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Abstract
Currently, there are several methods for diagnosis of COVID-19 such as real-time reverse transcription-polymerase 
chain reaction, hematology examination, polymerase chain reaction, diagnostic guidelines based on clinical features, 
Chest CT scans, etc. However, yet actual testing methods to identify SARS-CoV-2 are limited. Besides, diagnosis of 
this new pandemic over SARS, MERS, and H1N1 is one of the most challenges of this field due to their very similar 
clinical characteristics.  To overcome these difficulties, recently, nanozmyes-based systems have been applied for fast, 
accurate, reliable, and cost-effective early diagnosis of COVID-19. The aim of this review is quick overview of the 
nanozyme-based sensing and detection colorimetric and fluorometric methods toward early diagnosis of COVID-19. 
In this regard, the historical background of COVID-19 and its current diagnostic methods were reviewed. Afterward, 
the nanozymes were introduced and their biomedical applications were discussed. Finally, the recent progress of early 
diagnosis of COVID-19 based on nanozymatic systems was reviewed. 
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1. Introduction
On December 31, 2019, the first case of a novel infectious 
disease with unknown origin (causative agent), features, duration 
of human transmission, and epidemiological parameters was 
confirmed in a designated hospital in Wuhan, a major city in 
China [1,2]. The studies on this new infectious disease revealed 
that a new generation of coronavirus, SARS-CoV-2 (severe 
acute respiratory syndrome coronavirus 2), is its causative agent 
[3-5]. Coronaviruses are a group of Coronaviridae families 
with a broad distribution in mammals which are known as the 
non-segmented positive-sense RNA viruses [6]. This novel 
disease caused by SARS-CoV-2 was called Coronavirus disease 
2019 and termed COVID-19 by WHO on 11 Fed 2020 [7]. 
Although the human infections resulting from coronavirus are 
mild in most cases, shortly after the first report of COVID-19, 
the novel COVID-19 exhibited a high potential for outbreaks 
and becoming an epidemic disease and even a pandemic, as 
now we see in the world [6,8-10].  Currently, there are several 
methods for diagnosis of COVID-19 including real-time 
reverse transcription-polymerase chain reaction (rRT-PCR), 
hematology examination, polymerase chain reaction (PCR), 
diagnostic guidelines based on clinical features, Chest CT scans 
[1]. However, early diagnosis of any disease is crucial for an 
appropriate treatment, yet actual testing methods to identify 
SARS-CoV-2 are limited. Here, it is challenging to develop 

effective diagnostics and therapeutics against SARS-CoV-2 
[11]. Besides The diagnosis of this new pandemic over SARS, 
MERS, and H1N1 is one of the most challenges due to their very 
similar clinical characteristics.  To overcome these difficulties, 
nanozmyes have been applied for fast, accurate, reliable, and 
cost-effective early diagnosis of COVID-19 [1]. Hence, the 
aim of this review is a quick overview of the nanozyme-based 
sensing and detection colorimetric and fluorometric methods for 
early diagnosis of COVID-19.

2. Nanozymes: Nanomaterials with Enzyme-Like Activity 
The fast development of nanoscience and material chemistry has 
increased interest in researching new and innovative synthesis 
methods to produce new nanomaterials with unique catalytic 
activity, unique optical properties, high active area, antibacterial 
properties, and high biocompatibility [12-19]. The new field 
of nanozyme-based catalysis, which has been introduced as 
an alternative to enzyme-based catalysis, is called nanozyme 
chemistry. On the other hand, nanozymes are known as 
nanomaterials with high enzyme-like activity and can be used to 
simulate enzymatic reactions in harsh environmental conditions 
(for example, higher temperature or wider pH range) [20-27]. As 
previously reported in the literature, native enzymes, for instance, 
native peroxidases or ureases suffer from several disadvantages 
and drawbacks such as low pH stability, low thermal stability, 
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low recoverability, and no reusability.  Commonly, to solve these 
difficulties and drawbacks of native enzymes, the development 
of enzyme immobilization protocols has been widely considered 
in the literature [27-30]. Although enzyme immobilization can 
enhance enzyme stability, however, the immobilized enzymes 
reveal very lower activity than the native enzymes due to the 
enzyme inactivation during the immobilization process [27]. 
Hence to solve these difficulties, the design and development of 
low-cost nanozymes with higher stability than the native enzymes 
along with high enzyme-like/mimic activity were considered as 
an interesting way for performing enzyme-catalyzed reactions in 
harsh conditions [21,31]. 

