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Abstract
Alzheimer's disease (AD), recognized as the second-most impactful neurological disorder and currently 
incurable, stands as the leading cause of dementia. An imperative research focus is efficiently diagnosing the 
stages of patients, distinguishing early or late Mild Cognitive Impairment and AD from those with normal 
cognitive function. Advancements in anatomical and diffusion-weighted imaging, coupled with machine 
learning techniques, have significantly progressed in this predictive domain. However, in real-world trials, 
datasets often contain numerous features, and the curse of dimensionality can introduce challenges such 
as increased computational complexity, overfitting, and diminished model interpretability. To address these 
issues, the present study explores the efficacy of Principal Component Analysis (PCA) and Linear Discriminant 
Analysis (LDA) as dimensionality reduction techniques. LDA, a supervised technique emphasizing class 
separability, surpasses PCA, particularly in selecting features that significantly contribute to discriminating 
between classes. The 3D-LDA features obtained were subsequently assessed across various machine learning 
algorithms, leading to the establishment of a 4-way classification framework that utilized the K-Nearest 
Neighbors model. The outcome of this evaluation yielded an impressive accuracy rate of 87% in predicting the 
four different classes.
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1. Introduction 
Each year, Alzheimer's disease impacts a significant portion of 
the global population, as indicated by a recent projection that 
estimates one in every 85 individuals will confront this condition 
by 2050 [1].  Ranked as the second-most impactful neurological 
disorder globally, dementia symptoms appear in approximately 
sixty to eighty percent of individuals diagnosed with Alzheimer's 
disease. Therefore, establishing an early diagnosis of the disease 
is a priority in recent research.

Magnetic resonance imaging, particularly in various modalities 
such as anatomical MRI and diffusion-weighted images (DWI), 
has significantly contributed to advancing different stages of 
Alzheimer's disease (AD) diagnosis. However, regardless of 
the modality employed, the challenge of dealing with a vast 
number of features relative to a limited number of samples 
necessitates careful consideration during feature extraction and 
dimensionality reduction. Indeed, two widely utilized techniques 
in the realm of dimensionality reduction are Linear Discriminant 

Analysis (LDA) and Principal Component Analysis (PCA). In 
one study, the authors employed PCA in conjunction with a 
Multi-Kernel Support Vector Machine (SVM) to achieve an 
impressive 84% accuracy in a 4-way classification based solely 
on structural MRI [2]. A noteworthy enhancement was achieved 
in through the utilization of Positron Emission Tomography 
(PET) images [3]. Subsequently, Principal Component Analysis 
(PCA) features were integrated with neural networks (NN) 
and support vector machine (SVM) classifiers, resulting in an 
impressive accuracy of 89.52%.

To achieve a similar objective, several researchers have opted to 
incorporate Linear Discriminant Analysis (LDA). In a specific 
investigation cited as centered on anatomical MRI images, 
the authors initiated their approach with a statistical t-test for 
feature selection [4]. The resulting subset was then inputted 
into the Kernel Principal Component Analysis (KPCA) module. 
Following this, the LDA method was utilized to project the 
KPCA coefficients into a more efficient linear discriminant space. 
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Ultimately, the researchers employed a multi-kernel Support 
Vector Machine (SVM) to accomplish the 3-way classification 
task.

In the context of a 4-way classification scenario, the authors have 
advocated for the utilization of a statistical Pearson correlation 
method combined with Linear Discriminant Analysis (LDA) for 
feature selection. When applied to a brain connectome dataset 
extracted from diffusion-weighted images, they successfully 
demonstrated the efficacy of their methodologies in a multi-class 
classification context [5].

In the present investigation, both the PCA and LDA methods 
were implemented, leveraging their capacity to convert high-
dimensional data into a lower-dimensional space while retaining 
crucial information. A comprehensive comparison of the derived 
features was conducted, and the efficacy of LDA features 
was assessed across multiple classifiers. Ultimately, a 4-way 
classification framework was constructed using the K-Nearest 
Neighbors algorithm. A flowchart summarizing the methodology 
proposed in this study is illustrated in Figure 1.

2. Materials and Methods
2.1 Materials
The images utilized in this study were gathered from the ADNI 
database (adni.loni.usc.edu), established with the primary aim 
of supporting Alzheimer's disease (AD) research. Automated 
image preprocessing was conducted in alignment with recent 
advancements in the field [6,7]. The key preprocessing steps 
included normalization, denoising, and artifact correction 
(addressing Eddy currents and bias fields), as well as skull 
stripping. Subsequently, co-registration between anatomical 
and diffusion-weighted images for each subject was performed, 
followed by boundaries creation, and streamlines generation.

