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Abstract

Whitehead aspherical conjecture says that every connected subcomplex of every aspherical 2-complex is aspherical. By an
argument on ribbon sphere-links, it is confirmed that the conjecture is true for every contractible finite 2-complex. In this paper,
by generalizing this argument, this conjecture is confirmed to be true for every aspherical 2-complex.
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1. Introduction

A finite or infinite 2-complex is a finite or countably-infinite CW 2-complex constructed from a connected finite or countably-infinite
graph by attaching a finite or at most countably-infinite system of 2-cells with attaching maps, respectively. A 2-complex is homotopy
equivalent to a simplicial 2-complex constructed from a simplicial graph by attaching 2-cells with simplicial approximations of the
attaching maps. By this homotopy equivalence, every subcomplex of a 2-complex is also homotopy equivalent to a simplicial
subcomplex of the simplicial 2-complex [1]. A path-connected space X is aspherical if the universal cover X of X is contractible (i.e.,
homotopy equivalent to a point). In particular, a connected 2-complex P is aspherical if and only if the second homotopy group (P,
v) = 0. The Whitehead asphericity conjecture is the following conjecture [2,3].

Conjecture 1. Every connected subcomplex of any aspherical 2-complex is aspherical.
The purpose of this paper is to show that Conjecture 1 is yes. That is,
Theorem 1.1. Whitehead Aspherical Conjecture is true.

A 2-complex P is locally finite if every 1-cell of P attaches only to a finite number of 2-cells of P. Conjecture 1 reduces to the
following conjecture for every contractible locally finite 2-complex.

Conjecture 2. Every connected subcomplex of every contractible locally finite 2-complex is aspherical.

In Section 2, the claim of Conjecture 2 = Conjecture 1 is shown. Conjecture 2 for every contractible finite 2-complex is confirmed
[4]. In this paper, the argument for an infinite 2-complex becomes the main argument. The 2-complex of a group presentation

GP =< x1,Z9, ..., Ty | T1,T0, o Ty e >
is the connected 2-complex constructed from a graph with fundamental group isomorphic to the free group <x, x,,...,x, "= >
on the generators x, (i = 1, 2, .. ., n, .. . ) by attaching 2-cells with attaching maps given by the relators r G=1,2,...,m,...),

where note that this 2-complex is a connected graph for the empty relator. Up to cellular homotopy equivalences, every connected
2-complex P and the connected subcomplexes of P can be uniquely considered as the 2-complex and the subcomplexes of a group
presentation GP, where a subcomplex of GP is the 2-complex of the group presentation of a sub-presentation

<xil,xh,...,xis,...|rj1,7"j2,...,rjt,--->.
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A group presentation GP is locally finite if every generator x, appears only in a finite number of the relators r G=L2,...,m,...).
The 2-complex of a locally finite group presentation GP can be taken as a connected locally finite 2-complex. A group presentation
GP is a homology-trivial unit-group presentation if GP is a presentation of the unit group {1} and the relator word r is equal to the

generator x; for every j in the abelianized free abelian group <x, x,,...x, - - - > of the free group <x, x,,...x, - - > with as
basis the generators x, (i =1, 2, ..., n, ... ) of GP. Note that the 2-complex of a homology-trivial unit-group presentation is always
contractible.

In Section 3, Conjecture 2 reduces to the following conjecture for the 2-complex of every homology-trivial unit-group presentation.
Conjecture 3. Every subcomplex of every homology-trivial unit-group presentation is aspherical.

The claim that Conjecture 3 = Conjecture 2 is shown there. For this purpose, after observations on base changes of a free group
and a free abelian group of possibly infinite ranks, it is shown that if the 2-complex of a locally finite group presentation GP is

contractible, then there is an iteration of base changes x, (i=1, 2, ..., n,...) in the free group <x, x,,...,x, - - - > with as basis
the generators x(i =1, 2, ..., n,...) of GP so that the resulting group presentation
/ / / / / / /
GP' =<2y, 2h,..., 2, . |1,y e >

is a homology-trivial unit-group presentation (see Lemma 3.2). This means that there is a cellular-homotopy equivalence from every
contractible locally finite 2-complex P to the 2-complex P’ of a homology-trivial unit-group presentation GP' inducing a cellular-
homotopy equivalence from the subcomplexes of P to the subcomplexes of P’ (see Corollary 3.3).

