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Abstract
Whitehead aspherical conjecture says that every connected subcomplex of every aspherical 2-complex is aspherical. By an 
argument on ribbon sphere-links, it is confirmed that the conjecture is true for every contractible finite 2-complex. In this paper, 
by generalizing this argument, this conjecture is confirmed to be true for every aspherical 2-complex.
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1. Introduction
A finite or infinite 2-complex is a finite or countably-infinite CW 2-complex constructed from a connected finite or countably-infinite 
graph by attaching a finite or at most countably-infinite system of 2-cells with attaching maps, respectively. A 2-complex is homotopy 
equivalent to a simplicial 2-complex constructed from a simplicial graph by attaching 2-cells with simplicial approximations of the 
attaching maps. By this homotopy equivalence, every subcomplex of a 2-complex is also homotopy equivalent to a simplicial 
subcomplex of the simplicial 2-complex [1]. A path-connected space X is aspherical if the universal cover X of X is contractible (i.e., 
homotopy equivalent to a point). In particular, a connected 2-complex P is aspherical if and only if the second homotopy group π2(P, 
v) = 0. The Whitehead asphericity conjecture is the following conjecture [2,3].

Conjecture 1. Every connected subcomplex of any aspherical 2-complex is aspherical.

The purpose of this paper is to show that Conjecture 1 is yes. That is,

Theorem 1.1. Whitehead Aspherical Conjecture is true.

A 2-complex P is locally finite if every 1-cell of P attaches only to a finite number of 2-cells of P. Conjecture 1 reduces to the 
following conjecture for every contractible locally finite 2-complex.

Conjecture 2. Every connected subcomplex of every contractible locally finite 2-complex is aspherical.

In Section 2, the claim of Conjecture 2 ⇒ Conjecture 1 is shown.   Conjecture 2 for every contractible finite 2-complex is confirmed 
[4]. In this paper, the argument for an infinite 2-complex becomes the main argument. The 2-complex of a group presentation
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Conjecture 1. Every connected subcomplex of any aspherical 2-complex is aspher-
ical.

The purpose of this paper is to show that Conjecture 1 is yes. That is,

Theorem 1.1. Whitehead Aspherical Conjecture is true.

A 2-complex P is locally finite if every 1-cell of P attaches only to a finite number
of 2-cells of P . Conjecture 1 reduces to the following conjecture for every contractible
locally finite 2-complex.

Conjecture 2. Every connected subcomplex of every contractible locally finite 2-
complex is aspherical.

In Section 2, the claim of Conjecture 2 ⇒ Conjecture 1 is shown. In [2], Con-
jecture 2 for every contractible finite 2-complex is confirmed. In this paper, the
argument for an infinite 2-complex becomes the main argument. The 2-complex of a
group presentation

GP =< x1, x2, . . . , xn, . . . | r1, r2, . . . , rm, · · · >

is the connected 2-complex constructed from a graph with fundamental group isomor-
phic to the free group < x1, x2, . . . , xn, · · · > on the generators xi (i = 1, 2, . . . , n, . . . )
by attaching 2-cells with attaching maps given by the relators rj (j = 1, 2, . . . ,m, . . . ),
where note that this 2-complex is a connected graph for the empty relator. Up to
cellular homotopy equivalences, every connected 2-complex P and the connected sub-
complexes of P can be uniquely considered as the 2-complex and the subcomplexes of
a group presentation GP , where a subcomplex of GP is the 2-complex of the group
presentation of a sub-presentation

< xi1 , xi2 , . . . , xis , . . . | rj1 , rj2 , . . . , rjt , · · · > .

A group presentation GP is locally finite if every generator xi appears only in a
finite number of the relators rj (j = 1, 2, . . . ,m, . . . ). The 2-complex of a locally
finite group presentation GP can be taken as a connected locally finite 2-complex.
A group presentation GP is a homology-trivial unit-group presentation if GP is a
presentation of the unit group {1} and the relator word rj is equal to the generator
xj for every j in the abelianized free abelian group < x1, x2, . . . xn, · · · >a of the free
group < x1, x2, . . . xn, · · · > with as basis the generators xi (i = 1, 2, . . . , n, . . . ) of
GP . Note that the 2-complex of a homology-trivial unit-group presentation is always
contractible.
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is the connected 2-complex constructed from a graph with fundamental group isomorphic to the free group < x1, x2, . . . , xn, · · · > 
on the generators xi (i = 1, 2, . . . , n, . . . ) by attaching 2-cells with attaching maps given by the relators rj (j = 1, 2, . . . , m, . . . ), 
where note that this 2-complex is a connected graph for the empty relator. Up to cellular homotopy equivalences, every connected 
2-complex P and the connected subcomplexes of P can be uniquely considered as the 2-complex and the subcomplexes of a group 
presentation GP, where a subcomplex of GP is the 2-complex of the group presentation of a sub-presentation
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A group presentation GP is locally finite if every generator xi appears only in a finite number of the relators rj ( j = 1, 2, . . . , m, . . . ). 
The 2-complex of a locally finite group presentation GP can be taken as a connected locally finite 2-complex. A group presentation 
GP is a homology-trivial unit-group presentation if GP is a presentation of the unit group {1} and the relator word rj is equal to the 
generator xj for every j in the abelianized free abelian group < x1, x2, . . . xn, · · · >

a of the free group < x1, x2, . . . xn, · · · > with as 
basis the generators xi (i = 1, 2, . . . , n, . . . ) of GP. Note that the 2-complex of a homology-trivial unit-group presentation is always 
contractible.

In Section 3, Conjecture 2 reduces to the following conjecture for the 2-complex of every homology-trivial unit-group presentation.

Conjecture 3. Every subcomplex of every homology-trivial unit-group presentation is aspherical.

The claim that Conjecture 3 ⇒ Conjecture 2 is shown there. For this purpose, after observations on base changes of a free group 
and a free abelian group of possibly infinite ranks, it is shown that if the 2-complex of a locally finite group presentation GP is 
contractible, then there is an iteration of base changes x′

i (i = 1, 2, . . . , n, . . . ) in the free group < x1, x2, . . . , xn, · · · > with as basis 
the generators xi(i = 1, 2, . . . , n, . . . ) of GP so that the resulting group presentation

In Section 3, Conjecture 2 reduces to the following conjecture for the 2-complex
of every homology-trivial unit-group presentation.

