}\left(\mathrm{m}^{\prime}\right)\right\}$ of $\mathrm{J}(\mathrm{m})$ must be AP and independent with each other.

Inference 2: If bound $\mathrm{J}(\mathrm{m})$ is $4-3 \mathrm{CP}, \mathrm{J}(\mathrm{m})$ can be extended infinitely by $\mathrm{e}(+, \mathrm{pi})$ and $\mathrm{e}(-, \mathrm{pi})$.

Inference 3: The colouring solution set $\{\mathrm{Y}(\mathrm{n})\}$ of standard graph $\mathrm{SG}(\mathrm{n})$ is also the
solution set of sub-graph $\mathrm{SG}\left(\mathrm{n}^{\prime}\right)$ of $\mathrm{SG}(\mathrm{n})$.
Inference 4: The element e can be extended infinitely outward and inward by e(+, pi) and e(-, pi), and the outward and inward colouring solution are independent.

10. Appendix C

10.1 Two Important Methods

1. Points Scanning Method: we set a bound $\mathrm{J}(\mathrm{m})$ and a point x $\in \operatorname{Pm}$, let $x \notin \operatorname{Pn}, \operatorname{Pn} \subset \operatorname{Pm}, \operatorname{Pn}=\{p 1, p 2, p 3, \cdots, p n, d, e\}(d-x$, $\mathrm{e}-\mathrm{x}), \mathrm{m} \geqq 3,0 \leqq \mathrm{n} \leqq m-3$, link x with Pn , the bound $\mathrm{J}(\mathrm{m})$ is AP if and only if $\forall \mathrm{Pn}$, the sub-bound $\mathrm{J} 1, \mathrm{~J} 2, \mathrm{~J} 3, \cdots \cdot \mathrm{Jn}+1$ are AP (see Figure 6).

Figure 6: J(m) Points Scanning Method
2. Links Scanning Method: we set bound $J(m)$, let a, d, e (d-e) \in $\mathrm{Pm}, \mathrm{m} \geqq 3, \mathrm{a} \neq \mathrm{d}, \mathrm{a} \neq \mathrm{e}$, form an element $\mathrm{e}(\mathrm{ade})$ and com-bound $\mathrm{J}(\mathrm{e})=\mathrm{J}(\mathrm{m} 1)+\mathrm{J}(\mathrm{m} 2)$, the bound $\mathrm{J}(\mathrm{m})$ is AP if and only if \forall a, the com-bound $\mathrm{J}(\mathrm{e})$ of e(ade) is AP (see Figure 7).
The all link states number of this structure is $\mathrm{C}(\mathrm{m} 1-2) \times \mathrm{C}(\mathrm{m} 2$ -2)

Figure 7: J(m) Links Scanning Method

Conclusion

The major research objects are the boundary's invariance property of Standard Graph in this work. By creating the Standard Graph via Expanded Operations e(+, pi) and e(-, pi), the complexity of the planar graph is reduced. By examining the Invariance during Expanded Operations (IEO) of Standard Graph, huge calculation for coloring planar graph are avoided. Based on the above optimization method, we have demonstrated a rigorous proof of the 4 -Colour Theorem, which can be also used to optimize complex systems.

References

1. Bondy, A., \& Murty, U. S. R. (2008). Graph theory: Graduate texts in mathematics.
2. Gould, H. W. (1971). Researc h bibliography of two special number sequences. (No Title).
3. De Loera, J. A., Rambau, J., Santos, F., De Loera, J. A., Rambau, J., \& Santos, F. (2010). Triangulations in mathematics. Triangulations: Structures for Algorithms and Applications, 1-41.

Copyright: ©2023 Jun Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