In Section 4, a (possibly infinite) sphere-link (namely, an S*-link) L in the 4-space R* is discussed. The closed complement of L
in R* is denoted by E(L). It is shown there that for every homology-trivial unit-group presentation GP, a ribbon S>-link L in R* is
constructed so that the fundamental group 7 (E(L), v) is isomorphic to the free group <x, x,,...,x, - - - > of the generators x, (i =
1,2,...,n,...)of GP by an isomorphism sending a meridian system of L in z (E(L), v) to the relator word system r, (i=1,2, ...
, N, ...)of GP (see Lemma 4.1). It is also observed there that a ribbon S*-link L in R* contains canonically a ribbon disk-link Z” in
the upper-half 4-space H* so that the fundamental group 7z (E(L), v) is canonically identified with the fundamental group 7 (E(L"),

v) for the closed exterior E(LP) of L in H* (see Lemma 4.2 and Corollary 4.3).

In Section 5, it is shown that E(L”) is always aspherical and every 1-full subcomplex P’ of the 2-complex P of a homology-trivial
unit-group presentation GP is homotopy equivalent to the closed exterior £(L”) of a ribbon disk-link Z? in H*, where a 1-full
subcomplex P’ of P is a subcomplex of P containing the 1-skelton P' of P. Then Conjecture 3 is confirmed to be true and the proof
of Theorem 1.1 is completed.

The author mentions here that there is a preprint by Pasku claiming the same result, which is a purely group-theoretic argument
much different from the current argument [5].

2. Reducing to the Conjecture for a Contractible Locally finite 2-Complex
In this section, it is explained that Conjecture 1 (Whitehead Asphericity Conjecture) is obtained from the following conjecture.

Conjecture 2
Every connected subcomplex of every contractible locally finite 2-complex is aspherical.

For this reduction, the following three lemmas are used.

Lemma 2.1
If every connected finite subcomplex of a contractible 2-complex P is aspherical, then every connected subcomplex of P is aspherical.

Lemma 2.2
If every connected subcomplex of every contractible 2-complex is aspherical, then every connected subcomplex Q of every
aspherical 2-complex P is aspherical.

Lemma 2.3
Every connected finite subcomplex of a connected infinite 2-complex P is a subcomplex of a connected locally finite 2-complex P’

homotopy equivalent to P.

Proof of Lemma 2.1 is done as follows.
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Proof of Lemma 2.1

Let O be any given connected subcomplex of a contractible 2-complex P. Let f': S — |Q] be a map from the 2-sphere $? to the
polyhedron |Q|. For a simplicial 2-complex 0, the topology of |Q] is the topology coherent with the simplexes of O so that the image
£(S) is in the polyhedron Q of a connected finite subcomplex Q/of Q p.111 [1]. By assumption, O is aspherical, so that the map f
: §? — |0 defined by the original map f is null-homotopic in |Q/ | and hence in |Q), so that Q is aspherical.

Proof of Lemma 2.2 is done as follows.

Proof of Lemma 2.2 .

Let P be an aspherical 2-complex, and Q any connected subcomplex of P. Since the universal cover P of P is a contractible
2-complex, the subcomplex Q lifts to a subcomplex Q of the contractible 2-complex P and any connected component le of the
subcomplex Q is aspherical by assumption. Since the second homotopy group is independent of a covering by the lifting property,
Q is aspherical [1].

Proof of Lemma 2.3 is done as follows.