The resulting output is the brain connectome, an 84 by 84 
symmetric matrix where each element Wi,j represents the 
normalized connectivity strength between nodes I and J. From 
this connectome, we specifically focus on the numerical data 
representing connectivity between hemispheres, given their 
proven effectiveness in Alzheimer's disease detection [5].
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 The present study encompasses 237 subjects categorized into 
distinct groups: healthy controls, individuals diagnosed with 
early and late mild cognitive impairment, and subjects with 
Alzheimer's disease. Corresponding information for each 
group is summarized in Table 1. 

Table 1.  Demographic and clinical information 
Class Gender Age(mean) Size 

NC 27 M/35 F 72.25 62 

EMCI 34M/28 F 77.78 62 

LMCI 31M/26F 77.51 57 

AD 22 M/26 F 74.68 48 

 

B. Standardization  and Outliers Detection 
 

To ensure a more refined dataset, it is often crucial to 
standardize the samples. Standardization involves scaling the 
features to have a mean of 0 and a standard deviation of 1. 
This is important when the features in the dataset have 
different units or scales, ensuring that no single feature 
dominates the analysis due to its magnitude. 

Another focus in the data preprocessing phase is on 
detecting outliers. Extreme data points that deviate 
substantially from most of the dataset have the potential to 
adversely affect the performance of certain machine learning 
models. Addressing these outliers at the outset of the process 
is crucial, as it paves the way for the development of more 
resilient models. 
 After experimenting with multiple outlier detection 
methods, we have adopted the Isolation Forest ensemble 
learning-based approach. This involves constructing a 
collection of isolation trees and combining their outcomes to 
identify outliers. We have set a 5% contamination rate and 
obtained satisfactory anomaly detection results. 
 

C. Dimensionality reduction 
 

 Indeed, there are 861 features, capturing the overall 
connectivity between forty-two nodes in both the left and 
right hemispheres. The abundance of features, when 
contrasted with the number of studied samples, introduces a 
challenge known as the curse of dimensionality. This 
circumstance results in an underdetermined matrix, 
presenting various challenges and issues. Particularly, the 
lack of a unique solution can amplify computational 
complexity and compromise model generalization. To 
streamline the dataset, enhance manageability, and 
potentially boost machine learning model performance, we 
choose to employ dimensionality reduction techniques. Thus, 
we experiment with two of the most used approaches: PCA 
and LDA. 
 

a) Principal Component analysis 
Principal Component Analysis (PCA) is a well-known data-
driven technique that decomposes high-dimensional data into 
its most statistically descriptive factors. According to [8], the 
principal components (PCAs) are determined as follows; let 
the data matrix X be represented as an n by m matrix. Firstly, 
the row-wise mean, denoted as x̄, is computed. Then, the 
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2.2 Standardization and Outliers Detection
To ensure a more refined dataset, it is often crucial to standardize 
the samples. Standardization involves scaling the features to 
have a mean of 0 and a standard deviation of 1. This is important 
when the features in the dataset have different units or scales, 
ensuring that no single feature dominates the analysis due to its 
magnitude.

Another focus in the data preprocessing phase is on detecting 
outliers. Extreme data points that deviate substantially from 
most of the dataset have the potential to adversely affect the 
performance of certain machine learning models. Addressing 
these outliers at the outset of the process is crucial, as it paves 
the way for the development of more resilient models.

After experimenting with multiple outlier detection methods, 
we have adopted the Isolation Forest ensemble learning-based 
approach. This involves constructing a collection of isolation 
trees and combining their outcomes to identify outliers. We have 
set a 5% contamination rate and obtained satisfactory anomaly 
detection results.

2.3 Dimensionality Reduction
Indeed, there are 861 features, capturing the overall connectivity 
between forty-two nodes in both the left and right hemispheres. 
The abundance of features, when contrasted with the number of 
studied samples, introduces a challenge known as the curse of 
dimensionality. This circumstance results in an underdetermined 
matrix, presenting various challenges and issues. Particularly, the 
lack of a unique solution can amplify computational complexity 
and compromise model generalization. To streamline the dataset, 
enhance manageability, and potentially boost machine learning 
model performance, we choose to employ dimensionality 
reduction techniques. Thus, we experiment with two of the most 
used approaches: PCA and LDA.

