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Abstract
A classic diatomic chain with one mass impurity is studied using the recurrence relations method. The momentum 
autocorrelation function of the impurity results from contributions of two pairs of resonant poles and three branch cuts. 
The pole contribution is given by cosine function(s) and the cut contribution is the acoustic and optical branches. The 
acoustic and optical branches are given by expansions of even-order Bessel function. The expansion coefficients are 
integrals of elliptic functions in the real axis in a complex plane for the acoustic branch and along a contour parallel to 
the imaginary axis for the optical branch, respectively. An integral 2 2 2 2
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Introduction

It has a long history that harmonic oscillator chains are used as 
a model for solid state. Most of the early work used the normal 
coordinates method [1-4]. Since earlier 1980s, the recurrence 
relations method [5-8] is used in the study of various areas in 
physics [9-13] as well as in different models of oscillator chains 
[14-22].    

The momentum autocorrelation function (ACF) of one impurity in 
a classic diatomic chain is studied using the recurrence relations 
(RR) method. It results from contributions of two pairs of resonant 
poles and three branch cuts [19]. The pole contribution is cosine 
function(s) and the cut contribution gives the acoustic and optical 
branches. 

The cut contribution is derived as expansion of even-order Bessel 
functions by use of the convolution theorem. The expansion 
coefficients are integrals of real and complex elliptic functions for 
the acoustic and optical branches, respectively. 

Because the elliptic function is greater than one at the lower end 
point of the optical branch cut, we encounter complex elliptic 
functions. The addition theorem helps reduce the complex elliptic 
function to a complex sum of two real ones. Hence the expansion 
coefficients are integrals of elliptic functions along the real axis 
in a complex plane for the acoustic branch and along a contour 
parallel to the imaginary axis for the optical branch , respectively.

By a special transformation, integral 
is carried out where both r2

1  and r2
2 are greater than one.

Recurrence Relations Method

Let A(t) be a dynamical variable of a system governed by the 
Heisenberg’s equations:                                       
                                  dA( t ) { A( t ),H }

dt
=                                                                   ,                           (2.1)

where { , } is the Poisson bracket and Hamiltonian H is Hermitian.      
A(t) may be expamded as   

                                   
                                                                   ,                           (2.2)

where {fv; v =0,1,2,....,d-1} is a set of complete linearly independent 
orthogonal basis vectors spanning a realized space S, and{av(t)}   
is a set of basis real functions bearing the time dependence of 
A(t). {fv} are not necessarily normalized, and may depend on the 
properties of the inner product space such as temperature, chemical 
potentials, etc. 

The norm or length of vector A(t)  is given by
 ||A(t)|| =  (A(t), A(t)),                                                           (2.3)

where (A,B) is the inner product of A and B being realizable 
according to the physical requirements of the model. In classic 
cases, the inner product is simply defined by the average of AB:

                                                                                                (2.4)  

where β is the inverse temperature. The realized space S has  d  
dimensions and so does A(t). d may be finite or denumerably 
infinite. For a Hermitian system, the norm of a dynamical vector   
A(t) is a constant of motion: || A(t) || = ||A|| [7].              
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                .
If S is realized by inner product (2.4), then {fv} satisfy a set of 
three-term recurrence relations referred to as RR I:

                                                                                                (2.5)

where L ≡ { ,H} is the Liouvillian operator of the system,
 
∆v≡||fv||/||fv-1|| and {Δv} is a set of recurrants.

Correspondingly, {av(z)} also satisfy a set of three-term recurrence 
relations called RR II:

                                                                                                (2.6)
                                                                                          

with                                 . The RR II is model-dependent.

The Laplace transform L[ a0 (t) ] = a0(z) is related to the recurrants   
σ = (Δ1Δ2...,Δd-1) by a continued fraction:
 
                      a0(z)=1/(z+Δ1/(z+Δ2/z+...Δd-1/ z)).                   (2.7)

If d is finite, the r.h.s. of (2.7) is a polynomial of finite order. In this 
case a0(t)  is a periodic function. If d→∞, the r.h.s. of (2.7) is an 
infinite continued fraction.

The Model

Consider a diatomic chain composed of infinite classic oscillators. 
At sites j0 =+1,+3,... locate oscillator m1, at je=+2,+4 ...  oscillator 
m2 and at q0 a mass impurity m0. They interact with their nearest 
neighbours through Hook constant K under the periodic boundary 
conditions q-N/2 = qN/2 and p-N/2 = pN/2.

The Hamiltonian of the chain is given by
 

                                                
                                                                                      .      (3.1)

The frequencies of the oscillators are defined by ω2
i= K/mi , 

(i =0,1,2). If choose K=m1=1, then , ω2
0 = η, ω2

1 = 1 and ω2
2=λ  

where   η=m1/m0 and λ=m1/m2  are parameters.

