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Abstract
This work addresses an adaptive regulation problem for formation control of uncertain unicycle-like dynamical robots. The 
control goal is to drive a finite number of robots to a prescribed formation despite the presence of multi-sinusoidal input 
disturbances of unknown frequencies and despite uncertainties in the unicycle model, (mass and inertia’s are unknown). 
Numerical Simulations were done to illustrate the viability of the suggested strategy. The only measurements available for 
control are the orientation of the unicycles and the relative positions and velocities according to a given connectivity graph.
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1. Introduction
Due to the numerous applications in robotics and vehicle platforms, 
formation control—, which entails achieving mandated shape 
and orientation of a network of multivalent systems—represents 
an intriguing problem. Formation control of wheeled robots has 
gained significant attention in recent years due to its potential 
applications in various fields such as surveillance, inspection, 
and transportation. In particular, sinusoidal disturbances with 
unknown frequencies can significantly affect the performance 
of the control system [1]. In the palette of available approaches 
to formation keeping, we would like to mention passivity-
based techniques and stabilization of planar collective motion 
via Lyapunov techniques [2]. In particular, formation control 
has long been studied for wheeled mobile robots for general 
no holonomic systems with uncertainty and for unicycles by 
using ensemble control [3,4]. A comprehensive introduction 
to the dynamics and control of no holonomic mobile robots 
is provided by [5]. What makes the dynamics of the unicycle 
robot interesting is that it does not satisfy Brockett’s necessary 
condition for smooth state-feedback stabilization, and for this 
reason, one must resort either to discontinuous or time-varying 
control laws. However, smooth stabilization is still possible 
whenever the front end of the robot - instead of its geometric 
center - is required to be controlled [6].

A central issue arising in formation control consists in input 
disturbance rejection. Various control techniques such as 
decentralized, centralized, and leader-follower approaches have 
been proposed. However, most of these methods assume perfect 
knowledge of the system dynamics and disturbances. To address 
the uncertainties in the system, adaptive control techniques 
have been proposed. In particular, the adaptive rejection method 

has been widely used to reject sinusoidal disturbances with 
known frequencies. Several contributions have highlighted 
the importance of the internal model principle in addressing 
disturbance rejection in coordination control of nonlinear systems 
[7]. In particular, the problem of formation control and rejection 
of matched multiharmonic input disturbances for a network of 
no holonomic wheeled robots have been tackled and solved in 
by embedding the unicycle dynamics, the disturbance internal 
model, and the controller equations with a port Hamiltonian 
structure [8-10].

Multi-harmonic input disturbances model an interesting class 
of faults for mechanical systems such as acoustic disturbances 
and vibrations in rotating equipment, and they can even provide 
a way to tackle unmolded flexible dynamics. In fact, flexible 
appendages usually induce sinusoidal velocity ripples on the 
main body of the mechanical system in consideration but their 
modeling typically requires involved analytical considerations 
and computations, which are not always feasible to perform. 
Within this context, only an educated guess can be made on the 
frequencies of the multi-harmonic disturbances, which thus need 
to be estimated in an adaptive fashion. Recently, the objectives 
of adaptive trajectory tracking and rejection of multi-harmonic 
disturbances with unknown frequencies have been achieved for 
a spacecraft system with uncertain inertia matrix [11]. Building 
upon  the authors in have achieved the very same objectives for 
the class of fully actuated uncertain mechanical systems [12,13].

One may wonder whether it is possible to achieve formation 
control of a network of unicycle-like dynamical robots whose 
masses and inertias are uncertain, in the presence of multi-
harmonic matched input disturbances whose frequencies are 
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unknown. This work tackles and solves this very same problem 
by bridging the contributions of for the objective of formation 
control and of for the objective of online estimation of the 
disturbance frequencies, and of the masses and inertia’s of the 
unicycle models. The proposed controller is distributed and 
consists of adaptive internal model units - one for each robot 
-, which estimate the aforementioned unknown quantities in 
a joint fashion. The proposed control scheme is based on an 
adaptive rejection mechanism that estimates the frequency of 
the disturbances and updates the control inputs accordingly. 
Furthermore, we bring to the attention of the reader that our 
peculiar formulation of an error system for the overall dynamics 
plays a crucial role in solving the adaptive regulation problem in 
consideration [14-17].

Outline of the paper. Section II introduces the reader to the 
problem in consideration and related control goals. Section III 
lists the linear characterizations to deal with both model and 
frequency uncertainties, and addresses the definition of our error 
system. Regressor matrix, controller equations and our main 
stability result are presented in Section IV. The effectiveness of 
the proposed control strategy is assessed by mans of simulations 
in Section V. Concluding remarks follow.