Conjecture 3. Every subcomplex of every homology-trivial unit-group presentation
is aspherical.

The claim that Conjecture 3 ⇒ Conjecture 2 is shown there. For this purpose,
after observations on base changes of a free group and a free abelian group of possibly
infinite ranks, it is shown that if the 2-complex of a locally finite group presentation
GP is contractible, then there is a base change x′

i (i = 1, 2, . . . , n, . . . ) in the free
group < x1, x2, . . . , xn, · · · > with as basis the generators xi(i = 1, 2, . . . , n, . . . ) of
GP so that the resulting group presentation

GP ′ =< x′
1, x

′
2, . . . , x

′
n, . . . | r′1, r′2, . . . , r′m, · · · >

is a homology-trivial unit-group presentation (see Lemma 3.2). This means that there
is a cellular-homotopy equivalence from every contractible locally finite 2-complex P
to the 2-complex P ′ of a homology-trivial unit-group presentation GP inducing a
cellular-homotopy equivalence from the subcomplexes of P to the subcomplexes of P ′

(see Corollary 3.3).

In Section 4, a (possibly infinite) sphere-link (namely, an S2-link) L in the 4-space
R4 is discussed. The closed complement of L in R4 is denoted by E(L). It is shown
there that for every homology-trivial unit-group presentation GP , a ribbon S2-link L
in R4 is constructed so that the fundamental group π1(E(L), v) is isomorphic to the
free group < x1, x2, . . . , xn, · · · > of the generators xi (i = 1, 2, . . . , n, . . . ) of GP by
an isomorphism sending a meridian system of L in π1(E(L), v) to the relator word
system rj (j = 1, 2, . . . ,m, . . . ) of GP (see Lemma 4.1). It is also observed there that
a ribbon S2-link L in R4 contains canonically a ribbon disk-link LD in the upper-half
4-space H4 so that the fundamental group π1(E(L), v) is canonically identified with
the fundamental group π1(E(LD), v) for the closed exterior E(LD) of LD in H4 (see
Lemma 4.2 and Corollary 4.3).

In Section 5, it is shown that E(LD) is always aspherical and every 1-full sub-
complex P ′ of the 2-complex P of a homology-trivial unit-group presentation GP is
homotopy equivalent to the closed exterior E(LD) of a ribbon disk-link LD in H4,
where a 1-full subcomplex P ′ of P is a subcomplex of P containing the 1-skelton P 1

of P . Then Conjecture 3 is confirmed to be true and the proof of Theorem 1.1 is
completed.

The author mentions here that there is a preprint by Pasku [5] claiming the same
result, which is a purely group-theoretic argument much different from the current
argument.
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2. Reducing to the Conjecture for a Contractible Locally finite 2-Complex
In this section, it is explained that Conjecture 1 (Whitehead Asphericity Conjecture) is obtained from the following conjecture.

Conjecture 2
Every connected subcomplex of every contractible locally finite 2-complex is aspherical. 

For this reduction, the following three lemmas are used.

Lemma 2.1 
If every connected finite subcomplex of a contractible 2-complex P is aspherical, then every connected subcomplex of P is aspherical.

Lemma 2.2
If every connected subcomplex of every contractible 2-complex is aspherical, then every connected subcomplex Q of every 
aspherical 2-complex P is aspherical.

Lemma 2.3 
Every connected finite subcomplex of a connected infinite 2-complex P is a subcomplex of a connected locally finite 2-complex P′ 
homotopy equivalent to P.

Proof of Lemma 2.1 is done as follows.

n
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Proof of Lemma 2.1
Let Q be any given connected subcomplex of a contractible 2-complex P. Let f : S2 → |Q| be a map from the 2-sphere S2 to the 
polyhedron |Q|. For a simplicial 2-complex Q, the topology of |Q| is the topology coherent with the simplexes of Q so that the image 
f (S) is in the polyhedron Q of a connected finite subcomplex Q f of Q  p.111 [1]. By assumption, Q f is aspherical, so that the map f 
: S2 → |Q f | defined by the original map f is null-homotopic in |Q f | and hence in |Q|, so that Q is aspherical. 

Proof of Lemma 2.2 is done as follows.

Proof of Lemma 2.2
Let P be an aspherical 2-complex, and Q any connected subcomplex of P. Since the universal cover P of P is a contractible 
2-complex, the subcomplex Q lifts to a subcomplex Q of the contractible 2-complex  P and any connected component Q1 of the 
subcomplex Q is aspherical by assumption. Since the second homotopy group is independent of a covering by the lifting property,  
Q is aspherical [1].
 
Proof of Lemma 2.3 is done as follows.

Proof of Lemma 2.3. Let P be a connected infinite 2-complex, and P0 any given connected finite subcomplex of P. Let

˜
˜ ˜ ˜

˜
Proof of Lemma 2.3 is done as follows.

Proof of Lemma 2.3. Let P be a connected infinite 2-complex, and P0 any given
connected finite subcomplex of P . Let

P0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ Pn ⊂ . . .

be a sequence of connected finite subcomplexes Pi (i = 0, 1, 2, . . . , n, . . . ) of P such
that P = ∪+∞

i=0Pi. Let Pi = Pi−1 ∪ Ji for a subcomplex Ji of Pi with γi = Pi−1 ∩ Ji
a graph for all i. Triangulate the rectangle a × [0, 1] for every 1-simplex a of γi
by introducing a diagonal and regard the product γi × [0, 1] as a 2-complex. To
construct a desired 2-complex P ′, make the connected finite subcomplexes Ji (i =
1, 2, 3, . . . , n, . . . ) disjoint. Let P ′

i = Pi−1 ∪ γi × [0, 1] be the 2-complex obtained from
the subcomplexes Pi−1 and γi × [0, 1] by identifying γi in Pi−1 with γi × 0 and γi × 1
with γi in Ji in canonical ways. The sequence

P0 = P ′
0 ⊂ P ′

1 ⊂ P ′
2 ⊂ · · · ⊂ P ′

n ⊂ . . .

of connected finite subcomplexes P ′
i (i = 0, 1, 2, . . . , n, . . . ) is obtained. By construc-

tion, P ′ = ∪∞
i=0P

′
i is a connected locally finite 2-complex containing P0 as a subcom-

plex and homotopy equivalent to P . □

Conjecture 1 is obtained from Conjecture 2 as follows.