2.4 Principal Component Analysis
Principal Component Analysis (PCA) is a well-known data-
driven technique that decomposes high-dimensional data into its 
most statistically descriptive factors. According to the principal 
components (PCAs) are determined as follows; let the data 
matrix X be represented as an n by m matrix [8]. Firstly, the row-
wise mean, denoted as x̄, is computed. Then, the average matrix 
is subtracted from the matrix X, to obtain the mean-centered 
data, denoted as B. Noting that x̄, is determined as follows:

Where i is a given feature, n is the number of subjects, and j is 
the index of subject.

Perform an eigen-decomposition of the covariance or correlation 
matrix C, with:

With λ being a diagonal matrix that summarizes the squares of the 
singular values (eigenvalues), and V denotes the corresponding 
eigenvectors. Once the eigenvalues are sorted in descending 
order, the corresponding eigenvectors signify the principal 
components.

The k components, which contribute to a higher percentage of 
variance, are selected to project the dataset. The resulting new 
space clearly captures more variability.

2.5 Linear Discriminant Analysis
Another frequently employed dimensionality reduction technique 
is Linear Discriminant Analysis. It proves particularly valuable 
in identifying linear combinations of features that effectively 
separate two or more classes within a dataset. Essentially, LDA 
maximizes the separation between classes while simultaneously 
minimizing the variance within each class. According to [4,5], 
the fundamental concept in finding the discriminant component 
features, denoted by W, is to solve the generalized Rayleigh 
quotient:

For a four-class classification, the scatter matrices between and 
within classes are computed using the following mathematical 
formula:

Where, µ is the overall mean vector, µ_i is the mean vector of 
class i ,n  is the samples dimension, x_ij  is the jth sample in the 
ith class, and (x_ij ) ̅ is its correspondent mean. 
 
An eigen values decomposition of the obtained solution is 
performed, and detailed below:
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As the 𝑆𝑆���𝑆𝑆� matrix has no more than n−1 non-zero 
eigenvalues, we ultimately derive three distinct eigenvectors, 
which we use to project our dataset. 

To assess the effectiveness of both PCA and LDA 
methods, we conducted experiments on our dataset. 
Regarding the PCA method, the explained variance ratios are 
presented in Figure 2. This figure illustrates the proportion of 
total variance explained by including each principal 
component. It is evident that the first two principal 
components exhibit notable efficiency, with the first 
capturing approximately 82% of the total variance and the 
second capturing around 42%. 

For clarity, we performed a projection of the dataset onto 
the determined 2D PCA and LDA spaces, as illustrated in 
Figure 3. Analyzing this figure allows us to draw conclusions 
about the efficiency of the LDA method, indicating not only 
its effectiveness in dimensionality reduction but also its 
capability to enhance the separability between classes when 
compared to PCA.  

Following the thorough evaluation of the effectiveness 
of the LDA features, we made the decision to advance to the 
classification task utilizing these specific features. 
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Nearest Neighbors. We opted to assess their performances 
based on their respective accuracies [9]: 
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Among the cited models, the K-Nearest Neighbors algorithm 
achieved the highest accuracy, reaching 87%. In fact, we have 
implemented KNN in scikit-learn and experimented with 
multiple values for the n_neighbors parameter. Additionally, 
we explored the hyperparameter for weighting, considering 
both uniform and distance-based options. 

Fig. 2.  Explained Variance Ratios for the First Three Principal 
Components 

3 
 

average matrix is subtracted from the matrix X, to obtain the 
mean-centered data, denoted as B. Noting that x̄, is 
determined as follows: 
 

�̅�𝑥� � �
�� 𝑥𝑥���

���               (1) 
 

Where i is a given feature, n is the number of 
subjects, and j is the index of subject. 
Perform an eigen-decomposition of the covariance or 
correlation matrix C, with: 
 

C = 𝐵𝐵� B                   (2) 
 

CV=λV                      (3) 
 

With λ being a diagonal matrix that summarizes the 
squares of the singular values (eigenvalues), and V denotes 
the corresponding eigenvectors. Once the eigenvalues are 
sorted in descending order, the corresponding eigenvectors 
signify the principal components. 
The k components, which contribute to a higher percentage 
of variance, are selected to project the dataset. The resulting 
new space clearly captures more variability. 
 