Notation. Given two matrices A,B, the symbol A⊗B denotes 
the Kronecker product. A = block.diag {A1,...,AN} represents 
the block diagonal matrix with A1,...,AN being the diagonal 
blocks. Operator ∥•∥ simply represents the Euclidean norm. The 
n-dimensional identity matrix is denoted as In. We denote with 
L2 the class of all squareintegral signals, namely all those signals 
x(t) such that

2. Problem Formulation
In order to create the ideal configuration, we employ a leader-
follower strategy. The following robots use a feedback control 
rule to monitor the leader robot as it travels along a predetermined 
path. For the follower robots to converge on the intended 
configuration, a feedback control law based on the Lyapunov 
stability theory is created. We provide an adaptive rejection 
technique to filter out the sinusoidal disturbances that evaluates 
the frequency of the disturbances and modifies the control 
inputs appropriately. Recursive least squares, which assesses the 
frequency and amplitude of the disturbances, is the foundation 
of the suggested process. The generated compensating signal 
eliminates the disturbances using the calculated frequency. In 
order to maintain reliable formation control in the presence 
of sinusoidal disturbances with unknown frequencies, the 
compensating signal is supplied to the follower robots’ control 
inputs.

A. Wheeled Robot Dynamics
Consider a wheeled robot i with heading ϕi and let
(xA,i,yA,i) and (xC,i,yC,i), respectively denote the center of the wheel 
axle and a point at the front end of the robot as depicted in [16, 
Figure 1]. Furthermore, let dAC,i denote the distance between 
these points.

For robot i define the position qi := (xA,i,yA,i,ϕi)
⊤ ∈ SE(2) and 

velocity νi := (νf,i,νa,i)
⊤ ∈ R2 where νf,i and νa,i respectively denotes 

the forward and angular velocity. For robot i define the mass 
matrix Mi := diag {mi,Ii}, where mi is the mass of the robot and Ii 
is its inertia. Define the matrix Si : SE(2) → R3×2 as:

The dynamical model of robot i affected by matched input 
disturbance di is then given as follows: 
q˙i = Si(qi)νi

with ui,di ∈ R2 control inputs and matched input disturbances 
respectively.

B. Matched Input Disturbances
Each disturbance di is generated by exosystem i:

where                                     is a nonsingular matrix and   
                         is a matrix having all eigenvalues on the 
imaginary axis. Both        and        depend on a vector of 
unknown frequencies fi+σi ∈ Rnσ

i where fi = (f1,i,...,fki,i)
⊤ represents 

the nominal frequencies and σi = (σ1,i,...,σki,i)
⊤ represents the 

mismatches between nominal and real frequencies. Thus, matrix 
Φσi can be defined by

C. Formation Control Goals
In this work, we consider a network of N wheeled robots of the 
form (2). This network is modeled as a connected undirected 
graph G (V, E) where the node-set V corresponds to N robots and 
the edge-set E = V × V corresponds to
M virtual couplings. We assign a positive/negative label to each 
of the nodes connected by an edge. The labeling of the nodes can 
be done in an arbitrary manner, and it does not have any effect on 
the results. Label one end of each edge in E with a positive sign 
and the other end with a negative sign. The incidence matrix B 
∈ {−1,0,1}N×M associated to G(V,E) describes which nodes are 
coupled by an edge, and is defined as

The relative position zk between agent i and j is then defined for 
all edge k as follows:

III lists the linear characterizations to deal with both model
and frequency uncertainties, and addresses the definition of
our error system. Regressor matrix, controller equations and
our main stability result are presented in Section IV. The
effectiveness of the proposed control strategy is assessed
by mans of simulations in Section V. Concluding remarks
follow.

Notation. Given two matrices A,B, the symbol A⊗B de-
notes the Kronecker product. A = block.diag {A1, . . . , AN}
represents the block diagonal matrix with A1, . . . , AN be-
ing the diagonal blocks. Operator ∥ · ∥ simply represents
the Euclidean norm. The n-dimensional identity matrix is
denoted as In. We denote with L2 the class of all square-
integral signals, namely all those signals x(t) such that +∞
0

∥x(s)∥ ds < +∞.

II. PROBLEM FORMULATION

In order to create the ideal configuration, we employ a
leader-follower strategy. The following robots use a feedback
control rule to monitor the leader robot as it travels along
a predetermined path. For the follower robots to converge
on the intended configuration, a feedback control law based
on the Lyapunov stability theory is created. We provide
an adaptive rejection technique to filter out the sinusoidal
disturbances that evaluates the frequency of the disturbances
and modifies the control inputs appropriately. Recursive least
squares, which assesses the frequency and amplitude of the
disturbances, is the foundation of the suggested process. The
generated compensating signal eliminates the disturbances
using the calculated frequency. In order to maintain reliable
formation control in the presence of sinusoidal disturbances
with unknown frequencies, the compensating signal is sup-
plied to the follower robots’ control inputs.

A. Wheeled robot dynamics

Consider a wheeled robot i with heading ϕi and let
(xA,i, yA,i) and (xC,i, yC,i), respectively denote the center
of the wheel axle and a point at the front end of the robot
as depicted in [16, Figure 1]. Furthermore, let dAC,i denote
the distance between these points.