2.4: Proof of Conjecture 2 ⇒ Conjecture 1. By assuming Conjecture 2, it
suffices to show that every connected finite subcomplex Q of every contractible 2-
complex P is aspherical. Because this claim means by Lemma 2.1 that every con-
nected subcomplex of every contractible 2-complex P is aspherical, which also means
by Lemma 2.2 that every connected subcomplex of every aspherical 2-complex is
aspherical, confirming Conjecture 1. If Q is a connected finite subcomplex of a
contractible 2-complex P , then Q is a subcomplex of a contractible locally finite
2-complex P ′ homotopy equivalent to P by Lemma 2.3, so that Q is aspherical by
Conjecture 2. This completes the proof of Conjecture 2 ⇒ Conjecture 1. □

3. Reducing to the conjecture for the 2-complex of a homology-trivial
unit-group presentation

In this section, it is explained that Conjecture 2 is obtained from the following
conjecture.
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In this section, it is explained that Conjecture 2 is obtained from the following
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The following lemma is well-known for a finite rank free abelian group A.

Lemma 3.1. Let A be a free abelian group with a countable basis ai (i = 1, 2, . . . , n, . . . ). Let bi (i = 1, 2, . . . , n, . . . ) be a countable 
basis of A such that every column vector and every row vector of the base change matrix C given by

Conjecture 3. Every subcomplex of every homology-trivial unit-group presentation
is aspherical.

A base change of a free group< x1, x2, . . . xn, · · · > with basis xi (i = 1, 2, . . . , n, . . . )
is a consequence of a finite number of the following operations, called Nielsen trans-
formations (see [4]):

(1) Exchange two of xi (i = 1, 2, . . . , n, . . . ),

(2) Replace an xi by x−1
i ,

(3) Replace an xi by xixj (i ̸= j).

A base change of a free abelian group A on a basis ai (i = 1, 2, . . . , n, . . . ) is a
consequence of a finite number of the following operations:

(1) Exchange two of ai (i = 1, 2, . . . , n, . . . ),

(2) Replace an ai by −ai,

(3) Replace an ai by ai + aj (i ̸= j).
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Let bi (i = 1, 2, . . . , n, . . . ) be a countable basis of A such that every column vector
and every row vector of the base change matrix C given by

(b1b2 . . . bn . . . ) = (a1a2 . . . an . . . )C

have only a finite number of non-zero entries. Then there is a base change of A on
ai (i = 1, 2, . . . , n, . . . ) such that C is the block sum (1) ⊕ C ′ for a matrix C ′.

Proof of Lemma 3.1. For every j (j = 1, 2, . . . , n, . . . ), let

bj = c1ja1 + c2ja2 + · · ·+ cnjan + . . .

be a linear combination with (i, j) entries cij of C which are 0 except for a finite
number of i (i = 1, 2, . . . , n, . . . ). Note that for every j, the non-zero integer system
of c1j, c2j, . . . , cnj, . . . is a coprime integer system. By a base change (1), assume that
c11 is the smallest positive integer in the integers |ci1| for all i. For i > 1, write
ci1 = c̃i1c11 + di1 for 0 ≤ di1 < c11. By a base change on ai (i = 1, 2, . . . , n, . . . ),
assume that

b1 = c11a1 + d21a2 + · · ·+ dn1an + . . . .
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Proof of Lemma 3.1. For every j (j = 1, 2, . . . , n, . . . ), let

be a linear combination with (i, j) entries cij of C which are 0 except for a finite number of i (i = 1, 2, . . . , n, . . . ). Note that for 
every j, the non-zero integer system of c1j , c2j , . . . , cnj, . . . is a coprime integer system. By base changes (1) and (2), assume that 
c11 is the smallest positive integer in the integers |ci1| for all i. For i > 1, write ci1 = ci1c11 + di1 for 0 ≤ di1 < c11. By a base change on 
ai (i = 1, 2, . . . , n, . . . ), assume that

By continuing this process, it can be assumed that b1 = a1. Note that there is a positive integer m ≥ 2 such that c1j = 0 for all j > m. 
Consider the linear combination

By continuing this process, it can be assumed that b1 = a1. Note that there is a
positive integer m ≥ 2 such that c1j = 0 for all j with j > m. Consider the linear
combination

b2 = c12a1 + c22a2 + · · ·+ cn2an + . . . .

Note that the non-zero integer system of c22, c32, . . . , cn2, . . . is coprime. Otherwise,
there is a prime common divisor p > 1, so that b1 and b2 would be Zp-linearly
dependent in the Zp-vector space A⊗Zp which contradicts that bi (i = 1, 2, . . . , n, . . . )
form a basis ofA⊗Zp, where Zp = Z/pZ. By a base change on ai (i = 2, 3, . . . , n, . . . ),
it can be assumed that b2 = c12a1+a2. By an inductive argument, it can be assumed
that

bj = c1ja1 + c2ja2 + · · ·+ cj−1 jaj−1 + aj (j = 3, 4, . . . ,m).

By a base change replacing aj to aj − c1ja1 − c2ja2 − · · ·− cj−1 jaj−1 (j = 2, 3, . . . ,m),
the identities bj = aj (1 ≤ j ≤ m) are obtained. Then the entries cij of the matrix C
are written as

c11 = 1 c1j = ci1 = 0 (1 < i < +∞, 1 < j < +∞).

This completes the proof of Lemma 3.1. □

The proof of the following lemma uses Lemma 3.1.