b) Linear Discriminant Analysis 
 

Another frequently employed dimensionality reduction 
technique is Linear Discriminant Analysis. It proves 
particularly valuable in identifying linear combinations of 
features that effectively separate two or more classes within 
a dataset. Essentially, LDA maximizes the separation 
between classes while simultaneously minimizing the 
variance within each class. According to [4,5], the 
fundamental concept in finding the discriminant component 
features, denoted by W, is to solve the generalized Rayleigh 
quotient: 
 

𝑊𝑊 � ��� max�
�����
�����                          (4) 

 
For a four-class classification, the scatter matrices between 
and within classes are computed using the following 
mathematical formula: 

𝑆𝑆� � �
�  ∑ �µ� � ���µ� � �������             (5) 

               
𝑆𝑆� � ∑ ∑ �𝑥𝑥�� � 𝑥𝑥��������𝑥𝑥�� � 𝑥𝑥����������������              (6) 

 
Where, µ is the overall mean vector, µ� is the mean vector of 
class i ,𝑛𝑛  is the samples dimension, 𝑥𝑥��  is the jth sample in 
the ith class, and 𝑥𝑥������ is its correspondent mean.   
An eigen values decomposition of the obtained solution is 
performed, and detailed below: 
 

𝑆𝑆�𝑊𝑊 � �𝑆𝑆�𝑊𝑊                                                    (7) 
 
Where λ is the eigenvalue. 
Assuming 𝑆𝑆� is a non-singular matrix, we transpose the 
within-class variance matrix, leading to the simplification of 
Equation (7): 
                                       𝑆𝑆���𝑆𝑆�𝑊𝑊 � �𝑊𝑊                          (8) 

As the 𝑆𝑆���𝑆𝑆� matrix has no more than n−1 non-zero 
eigenvalues, we ultimately derive three distinct eigenvectors, 
which we use to project our dataset. 

To assess the effectiveness of both PCA and LDA 
methods, we conducted experiments on our dataset. 
Regarding the PCA method, the explained variance ratios are 
presented in Figure 2. This figure illustrates the proportion of 
total variance explained by including each principal 
component. It is evident that the first two principal 
components exhibit notable efficiency, with the first 
capturing approximately 82% of the total variance and the 
second capturing around 42%. 

For clarity, we performed a projection of the dataset onto 
the determined 2D PCA and LDA spaces, as illustrated in 
Figure 3. Analyzing this figure allows us to draw conclusions 
about the efficiency of the LDA method, indicating not only 
its effectiveness in dimensionality reduction but also its 
capability to enhance the separability between classes when 
compared to PCA.  

Following the thorough evaluation of the effectiveness 
of the LDA features, we made the decision to advance to the 
classification task utilizing these specific features. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

III.  RESULT AND EVALUATION 
 
This study aimed to establish a comprehensive framework for 
a 4-way multiclass classification of Alzheimer's Disease. The 
LDA features obtained were split into an 80/20 ratio for 
training and testing multiple models, respectively. The 
selected classifiers included the Multi-Layer Perceptron 
(MLP), Support Vector Machine (SVM), Random Forest 
(RF), Decision Tree, Logistic Regression (LR), and K-
Nearest Neighbors. We opted to assess their performances 
based on their respective accuracies [9]: 
 

Accuracy = �����
�����������                 (9) 

 
Among the cited models, the K-Nearest Neighbors algorithm 
achieved the highest accuracy, reaching 87%. In fact, we have 
implemented KNN in scikit-learn and experimented with 
multiple values for the n_neighbors parameter. Additionally, 
we explored the hyperparameter for weighting, considering 
both uniform and distance-based options. 

Fig. 2.  Explained Variance Ratios for the First Three Principal 
Components 

3 
 

average matrix is subtracted from the matrix X, to obtain the 
mean-centered data, denoted as B. Noting that x̄, is 
determined as follows: 
 

�̅�𝑥� � �
�� 𝑥𝑥���

���               (1) 
 

Where i is a given feature, n is the number of 
subjects, and j is the index of subject. 
Perform an eigen-decomposition of the covariance or 
correlation matrix C, with: 
 

C = 𝐵𝐵� B                   (2) 
 

CV=λV                      (3) 
 

With λ being a diagonal matrix that summarizes the 
squares of the singular values (eigenvalues), and V denotes 
the corresponding eigenvectors. Once the eigenvalues are 
sorted in descending order, the corresponding eigenvectors 
signify the principal components. 
The k components, which contribute to a higher percentage 
of variance, are selected to project the dataset. The resulting 
new space clearly captures more variability. 
 