Proof of Lemma 2.3. Let P be a connected infinite 2-complex, and P, any given connected finite subcomplex of P. Let
PCchPCchC---CPhP,C...

be a sequence of connected finite subcomplexes P, (i =0, 1,2, ..., n,...) of Psuch that P = ULOSPZ-. LetP =P_ U J fora
subcomplex J; of P, with y, = P_ N J a graph for all i. Triangulate the rectangle a x [0, 1] for every 1-simplex a of y, by introducing
a diagonal and regard the product y, x [0, 1] as a 2-complex. To construct a desired 2-complex P', make the finite subcomplexes J,
(i=1,2,3,...,n,...)disjoint. Let P, = P_ U y, %[0, 1] be the 2-complex obtained from the subcomplexes P_, and y, x [0, 1] by
identifying y,in P_, with y, x 0 and y, x 1 with y,in J, in canonical ways. The sequence

Ph=PyCcP CcP,C---CP.C...

of connected finite subcomplexes P’ (i=0,1,2,...,n,...) is obtained. By construction " = U2, P/ is a connected locally finite
2-complex containing P, as a subcomplex and homotopy equivalent to P.

Conjecture 1 is obtained from Conjecture 2 as follows.

2.4: Proof of Conjecture 2 = Conjecture 1. By assuming Conjecture 2, it suffices to show that every connected finite subcomplex
O of every contractible 2-complex P is aspherical. Because this claim means by Lemma 2.1 that every connected subcomplex of
every contractible 2-complex P is aspherical, which also means by Lemma 2.2 that every connected subcomplex of every aspherical
2-complex is aspherical, confirming Conjecture 1. If Q is a connected finite subcomplex of a contractible 2-complex P, then Q is
a subcomplex of a contractible locally finite 2-complex P’ homotopy equivalent to P by Lemma 2.3, so that Q is aspherical by
Conjecture 2. This completes the proof of Conjecture 2 = Conjecture 1.

3. Reducing to the Conjecture for the 2-Complex of a Homology-Trivial Unit-Group Presentation
In this section, it is explained that Conjecture 2 is obtained from the following conjecture.

Conjecture 3. Every subcomplex of every homology-trivial unit-group presentation is aspherical.

A base change of a free group F with basisx, (i =1, 2, ..., n,...) is a consequence of a finite number of the following operations,
called Nielsen transformations [6].

(1) Exchange two of x, (i=1,2,...,n,...),
(2) Replace an x, by x7',
(3) Replace an x, by XX, i+ )).

A base change of a free abelian group A onabasisa, (i=1,2,...,n,...) is a consequence of a finite number of the following
operations:

(1) Exchange two of a, (i=1,2,...,n,...),
(2) Replace an a, by —a,,
(3) Replace an a, by a, + a, @i # ).
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The following lemma is well-known for a finite rank free abelian group A.

Lemma 3.1. Let A be a free abelian group with a countable basis a, (i=1,2,...,n,...). Letb, (i=1,2,...,n,...)beacountable
basis of A such that every column vector and every row vector of the base change matrix C given by

(blbg...bn...):(alag...an...)C’

have only a finite number of non-zero entries. Then there is a base change of Aona, (i=1,2,...,n,...) such that C is the block
sum (1) @ C’ for a matrix C".

Proof of Lemma 3.1. Foreveryj (j=1,2,...,n,...),let

bj:cljal+czja2+---+cnjan+...

be a linear combination with (i, j) entries ¢, of C which are 0 except for a finite number of i (i=1,2,...,n,...). Note that for
every j, the non-zero integer system of ¢ 2 Coyproner Cppne s is a coprime integer system. By base changes (1) and (2), assume that
c,, is the smallest positive integer in the integers |c,| for all i. For i > 1, write ¢, = ¢,c,, +d,, for 0 <d_ <c . By a base change on
a(i=1,2,...,n,...),assume that
b1 :011a1+d21a2—|—---+dn1an—|—....
By continuing this process, it can be assumed that b, = a,. Note that there is a positive integer m > 2 such that ¢, = 0 for all j > m.
Consider the linear combination '
bg:012a1—l—cmag—f----—i—cngan—i—....