Lemma 3.2. If the 2-complex P of a locally finite group presentation

GP =< x1, x2, . . . , xn, . . . | r1, r2, . . . , rm, · · · >

is contractible, then there is a base change x′
i (i = 1, 2, . . . ) of the basis xi (i = 1, 2, . . . )

of the free group < x1, x2, . . . , xn, · · · > such that the resulting group presentation

GP ′ =< x′
1, x

′
2, . . . , x

′
n, . . . | r′1, r′2, . . . , r′m, · · · >

is a homology-trivial unit-group presentation.

Proof of Lemma 3.2. Since the 2-complex P is a contractible locally finite 2-
complex, every generator xi appears only in a finite number of the relators r1, r2, . . . , rm, . . .
and the inclusion homomorphism

< r1, r2, . . . , rm, · · · >→< x1, x2, . . . xn, · · · >

on the free groups < r1, r2, . . . , rm, · · · > and < x1, x2, . . . xn, · · · > induces an isomor-
phism on the abelianized groups < r1, r2, . . . , rm, · · · >a andA =< x1, x2, . . . xn, · · · >a

which are free abelian groups with a base change matrix C given in Lemma 3.3.
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Note that the non-zero integer system of c22, c32, . . . , cn2, . . . is coprime. Otherwise, there is a prime common divisor p > 1, so that 
b1 and b2 would be Zp-linearly dependent in the Zp-vector space A⊗Zp which contradicts that bi (i = 1, 2, . . . , n, . . . ) form a basis 
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Do Nielsen transformations on the free group < x1, x2, . . . xn, · · · > induced from base changes on the free abelian group A of Lemma 
3.1. Then the word r1 is changed into x1 in A. This base change is done by using only finitely many letters in xi (i = 1, 2, . . . , n, . . 
. ) belonging to the word rj except for re-indexing of the letters xi (i = 1, 2, . . . , n, . . . ). By continuing this process, the conclusion 
of Lemma 3.2 is obtained.

The following corollary means that a contractible locally finite 2-complex may be considered as the 2-complex of a homology-trivial 
unit-group presentation.

Corollary 3.3. There is a cellular-homotopy equivalence from every contractible locally finite 2-complex P to the 2-complex P′ of 
a homology-trivial unit-group presentation GP' inducing a cellular-homotopy equivalence from the connected subcomplexes of P 
to the subcomplexes of GP'.

Proof of Corollary 3.3. Let P be a contractible locally finite 2-complex obtained from the 1-skelton P1 with π1(P
1, v) =< x1, x2, . . . 
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induces an isomorphism from the abelianized group < r1, r2, . . . , rm, · · · >a to the
abelianized group < x1, x2, . . . , xn, · · · >a. Let

g :< x1, x2, . . . , xn, · · · >→< x′
1, x

′
2, . . . , x

′
n, · · · >

be a base change isomorphism sending the word rj to a word r′j such that r′j is equal
to x′

j in the abelianized group < x1, x2, . . . xn, · · · >a for all j. Let P ′ be the 2-complex
of the homology-trivial unit-group presentation

GP ′ =< x′
1, x

′
2, . . . , x

′
n, . . . | r′1, r′2, . . . , r′m, · · · > .

The isomorphism g induces a desired cellular homotopy equivalence P → P ′. □

Conjecture 2 is obtained from Conjecture 3 as follows.

3.4: Proof of Conjecture 3 ⇒ Conjecture 2. By Corollary 3.3, every connected
subcomplex of every contractible locally finite 2-complex is homotopy equivalent to a
subcomplex of a homology-trivial unit-group presentation. This completes the proof
of Conjecture 3 ⇒ Conjecture 2. □

8

Do Nielsen transformations on the free group < x1, x2, . . . xn, · · · > induced from
base changes on the free abelian group A of Lemma 3.1. Then the word r1 is
changed into x1 in A. This base change is done by using only finitely many let-
ters in xi (i = 1, 2, . . . , n, . . . ) belonging to the word rj except for re-indexing of the
letters xi (i = 1, 2, . . . , n, . . . ). Thus, the conclusion of Lemma 3.2 is obtained. □

The following corollary means that a contractible locally finite 2-complex may be
considered as the 2-complex of a homology-trivial unit-group presentation.

Corollary 3.3. There is a cellular-homotopy equivalence from every contractible
locally finite 2-complex P to the 2-complex P ′ of a homology-trivial unit-group pre-
sentation GP inducing a cellular-homotopy equivalence from the connected subcom-
plexes of P to the subcomplexes of GP .

Proof of Corollary 3.3. Let P be a contractible locally finite 2-complex obtained
from the 1-skelton P 1 with π1(P

1, v) =< x1, x2, . . . , xn, · · · > on the generators xi (i =
1, 2, . . . , n, . . . ) by attaching 2-cells with attaching maps given by relators rj (j =
1, 2, . . . ,m, . . . ). Then the inclusion homomorphism

< r1, r2, . . . , rm, · · · >→< x1, x2, . . . xn, · · · >

induces an isomorphism from the abelianized group < r1, r2, . . . , rm, · · · >a to the
abelianized group < x1, x2, . . . , xn, · · · >a. Let

g :< x1, x2, . . . , xn, · · · >→< x′
1, x

′
2, . . . , x

′
n, · · · >

be a base change isomorphism sending the word rj to a word r′j such that r′j is equal
to x′

j in the abelianized group < x1, x2, . . . xn, · · · >a for all j. Let P ′ be the 2-complex
of the homology-trivial unit-group presentation

GP ′ =< x′
1, x

′
2, . . . , x

′
n, . . . | r′1, r′2, . . . , r′m, · · · > .

The isomorphism g induces a desired cellular homotopy equivalence P → P ′. □

Conjecture 2 is obtained from Conjecture 3 as follows.

3.4: Proof of Conjecture 3 ⇒ Conjecture 2. By Corollary 3.3, every connected
subcomplex of every contractible locally finite 2-complex is homotopy equivalent to a
subcomplex of a homology-trivial unit-group presentation. This completes the proof
of Conjecture 3 ⇒ Conjecture 2. □

8

Do Nielsen transformations on the free group < x1, x2, . . . xn, · · · > induced from
base changes on the free abelian group A of Lemma 3.1. Then the word r1 is
changed into x1 in A. This base change is done by using only finitely many let-
ters in xi (i = 1, 2, . . . , n, . . . ) belonging to the word rj except for re-indexing of the
letters xi (i = 1, 2, . . . , n, . . . ). Thus, the conclusion of Lemma 3.2 is obtained. □

The following corollary means that a contractible locally finite 2-complex may be
considered as the 2-complex of a homology-trivial unit-group presentation.