3. Biomedical Application of Nanozymes
Nanozymes are intensively studied for biomedical applications 
thanks to their superior intrinsic and tunable enzyme-like 
activities, for instance, nanozymes with peroxidase, oxidase, 
and catalase-like activity have been used for several applications 
in catalysis, biomedical imaging, tumor therapy, and sensing 
and detection [32-38].  Regarding biosensing applications of 
nanozymes, up to date, different types of nanozyme-based 
sensors such as single nanozymatic sensors, enzyme-nanozyme 
hybrid sensors, etc. have been developed [39]. The majority of 
nanozyme-based sensors are single-nanozyme-based systems, 
however, recently a new generation of nanozyme-based systems 
called “multinanozyme system’ was introduced by Hormozi 
Jangi et al. (2020) [40,41]. During the last years, a wide variety 
of nanozyme-based colorimetric sensors have been developed 
for the detection and quantification of a variety of analytes for 

instance, tryptophan, glutathione (GSH), dopamine, tetracycline, 
metal cations, glucose, H2O2, explosives,  and cysteine through 
the nanozyme-catalyzed oxidation of chromogenic peroxidase 
substrates including  3, 3´, 5, 5´-tetramethylbenzidine (TMB), 
3,3′-diaminobenzidine (DAB),  and o-phenylenediamine (OPD) 
as system-substrate and their colored oxidation products as 
analytical probes [39,42-50].  Besides, some of the dual-mode 
nanozyme-based sensors with fluorescence-based response 
had been developed and utilized for detecting several analytes 
[51,52].

4. Early Diagnosis of COVID-19 Using Nanozymes
To determine the occurrence and development of COVID-19, in 
vitro diagnostics based on nanozymatic systems via colorimetric 
detection were introduced after the first report of COVID-19 in 
2019. In this regard, nanozymes with peroxidase-like activity, 
especially nanozymes with various chemical designs, are 
inspired to catalyze a colored reaction for fast, accurate, reliable, 
and cost-effective early diagnosis of COVID-19. For example, 
Liang et al. (2021) developed a nanozyme-linked nanosensor for 
the rapid and quantitative diagnosis of COVID-19 by detecting 
the SARS-CoV-2 nucleocapsid protein in human blood [53]. In 
this system, immunoreaction and enzyme-catalyzed substrate 
color reaction were carried out on the chromatographic strip in 
a device, of which the light signal was read by a photometer 
through a biosensor channel, and the data was synchronously 
transmitted via the Bluetooth to the app in-stored smartphone for 
reporting the result (Figure 1). 
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of COVID-19 (adopted from Liang et al. (2021) [53]).   

Besides, Fu et al. (2021) [54] used porous metallic gold@platinum nanozymes for 

the diagnosis of COVID-19 via colorimetric detection of spike (S1)  protein of SARS-

CoV-2, obtaining a wide linear working range over 10–100 ng mL−1  along with a low 

limit of detection (LOD) of 11 ng mL−1.  The schematic representation of this nanosensor 

is shown in Figure 2. As can be seen from this figure, in this system, the bimetallic 

nanozymes were synthesized by successive reduction of Au(III) and Pt(IV) ions, 

followed by conjugation of antibody of COVID-19 on the surface of the as-prepared 

Figure 1; A Strip Nanozyme-Linked Nanosensor for the Rapid and Quantitative Diagnosis of COVID-19 (Adopted from Liang et 
al. (2021) [53]). 

Besides, Fu et al. (2021) used porous metallic gold@platinum 
nanozymes for the diagnosis of COVID-19 via colorimetric 
detection of spike (S1)  protein of SARS-CoV-2, obtaining a 
wide linear working range over 10–100 ng mL−1  along with a 
low limit of detection (LOD) of 11 ng mL−1 [54].  The schematic 

representation of this nanosensor is shown in Figure 2. As can be 
seen from this figure, in this system, the bimetallic nanozymes 
were synthesized by successive reduction of Au(III) and Pt(IV) 
ions, followed by conjugation of antibody of COVID-19 on the 
surface of the as-prepared nanozymes. Thereafter, the nanozymes 
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were used for the oxidation of TMB to produce a blue-colored 
product. In the presence of spike (S1) protein of SARS-CoV-2, 

the color intensity was inhibited which was used as a basis for 
colorimetric diagnosis of COVID-19 [54].
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Figure 2. A novel strategy for diagnosis of COVID-19 based on metallic nanozyme-

catalysis (adopted from Fu et al. (2021) [54]).  
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Figure 2: A Novel Strategy for Diagnosis of COVID-19 Based on Metallic Nanozyme-Catalysis (adopted from Fu et al. (2021) 
[54]).