Note that the non-zero integer system of c,,, c,,, . . . , ¢,,, . . . is coprime. Otherwise, there is a prime common divisor p > 1, so that
n2

b, and b, would be Zp—linearly dependent in the Zp-vector space A®Zp which contradicts that b, (i=1,2, ..., n,...) form a basis
of A®Zp, where Zp =Z/pZ. By a base change ona, (i=2,3,...,n,...),it can be assumed that b, = ¢ ,a, +a,. By an inductive
argument, it can be assumed that

bj = cljal +02ja2 —+ . +cj_1jaj_1 —|—aj (] = 3,4,...,77’1).

By a base change replacing atoa —ca —c,a,— ¢ d., (j=2,3,...,m), the identities bj =a (1 £j < m) are obtained. Then

the entries ¢, of the matrix C are written as

c1 =1 Clj:Cil:0(1<i<+00,1<j<+00).
This completes the proof of Lemma 3.1.
The proof of the following lemma uses Lemma 3.1.

Lemma 3.2. If the 2-complex P of a locally finite group presentation
GP =< L1y X2y ey Tpyee [ T1,12y ey Tyttt >

is contractible, then there is a basis x’, (i=1,2,...) of the free group <x ,x,,...,x ,...> obtained from the basis x, (i=1,2,...) by an iteration
of base changes such that the resulting group presentation

/ / / / / /
GP =<xy,25,...,2,,...|1T, Ty, ...,10 - >

is a homology-trivial unit-group presentation.

Proof of Lemma 3.2. Since the 2-complex P is a contractible locally finite 2-complex, every generator x, appears only in a finite

number of the relators 7, 7,, . .., 7, .. . and the inclusion homomorphism

<T1,72y ey Tyt > T1,T9,... Ty, "+ >
on the free groups <7, 7,,...,7 , - ->and<x,x,,...x, > induces an isomorphism on the abelianized groups <7, r,, ...,
roo o >and A=<x,x,,...x, > which are free abelian groups with a base change matrix C given in Lemma 3.1.
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Do Nielsen transformations on the free group <x,,x,,...x , - - > induced from base changes on the free abelian group A of Lemma
3.1. Then the word | is changed into x, in A. This base change is done by using only finitely many lettersinx, (i=1,2,...,n, ..
. ) belonging to the word r, except for re-indexing of the letters x, (i =1, 2, ..., n,...). By continuing this process, the conclusion

of Lemma 3.2 is obtained.

The following corollary means that a contractible locally finite 2-complex may be considered as the 2-complex of a homology-trivial
unit-group presentation.

Corollary 3.3. There is a cellular-homotopy equivalence from every contractible locally finite 2-complex P to the 2-complex P’ of
a homology-trivial unit-group presentation GP' inducing a cellular-homotopy equivalence from the connected subcomplexes of P
to the subcomplexes of GP'.

Proof of Corollary 3.3. Let P be a contractible locally finite 2-complex obtained from the 1-skelton P' with z (P!, v) =<x,x,, . ..
,x, ->forabasisx, (i=1,2,...,x,...) by attaching 2-cells with attaching maps given by relators r G=12,....,m,...).
Then the inclusion homomorphism

< T1,72y ey Ty r s >—=>< T1,T2,... Ty, >
induces an isomorphism from the abelianized group <7, 7,,...,r , - - >“to the abelianized group <x, x,,...,x,, - - > Let
. / / !/
G i< T2,y Ty s > T, Ty ooy Tyt v v >
be an isomorphism given by Lemma 3.2, sending the word 7. to a word ' such that r'j is equal to x’j in the abelianized group <x', x',,
..x , - ->forallj. Let P'be the 2-complex of the homology-trivial unit-group presentation
/ / / / / / /
GP :<.Z'l,xz,...,l'n,...’7”1,7“2,...,7'”,"‘>.

The isomorphism g induces a desired cellular homotopy equivalence P — P'.
Conjecture 2 is obtained from Conjecture 3 as follows.

3.4 Proof of Conjecture 3 = Conjecture 2
By Corollary 3.3, every connected subcomplex of every contractible locally finite 2-complex is homotopy equivalent to a subcomplex
of a homology-trivial unit-group presentation. This completes the proof of Conjecture 3 = Conjecture 2.