b) Linear Discriminant Analysis 
 

Another frequently employed dimensionality reduction 
technique is Linear Discriminant Analysis. It proves 
particularly valuable in identifying linear combinations of 
features that effectively separate two or more classes within 
a dataset. Essentially, LDA maximizes the separation 
between classes while simultaneously minimizing the 
variance within each class. According to [4,5], the 
fundamental concept in finding the discriminant component 
features, denoted by W, is to solve the generalized Rayleigh 
quotient: 
 

𝑊𝑊 � ��� max�
�����
�����                          (4) 

 
For a four-class classification, the scatter matrices between 
and within classes are computed using the following 
mathematical formula: 

𝑆𝑆� � �
�  ∑ �µ� � ���µ� � �������             (5) 

               
𝑆𝑆� � ∑ ∑ �𝑥𝑥�� � 𝑥𝑥��������𝑥𝑥�� � 𝑥𝑥����������������              (6) 

 
Where, µ is the overall mean vector, µ� is the mean vector of 
class i ,𝑛𝑛  is the samples dimension, 𝑥𝑥��  is the jth sample in 
the ith class, and 𝑥𝑥������ is its correspondent mean.   
An eigen values decomposition of the obtained solution is 
performed, and detailed below: 
 

𝑆𝑆�𝑊𝑊 � �𝑆𝑆�𝑊𝑊                                                    (7) 
 
Where λ is the eigenvalue. 
Assuming 𝑆𝑆� is a non-singular matrix, we transpose the 
within-class variance matrix, leading to the simplification of 
Equation (7): 
                                       𝑆𝑆���𝑆𝑆�𝑊𝑊 � �𝑊𝑊                          (8) 

As the 𝑆𝑆���𝑆𝑆� matrix has no more than n−1 non-zero 
eigenvalues, we ultimately derive three distinct eigenvectors, 
which we use to project our dataset. 

To assess the effectiveness of both PCA and LDA 
methods, we conducted experiments on our dataset. 
Regarding the PCA method, the explained variance ratios are 
presented in Figure 2. This figure illustrates the proportion of 
total variance explained by including each principal 
component. It is evident that the first two principal 
components exhibit notable efficiency, with the first 
capturing approximately 82% of the total variance and the 
second capturing around 42%. 

For clarity, we performed a projection of the dataset onto 
the determined 2D PCA and LDA spaces, as illustrated in 
Figure 3. Analyzing this figure allows us to draw conclusions 
about the efficiency of the LDA method, indicating not only 
its effectiveness in dimensionality reduction but also its 
capability to enhance the separability between classes when 
compared to PCA.  

Following the thorough evaluation of the effectiveness 
of the LDA features, we made the decision to advance to the 
classification task utilizing these specific features. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

III.  RESULT AND EVALUATION 
 
This study aimed to establish a comprehensive framework for 
a 4-way multiclass classification of Alzheimer's Disease. The 
LDA features obtained were split into an 80/20 ratio for 
training and testing multiple models, respectively. The 
selected classifiers included the Multi-Layer Perceptron 
(MLP), Support Vector Machine (SVM), Random Forest 
(RF), Decision Tree, Logistic Regression (LR), and K-
Nearest Neighbors. We opted to assess their performances 
based on their respective accuracies [9]: 
 

Accuracy = �����
�����������                 (9) 

 
Among the cited models, the K-Nearest Neighbors algorithm 
achieved the highest accuracy, reaching 87%. In fact, we have 
implemented KNN in scikit-learn and experimented with 
multiple values for the n_neighbors parameter. Additionally, 
we explored the hyperparameter for weighting, considering 
both uniform and distance-based options. 

Fig. 2.  Explained Variance Ratios for the First Three Principal 
Components 

3 
 

average matrix is subtracted from the matrix X, to obtain the 
mean-centered data, denoted as B. Noting that x̄, is 
determined as follows: 
 

�̅�𝑥� � �
�� 𝑥𝑥���

���               (1) 
 

Where i is a given feature, n is the number of 
subjects, and j is the index of subject. 
Perform an eigen-decomposition of the covariance or 
correlation matrix C, with: 
 

C = 𝐵𝐵� B                   (2) 
 

CV=λV                      (3) 
 