Corollary 3.3. There is a cellular-homotopy equivalence from every contractible
locally finite 2-complex P to the 2-complex P ′ of a homology-trivial unit-group pre-
sentation GP inducing a cellular-homotopy equivalence from the connected subcom-
plexes of P to the subcomplexes of GP .

Proof of Corollary 3.3. Let P be a contractible locally finite 2-complex obtained
from the 1-skelton P 1 with π1(P

1, v) =< x1, x2, . . . , xn, · · · > on the generators xi (i =
1, 2, . . . , n, . . . ) by attaching 2-cells with attaching maps given by relators rj (j =
1, 2, . . . ,m, . . . ). Then the inclusion homomorphism

< r1, r2, . . . , rm, · · · >→< x1, x2, . . . xn, · · · >

induces an isomorphism from the abelianized group < r1, r2, . . . , rm, · · · >a to the
abelianized group < x1, x2, . . . , xn, · · · >a. Let

g :< x1, x2, . . . , xn, · · · >→< x′
1, x

′
2, . . . , x

′
n, · · · >

be a base change isomorphism sending the word rj to a word r′j such that r′j is equal
to x′

j in the abelianized group < x1, x2, . . . xn, · · · >a for all j. Let P ′ be the 2-complex
of the homology-trivial unit-group presentation

GP ′ =< x′
1, x

′
2, . . . , x

′
n, . . . | r′1, r′2, . . . , r′m, · · · > .

The isomorphism g induces a desired cellular homotopy equivalence P → P ′. □

Conjecture 2 is obtained from Conjecture 3 as follows.

3.4: Proof of Conjecture 3 ⇒ Conjecture 2. By Corollary 3.3, every connected
subcomplex of every contractible locally finite 2-complex is homotopy equivalent to a
subcomplex of a homology-trivial unit-group presentation. This completes the proof
of Conjecture 3 ⇒ Conjecture 2. □

8

induces an isomorphism from the abelianized group < r1, r2, . . . , rm, · · · >a to the abelianized group < x1, x2, . . . , xn, · · · >
a. Let

be an isomorphism given by Lemma 3.2, sending the word rj to a word r′
j such that r′

j is equal to x′
j in the abelianized group < x'

1, x
'
2, 

. . . x'
n, · · · >

a for all j. Let P′ be the 2-complex of the homology-trivial unit-group presentation

The isomorphism g induces a desired cellular homotopy equivalence P → P′.

Conjecture 2 is obtained from Conjecture 3 as follows.

3.4 Proof of Conjecture 3 ⇒ Conjecture 2
By Corollary 3.3, every connected subcomplex of every contractible locally finite 2-complex is homotopy equivalent to a subcomplex 
of a homology-trivial unit-group presentation. This completes the proof of Conjecture 3 ⇒ Conjecture 2. 

4. A Ribbon Sphere-Link and a Ribbon Disk-Link Constructed from a Homology-Trivial Unit-Group Presentation
Let X be an open connected oriented smooth 4D manifold. A countably-infinite system of disjoint compact sets Xi (i = 1, 2, . . . , n, . . . ) 
in X is discrete if the set {pi| i = 1, 2, . . . , n, . . . } constructed from any one point pi ∈ Xi for every i is a discrete set in X. An S2-link in X 
is the union L of a discrete (finite or countably-infinite) system of disjoint 2-spheres smoothly embedded in X. An S2-link in X is trivial 
if it bounds a discrete system of mutually disjoint 3-balls smoothly embedded in X, and ribbon if it is obtained from a trivial S2-link O 
by surgery along a discrete system of disjoint 1-handles embedded in X. An S2-link L in X is finite if the number of the components of 
L is finite. Otherwise, L is infinite. Let R4 = {(x,y,z,t)|-∞<x,y,x,t<+∞} be the 4-space, and H4 = {(x,y,z,t)| -∞<x,y,x<+∞, 0≤t} the upper-
half 4-space of R4 with boundary ∂H4= {(x,y,z,0)|-∞<x,y,z<+∞} identified with the 3-space R3={(x,y,z)|-∞<x,y,x<+∞}. The open 4D 
handlebody

4. A ribbon sphere-link and a ribbon disk-link constructed from a homology-
trivial unit-group presentation

Let X be an open connected oriented smooth 4D manifold. A countably-infinite
system of disjoint compact sets Xi (i = 1, 2, . . . , n, . . . ) in X is discrete if the set
{pi| i = 1, 2, . . . , n, . . . } constructed from any one point pi ∈ Xi for every i is a
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trivial if it bounds a discrete system of mutually disjoint 3-balls smoothly embedded
in X, and ribbon if it is obtained from a trivial S2-link O by surgery along a discrete
system of disjoint 1-handles embedded in X. An S2-link L in X is finite if the number
of the components of L is finite Otherwise, L is infinite. The open 4D handlebody

Y O = R4#+∞
i=1S

1 × S3
i

denotes the connected sum of the 4-space R4 and a discrete system of S1 × S3
i (i =

1, 2, . . . , n, . . . ). The following lemma is basic to our purpose.

Lemma 4.1. For every homology-trivial unit-group presentation

GP =< x1, x2, . . . , xn, . . . | r1, r2, . . . , rm, · · · >,

there is a ribbon S2-link L with components Ki (i = 1, 2, . . . , n, . . . ) in R4 such that
there is an isomorphism

π1(E(L), v) →< x1, x2, . . . xn, · · · >

sending a meridian system of Ki (i = 1, 2, . . . , n, . . . ) to the relator system ri (i =
1, 2, . . . , n, . . . ).