4. A Ribbon Sphere-Link and a Ribbon Disk-Link Constructed from a Homology-Trivial Unit-Group Presentation
Let X be an open connected oriented smooth 4D manifold. A countably-infinite system of disjoint compact sets X, (i=1,2,...,n,...)
in Xis discrete ifthe set {p|i=1,2,...,n,...} constructed from any one point p, € X, for every i is a discrete set in X. An $>-/ink in X
is the union L of a discrete (finite or countably-infinite) system of disjoint 2-spheres smoothly embedded in X. An S*-link in X is trivial
if it bounds a discrete system of mutually disjoint 3-balls smoothly embedded in X, and ribbon if it is obtained from a trivial $>-link O
by surgery along a discrete system of disjoint 1-handles embedded in X. An $?-/ink L in X is finite if the number of the components of
L is finite. Otherwise, L is infinite. Let R* = {(x,),z,)|-00<x,),x,t<+o0} be the 4-space, and H* = {(x,),z,7)| -o0<x,y,x<to0, 0<t} the upper-
half 4-space of R* with boundary oH*= {(x,),z,0)|-00<x,),z<t+o0} identified with the 3-space R*={(x,),z)|-00<x,y,x<+oo}. The open 4D
handlebody

YO =R'HTS x S}
denotes the connected sum of the 4-space R* and a discrete system of §' x $* (i=1,2,...,n,...). The following lemma is basic
to our purpose.

Lemma 4.1. For every homology-trivial unit-group presentation

GP =< 1,9, ..., Tpy oo | T1, Ty Ty e s >
there is a ribbon S*-link L with components K, (i=1, 2, ..., n,...) in R* such that there is an isomorphism
m(E(L),v) >< x1,To, ... Ty, - >
sending a meridian system of K, (i =1, 2, ..., n,...) to the relator system r, (i=1,2,...,n,...).

Proof of Lemma 4.1. In the open 4D handlebody Y© = RA# 7S x 83, let y° be a legged loop system with loop system £°
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=8'x1,(i=1,2,...,n,...)representing a basis x, 1= 1,2, ...,n,...) of the free group = (Y °, v). Letkj(j: 1,2,...,m,...)
be a simple loop system k_in Y 9 representing the relator system r (j=1,2,...,n,...). By assumption of the homology-trivial
unit-group presentation GP, the loop kj for every j meets transversely 1 x S* in Y © with intersection number +1 for j = i and with
intersection number 0 for j # i. Further, the loop k. does not meet 1xS? except for a finite number of i. Let X be the smooth open 4D
manifold obtained from Y ¢ by surgery along the loops k(G=12,.. ..) replacing a normal D3-bundle k, xD3 of kinY © with
the D*-bundle D, x S? of S for a disk D, with 0D, = k. Then the Sz—link L Us K, with K, =0, x $? is obtained in X.

(4.1.1) The open 4D manifold X is contractible.

Proof of (4.1.1). By van Kampen theorem, X is simply connected because the loops k. (j =1, 2, . . ) normally generate the
free fundamental group 7 (Y %, v) =<x,x,,...,x,, - - > Thus, if H (X Z)=0(qg=2,3),then Xis contractlble since X is an open 4D
manifold. Since the loop system k,_ meets transversely 1xS?in a ﬁnlte number of points in ¥ ¢ with intersection number Int(k 1xS?
)=+1(j=1i), 0(j #1i), there is an arc system Is (s = 1, 2, . . ., u) in the 1D manifold system obtained from £, by cutting along the
set k* N1 x §3 such that / attaches to 1 x S with opposite signs for all s and the 3D orientable manifold Z, obtained from 1xS’ by
piping along / (s =1, 2, . .., u) meets k, with just one point and does not meet kj (i #)). By the construction of X, the component K,
of L bounds a once-punctured 3D manifold V, of Z in X not meeting L\K,, for every i. This means that the inclusion homomorphism
H/(D,*x §*Z) — H,(X;Z) is the zero map for all i. Then