 The recurrants are derived as [19]:

                N→∞: σ = (2η,1,1λ.λ,1,1,λ.λ,1,1, λ.λ...).              (3.2)

Combining (3.2) with continued fraction (2.7) gives

                               a0(z)= 1/z + 2η/ A,                                 (3.3)

where A = z+1/(z+1/(z+ λ/(z+ λ/A))) is a quadratic equation for A, 
the solution is

Substituting A into (3.3) yields [19]

                                                                                               (3.4)

where 

                                                                                             (3.5a)
                                                                               
                                                                                             (3.5b)
                                                        
                                                                                             (3.5c)
 
(3.4) can be rationalized as

                                                                                              (3.6)

where
 
                                                                                              (3.7)

which may be factorized. Thus we obtain

                                                                                              (3.8)

where

                                                                                             (3.9a) 

 
                                                                                             (3.9b)             

                                                                                             (3.9c)

                                                                                             (3.10)

Now write  a0(z) as a0(z;η,λ). Obviously, (3.8) has two pairs of 
resonant poles and three branch cuts shown in Fig. 1.

Figure 1: Poles (“x”) and cuts (bold segment) of a0 ( z;η, λ) 

Completeting the inverse Laplace transform of (3.8) yields
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        a0 (t; η, λ) = a0
pol (t: η, λ) + a0

cut (t; η, λ),                       (3.11)   

being contributions from the poles and cuts, respectively. 
The cut contribution is a sum of acoustic and optical branches:

         a0
cut

 (t; η, λ) = a0
aco (t: η, λ) + a0

opt (t; η, λ).                   (3.12) 

The initial condition of the momentum ACF reads

                                                                                 .           (3.13) 

The Pole Contribution

Now introduce an η − λ plane, in which line λ =1 (m1=m2) represents 
an equal mass chain with an impurity; line η =λ (m0 = m2) gives 
a diatomic chain; and intersection of the two lines (m0 = m1= m2 )    
represents a monatomic chain, etc. These two lines divide the plane 
into four regions Id , Iu , IIu and IId shown in Figure 2. 

Figure 2: Regions Id , Iu , IIu and IId  and   in the η − λ plane

It is easy to verify that

b<v<c<a<μ, (λ<1), c<v<b<a< μ (λ>1).                               (4.1)

The pole contribution is given by [19]

                                                                                               
(4.2)

 
It shows that region Id is the physical region for both mode μ and 
v; Iu is the physical region for μ only; IIu is for mode v only; and IId  
is not physical for both μ , v.

The frequencies μ, v are determined by (3.7) and the amplitudes 
M, N  are derived as

                                                                                              (4.3)

(4.3) is valid in all four regions. It is also valid in the limits λ→0   
and ∞ ; while it is valid for N but not for M when η→0 (m0→ ∞)  
and ∞ (m0 →0)  [21].

Contribution of Cuts 

Now consider the cut contribution. Since  P (z) is odd in z, by (3.8) 
we have

                                                                                             (5.1a)
 

                                                                                             (5.1b)

                                                                                             (5.2a)

                                                                                             (5.2b)

Generally, it is not easy to carry out the inverse Laplace transform 
of (3.8). If write it as a0 (z) = f (z)g(z), the convolution theorem 
allows us to carry out the inverse Laplace transforms separately:

                                                                                             (5.3)

We choose 

                                                                                

   

than [23,24(a)]

Acoustic Branch  

For   λ<1 (0< y < b < c < a) ,
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By y = b sin Ɵ (sin Ɵb= 1)   and

                                                                                              (5.4)

we have

                                                                                              (5.5)

                                                                                                
where

                                                                    (n=0,1,2....),      (5.6)

are auxillary integrals; and

k1
2 = (b/c)2 = λ<1, k2

2 = (b/a)2 = λ /(λ+1), k2
2 < k1

2                                   (5.7) 

are parameters.                                                                     

Make use of [25(a)] and set [25(b)]  

then

where 

is the modulus and K(k) the complete Legendre elliptic integral of 
the first kind. It can be expanded and evaluated as [22]

                                                                                              (5.8)

where αk
2 = k2

2 /  (k
2

2 – 1)>1  is a parameter (αk
2 ≠ 1 or k2); by

(5.7), the coefficients are given by

                                                                                             (5.9)

and 

                                                               (m=0,1,2,3).          (5.10)            

Further, (5.8) can be evaluated as

given in terms of complete Legendre elliptic integrals of the first, 
second and third kinds.

Similarly,

                                                                (n=1,2,3....).         (5.11)

Make use of [24(b)]

                                                                                             (5.12a) 

                                                                        
       

                                                                                             (5.12b)  

then (5.11) reads

                                                                                             (5.13)

where

                                                                                            (5.14a) 

it can be evaluate and expand as [22]

Thus (5.5) takes the form
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                                                                                            (5.15)
                                                                                               

where                                           is used.