Proof of Lemma 4.1. In the open 4D handlebody Y O = R4#+∞
i=1S

1 × S3
i , let γO

be a legged loop system with loop system kO
i = S1 × 1i (i = 1, 2, . . . , n, . . . ) rep-

resenting a basis xi (i = 1, 2, . . . , n, . . . ) of the free group π1(Y
O, v). Let kj (j =

1, 2, . . . ,m, . . . ) be a simple loop system k∗ in Y O representing the relator system
rj (j = 1, 2, . . . ,m, . . . ). By assumption of the homology-trivial unit-group presenta-
tion GP , the loop kj for every j meets transversely 1 × S3

i in Y O with intersection
number +1 for j = i and with intersection number 0 for j ̸= i. Further, the loop
kj does not meet 1 × S3

i except for a finite number of i. Let X be the smooth open
4D manifold obtained from Y O by surgery along the loops kj (j = 1, 2, . . . ,m, . . . )
replacing a normal D3-bundle kj × D3 of kj in Y O with the D2-bundle Dj × S2 of
S2 for a disk Dj with ∂Dj = kj. Then the S2-link L = ∪+∞

j=1Kj with Kj = 0j × S2 is
obtained in X.
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1, 2, . . . , n, . . . ).

Proof of Lemma 4.1. In the open 4D handlebody Y O = R4#+∞
i=1S

1 × S3
i , let γO

be a legged loop system with loop system kO
i = S1 × 1i (i = 1, 2, . . . , n, . . . ) rep-

resenting a basis xi (i = 1, 2, . . . , n, . . . ) of the free group π1(Y
O, v). Let kj (j =

1, 2, . . . ,m, . . . ) be a simple loop system k∗ in Y O representing the relator system
rj (j = 1, 2, . . . ,m, . . . ). By assumption of the homology-trivial unit-group presenta-
tion GP , the loop kj for every j meets transversely 1 × S3

i in Y O with intersection
number +1 for j = i and with intersection number 0 for j ̸= i. Further, the loop
kj does not meet 1 × S3

i except for a finite number of i. Let X be the smooth open
4D manifold obtained from Y O by surgery along the loops kj (j = 1, 2, . . . ,m, . . . )
replacing a normal D3-bundle kj × D3 of kj in Y O with the D2-bundle Dj × S2 of
S2 for a disk Dj with ∂Dj = kj. Then the S2-link L = ∪+∞

j=1Kj with Kj = 0j × S2 is
obtained in X.
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3 in Y O with intersection number +1 for j = i and with 
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3 except for a finite number of i. Let X be the smooth open 4D 
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the D2-bundle Dj × 2 of S2 for a disk Dj with ∂Dj = kj. Then the S2-link L = ∪j=1 Kj  with Kj = 0j × S2 is obtained in X.
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Proof of (4.1.1). By van Kampen theorem, X is simply connected because the loops kj ( j = 1, 2, . . . , n, . . . ) normally generate the 
free fundamental group π1(Y O, v) =< x1, x2, . . . , xn, · · · >. Thus, if Hq(X;Z) = 0 (q = 2, 3), then X is contractible since X is an open 4D 
manifold. Since the loop system k∗ meets transversely 1×Si

3 in a finite number of points in Y O with intersection number Int(kj , 1×Si
3 

) = +1 ( j = i), 0( j ≠ i), there is an arc system Is (s = 1, 2, . . . , u) in the 1D manifold system obtained from k* by cutting along the 
set k ∗ ∩1 × Si

3 such that Is attaches to 1 × Si
3 with opposite signs for all s and the 3D orientable manifold Zi obtained from 1×Si

3 by 
piping along Is (s = 1, 2, . . . , u) meets ki with just one point and does not meet kj (i ≠ j). By the construction of X, the component Ki 
of L bounds a once-punctured 3D manifold Vi of Zi in X not meeting L\Ki, for every i. This means that the inclusion homomorphism 
H2(Di × S2;Z) → H2(X;Z) is the zero map for all i. Then

+∞

of kj in Y O with the D2-bundle Dj × S2 of S2 for a disk Dj with ∂Dj = kj. Then
the S2-link L = ∪+∞

j=1Kj with Kj = 0j × S2 is obtained in X.

(4.1.1) The open 4D manifold X is contractible.

Proof of (4.1.1). By van Kampen theorem, X is simply connected because the loops
kj (j = 1, 2, . . . , n, . . . ) normally generate the free fundamental group π1(Y

O, v) =<

x1, x2, . . . , xn, · · · >. Thus, if Hq(X;Z) = 0 (q = 2, 3), then X is contractible since X
is an open 4D manifold. Since the loop system k∗ meets transversely 1×S3

i in a finite
number of points in Y O with intersection number Int(kj, 1×S3

i ) = +1 (j = i), 0(j ̸= i),
there is an arc system Is (s = 1, 2, . . . , u) in the 1D manifold system obtained from
k∗ by cutting along the set k ∗ ∩1× S3

i such that Is attaches to 1× S3
i with opposite

signs for all s and the 3D orientable manifold Zi obtained from 1×S3
i by piping along

Is (s = 1, 2, . . . , u) meets ki with just one point and does not meet kj (i ̸= j). By the
construction of X, the component Ki of L bounds a once-punctured 3D manifold Vi of
Zi in X not meeting L\Ki, for every i. This means that the inclusion homomorphism
H2(Di × S2;Z) → H2(X;Z) is the zero map for all i. Then
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by the homology long exact sequence of the pair (X,D∗ × S2) and the excision iso-
morphism theorem. On the other hand, by construction, the 3D manifolds Vi (i =
1, 2, . . . , n, . . . ) represent a basis forH3(Y

O, k∗×D3;Z) and hence a basis forH3(X,D∗×
S2;Z) by the excision isomorphism theorem. This means that the boundary ho-
momorphism ∂∗ : H3(X,D∗ × S2;Z) → H2(D∗ × S2;Z) is an isomorphism. Since
H3(D∗ × S2;Z) = 0, the homology long exact sequence on the pair (X,D∗ × S2)
shows that H3(X;Z) = 0. Thus, X is a contractible open 4D manifold. This com-
pletes the proof of (4.1.1). □