Hy(X;Z) = Hy(X,D, x S*;Z) = Hy(YO ky, x D% Z) =0

by the homology long exact sequence of the pair (X, D, x S%) and the excision isomorphism theorem. On the other hand, by
construction, the 3D manifolds ¥, (i=1,2,...,n,...) represent a basis for H,(Y °, k xD*Z) and hence a basis for 7 (X,D,x $*Z)
by the excision isomorphism theorem. This means that the boundary homomorphism 0, : H(X,D, x $*Z) — H,(D, x $*Z) is an
isomorphism. Since H,(D, x $*;Z) = 0, the homology long exact sequence on the pair (X,D, x §*) shows that /,(X;Z) = 0. Thus, X
is a contractible open 4D manifold. This completes the proof of (4.1.1).

The proof of Free Ribbon Lemma means that the 2-sphere component K, of L is isotopic to a ribbon $*-knot in X obtained from a
finite trivial $*-link O, split from L by surgery along a finite disjoint 1 handle system h, such that U7 O, is a trivial link and h, (i = 1,

2,.. .)are d1s101nt discrete systems. Thus, the S*-link L is a ribbon S*-link inX. By taking the upper—half 4-space H* near the
end of the connected summand R* of ¥ 9, consider H* in X so that X'\ H* is diffeomorphic to X. For a 4-space R* in H*, the ribbon
S$2-link L in X can be moved into R*, since L is obtained from a discrete trivial $>-link which is movable into R* by surgery along

disjoint discrete 1-handle systems h, (i=1,2,...,n,...) which are also movable into R*. By construction, there is an isomorphism
from 7 (X\ L, v) =z (R*\ L, v) to the free fundamental group 7 (Y %, v) =<x,x,,...,x,, - - - > sending a meridian system of K, (i =
1,2,...,n,...)totherelator systemr (i=1,2,...,n,...)of GP. This completes the proof of Lemma 4.1.

Let a be the reflection in R* sending (x, y, z, f) to (x, , z,—t). The image a(H?) of the upper-half 4-space H* by a is given by the
lower-half 4-space

{(x,y,z,t)] —oco<ry,2< +OO,t§O}

A disk-link LP in H* is a discrete (finite or countably-infinite) system of disjoint disks smoothly and properly embedded in H*. A
(possibly infinite) disk-link L” in H* is trivial if it is obtained from a discrete system of disjoint disks in R? by pushing up the interiors
of the disks into the interior of H*. A disk-link L? in H* is ribbon if it is obtained from a disjoint discrete embedded disk system D

U b in H* which is the union of a trivial disk-link D= {D|i=1,2,...,n,...} in H* and a disjoint spanning band system b = {bj |
j=1,2,...,m, ...} onthe trivial link 6D in R? by pushing up the interiors of the disk system D U b into the interior of H*. Thus,
LP =Dub

for a pushing up disk system D= {D|i=1,2,...,n,...} of D and a pushing up band systemb = (b, |j=1,2,...,m,...} ofb.
The closed exterior of a ribbon disklink L? in H* is the 4D manifold E(L”) = cl(H* \ N(LP)) for a regular neighborhood of L? in H*.
Every ribbon $*-link L in R* is isotopically deformed into an o -invariant position for the reflection a in R* so that L is obtained from
a ribbon disk-link L? in H* by doubling of H* by a II [7]. The following lemma is shown by the same method as Lemma 3.1 [4].

Lemma 4.2. For a ribbon disk-link L” in H* in a (possibly infinite) ribbon $*-link L in R, the inclusion (H*, L?) — (R, L) induces
an isomorphism

i (E(LP),v) = 7 (E(L),v).
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The following corollary is obtained from Lemmas 4.1 and 4.2.

Corollary 4.3. For every homology-trivial unit-group presentation

GP =< 1,Ta, ..., Tpy. o |11, Ty Ty e e >,
there is a ribbon disk-link L” with components K” (i=1,2, ..., n,...) in H* such that there is an isomorphism
D
m(E(LY),0) =< 21,9, ..., Ty, -+ >
sending a meridian system ole.D (i=1,2,...,n,...)totherelator systemr (i=1,2,...,n,...).