For robot i define the position qi := (xA,i, yA,i, ϕi)
⊤ ∈

SE(2) and velocity νi := (νf,i, νa,i)
⊤ ∈ R2 where νf,i and

νa,i respectively denotes the forward and angular velocity.
For robot i define the mass matrix Mi := diag {mi, Ii},
where mi is the mass of the robot and Ii is its inertia. Define
the matrix Si : SE(2) → R3×2 as:

Si(qi) :=



cosϕi 0
sinϕi 0
0 1


 . (1)

The dynamical model of robot i affected by matched input
disturbance di is then given as follows:

q̇i = Si(qi) νi

Mi ν̇i = ui + di, (2)

with ui, di ∈ R2 control inputs and matched input distur-
bances respectively.

B. Matched input disturbances

Each disturbance di is generated by exosystem i:

θ̇i = Tσi
i Φσi

i (T σi
i )−1θi

di = −Ψi(T
σi
i )−1θi, (3)

where T σi
i ∈ R(2ki+1)×(2ki+1) is a nonsingular matrix and

Φσi
i ∈ R(2ki+1)×(2ki+1) is a matrix having all eigenvalues

on the imaginary axis. Both Φσi
i and Tσi

i depend on a
vector of unknown frequencies fi + σi ∈ Rnσi where fi =
(f1,i, . . . , fki,i)

⊤ represents the nominal frequencies and
σi = (σ1,i, . . . , σki,i)

⊤ represents the mismatches between
nominal and real frequencies. Thus, matrix Φσi can be
defined by

Φσi
i := diag {Φ0,i,Φ1,i, . . . ,Φk,i} with Φ0,i := 0 and

Φh,i := Φ0
h,i +Φ1

h,i =


0 fh,i

−fh,i 0


+


0 σh,i

−σh,i 0


,

fh,i > 0, h = 1, . . . , ki.

C. Formation control goals

In this work, we consider a network of N wheeled robots
of the form (2). This network is modeled as a connected
undirected graph G(V, E) where the node-set V corresponds
to N robots and the edge-set E = V × V corresponds to
M virtual couplings. We assign a positive/negative label to
each of the nodes connected by an edge. The labeling of
the nodes can be done in an arbitrary manner, and it does
not have any effect on the final results. Label one end of
each edge in E with a positive sign and the other end with
a negative sign. The incidence matrix B ∈ {−1, 0, 1}N×M

associated to G(V, E) describes which nodes are coupled by
an edge, and is defined as

bil :=




+1 if node i is at the positive side of edge l,

−1 if node i is at the negative side of edge l,

0 otherwise.

The relative position zk between agent i and j is then defined
for all edge k as follows:

zx,k := xC,i − xC,j

zy,k := yC,i − yC,j .

We can define zk := [zx,k, zy,k]
⊤ and, consequently, z :=

[z⊤1 , . . . , z⊤M ]⊤. In a similar way, we can define ri :=
[xC,i, yC,i]

⊤ and r := [r⊤1 , . . . , r
⊤
N ]⊤. Note that each ri can

be computed from the state of robot i as

ri =


xA,i

yA,i


+ dAC,i


cosϕi

sinϕ⊤
i


. (4)

The relation between r and z is then given as:

z = (B ⊗ I2)
⊤ r. (5)

Given a desired relative position z∗k for each edge in E , we
can define the error variables z̃k := zk − z∗k , and stack

III lists the linear characterizations to deal with both model
and frequency uncertainties, and addresses the definition of
our error system. Regressor matrix, controller equations and
our main stability result are presented in Section IV. The
effectiveness of the proposed control strategy is assessed
by mans of simulations in Section V. Concluding remarks
follow.
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of the form (2). This network is modeled as a connected
undirected graph G(V, E) where the node-set V corresponds
to N robots and the edge-set E = V × V corresponds to
M virtual couplings. We assign a positive/negative label to
each of the nodes connected by an edge. The labeling of
the nodes can be done in an arbitrary manner, and it does
not have any effect on the final results. Label one end of
each edge in E with a positive sign and the other end with
a negative sign. The incidence matrix B ∈ {−1, 0, 1}N×M

associated to G(V, E) describes which nodes are coupled by
an edge, and is defined as
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+1 if node i is at the positive side of edge l,
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denoted as In. We denote with L2 the class of all square-
integral signals, namely all those signals x(t) such that +∞
0

∥x(s)∥ ds < +∞.

II. PROBLEM FORMULATION

In order to create the ideal configuration, we employ a
leader-follower strategy. The following robots use a feedback
control rule to monitor the leader robot as it travels along
a predetermined path. For the follower robots to converge
on the intended configuration, a feedback control law based
on the Lyapunov stability theory is created. We provide
an adaptive rejection technique to filter out the sinusoidal
disturbances that evaluates the frequency of the disturbances
and modifies the control inputs appropriately. Recursive least
squares, which assesses the frequency and amplitude of the
disturbances, is the foundation of the suggested process. The
generated compensating signal eliminates the disturbances
using the calculated frequency. In order to maintain reliable
formation control in the presence of sinusoidal disturbances
with unknown frequencies, the compensating signal is sup-
plied to the follower robots’ control inputs.