 In 2021, Liu et al. developed a paper-based chemiluminescence 
nanozymatic strip test for sensitive detection of SARS-CoV-2 
antigen which the core of their paper test was a Co–Fe@hemin-
peroxidase nanozyme that can catalyze chemiluminescence and 

amplify immune reaction signal (Figure 3), providing a very low 
detection limit of 0.1 ng/mL of antigen of COVID-19 and a wide 
linear range of 0.2-100 ng/mL with a short test time as low as 
16.0 min [55].
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Figure 3. A paper-based chemiluminescence nanozymatic strip test for sensitive 

detection of SARS-CoV-2 antigen (adapted from Liu et al. (2021) [55]).  
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samples from 20 patients infected with COVID-19. The system was based on probing 

the light intensity of the colored product of oxidation of TMB using a Lux meter or an 

android-based Lux meter application. The schematic representation of this smartphone-

based nanozyme-linked immunosorbent assay is shown in Figure 4. As can be seen 

from this figure, in the first step, the SARS-CoV-2 nucleocapsid phosphoprotein was 

Figure 3: A Paper-Based Chemiluminescence Nanozymatic Strip Test for Sensitive Detection of SARS-CoV-2 Antigen (adapted 
from Liu et al. (2021) [55]).

Liu et al. (2021) introduced a smartphone-based nanozyme-
linked immunosorbent assay for quantitative sensing of SARS-
CoV-2 nucleocapsid phosphoprotein in 37 serum samples from 
20 patients infected with COVID-19 [56]. The system was based 
on probing the light intensity of the colored product of oxidation 
of TMB using a Lux meter or an android-based Lux meter 
application. The schematic representation of this smartphone-

based nanozyme-linked immunosorbent assay is shown in 
Figure 4. As can be seen from this figure, in the first step, the 
SARS-CoV-2 nucleocapsid phosphoprotein was separated from 
the blood via its interaction with magnetic beads modified with 
antibody#1 and applying a magnetic field.  The magnetic beads 
were then introduced into a nanozymatic system. The SARS-
CoV-2 nucleocapsid phosphoprotein presented on the surface 
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of the magnetic beads interacted with antibody#1 presented on 
the nanozymes surface. Afterward, the linked nanozymes were 
applied to catalyze the oxidation of TMB by hydrogen peroxide. 

Thereafter, the Lux meter was utilized for detecting the variation 
of light intensity as an index for detecting the SARS-CoV-2 NP 
antigen [56].
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Figure 4: A Smartphone-Based Nanozyme-Linked Immunosorbent Assay for Quantitative Sensing of SARS-CoV-2 Nucleocapsid 
Phosphoprotein (Adapted from Liu et al. (2021) [56]).

In 2022, Ali and Omer introduced an ultrasensitive aptamer-
functionalized Cu-MOF fluorescent nanozyme and utilized it 
for optical detection of C-reactive protein toward the diagnosis 
of COVID-19 via colorimetric and fluorometric dual mode 
responses of a nanozymatic process based on TMB oxidation 
for colorimetric and variation of fluorescence intensity of Cu-
MOF for fluorometric mode detection of COVID-19 [57]. It 

is notable that the immobilized RNA on Cu-MOFs can block 
the peroxidase activity and fluorescence of the signal traducer 
probe while upon addition of C-reactive protein, the RNA will 
release from the surface of nanozyme and consequently both the 
fluorescence and peroxidase activity of Cu-MOFs will recover 
which was used as a basis for diagnosis of COVID-19 (Figure 
5).
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Figure 5. An ultrasensitive aptamer-functionalized Cu-MOF fluorescent nanozyme for 

optical dual mode diagnosis of COVID-19 (adopted from Ali and Omer (2022) [57]).  

Zhao et al. (2022) [58] employed MIL-101(CuFe) nanozymes for accurate visual naked-

eye diagnosis of COVID-19 via detecting the universal receptor of CD147, providing a 

very low detection limit of 3 PFU/mL and a detection time as short as 30 min. The 

sensor was based on the inhibition of the peroxidase-like activity of as-prepared 

Figure 5: An Ultrasensitive Aptamer-Functionalized Cu-MOF Fluorescent Nanozyme for Optical Dual Mode Diagnosis of 
COVID-19 (Adopted from Ali and Omer (2022) [57]).