The proof of Free Ribbon Lemma in [2] means that the 2-sphere component Ki of
L is isotopic to a ribbon S2-knot in X obtained from a finite trivial S2-link Oi split
from L by surgery along a finite disjoint 1-handle system hi such that ∪+∞

i=1Oi is a
trivial link and hi (i = 1, 2, . . . , n, . . . ) are disjoint discrete systems. Thus, the S2-link
L is a ribbon S2-link in X. By taking the upper-half 4-space H4 near the end of the
connected summand R4 of Y O, consider H4 in X so that X \H4 is diffeomorphic to
X. For a 4-space R4 in H4, the ribbon S2-link L in X can be moved into R4, since L
is obtained from a discrete trivial S2-link which is movable into R4 by surgery along
disjoint discrete 1-handle systems hi (i = 1, 2, . . . , n, . . . ) which are also movable into
R4. By construction, there is an isomorphism from π1(X \L, v) ∼= π1(R

4\L, v) to the
free fundamental group π1(Y

O, v) =< x1, x2, . . . , xn, · · · > sending a meridian system
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disjoint discrete 1-handle systems hi (i = 1, 2, . . . , n, . . . ) which are also movable into R4. By construction, there is an isomorphism 
from π1(X \ L, v) = π1(R

4 \ L, v) to the free fundamental group π1(Y O, v) =< x1, x2, . . . , xn, · · · > sending a meridian system of Ki (i = 
1, 2, . . . , n, . . . ) to the relator system ri (i = 1, 2, . . . , n, . . . ) of GP. This completes the proof of Lemma 4.1.

Let α be the reflection in R4 sending (x, y, z, t) to (x, y, z,−t). The image α(H4) of the upper-half 4-space H4 by α is given by the 
lower-half 4-space

+∞

∼of Ki (i = 1, 2, . . . , n, . . . ) to the relator system ri (i = 1, 2, . . . , n, . . . ) of GP . This
completes the proof of Lemma 4.1. □

Let α be the reflection in R4 sending (x, y, z, t) to (x, y, z,−t). The image α(H4)
of the upper-half 4-space H4 by α is given by the lower-half 4-space

{(x, y, z, t)| −∞ < x, y, z < +∞, t ≤ 0}.

A disk-link LD in H4 is a discrete (finite or countably-infinite) system of disjoint disks
smoothly and properly embedded in H4. A (possibly infinite) disk-link LD in H4 is
trivial if it is obtained from a discrete system of disjoint disks in R3 by pushing up
the interiors of the disks into the interior of H4. A disk-link LD in H4 is ribbon if
it is obtained from a disjoint discrete embedded disk system D ∪ b in H4 which is
the union of a trivial disk-link D = {Di| i = 1, 2, . . . , n, . . . } in H4 and a disjoint
spanning band system b = {bj| j = 1, 2, . . . ,m, . . . } on the trivial link ∂D in R3 by
pushing up the interiors of the disk system D ∪ b into the interior of H4. Thus,

LD = D̃ ∪ b̃

for a pushing up disk system D̃ = {D̃i| i = 1, 2, . . . , n, . . . } ofD and a pushing up band
system b̃ = {b̃j| j = 1, 2, . . . ,m, . . . } of b. The closed exterior of a ribbon disklink
LD in H4 is the 4D manifold E(LD) = cl(H4 \N(LD)) for a regular neighborhood of
LD in H4. Every ribbon S2-link L in R4 is isotopically deformed into an α -invariant
position for the reflection α in R4 so that L is obtained from a ribbon disk-link LD in
H4 by doubling of H4 by α (see [3, II]). The following lemma is shown by the same
method as [2, Lemma 3.1].

Lemma 4.2. For a ribbon disk-link LD in H4 in a (possibly infinite) ribbon S2-link
L in R4, the inclusion (H4, LD) → (R4, L) induces an isomorphism

π1(E(LD), v) → π1(E(L), v).

The following corollary is obtained from Lemmas 4.1 and 4.2.

Corollary 4.3. For every homology-trivial unit-group presentation

GP =< x1, x2, . . . , xn, . . . |r1, r2, . . . , rn, · · · >,

there is a ribbon disk-link LD with components KD
i (i = 1, 2, . . . , n, . . . ) in H4 such

that there is an isomorphism

π1(E(LD), v) →< x1, x2, . . . , xn, · · · >
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there is a ribbon disk-link LD with components Ki
D (i = 1, 2, . . . , n, . . . ) in H4 such that there is an isomorphism

sending a meridian system of Ki
D (i = 1, 2, . . . , n, . . . ) to the relator system ri (i = 1, 2, . . . , n, . . . ).
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A ribbon disk-link LD in H4 is free if the fundamental group π1(E(LD), v) is a free group. The following lemma contains an infinite 
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Proof of Lemma 5.1. The proof is done for an infinite ribbon disk-link LD in the upper-half 4-space H4, because the finite ribbon 
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3. From construction, D(b+
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D. Let L+

Db = L+
D ∪ D(b+

2). Let L+
Db be a finite ribbon disk-link in H4 obtained from L+

Db in H+
4 by taking the double 

along H0
3. Let E(L+

Db) = cl(H+
4 \ N(L+

Db)) for a regular neighborhood N(L+
Db) of L+

Db in H+
4. Since E(L+

Db ) is aspherical and there is a 
retraction r : E(L+

Db) → E(L+
Db), the inclusion E(L+

Db) → E(L+
Db) induces a monomorphism πq(E(L+

Db ), v) → πq(E(L+
Db ), v) and  the 

map f : Sq → IntE(L+
Db) defined by f : Sq → IntE(LD) extends to a map f + : Dq+1 → IntE(L+

Db) from the (q+1)-disk Dq+1 Lemma 3.2 [4]. 
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E(LD) is homotopy equivalent to ωx and there is a strong deformation retract r : E(LD) → ωx. This completes the proof of Lemma 5.1.
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+ \ N(LDb
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+ ) is aspherical by [2, Lemma 3.2] and
there is a retraction r : E(L̄Db