A. Wheeled robot dynamics

Consider a wheeled robot i with heading ϕi and let
(xA,i, yA,i) and (xC,i, yC,i), respectively denote the center
of the wheel axle and a point at the front end of the robot
as depicted in [16, Figure 1]. Furthermore, let dAC,i denote
the distance between these points.

For robot i define the position qi := (xA,i, yA,i, ϕi)
⊤ ∈

SE(2) and velocity νi := (νf,i, νa,i)
⊤ ∈ R2 where νf,i and

νa,i respectively denotes the forward and angular velocity.
For robot i define the mass matrix Mi := diag {mi, Ii},
where mi is the mass of the robot and Ii is its inertia. Define
the matrix Si : SE(2) → R3×2 as:

Si(qi) :=



cosϕi 0
sinϕi 0
0 1


 . (1)

The dynamical model of robot i affected by matched input
disturbance di is then given as follows:

q̇i = Si(qi) νi

Mi ν̇i = ui + di, (2)

with ui, di ∈ R2 control inputs and matched input distur-
bances respectively.

B. Matched input disturbances

Each disturbance di is generated by exosystem i:

θ̇i = Tσi
i Φσi

i (T σi
i )−1θi

di = −Ψi(T
σi
i )−1θi, (3)

where T σi
i ∈ R(2ki+1)×(2ki+1) is a nonsingular matrix and

Φσi
i ∈ R(2ki+1)×(2ki+1) is a matrix having all eigenvalues

on the imaginary axis. Both Φσi
i and Tσi

i depend on a
vector of unknown frequencies fi + σi ∈ Rnσi where fi =
(f1,i, . . . , fki,i)

⊤ represents the nominal frequencies and
σi = (σ1,i, . . . , σki,i)

⊤ represents the mismatches between
nominal and real frequencies. Thus, matrix Φσi can be
defined by

Φσi
i := diag {Φ0,i,Φ1,i, . . . ,Φk,i} with Φ0,i := 0 and

Φh,i := Φ0
h,i +Φ1

h,i =


0 fh,i

−fh,i 0


+


0 σh,i

−σh,i 0


,

fh,i > 0, h = 1, . . . , ki.

C. Formation control goals

In this work, we consider a network of N wheeled robots
of the form (2). This network is modeled as a connected
undirected graph G(V, E) where the node-set V corresponds
to N robots and the edge-set E = V × V corresponds to
M virtual couplings. We assign a positive/negative label to
each of the nodes connected by an edge. The labeling of
the nodes can be done in an arbitrary manner, and it does
not have any effect on the final results. Label one end of
each edge in E with a positive sign and the other end with
a negative sign. The incidence matrix B ∈ {−1, 0, 1}N×M

associated to G(V, E) describes which nodes are coupled by
an edge, and is defined as

bil :=





+1 if node i is at the positive side of edge l,

−1 if node i is at the negative side of edge l,

0 otherwise.

The relative position zk between agent i and j is then defined
for all edge k as follows:

zx,k := xC,i − xC,j

zy,k := yC,i − yC,j .

We can define zk := [zx,k, zy,k]
⊤ and, consequently, z :=

[z⊤1 , . . . , z⊤M ]⊤. In a similar way, we can define ri :=
[xC,i, yC,i]

⊤ and r := [r⊤1 , . . . , r
⊤
N ]⊤. Note that each ri can

be computed from the state of robot i as

ri =


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yA,i


+ dAC,i


cosϕi

sinϕ⊤
i


. (4)

The relation between r and z is then given as:

z = (B ⊗ I2)
⊤ r. (5)

Given a desired relative position z∗k for each edge in E , we
can define the error variables z̃k := zk − z∗k , and stack

III lists the linear characterizations to deal with both model
and frequency uncertainties, and addresses the definition of
our error system. Regressor matrix, controller equations and
our main stability result are presented in Section IV. The
effectiveness of the proposed control strategy is assessed
by mans of simulations in Section V. Concluding remarks
follow.
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the nodes can be done in an arbitrary manner, and it does
not have any effect on the final results. Label one end of
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an edge, and is defined as
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undirected graph G(V, E) where the node-set V corresponds
to N robots and the edge-set E = V × V corresponds to
M virtual couplings. We assign a positive/negative label to
each of the nodes connected by an edge. The labeling of
the nodes can be done in an arbitrary manner, and it does
not have any effect on the final results. Label one end of
each edge in E with a positive sign and the other end with
a negative sign. The incidence matrix B ∈ {−1, 0, 1}N×M

associated to G(V, E) describes which nodes are coupled by
an edge, and is defined as

bil :=
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0 otherwise.