Therefore the acoustic branch is given by

                                                                                           (5.16)

For λ > 1 (0 < y < c < b < a), we have

 

Similarly, set y = ccos Ѳ (sin  Ѳc =1), we obtain the acoustic branch 

                                                                                                  ,

                                                                                           (5.17)
where

                                                                                           (5.18)

                                                                                           (5.19)

                                                                                            

                                                                     ,                       (5.20)

are coefficients;

is the modulus; and

                                                                                                  are

parameters. 

Also, U0
aco (λ > 1) can be expressed in terms of complete Legendre 

elliptic integrals of the first, second and third kinds:

In (5.16) or (5.17), the acoustic branch is expressed as even-order 
Bessel function expansion, the expansion coefficients are integrals 
of elliptic functions. The auxillary integral U0

aco  may be expressed 
in terms of Legendre elliptic integrals of the first, second and third 
kinds.

Optical Branch     

Now consider the optical branch with different values of λ .

For  λ < 1 (0 <  b < c < y < a), 

By y = asinѲ , (sin γ = c / a)  and (5.4), it becomes 

  
                                                                                           (5.21)

The auxillary integrals are defined by

                                                             (n=0,1,2...) ,           (5.22) 

                                                         r2
2  > r1

2  > 1.               (5.23)

Consider

                                                                                             (5.24)

It is different from (5.6) because  r2
2  > r1

2  > 1. Using  

                                                                    and setting  
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we obtain [22]     

a modulus. Further, it can expanded as

                                                                                            (5.25)

The expansion coefficients are

                                                                                            (5.26)

and parameter αr
2 = r2

2 /(r2
2 -1) >1  but ≠ 1 or kr

2. The limits of 
integration are determined by

                                                                                             (5.27)

Similarly,

                                                                  (n = 1,2,...)        (5.28)

By (5.12), (5.28) is evaluated and expanded as [22]

                                                                                            (5.29)

                                                                                          
 (5.30)

However, by (5.27), sn uc = 1/kr >1, so  uc, sn (uc, kr) and sn(u,kr) 
are complex. Hence the integral in (5.25) takes the form 

By the addition theorem [26] and sn(u+iv,kr) > 1  being real, we 
have u=K (kr) and sn(u+iv,kr) replaced by nd (v,kr') [17,18] where 
nd  is a Jacobian elliptic function, kr' =√1–kr

2  is a complementary 
modulus. 

Since  u= K(k
r
) is a constant, du=0 , so (5.25) and (5.30) become

                                                                                            (5.31)

                                                                                            (5.32)

  The limits of integration are given by

                                                                                            (5.33)
 
Substituting (5.31), (5.29) and (5.32) into (5.21) gives

                                                                                             
                                                                               .

                                                                              .              (5.34)

Therefore, the optical branch is given by 

                                                                                            (5.35)

For  λ > 1 (0< c < b < y < a),   

By similar arguments, we obtain

 
                                                                                             (5.36)

where

                                                                                             (5.37)
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                                                                                             (5.38)

the coefficients Cm (λ)  are still given by (5.26); 

     '   ks  < 1 is complementary to modulus 

 
        
                                                                          ;

                                                                                              being a

parameter;

s2
2  > s1

2  are parameters.

In (5.35) or (5.36), the optical branch is an even-order Bessel 
function expansion, the expansion coefficients are integrals of 
elliptic functions along a contour parallel to the imaginary axis in 
a complex u+iv - plane.

Modulus Relations

By the definitions of k,l, kr, ks we find that

                                                                                           (5.39)

Thus we have the modulus relations:

The moduluses of the elliptic functions in the expansion coefficients 
of the acoustic and optical branches are complementary one to 
another.

Besides, by K(k) = K' (k'), etc. and (5.39), we have

K(k) = K' (kr), K(l) = K'(ks).                                                (5.40)   

The values of the upper integration limits in the coefficients of 
acoustic and optical branches are equal.              
 
 
 
 
 
 
 

Figure 3: Integration contours in the u+iv - plane  

(a) For Eqs.(5.18) and (5.38) with λ<1.  
(b) For Eqs.(5.19) and (5.39) with λ>1.

Conclusions  
We have derived the momentum ACF of the impurity in a diatomic 
chain. The pole contribution is cosine function(s). General 
expressions for the frequencies and amplitudes are derived. In 
different regions in the η - λ -plane, the two resonant modes μ and  
v may exist simultaneously, only one or none, depending upon the 
values of (η, λ). 

The acoustic and optical branches are derived as expansions of 
even-order Bessel functions. The expansion coefficients are 
integrals of real and complex elliptic functions for the acoustic and 
optical branches, respectively. The addition theorem helps deal 
with the complex elliptic function.

Therefore the expansion coefficients are given by integrals of elliptic 
functions along the real axis in a complex plane for acoustic branch 
and that along a contour parallel to the imaginary axis for optical 
branch, respectively. Besides, auxillary integrals U0

aco (λ)  can be 
expressed in terms of complete Legendre elliptic integrals of the 
first, second and third kind. The time range is confined to t >0.

The derived pole and cut contributions present deeper insight to 
the momentum autocorrelation function of the impurity in a classic 
diatomic chain. 
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