5. A Ribbon Disk-Link Corresponding to a 1-Full Subcomplex of a Homologytrivial Unit-Group Presentation
A ribbon disk-link L” in H* is free if the fundamental group 7 (E(L”), v) is a free group. The following lemma contains an infinite
version of the results of Theorem 1.4 and Lemma 3.2 [4].

Lemma 5.1. The closed exterior E(LP) of every (possibly infinite) ribbon disklink Z? in H* is aspherical. In particular, for every
(possibly infinite) free ribbon disk-link L” in H* with 7 (E(L”), v) = <x,x,, ..., x, - - - >, there is a strong deformation retract  :

1772
E(L") — wx for a locally finite graph wx with 7 (ewx, v) = <x SX >

n

1 2,...

Proof of Lemma 5.1. The proof is done for an infinite ribbon disk-link L” in the upper-half 4-space H*, because the finite ribbon
disk-link case is given in [4]. Let L” = D U b. Divide the upper-half 4-space H* along the upper-half 3-space

H) = {(2,9,0,t)] — oo < z,y < 400, 0 < t}

into the 2-parts

H! = {(z,y,2,1)] —oco <z,y < +00, 0< 2, 0 < t}
and

H! = {(z,y,2,1)] — 00 <2,y < +00, 2 <0, 0 < t}.

Assume that the trivial disk-link D= {D|i=1, 2, . .} in H* is disjoint from H*and splits into two disk systems D, so that
D, is a finite trivial disk-link in H,* and D_is an 1nﬁn1te trlvral disk-link in H_*. Let D be the pushing up disk systems of D, into D.
The spanning band system b in 8H4 meets H* with a disjoint simple arc system consrstlng of an arc parallel to an arc attachlng to
the trivial link OD. The band system b, = b ﬂH * consists of a band system b,' of bands with no end or one end in H and a band
system b,? of bands with both ends in H 3. Leth,=b,' U, *be the pushing up band systems of b,. Note that the band systern b =b '
Ub’isa ﬁnrte band system. Let /: S — Int E(LD) be a map from the g-sphere S for ¢ > 2. By a slide of the upper-half 3-space H, s

, it can be assumed that the image f{S¥) is in the interior of H,* and does not meet L > = D U b and b 2. Let D(b,?) be a trrvral
dlSk system in H,*\ H;® obtained fromD? by sliding the attachlng part of b2 to H} down along H 3 Frorn construction, D(b ?) is
disjoint from L ”. Let L P =1 2 U D(b.?). Let L, be a finite ribbon disk-link in H4 obtained from L 2 in H,* by taking the double
along H . Let E(L Py = cl(H X \ N(L ")) for a regular neighborhood M(L,”) of L. in H_*. Since E(L, o )is aspherrcal and there is a
retractron r: E(LP") — E(L ), the inclusion E(L ") — E(L ") induces a monomorphrsm m (E(L, Dby vy > JE(L, bby v)and the
map f: 8 — IntE(L *") defined by f: 8 — IntE(LP) extends to amap f* : D7 — IntE(L ") from the (g+1)- disk D' Lemma 3.2 [4].
The union L,” U 2 is recovered from L " by a deformation keeping L » and f*(D*"') fixed. Thus, the image /*(D*"") is in H *\ (L ”
Ub,?) and hence in E(LP). This means that E(LP) is aspherical. Further if 7 (E(LP), v) is isomorphic to <x,, x,, ..., x, - - - >, then
E(LP) is homotopy equivalent to wx and there is a strong deformation retract r : E(L”) — wx. This completes the proof of Lemma 5.1.