The relative position zk between agent i and j is then defined
for all edge k as follows:
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We can define zk := [zx,k, zy,k]
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We can define zk := [zx,k,zy,k]
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                       In a similar way, we can define ri :=
[xC,i,yC,i]

⊤ and                                   Note that each ri can be computed 
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The relation between r and z is then given as:

Given a desired relative     position  for each edge in E, we can 
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Figure 1: Unicycle robot i.

them into the vector                                     By introducing the 
matrix Gi : S → R2×2 as

it is straightforward to obtain from (2) and (4) that

We can now formally state the control goal as formation control 
plus disturbance rejection, namely:

in presence of matched input disturbances di, generated by 
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0 
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Si(qi) :=
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The dynamical model of robot i affected by matched input
disturbance di is then given as follows:
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Mi ν̇i = ui + di, (2)

with ui, di ∈ R2 control inputs and matched input distur-
bances respectively.
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C. Formation control goals

In this work, we consider a network of N wheeled robots
of the form (2). This network is modeled as a connected
undirected graph G(V, E) where the node-set V corresponds
to N robots and the edge-set E = V × V corresponds to
M virtual couplings. We assign a positive/negative label to
each of the nodes connected by an edge. The labeling of
the nodes can be done in an arbitrary manner, and it does
not have any effect on the final results. Label one end of
each edge in E with a positive sign and the other end with
a negative sign. The incidence matrix B ∈ {−1, 0, 1}N×M

associated to G(V, E) describes which nodes are coupled by
an edge, and is defined as

bil :=



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0 otherwise.

The relative position zk between agent i and j is then defined
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zx,k := xC,i − xC,j

zy,k := yC,i − yC,j .

We can define zk := [zx,k, zy,k]
⊤ and, consequently, z :=

[z⊤1 , . . . , z⊤M ]⊤. In a similar way, we can define ri :=
[xC,i, yC,i]

⊤ and r := [r⊤1 , . . . , r
⊤
N ]⊤. Note that each ri can

be computed from the state of robot i as

ri =


xA,i

yA,i


+ dAC,i


cosϕi

sinϕ⊤
i


. (4)

The relation between r and z is then given as:
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can define the error variables z̃k := zk − z∗k , and stack
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effectiveness of the proposed control strategy is assessed
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follow.
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follow.
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notes the Kronecker product. A = block.diag {A1, . . . , AN}
represents the block diagonal matrix with A1, . . . , AN be-
ing the diagonal blocks. Operator ∥ · ∥ simply represents
the Euclidean norm. The n-dimensional identity matrix is
denoted as In. We denote with L2 the class of all square-
integral signals, namely all those signals x(t) such that +∞
0

∥x(s)∥ ds < +∞.

II. PROBLEM FORMULATION
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an adaptive rejection technique to filter out the sinusoidal
disturbances that evaluates the frequency of the disturbances
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generated compensating signal eliminates the disturbances
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with unknown frequencies, the compensating signal is sup-
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A. Wheeled robot dynamics
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(xA,i, yA,i) and (xC,i, yC,i), respectively denote the center
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the distance between these points.
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⊤ ∈

SE(2) and velocity νi := (νf,i, νa,i)
⊤ ∈ R2 where νf,i and

νa,i respectively denotes the forward and angular velocity.
For robot i define the mass matrix Mi := diag {mi, Ii},
where mi is the mass of the robot and Ii is its inertia. Define
the matrix Si : SE(2) → R3×2 as:

Si(qi) :=



cosϕi 0
sinϕi 0
0 1


 . (1)

The dynamical model of robot i affected by matched input
disturbance di is then given as follows:

q̇i = Si(qi) νi

Mi ν̇i = ui + di, (2)

with ui, di ∈ R2 control inputs and matched input distur-
bances respectively.

B. Matched input disturbances

Each disturbance di is generated by exosystem i:

θ̇i = Tσi
i Φσi

i (T σi
i )−1θi

di = −Ψi(T
σi
i )−1θi, (3)

where T σi
i ∈ R(2ki+1)×(2ki+1) is a nonsingular matrix and

Φσi
i ∈ R(2ki+1)×(2ki+1) is a matrix having all eigenvalues

on the imaginary axis. Both Φσi
i and Tσi

i depend on a
vector of unknown frequencies fi + σi ∈ Rnσi where fi =
(f1,i, . . . , fki,i)

⊤ represents the nominal frequencies and
σi = (σ1,i, . . . , σki,i)

⊤ represents the mismatches between
nominal and real frequencies. Thus, matrix Φσi can be
defined by

Φσi
i := diag {Φ0,i,Φ1,i, . . . ,Φk,i} with Φ0,i := 0 and

Φh,i := Φ0
h,i +Φ1

h,i =


0 fh,i

−fh,i 0


+


0 σh,i

−σh,i 0


,

fh,i > 0, h = 1, . . . , ki.

C. Formation control goals

In this work, we consider a network of N wheeled robots
of the form (2). This network is modeled as a connected
undirected graph G(V, E) where the node-set V corresponds
to N robots and the edge-set E = V × V corresponds to
M virtual couplings. We assign a positive/negative label to
each of the nodes connected by an edge. The labeling of
the nodes can be done in an arbitrary manner, and it does
not have any effect on the final results. Label one end of
each edge in E with a positive sign and the other end with
a negative sign. The incidence matrix B ∈ {−1, 0, 1}N×M

associated to G(V, E) describes which nodes are coupled by
an edge, and is defined as

bil :=




+1 if node i is at the positive side of edge l,

−1 if node i is at the negative side of edge l,

0 otherwise.

