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3D-QSTR study of the aquatic toxicity of phenol derivatives to Chlorella Vulgaris
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Introduction
Phenols are aromatic chemical compounds bearing a hydroxyl 
function -OH. Derivatives carrying several hydroxyl functions 
are called polyphenols.Phenols and derivatives have important 
biological activities (biochemical defense against microbes and 
fungi in plants in particular);however, they are toxic to humans 
and other species and when they are abnormally disseminated in 
the environment, phenols are pollutants of air, soil or water. In 
the aquatic environment,these molecules arise from industrial, 
agricultural activities and natural compounds degradation [1]. 
Pharmaceuticals additives and food practices are also sources of 
phenoliccompounds [2].

The eukaryotic microalgae Chlorella Vulgaris is an algae of the 
genus Chlorella, present on Earth since the Precambrian period. 
Martinus Willem Beijerinck discovered this unicellular alga in 
1890 as the first well-defined kernel microalgae.Chlorellaspeciesare 
also a promising biomass for biofuel production and have a high 
potential for replacing fossil fuels. In addition, it has been reported 
that Chlorella species can produce a high yield of bioenergy and 
have been grown on an industrial scale. Therefore, evaluation of 
data from toxicity tests using microalgae is an integral part of 
the environmental risk assessment [3,4]. Therefore, the REACH 
legislation (Registration, Evaluation,Authorization and Restriction 
of Chemicals) [5]requires the provision of ecotoxicological 
information obtained from algal growth inhibition tests for 
manufactured or imported compounds. With regard to substances 
without experimental data, REACH also encourages the use of 

non-experimental methods, including the Quantitative Structure 
Activity Activity (QSAR) approach, to predict the toxicity of 
untested chemicals [6].

The three-dimensional quantitative-activity/property-relationship 
(3D-QSAR/QSPR) method is one of the most widely computational 
methods used for predicting the activity/property of molecules[7,8]. 
With continued advancements, the QSAR/QSPR method has been 
remarkably successful in a variety of areas, such as medicinal 
chemistry, materials science and predictive toxicology [9,10]. 
Quantitative structure-toxicity relationship (QSTR) is becoming 
a gooddevice for predicted the toxicity of a chemical using 
computational methods. It should be remembered that a little work 
has been done on the 3D-QSTR study of the structure-toxicity 
correlation especially of phenol derivatives; so we have seen fit to 
look at this type of study in the case of our molecules.

In the present study, 43 substituted phenols were used to construct 
and validate the 3D-QSTR modelsusing the toxicity data for C. 
Vulgaris. The selected chemicals for toxicity include chlorine-, 
methyl-, and nitro-substituted phenols exhibited a wide range of 
algal toxicity from -0.60 to 2.34[11], which enables the construction 
of models with confidence.

Material and methods
2.1. Data set
In the present study, a series of 43 selected phenol derivatives with 
reported toxicity values (pT) were taken from literature[11], these 
molecules were considered to carry out the 3D-QSTR analysis, 35 
molecules are selected to propose the quantitative model (training 
set), and 8 compounds have been selected randomly and have served 
to test the performance of the proposed model (test set) (Table 1).
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2.2. Minimization and alignment
Molecular structures sketched with sketch module in SYBYL [12,13]
were minimized using Tripos force field [14] with the Gasteigere-
Huckel charges [15]and conjugatedgradient convergence criteria 
of 0.01 kcal/mol (gradient method). Simulated annealing on the 
energy minimized structures was used with 20 cycles.In this study, 
the studied compounds were aligned on the common core (all 
compounds in test ant training set)by distil alignment technique 
available in SYBYL. Compound N°17, which was the most active 
compound (with highest toxicity (pT) value,was used as template 
(Fig.1). Figure. 1: 3D structure of the core and the templates (molecule 

N° 17).