With λ being a diagonal matrix that summarizes the 
squares of the singular values (eigenvalues), and V denotes 
the corresponding eigenvectors. Once the eigenvalues are 
sorted in descending order, the corresponding eigenvectors 
signify the principal components. 
The k components, which contribute to a higher percentage 
of variance, are selected to project the dataset. The resulting 
new space clearly captures more variability. 
 

b) Linear Discriminant Analysis 
 

Another frequently employed dimensionality reduction 
technique is Linear Discriminant Analysis. It proves 
particularly valuable in identifying linear combinations of 
features that effectively separate two or more classes within 
a dataset. Essentially, LDA maximizes the separation 
between classes while simultaneously minimizing the 
variance within each class. According to [4,5], the 
fundamental concept in finding the discriminant component 
features, denoted by W, is to solve the generalized Rayleigh 
quotient: 
 

𝑊𝑊 � ��� max�
�����
�����                          (4) 

 
For a four-class classification, the scatter matrices between 
and within classes are computed using the following 
mathematical formula: 

𝑆𝑆� � �
�  ∑ �µ� � ���µ� � �������             (5) 

               
𝑆𝑆� � ∑ ∑ �𝑥𝑥�� � 𝑥𝑥��������𝑥𝑥�� � 𝑥𝑥����������������              (6) 

 
Where, µ is the overall mean vector, µ� is the mean vector of 
class i ,𝑛𝑛  is the samples dimension, 𝑥𝑥��  is the jth sample in 
the ith class, and 𝑥𝑥������ is its correspondent mean.   
An eigen values decomposition of the obtained solution is 
performed, and detailed below: 
 

𝑆𝑆�𝑊𝑊 � �𝑆𝑆�𝑊𝑊                                                    (7) 
 
Where λ is the eigenvalue. 
Assuming 𝑆𝑆� is a non-singular matrix, we transpose the 
within-class variance matrix, leading to the simplification of 
Equation (7): 
                                       𝑆𝑆���𝑆𝑆�𝑊𝑊 � �𝑊𝑊                          (8) 

As the 𝑆𝑆���𝑆𝑆� matrix has no more than n−1 non-zero 
eigenvalues, we ultimately derive three distinct eigenvectors, 
which we use to project our dataset. 

To assess the effectiveness of both PCA and LDA 
methods, we conducted experiments on our dataset. 
Regarding the PCA method, the explained variance ratios are 
presented in Figure 2. This figure illustrates the proportion of 
total variance explained by including each principal 
component. It is evident that the first two principal 
components exhibit notable efficiency, with the first 
capturing approximately 82% of the total variance and the 
second capturing around 42%. 

For clarity, we performed a projection of the dataset onto 
the determined 2D PCA and LDA spaces, as illustrated in 
Figure 3. Analyzing this figure allows us to draw conclusions 
about the efficiency of the LDA method, indicating not only 
its effectiveness in dimensionality reduction but also its 
capability to enhance the separability between classes when 
compared to PCA.  

Following the thorough evaluation of the effectiveness 
of the LDA features, we made the decision to advance to the 
classification task utilizing these specific features. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

III.  RESULT AND EVALUATION 
 
This study aimed to establish a comprehensive framework for 
a 4-way multiclass classification of Alzheimer's Disease. The 
LDA features obtained were split into an 80/20 ratio for 
training and testing multiple models, respectively. The 
selected classifiers included the Multi-Layer Perceptron 
(MLP), Support Vector Machine (SVM), Random Forest 
(RF), Decision Tree, Logistic Regression (LR), and K-
Nearest Neighbors. We opted to assess their performances 
based on their respective accuracies [9]: 
 

Accuracy = �����
�����������                 (9) 

 
Among the cited models, the K-Nearest Neighbors algorithm 
achieved the highest accuracy, reaching 87%. In fact, we have 
implemented KNN in scikit-learn and experimented with 
multiple values for the n_neighbors parameter. Additionally, 
we explored the hyperparameter for weighting, considering 
both uniform and distance-based options. 