For a free ribbon disk-link L? in H*, let
Q(LP) = E(L?) UN(L")

be a decomposition of H* into the closed complement £(L”) and the normal disk-bundle N(L”) = L” x D*. Let p_ (L°) = {pJi= 1, 2,

., 1, ...} beadiscrete set made by taking one point from every component of L?. The strong deformation retract » : E(L”?) — wx
in Lemma 5.1 and the strong deformation retract N(L”) — p (LP) x D? shrinking L into p,(L”) define a map p : Q(L?) — P(L?) for
a connected locally finite 2-complex
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P(LP) = wz Up.(LP) x D?

with the attaching map p (L”) x 0D* — wx defined by r. The map p is called a ribbon disk-link presentation for the 2-complex P(L”).
For a sublink K? of L?, let N(KP) = KP x D? be the subbundle of the disk-bundle N(L”). The union

Q(LP,KP) = E(LP) U N(KP)

is a decomposition of the closed complement E(L” \ KP) of the sublink L? \ K” of L” in H*, which is a ribbon disk-link in H*. The
ribbon disk-link presentation p : Q(LP) — P(LP) for P(L”) sends Q(L”, K) to the 1-full 2-subcomplex

P(LP, K”) = wr Up,(KP?) x D*

of P(LP). Further, every 1-full 2-subcomplex of P(LP) is obtained from a sublink K? of L? in this way. The following theorem
contains an infinite version of a ribbon disk-link L” of Theorem 1.3 [4].

Theorem 5.2. For every free ribbon disk-link Z? in H*, the ribbon disk-link presentation p : Q(L”?) — P(L”) induces a homotopy
equivalence Q(L?, KP) — P(L”, KP) for every sublink K” of L? including K” = @ and K” = L”. In particular, the 2-complex P(LP) is
contractible. The 2-complex P of every homology-trivial unit-group presentation GP is taken as P = P(L”) for a free ribbon disk-link
L? in H* so that for every 1-full subcomplex P’ of P, there is just one sublink K? of L? with P'= P(L?, KP).

Proof of Theorem 5.2. The homotopy equivalence of the ribbon disk-link presentation p : Q(L”) — P(LP) is similar to the proof of
[2, Theorem 1.3]. Let GP =<x,X,,...,X,...| 7, y..., 7, > beahomology-trivial unitgroup presentation By Corollary 4.3,
there is a free ribbon disk-link L” in H* with an isomorphism 7z (E(L”), v) <x,x,, ..., X, - - - > sending a meridian system of L”
to the relator system 7, (i =1, 2, ..., n,...). The 2-complexes P of GP and P(L") are both obtained from the same graph wx with
7 (wx, v) =<x,X,,...x, " > by attaching 2-cells with attaching maps given by the relator words r, (i =1, 2, ..., n,...). Hence

the 1-full subcomplexes of P coincide with the 1-full subcomplexes of P(LP).
The following corollary confirms that Conjecture 3 is true.
Corollary 5.3. Every subcomplex of every homology-trivial unit-group presentation is aspherical.

Proof of Corollary 5.3. Let P be the 2-complex of every homology-trivial unitgroup presentation, and P’ a connected subcomplex
of P. By Theorem 5.2, P is written as P(L?) for a free ribbon disk-link L” in H*. If P'is a 1-full subcomplex of P, then P'is written
as P(LP, KP) for a sublink K? of L? in H*. The ribbon disk-link presentation p : Q(L?, KP) — P(L?, KP) is homotopy equivalent and
O(LP, KP) is the closed exterior E(L” \ K?), which is aspherical by Lemma 5.1. Thus, P’ is aspherical. If P’ is not 1-full, then a 1-full
subcomplex P" of P is constructed from P’ by adding some loops in the 1-skelton P' = wx to P’, and P" is aspherical if and only if
P'is aspherical. Thus, P'is aspherical in this case. This completes the proof of Corollary 5.3.

The proof of Theorem 1.1 is now completed as follows.

Proof of Theorem 1.1. The proof of Theorem 1.1 is completed by Corollary 5.3 (a confirmation of Conjecture 3) and the proofs of
Conjecture 3 = Conjecture 2 and Conjecture 2 = Conjecture 1. This completes the proof of Theorem 1.1.
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