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Abstract

In this paper, we present a proof for a generalization of the inequality from the
42nd International Mathematical Olympiad. The proved inequality relates to a sum
involving square roots of fractions. It has various applications in mathematical analysis,
optimization, or statistics. In the field of mathematical analysis, it can be used in
the study of convergence. In terms of optimization, it may help establish bounds or
relationships between the variables involved.

In this paper, we will present a proof for a generalization of the inequality from the 42nd
International Mathematical Olympiad [IMO]. The original inequality corresponds to the
case when n = 3. We aim to prove
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where Gi = (1, 2, . . . , i− 1, i+1, . . . , n) denotes a cyclic ordered sequence, in which Gi,j = j
for 0 < j < i, Gi,j = j +1 for i ≤ j < n, otherwise Gi,n = Gi,1. By applying GM inequality
to each summand for the LHS of (1) and adding them together, we can get the right-hand
side (RHS) of (1). For better presentation, we show the derivation for the first group and
the other n− 1 groups follow the same logic.
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