Fig. 2.  Explained Variance Ratios for the First Three Principal 
Components 

3 
 

average matrix is subtracted from the matrix X, to obtain the 
mean-centered data, denoted as B. Noting that x̄, is 
determined as follows: 
 

�̅�𝑥� � �
�� 𝑥𝑥���

���               (1) 
 

Where i is a given feature, n is the number of 
subjects, and j is the index of subject. 
Perform an eigen-decomposition of the covariance or 
correlation matrix C, with: 
 

C = 𝐵𝐵� B                   (2) 
 

CV=λV                      (3) 
 

With λ being a diagonal matrix that summarizes the 
squares of the singular values (eigenvalues), and V denotes 
the corresponding eigenvectors. Once the eigenvalues are 
sorted in descending order, the corresponding eigenvectors 
signify the principal components. 
The k components, which contribute to a higher percentage 
of variance, are selected to project the dataset. The resulting 
new space clearly captures more variability. 
 

b) Linear Discriminant Analysis 
 

Another frequently employed dimensionality reduction 
technique is Linear Discriminant Analysis. It proves 
particularly valuable in identifying linear combinations of 
features that effectively separate two or more classes within 
a dataset. Essentially, LDA maximizes the separation 
between classes while simultaneously minimizing the 
variance within each class. According to [4,5], the 
fundamental concept in finding the discriminant component 
features, denoted by W, is to solve the generalized Rayleigh 
quotient: 
 

𝑊𝑊 � ��� max�
�����
�����                          (4) 

 
For a four-class classification, the scatter matrices between 
and within classes are computed using the following 
mathematical formula: 

𝑆𝑆� � �
�  ∑ �µ� � ���µ� � �������             (5) 

               
𝑆𝑆� � ∑ ∑ �𝑥𝑥�� � 𝑥𝑥��������𝑥𝑥�� � 𝑥𝑥����������������              (6) 

 
Where, µ is the overall mean vector, µ� is the mean vector of 
class i ,𝑛𝑛  is the samples dimension, 𝑥𝑥��  is the jth sample in 
the ith class, and 𝑥𝑥������ is its correspondent mean.   
An eigen values decomposition of the obtained solution is 
performed, and detailed below: 
 

𝑆𝑆�𝑊𝑊 � �𝑆𝑆�𝑊𝑊                                                    (7) 
 
Where λ is the eigenvalue. 
Assuming 𝑆𝑆� is a non-singular matrix, we transpose the 
within-class variance matrix, leading to the simplification of 
Equation (7): 
                                       𝑆𝑆���𝑆𝑆�𝑊𝑊 � �𝑊𝑊                          (8) 

As the 𝑆𝑆���𝑆𝑆� matrix has no more than n−1 non-zero 
eigenvalues, we ultimately derive three distinct eigenvectors, 
which we use to project our dataset. 

To assess the effectiveness of both PCA and LDA 
methods, we conducted experiments on our dataset. 
Regarding the PCA method, the explained variance ratios are 
presented in Figure 2. This figure illustrates the proportion of 
total variance explained by including each principal 
component. It is evident that the first two principal 
components exhibit notable efficiency, with the first 
capturing approximately 82% of the total variance and the 
second capturing around 42%. 

For clarity, we performed a projection of the dataset onto 
the determined 2D PCA and LDA spaces, as illustrated in 
Figure 3. Analyzing this figure allows us to draw conclusions 
about the efficiency of the LDA method, indicating not only 
its effectiveness in dimensionality reduction but also its 
capability to enhance the separability between classes when 
compared to PCA.  

Following the thorough evaluation of the effectiveness 
of the LDA features, we made the decision to advance to the 
classification task utilizing these specific features. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

III.  RESULT AND EVALUATION 
 
This study aimed to establish a comprehensive framework for 
a 4-way multiclass classification of Alzheimer's Disease. The 
LDA features obtained were split into an 80/20 ratio for 
training and testing multiple models, respectively. The 
selected classifiers included the Multi-Layer Perceptron 
(MLP), Support Vector Machine (SVM), Random Forest 
(RF), Decision Tree, Logistic Regression (LR), and K-
Nearest Neighbors. We opted to assess their performances 
based on their respective accuracies [9]: 
 

Accuracy = �����
�����������                 (9) 

 
Among the cited models, the K-Nearest Neighbors algorithm 
achieved the highest accuracy, reaching 87%. In fact, we have 
implemented KNN in scikit-learn and experimented with 
multiple values for the n_neighbors parameter. Additionally, 
we explored the hyperparameter for weighting, considering 
both uniform and distance-based options. 