+ ) → E(LDb
+ ), the inclusion E(LDb

+ ) → E(L̄Db
+ ) induces a

monomorphism πq(E(LDb
+ ), v) → πq(E(L̄Db

+ ), v). Thus, the map f : Sq → IntE(LDb
+ )

defined by f : Sq → IntE(LD) extends to a map f+ : Dq+1 → IntE(LDb
+ ) from the

(q+1)-disk Dq+1. The union LD
+∪ b̃2

+ is recovered from LDb
+ by a deformation keeping

LD
+ and f+(Dq+1) fixed. Thus, the image f+(Dq+1) is in H4

+ \ (LD
+ ∪ b̃2

+) and hence in
E(LD). This means that E(LD) is aspherical. Further, if π1(E(LD), v) is isomorphic
to < x1, x2, . . . , xn, · · · >, then E(LD) is homotopy equivalent to ωx and there is a
strong deformation retract r : E(LD) → ωx. This completes the proof of Lemma 5.1.
□

For a free ribbon disk-link LD in H4, let

Q(LD) = E(LD) ∪N(LD)

be a decomposition of H4 into the closed complement E(LD) and the normal disk-
bundle N(LD) = LD × D2. Let p∗(L

D) = {pi|i = 1, 2, . . . , n, . . . } be a discrete set
made by taking one point from every component of LD. The strong deformation
retract r : E(LD) → ωx in Lemma 5.1 and the strong deformation retract N(LD) →
p∗(L

D) × D2 shrinking LD into p∗(L
D) define a map ρ : Q(LD) → P (LD) for a

connected locally finite 2-complex

P (LD) = ωx ∪ p∗(L
D)×D2

with the attaching map p∗(L
D) × ∂D2 → ωx defined by r. The map ρ is called a

ribbon disk-link presentation for the 2-complex P (LD). For a sublink KD of LD, let
N(KD) = KD ×D2 be the subbundle of the disk-bundle N(LD). The union

Q(LD, KD) = E(LD) ∪N(KD)

is a decomposition of the closed complement E(LD \ KD) of the sublink LD \ KD

of LD in H4, which is a ribbon S2-link in H4. The ribbon disk-link presentation
ρ : Q(LD) → P (LD) for P (LD) sends Q(LD, KD) to the 1-full 2-subcomplex

P (LD, KD) = ωx ∪ p∗(K
D)×D2

of P (LD). Further, every 1-full 2-subcomplex of P (LD) is obtained from a sublink
KD of LD in this way. The following theorem contains an infinite version of a ribbon
disk-link LD of [2, Theorem 1.3].
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KD of LD in this way. The following theorem contains an infinite version of a ribbon
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with the attaching map p∗(L
D) × ∂D2 → ωx defined by r. The map ρ is called a ribbon disk-link presentation for the 2-complex P(LD). 

For a sublink KD of LD, let N(KD) = KD × D2 be the subbundle of the disk-bundle N(LD). The union

is a decomposition of the closed complement E(LD \ KD) of the sublink LD \ KD of LD in H4, which is a ribbon disk-link in H4. The 
ribbon disk-link presentation ρ : Q(LD) → P(LD) for P(LD) sends Q(LD, KD) to the 1-full 2-subcomplex

of P(LD). Further, every 1-full 2-subcomplex of P(LD) is obtained from a sublink KD of LD in this way. The following theorem 
contains an infinite version of a ribbon disk-link LD of Theorem 1.3 [4].

Theorem 5.2. For every free ribbon disk-link LD in H4, the ribbon disk-link presentation ρ : Q(LD) → P(LD) induces a homotopy 
equivalence Q(LD, KD) → P(LD, KD) for every sublink KD of LD including KD = ∅ and KD = LD. In particular, the 2-complex P(LD) is 
contractible. The 2-complex P of every homology-trivial unit-group presentation GP is taken as P = P(LD) for a free ribbon disk-link 
LD in H4 so that for every 1-full subcomplex P′ of P, there is just one sublink KD of LD with P′ = P(LD, KD).

Proof of Theorem 5.2. The homotopy equivalence of the ribbon disk-link presentation ρ : Q(LD) → P(LD) is similar to the proof of 
[2, Theorem 1.3]. Let GP =< x1, x2, . . . , xn, . . . | r1, r2, . . . , rn, · · · > be a homology-trivial unitgroup presentation By Corollary 4.3, 
there is a free ribbon disk-link LD in H4 with an isomorphism π1(E(LD), v) = < x1, x2, . . . , xn, · · · > sending a meridian system of LD 
to the relator system ri (i = 1, 2, . . . , n, . . . ). The 2-complexes P of GP and P(LD) are both obtained from the same graph ωx with 
π1(ωx, v) =< x1, x2, . . . xn, · · · > by attaching 2-cells with attaching maps given by the relator words ri (i = 1, 2, . . . , n, . . . ). Hence 
the 1-full subcomplexes of P coincide with the 1-full subcomplexes of P(LD).

The following corollary confirms that Conjecture 3 is true.

Corollary 5.3. Every subcomplex of every homology-trivial unit-group presentation is aspherical.

Proof of Corollary 5.3. Let P be the 2-complex of every homology-trivial unitgroup presentation, and P′ a connected subcomplex 
of P. By Theorem 5.2, P is written as P(LD) for a free ribbon disk-link LD in H4. If P′ is a 1-full subcomplex of P, then P′ is written 
as P(LD, KD) for a sublink KD of LD in H4. The ribbon disk-link presentation ρ : Q(LD, KD) → P(LD, KD) is homotopy equivalent and 
Q(LD, KD) is the closed exterior E(LD \ KD), which is aspherical by Lemma 5.1. Thus, P′ is aspherical. If P′ is not 1-full, then a 1-full 
subcomplex P′′ of P is constructed from P′ by adding some loops in the 1-skelton P1 = ωx to P′, and P′′ is aspherical if and only if 
P′ is aspherical. Thus, P′ is aspherical in this case. This completes the proof of Corollary 5.3.

The proof of Theorem 1.1 is now completed as follows.

Proof of Theorem 1.1. The proof of Theorem 1.1 is completed by Corollary 5.3 (a confirmation of Conjecture 3) and the proofs of 
Conjecture 3 ⇒ Conjecture 2 and Conjecture 2 ⇒ Conjecture 1. This completes the proof of Theorem 1.1.
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