Zhao et al. (2022) employed MIL-101(CuFe) nanozymes for accurate visual naked-eye diagnosis of COVID-19 via detecting the 
universal receptor of CD147, providing a very low detection limit of 3 PFU/mL and a detection time as short as 30 min [58]. The 
sensor was based on the inhibition of the peroxidase-like activity of as-prepared nanozymes in the presence of the universal receptor 
of CD147. This inhibition was probed by detecting the color intensity of the oxidation product of TMB in the presence and the 
absence of the universal receptor of CD147. The principles of this nanobiosensing method are shown in Figure 6.
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Figure 6: MIL-101(CuFe) Nanozymes for Accurate Visual Naked-Eye Diagnosis of COVID-19 via Detecting the Universal Receptor 
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Besides, Wu et al. (2022) developed a MnO2 nanozyme-
mediated CRISPR-Cas12a system for naked-eye diagnosis 
of COVID-19 [59]. In this system, the MnO2 nanorods were 
initially linked to magnetic beads using a single-stranded DNA 
(ssDNA). The as-prepared nanozymes show high oxidase-like 

activity and can catalyze the oxidation of TMB to a blue-colored 
product. However, the detection color will change by activation 
of Cas12a by SARS-CoV-2 and cleaving the ssDNA which was 
used as a basis for the detection of SARS-3CoV-2 (Figure 7).
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optical diagnosis of COVID-19. Besides, Chu et al. (2023) [61] developed a robust 
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colorimetric nanozyme-based sensor for diagnosis of COVID-19 using aptamer-
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Figure 7: A MnO2 Nanozyme-Mediated CRISPR-Cas12a System for Naked-Eye Diagnosis of COVID-19 (Adopted from (Wu et al. 
2022) [59]).

In 2023, He et al. performed a nanozyme-based colorimetric 
method for naked-eye diagnosis of COVID-19 by iron 
manganese silicate nanozymes as peroxidase-like nanozymes 
[60].  The nanozymes activity can be inhibited by introducing 
the pyrophosphate ions which are generated by amplification 
processes and can be used for optical diagnosis of COVID-19. 
Besides, Chu et al. developed a robust colorimetric 
immunosensing method using liposome-encapsulated MnO2 
nanozymes for diagnosis of COVID-19 via detection of SARS-
CoV-2 antigen using TMB as the chromogenic substrate [61]. 
Moreover, Vafabakhsh et al. reported a paper-based colorimetric 
nanozyme-based sensor for diagnosis of COVID-19 using 
aptamer-modified ChF/ZnO/CNT nanohybrids as peroxidase 
mimics and TMB as the chromogenic substrate [62]. The main 

nanocomposite platform was constructed and functionalized 
with a specific COVID-19 aptamer, providing a linear range of 
1–500 pg/mL and a detection limit of 0.05 pg/mL. Also, Sun 
et al. used Fe(Ⅱ)-doped ZIF-67 derivatives-based composites 
as nanozymes for eye diagnosis of COVID-19 via dual-
mode colorimetric and fluorescent detection of SARS-CoV-2 
nucleocapsid protein, providing a limit of detection of  0.022 
ng/mL and 0.018 ng/mL for colorimetric and fluorescent 
nanozymatic sensors, respectively [63]. The schematic 
representation of the introduced sensor is shown in Figure 8. As 
can be seen in this scheme, TMB was used as a chromogenic 
substrate and CDs were utilized as fluorescent nanoprobes for 
the detection of SARS-CoV-2 nucleocapsid protein.
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Figure 8: Fe(Ⅱ)-doped ZIF-67 Derivatives-Based Composites as Nanozymes for Eye Diagnosis of COVID-19 Via Dual-Mode 
Colorimetric and Fluorescent Detection of SARS-CoV-2 Nucleocapsid Protein (Adopted from Sun et al. (2023) [63]).
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5. Conclusions 
Currently, there are several methods for diagnosis of COVID-19 
such as real-time reverse transcription-polymerase chain 
reaction, hematology examination, polymerase chain reaction, 
diagnostic guidelines based on clinical features, Chest CT scans, 
etc. However, yet actual testing methods to identify SARS-
CoV-2 are limited. Besides, diagnosis of this new pandemic 
over SARS, MERS, and H1N1 is one of the most challenges 
of this field due to their very similar clinical characteristics.  To 
overcome these difficulties, recently, nanozmyes-based systems 
have been applied for fast, accurate, reliable, and cost-effective 
early diagnosis of COVID-19. The aim of this review is a 
quick overview of the nanozyme-based sensing and detection 
colorimetric and fluorometric methods toward early diagnosis 
of COVID-19. In this regard, the historical background of 
COVID-19 and its current diagnostic methods were reviewed. 
Afterward, the nanozymes were introduced and their biomedical 
application was discussed. Finally, the recent progress of early 
diagnosis of COVID-19 based on nanozymatic systems was 
reviewed. 
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