Fig. 2.  Explained Variance Ratios for the First Three Principal 
Components 



 Volume 8 | Issue 1 | 4J App Mat Sci & Engg Res, 2024

Where λ is the eigenvalue.
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the LDA features, we made the decision to advance to the 
classification task utilizing these specific features.
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correlation matrix C, with: 
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of variance, are selected to project the dataset. The resulting 
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A boundary decision plot is provided in Figure 4, 

which details the best-found results. This plot highlights the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
optimal choice of fifteen nearest neighbors with 

uniform weighting, leading to the most favorable outcomes. 
In summary, in the context of a four-way 

classification scenario, Linear Discriminant Analysis and 
Principal Component Analysis serve distinct roles in 
extracting pertinent information from the data. PCA, an 
unsupervised technique, primarily focuses on capturing the 
maximum variance within the dataset across all classes. 
Nevertheless, its efficacy seems confined to the detection of 
the LMCI class, as indicated by Figure 3, whereas a 
noticeable overlap exists among the other cohorts. This 
overlapping poses challenges, especially in clinical trials 
where precise class separability is crucial.  

Conversely, LDA, as a supervised method, 
explicitly takes class labels into account during its 
dimensionality reduction process. By maximizing the ratio of 
between-class variance to within-class variance, LDA 
significantly enhances the discriminative power of features 
for classification tasks. In our specific scenario, LDA has 
successfully identified directions that maximize the 
separation between classes, thereby markedly improving the 
classifier's performance when compared to PCA. 

Despite its undeniable efficiency in a multiclass 
classification context, a notable limitation of LDA method 
arises from its nature as a supervised method. While LDA is 
trained based on the available labeled data, its ability to adapt 
to unforeseen patterns or classes not present in the training 
set becomes a significant concern. In situations where the 
dataset for training is not fully representative of the diversity 
expected in real-world applications, LDA may struggle to 
generalize effectively. 

This limitation underscores the importance of carefully 
considering the representativeness of the training data and the 
potential need for supplementary techniques or approaches to 
enhance the model's adaptability to novel and unseen 
samples. 

 

 
 
 
 
 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

III- CONCLUSION 
In the current study, both PCA and LDA methods 

have played a substantial role in streamlining brain 
connectivity datasets, addressing multicollinearity concerns. 
Nevertheless, it becomes evident that LDA surpasses PCA by 
demonstrating greater efficiency in enhancing between-class 
separability and, consequently, improving the performance of 
machine learning algorithms in a 4-way classification. To 
overcome the limitations inherent in the LDA method and 
notably enhance accuracy when faced with unseen data, we 
plan to expand the dataset. This expansion will facilitate the 
utilization of deep learning techniques in subsequent phases 
of our research. 
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Optimal choice of fifteen nearest neighbors with uniform 
weighting, leading to the most favorable outcomes.
In summary, in the context of a four-way classification scenario, 
Linear Discriminant Analysis and Principal Component 
Analysis serve distinct roles in extracting pertinent information 
from the data. PCA, an unsupervised technique, primarily 
focuses on capturing the maximum variance within the dataset 
across all classes. Nevertheless, its efficacy seems confined 
to the detection of the LMCI class, as indicated by Figure 3, 
whereas a noticeable overlap exists among the other cohorts. 
This overlapping poses challenges, especially in clinical trials 
where precise class separability is crucial. 
Conversely, LDA, as a supervised method, explicitly takes class 
labels into account during its dimensionality reduction process. 
By maximizing the ratio of between-class variance to within-
class variance, LDA significantly enhances the discriminative 
power of features for classification tasks. In our specific scenario, 

LDA has successfully identified directions that maximize the 
separation between classes, thereby markedly improving the 
classifier's performance when compared to PCA.
Despite its undeniable efficiency in a multiclass classification 
context, a notable limitation of LDA method arises from its 
nature as a supervised method. While LDA is trained based 
on the available labeled data, its ability to adapt to unforeseen 
patterns or classes not present in the training set becomes a 
significant concern. In situations where the dataset for training 
is not fully representative of the diversity expected in real-world 
applications, LDA may struggle to generalize effectively.
This limitation underscores the importance of carefully 
considering the representativeness of the training data and the 
potential need for supplementary techniques or approaches to 
enhance the model's adaptability to novel and unseen samples.
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4. Conclusion
In the current study, both PCA and LDA methods have 
played a substantial role in streamlining brain connectivity 
datasets, addressing multicollinearity concerns. Nevertheless, 
it becomes evident that LDA surpasses PCA by demonstrating 
greater efficiency in enhancing between-class separability and, 
consequently, improving the performance of machine learning 
algorithms in a 4-way classification. To overcome the limitations 
inherent in the LDA method and notably enhance accuracy 
when faced with unseen data, we plan to expand the dataset. 
This expansion will facilitate the utilization of deep learning 
techniques in subsequent phases of our research.
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