N° Name pT N° Name pT
1 Phenol -0.60 23 Tetrachlorohydro-

quinone
1.46

2 2-chlorophenol 0.17 24 Catechol 0.27
3* 3-chlorophenol 0.36 25* 4-chlorocatechol 1.13
4 4-chlorophenol 0.46 26* 3,5-dichlorocate-

chol
1.95

5 2,3-dichlorophenol 1.09 27 Resorcinol -0.49
6 2,4-dichlorophenol 1.24 28 4-chlororesorcinol 0.27
7 2,5-dichlorophenol 1.12 29 4,6-dichlororesor-

cinol
1.02

8* 2,6-dichlorophenol 0.88 30 2-methylphenol -0.08
9 3,4-dichlorophenol 1.47 31 2,3-dimethylphenol 0.39
10 3,5-dichlorophenol 1.67 32 2,4-dimethylphenol 0.44
11 2,3,4-trichlorophe-

nol
1.64 33 2,5-dimethylphenol 0.33

12 2,3,5-trichlorophe-
nol

1.86 34* 2,6-dimethylphenol 0.14

13 2,3,6-trichlorophe-
nol

1.51 35* 3,4-dimethylphenol 0.58

14 2,4,5-trichlorophe-
nol

1.67 36 3,5-dimethylphenol 0.51

15 2,4,6-trichlorophe-
nol

1.53 37* 4-chloro-3-methyl-
phenol

1.17

16 3,4,5-trichlorophe-
nol

2.18 38 2-nitrophenol 1.12

17 2,3,4,5-tetrachloro-
phenol

2.34 39 3-nitrophenol 0.70

18 2,3,4,6-tetrachloro-
phenol

1.45 40 4-nitrophenol 1.23

19 2,3,5,6-tetrachloro-
phenol

1.43 41 2,4-dinitrophenol 1.05

20 Pentachlorophenol 1.45 42 2,5-dinitrophenol 1.81
21 Hydroquinone 0.02 43* 5-methyl-2-nitro-

phenol
1.15

22 Chlorohydroqui-
none

1.13

Table 1: Chemical name and toxicity values(pT) of studied compounds

* Test set.

Template (Molecule N° 17) Core
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2.3. CoMFA and CoMSIA studies
CoMFA studies were performed to analyze the specific contributions 
of steric and electrostatic effects. The calculation of these interactions 
waseffected using the Tripos force field with a distance-dependent 
dielectric constant at all interactions in a regularly spaced (2Å) 
grid taking a sp3 carbon atom as steric probe and a+1 charge as 
electrostatic probe. The cutoff was set to 30 kcal/mol [16]. 

CoMSIA method is an extension of CoMFA that uses, in addition 
to the steric and electrostatic interaction fields, a hydrophobic, a 
hydrogen bond acceptor and donor fields. The two techniques also 
differ in the way molecular interaction fields are implanted. They 
generally give comparable results, but CoMSIA models are often 
richer and easier to interpret[17,18].

2.4. Partial least squares analysis (PLS)
3D-QSTR models were generated using a series of 35compounds 
(training set). PLS method was used in this study to determine the 
optimal numbers of components using cross-validated coefficient Q 
(with leave-one-out (LOO) procedure). The final analysis (non-cross-
validated analysis) was carried out using the optimum number of 
components obtained from the leave-one-out (LOO) cross-validation 
analysis to get correlation coefficient r. The best QSTR model was 
chosen on the basis of a combination of Q2 and r2[19,20].

2.5. Validation and predictive power of the model
The main objective of any QSTR study is to obtain a model with 
the highest predictive and generalization abilities. So, predictive 
power of the constructed models was examined using a test set of 
8 molecules (Table 1)[13,21]. These compounds were aligned using 
the same methods described above, and then their toxicity values 
were predicted using the generated CoMFA and CoMSIA models.

Results and discussions
3.1. Molecular alignment
Alignment of training and test set compounds using distill module 
is shown in Fig. 2.

Figure.2: 3D-QSTR structure superposition and alignment of 
studied compounds (training and test set) using molecule N°17 as 
a template.

3.2. CoMFA and CoMSIA results
The 3D-QSTR models were generated from CoMFA and CoMSIA 
analyses. The correlations of predicted and observed toxicity values 
are illustrated in Fig. 3.

CoMFA analysis

CoMSIA analysis

Figure. 3: Correlations of observed and predicted pT derived from 
CoMFA and CoMSIA models (training set in blue; test set in red).

We use cross-validation as an internal test of the quality of the PLS 
models. True predictive power of a QSTR model is to test their ability 
to predict accurately the toxicity of compounds from an external test 
set (compounds which were not used for the model development), 
the toxicityof the remained set of 8 compounds are deduced from 
the quantitative model proposed with the 35 molecules (training set) 
by CoMFA and CoMSIA models (Fig. 3).The statistical parameters 
generated from CoMFA and CoMSIA analyses are listed in Table 2.
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Table 2: PLS Statistics of CoMFA and CoMSIA models.