The relative position zk between agent i and j is then defined
for all edge k as follows:

zx,k := xC,i − xC,j

zy,k := yC,i − yC,j .

We can define zk := [zx,k, zy,k]
⊤ and, consequently, z :=

[z⊤1 , . . . , z⊤M ]⊤. In a similar way, we can define ri :=
[xC,i, yC,i]

⊤ and r := [r⊤1 , . . . , r
⊤
N ]⊤. Note that each ri can

be computed from the state of robot i as

ri =


xA,i

yA,i


+ dAC,i


cosϕi

sinϕ⊤
i


. (4)

The relation between r and z is then given as:

z = (B ⊗ I2)
⊤ r. (5)

Given a desired relative position z∗k for each edge in E , we
can define the error variables z̃k := zk − z∗k , and stack
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them into the vector z̃ := [z̃⊤1 , . . . , z̃⊤M ]⊤. By introducing
the matrix Gi : S → R2×2 as

Gi(ϕi) :=

(
cosϕi sinϕi

−dAC,i sinϕi dAC,i cosϕi

)
, (6)

it is straightforward to obtain from (2) and (4) that

ṙi = Gi(ϕi)
⊤ νi. (7)

We can now formally state the control goal as formation
control plus disturbance rejection, namely:

lim
t→+∞

z̃i = 0 for 1, . . . ,M, (8)

in presence of matched input disturbances di, generated by
exosystems (3).

III. PRELIMINARY MANIPULATIONS

A. Robot dynamics of the overall network

We first write the dynamics of the overall network of
N robots in compact form. To this end, we introduce the
following notation:

q := (q⊤1 , . . . , q
⊤
N )⊤ , ν := (ν⊤1 , . . . , ν⊤N )⊤,

u := (u⊤
1 , . . . , u

⊤
N )⊤ , d := (d⊤1 , . . . , d

⊤
N )⊤,

S(q) := block.diag {S1(q1), . . . , SN (qN )} ,
M := block.diag {M1, . . . ,MN} .

We can now write (2) as follows:

q̇ = S(q) νi

M ν̇ = u+ d, (9)

B. Exosystem dynamics in compact form

With the aim of formulating the overall dynamics of the
N exosystems in compact form, we introduce the following
notation:

θ := (θ⊤1 , . . . , θ
⊤
N )⊤ , f := (f⊤

1 , . . . , f⊤
N )⊤,

σ := (σ⊤
1 , . . . , σ

⊤
N )⊤,

Tσ := block.diag {T σ1
1 , . . . , TσN

N } ,
Φσ := block.diag {Φσ1

1 , . . . ,ΦσN

N } ,
Ψ := block.diag {Ψ1, . . . ,ΨN} .

We can now write (3) as follows:

θ̇ = TσΦσ(T σ)−1θ

d = −Ψ(Tσ)−1θ. (10)

Note that θ ∈ Rk, where k := k1, . . . , kN , i.e. the sum of
the dimension of the state of each exosystem (3).

C. Linear parametrization for model mismatches

We assume that the uncertainties in model (9) are struc-
tured. Let δi ∈ Rnδ,i denote the linear mismatches between
the nominal and real matrix Mi. In order to fully char-
acterize δi, we introduce the nominal mass matrix M0

i =
diag

{
m0

i , I0
i

}
, with m0

i and I0
i respectively denoting the

nominal mass and inertia of robot i. Furthermore, we define
the matrix function M1

i :∈ R2 → RN×nδi in such a way that
the following linear parametrization for robot i = 1, . . . N
holds true for all vectors s ∈ R2:

Mis =: M0
i s+M1

i (s) δi, (11)

We can then define M0 := block.diag
{
M0

1 , . . . ,M
0
N

}
,

M1 := block.diag
{
M1

1 , . . . ,M
1
N

}
, and δ = (δ⊤1 , . . . , δ⊤N )

so that the following linear parametrization holds true for the
overall network:

Ms =: M0s+M1(s) δ. (12)

for all s ∈ R2N .

D. Error system definition

In the spirit of [7] and [4], an error system is built from
the overall network dynamics (9) in order to embed the
disturbance rejection and formation control goals (8). To this
end, we first recall the control law used in [8], [17], [16] to
achieve formation control without disturbance rejection, then
we define our error system according to such control law. By
defining

ϕ := (ϕ⊤
1 , . . . , ϕ

⊤
N )⊤,

G(ϕ) := block.diag {G1(ϕ1), . . . , GN (ϕN )} ,

it is then immediate to check from (5) and (7) that

˙̃z = (B ⊗ I2)
⊤ G(ϕ)⊤ ν. (13)

The control law u = uf used in [8], [17], [16] to achieve
formation control, namely

uf = −G(ϕ) (B ⊗ I2)
(
Kp z̃ +Kd (B ⊗ I2)