 
Fractions

Model Q2 r2 Scv N r2test Ster Elec Acc Don Hyd
CoMFA 0.559 0.760 0.368 2 0.761 0.552 0.448 - - -
CoMSIA 0.680 0.778 0.354 2 0.534 0.010 0.491 0.172 0.087 0.241

Q2: Cross-validated determination coefficient; N: Optimum number of components obtained from cross-validated PLS analysis and 
same used in final non-cross-validated analysis; r2: Non-cross-validated determination coefficient; Scv: Standard error of the estimate; 
r2

test: External validation determination coefficient.

* Test set.

The obtained 3D-QSTR models gave good statistical results in 
terms of r2 values(r2 = 0.760 and r2 = 0.778 for CoMFA and CoM-
SIA models, respectively).The two approaches have good predic-
tive capability gives good results (Q2 = 0.559 and Q2 = 0.680 for 
CoMFA and CoMSIA models, respectively). The models were 
able to establish a satisfactory relationship between the molecular 

descriptors and the toxicity of the studied compounds. The results 
obtained by 3D-QSTR analysesare sufficient to conclude the per-
formance of the models; it’s confirmed by the test done with the 
8 compounds (r2test= 0.761 and r2test= 0.534 for CoMFA and 
CoMSIA models, respectively). The values of predicted and ob-
served toxicity are presented in Table 3.

N° pT 
(Obs.)

pT (Calc.) N° pT 
(Obs.)

pT (Calc.)
CoMFA Residu CoMSIA Residu CoMFA Residu CoMSIA Residu

1 -0.60 0.036 -0.636 0.272 -0.872 23 1.46 1.877 -0.417 1.789 -0.329
2 0.17 0.328 -0.158 0.686 -0.516 24 0.27 0.201 0.069 0.181 0.089
3* 0.36 0.509 -0.149 0.728 -0.368 25* 1.13 0.689 0.441 0.569 0.561
4 0.46 0.520 -0.060 0.652 -0.192 26* 1.95 1.440 0.510 1.090 0.860
5 1.09 0.801 0.289 1.137 -0.047 27 -0.49 -0.099 -0.391 -0.226 -0.264
6 1.24 0.807 0.433 1.068 0.172 28 0.27 0.431 -0.161 0.153 0.117
7 1.12 1.076 0.044 1.115 0.005 29 1.02 1.222 -0.202 1.293 -0.273
8* 0.88 0.509 0.371 0.964 -0.084 30 -0.08 0.171 -0.251 0.242 -0.322
9 1.47 0.993 0.477 1.106 0.364 31 0.39 0.476 -0.086 0.260 0.130
10 1.67 1.257 0.413 1.168 0.502 32 0.44 0.460 -0.020 0.260 0.180
11 1.64 1.290 0.350 1.523 0.117 33 0.33 0.612 -0.282 0.235 0.095
12 1.86 1.549 0.311 1.576 0.284 34* 0.14 0.401 -0.261 0.221 -0.081
13 1.51 0.979 0.531 1.417 0.093 35* 0.58 0.612 -0.032 0.308 0.272
14 1.67 1.542 0.128 1.508 0.162 36 0.51 0.776 -0.266 0.268 0.242
15 1.53 0.986 0.544 1.352 0.178 37* 1.17 0.809 0.361 0.665 0.505
16 2.18 1.736 0.444 1.547 0.633 38 1.12 0.765 0.355 0.801 0.319
17 2.34 2.024 0.316 1.959 0.381 39 0.70 0.596 0.104 0.745 -0.045
18 1.45 1.464 -0.014 1.800 -0.350 40 1.23 1.381 -0.151 1.173 0.057
19 1.43 1.714 -0.284 1.853 -0.423 41 1.05 1.351 -0.301 1.137 -0.087
20 1.45 2.182 -0.732 2.234 -0.784 42 1.81 2.313 -0.503 1.768 0.042
21 0.02 0.259 -0.239 0.194 -0.174 43* 1.15 1.224 -0.074 0.804 0.346
22 1.13 0.546 0.584 0.614 0.516

Table 3:Experimental and calculated toxicity (pT) of compounds in the training set and the test set for CoMFA and CoMSIA models.

CoMFA and CoMSIA contour plots were able to identify molec-
ular fragments, functional groups and physicochemical properties 

strongly correlated with the toxicity of this series. CoMFA steric 
and electrostatic contours are shown in Fig. 4.
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Fig.5: Std* coeff. contour maps of CoMSIA analysis with 2 Å grid spacing in combination with compound N°17. (a) Hydrophobic 
fields: yellow contours (80% contribution) indicate regions where hydrophobic substituents groups increase activity, while orange 
contours (20% contribution) indicate regions where hydrophobic substituents decrease activity. (b) Hydrogen bond donor field: cyan 
contours (80% contribution) regions where hydrogen bond donor groups increase activity, purple contours (20% contribution) re-
gions where hydrogen bond donor groups decrease activity, (c) Hydrogen bond acceptor fields: magenta contours (80% contribution) 
indicate regions where hydrogen-bond acceptor groups favor activity, while red contours (20% contribution) indicate regions where 
hydrogen bond acceptor groups decrease activity.

Fig.4: Std*coeff. contour maps of CoMFA analysis with 2 Å grid 
spacing in combination with compound N° 17. (a) Steric fields: 
green contours (80% contribution) indicate regions where bulky 
groups increase activity, while yellow contours (20% contribu-
tion) indicate regions where bulky groups decrease activity. (b) 
Electrostatic fields: blue contours (80% contribution) indicate 
regions where more positive/less negative electrostatic potential 
increase activity, while red contours (20% contribution) indicate 
regions where more negative/less positive electrostatic potential-
increase activity.

The steric interaction is represented by green and yellow con-
tours, while electrostatic interaction is denoted by red and blue 
contours (Fig. 4). The bigger yellow region observed around po-
sition 3, 4 and 5 (the carbon to which the initial –OH is bonded 
is counted as the first position) (Fig. 4a) suggesting that groups 
with steric tolerance are not required at this position, which 
means to decrease the toxicity.

CoMFA electrostatic contour plot is displayed in Fig. 4b. A blue 
contour indicate that substituents should be electron deficient 
and red color indicates that substituents should be electron 
rich[7]. The blue contour near position 3 (Fig. 4b) indicates that 
groups with positive charges may increase the activity. The elec-
trostatic contour map displays a region of red contours neighbor 
to position 5, indicating that groups with negative charges are 
beneficial for activity in this area. Also we can comment that the 
blue contours above and below the plane of the ring suggests 
that lower electron density and hence lower negative electro-
static potential in the Pi cloud of the ring is generally associated 
with more activity.

For CoMSIA contour maps (Fig. 5), the steric and electrostat-
ic field contours were constantly similar to the corresponding 
CoMFA contour maps[18]. Therefore, our following discussion 
will focus on the hydrophobic (Fig. 5(a)), hydrogen bond donor 
(Fig. 5(b)) and acceptor (Fig. 5(c)) fields.
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A yellow contour near position 3, 4 and 5 means that hydrophobic 
substituent groups such as alkyl groups may increase the toxicity 
(Fig. 5(a)). A purple contour near position 1, 2 and 6means that 
groups with hydrogen bond donor decrease the toxicity (Fig. 5(b)). 
The magenta contour near position 1 indicates that groups with 
hydrogen bond acceptor groups increase the toxicity (Fig. 5(c)). 
While a red contour near to position 1, 2 and 6 means that groups 
with hydrogen bond acceptor groups decrease the activity (Fig. 
5(c)).

All these findings may be used to design compounds with more or 
less toxicity values. As observed in CoMFA and CoMSIA maps, 
by adding suitable substituents.

Conclusion
In this study, 3D-QSTR analyses were used to predict the toxicity 
of a set of 43substituted phenols to Chlorella Vulgaris.  In order to 
establish 3D-QSTR models, a Partial Least Squares (PLS) statisti-
cal method are used in deriving the Comparative Molecular Field 
Analysis (CoMFA) and Comparative Molecular Similarity Indi-
ces Analysis (CoMSIA).  In conclusion, the established 3D-QSTR 
models gave good statistical results in terms of Q2,r2and rtest-
2values. CoMFAand CoMSIAmodels exhibited high internal and 
external consistency as demonstrated by the several validation 
methods employed to assess their statistical quality.

Through this study; we have been able to develop models that 
will be used later to propose new structures of phenolic molecules 
with controlled toxicity. This work shows the interest of 3D-QSTR 
studies that allow the correlation between the experimental and 
theoretical results,to predict the toxicity of other molecules of the 
same series.
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