⊤
G(ϕ)⊤ ν

)
,

(14)

where Kp,Kv are diagonal positive definite matrices of
appropriate dimensions. Based upon (14), we define the
following error variables:

Z := ν +A(ϕ)z̃ (15)
V := −A(ϕ)z̃, (16)

where A(ϕ) := (M0)−1G(ϕ)(B⊗ I2)λz̃ with λz̃ > 0 being
a tunable scalar controller gain. Observe that Z + V = ν,
and thus it follows from the second equation of (9) that:

MŻ = u+ d+ F0(V̇ ) + F1(V̇ )δ (17)
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control plus disturbance rejection, namely:
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in presence of matched input disturbances di, generated by
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We can now write (3) as follows:

θ̇ = TσΦσ(T σ)−1θ

d = −Ψ(Tσ)−1θ. (10)

Note that θ ∈ Rk, where k := k1, . . . , kN , i.e. the sum of
the dimension of the state of each exosystem (3).

C. Linear parametrization for model mismatches

We assume that the uncertainties in model (9) are struc-
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acterize δi, we introduce the nominal mass matrix M0

i =
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, with m0
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holds true for all vectors s ∈ R2:
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for all s ∈ R2N .

D. Error system definition

In the spirit of [7] and [4], an error system is built from
the overall network dynamics (9) in order to embed the
disturbance rejection and formation control goals (8). To this
end, we first recall the control law used in [8], [17], [16] to
achieve formation control without disturbance rejection, then
we define our error system according to such control law. By
defining

ϕ := (ϕ⊤
1 , . . . , ϕ

⊤
N )⊤,

G(ϕ) := block.diag {G1(ϕ1), . . . , GN (ϕN )} ,

it is then immediate to check from (5) and (7) that

˙̃z = (B ⊗ I2)
⊤ G(ϕ)⊤ ν. (13)

The control law u = uf used in [8], [17], [16] to achieve
formation control, namely

uf = −G(ϕ) (B ⊗ I2)
(
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,
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where Kp,Kv are diagonal positive definite matrices of
appropriate dimensions. Based upon (14), we define the
following error variables:

Z := ν +A(ϕ)z̃ (15)
V := −A(ϕ)z̃, (16)

where A(ϕ) := (M0)−1G(ϕ)(B⊗ I2)λz̃ with λz̃ > 0 being
a tunable scalar controller gain. Observe that Z + V = ν,
and thus it follows from the second equation of (9) that:

MŻ = u+ d+ F0(V̇ ) + F1(V̇ )δ (17)

φi

yC,i

yA,i

xA,i xC,i

Fig. 1. Unicycle robot i.

them into the vector z̃ := [z̃⊤1 , . . . , z̃⊤M ]⊤. By introducing
the matrix Gi : S → R2×2 as

Gi(ϕi) :=

(
cosϕi sinϕi

−dAC,i sinϕi dAC,i cosϕi

)
, (6)

it is straightforward to obtain from (2) and (4) that
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In the spirit of [7] and [4], an error system is built from
the overall network dynamics (9) in order to embed the
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end, we first recall the control law used in [8], [17], [16] to
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a tunable scalar controller gain. Observe that Z + V = ν,
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it is straightforward to obtain from (2) and (4) that

ṙi = Gi(ϕi)
⊤ νi. (7)

We can now formally state the control goal as formation
control plus disturbance rejection, namely:

lim
t→+∞

z̃i = 0 for 1, . . . ,M, (8)

in presence of matched input disturbances di, generated by
exosystems (3).

III. PRELIMINARY MANIPULATIONS

A. Robot dynamics of the overall network

We first write the dynamics of the overall network of
N robots in compact form. To this end, we introduce the
following notation:

q := (q⊤1 , . . . , q
⊤
N )⊤ , ν := (ν⊤1 , . . . , ν⊤N )⊤,

u := (u⊤
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S(q) := block.diag {S1(q1), . . . , SN (qN )} ,
M := block.diag {M1, . . . ,MN} .

We can now write (2) as follows:

q̇ = S(q) νi

M ν̇ = u+ d, (9)

B. Exosystem dynamics in compact form

With the aim of formulating the overall dynamics of the
N exosystems in compact form, we introduce the following
notation:

θ := (θ⊤1 , . . . , θ
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N )⊤ , f := (f⊤
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N } ,
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N } ,
Ψ := block.diag {Ψ1, . . . ,ΨN} .

We can now write (3) as follows:

θ̇ = TσΦσ(T σ)−1θ

d = −Ψ(Tσ)−1θ. (10)

Note that θ ∈ Rk, where k := k1, . . . , kN , i.e. the sum of
the dimension of the state of each exosystem (3).

C. Linear parametrization for model mismatches

We assume that the uncertainties in model (9) are struc-
tured. Let δi ∈ Rnδ,i denote the linear mismatches between
the nominal and real matrix Mi. In order to fully char-
acterize δi, we introduce the nominal mass matrix M0

i =
diag

{
m0

i , I0
i

}
, with m0

i and I0
i respectively denoting the

nominal mass and inertia of robot i. Furthermore, we define
the matrix function M1

i :∈ R2 → RN×nδi in such a way that
the following linear parametrization for robot i = 1, . . . N
holds true for all vectors s ∈ R2:

Mis =: M0
i s+M1

i (s) δi, (11)

We can then define M0 := block.diag
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,
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so that the following linear parametrization holds true for the
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Ms =: M0s+M1(s) δ. (12)

for all s ∈ R2N .

D. Error system definition

In the spirit of [7] and [4], an error system is built from
the overall network dynamics (9) in order to embed the
disturbance rejection and formation control goals (8). To this
end, we first recall the control law used in [8], [17], [16] to
achieve formation control without disturbance rejection, then
we define our error system according to such control law. By
defining

ϕ := (ϕ⊤
1 , . . . , ϕ

⊤
N )⊤,

G(ϕ) := block.diag {G1(ϕ1), . . . , GN (ϕN )} ,

it is then immediate to check from (5) and (7) that

˙̃z = (B ⊗ I2)
⊤ G(ϕ)⊤ ν. (13)

The control law u = uf used in [8], [17], [16] to achieve
formation control, namely

uf = −G(ϕ) (B ⊗ I2)
(
Kp z̃ +Kd (B ⊗ I2)

⊤
G(ϕ)⊤ ν

)
,

(14)

where Kp,Kv are diagonal positive definite matrices of
appropriate dimensions. Based upon (14), we define the
following error variables:

Z := ν +A(ϕ)z̃ (15)
V := −A(ϕ)z̃, (16)

where A(ϕ) := (M0)−1G(ϕ)(B⊗ I2)λz̃ with λz̃ > 0 being
a tunable scalar controller gain. Observe that Z + V = ν,
and thus it follows from the second equation of (9) that:

MŻ = u+ d+ F0(V̇ ) + F1(V̇ )δ (17)
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ṙi = Gi(ϕi)
⊤ νi. (7)

We can now formally state the control goal as formation
control plus disturbance rejection, namely:

lim
t→+∞

z̃i = 0 for 1, . . . ,M, (8)

in presence of matched input disturbances di, generated by
exosystems (3).

III. PRELIMINARY MANIPULATIONS

A. Robot dynamics of the overall network

We first write the dynamics of the overall network of
N robots in compact form. To this end, we introduce the
following notation:
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We can now write (2) as follows:
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We can now write (3) as follows:

θ̇ = TσΦσ(T σ)−1θ

d = −Ψ(Tσ)−1θ. (10)

Note that θ ∈ Rk, where k := k1, . . . , kN , i.e. the sum of
the dimension of the state of each exosystem (3).

C. Linear parametrization for model mismatches

We assume that the uncertainties in model (9) are struc-
tured. Let δi ∈ Rnδ,i denote the linear mismatches between
the nominal and real matrix Mi. In order to fully char-
acterize δi, we introduce the nominal mass matrix M0

i =
diag

{
m0

i , I0
i

}
, with m0

i and I0
i respectively denoting the

nominal mass and inertia of robot i. Furthermore, we define
the matrix function M1

i :∈ R2 → RN×nδi in such a way that
the following linear parametrization for robot i = 1, . . . N
holds true for all vectors s ∈ R2:

Mis =: M0
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D. Error system definition

In the spirit of [7] and [4], an error system is built from
the overall network dynamics (9) in order to embed the
disturbance rejection and formation control goals (8). To this
end, we first recall the control law used in [8], [17], [16] to
achieve formation control without disturbance rejection, then
we define our error system according to such control law. By
defining

ϕ := (ϕ⊤
1 , . . . , ϕ
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N )⊤,

G(ϕ) := block.diag {G1(ϕ1), . . . , GN (ϕN )} ,

it is then immediate to check from (5) and (7) that

˙̃z = (B ⊗ I2)
⊤ G(ϕ)⊤ ν. (13)
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uf = −G(ϕ) (B ⊗ I2)
(
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G(ϕ)⊤ ν

)
,

(14)
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following error variables:
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V := −A(ϕ)z̃, (16)

where A(ϕ) := (M0)−1G(ϕ)(B⊗ I2)λz̃ with λz̃ > 0 being
a tunable scalar controller gain. Observe that Z + V = ν,
and thus it follows from the second equation of (9) that:

MŻ = u+ d+ F0(V̇ ) + F1(V̇ )δ (17)
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ṙi = Gi(ϕi)
⊤ νi. (7)

We can now formally state the control goal as formation
control plus disturbance rejection, namely:

lim
t→+∞

z̃i = 0 for 1, . . . ,M, (8)

in presence of matched input disturbances di, generated by
exosystems (3).

III. PRELIMINARY MANIPULATIONS

A. Robot dynamics of the overall network

We first write the dynamics of the overall network of
N robots in compact form. To this end, we introduce the
following notation:

q := (q⊤1 , . . . , q
⊤
N )⊤ , ν := (ν⊤1 , . . . , ν⊤N )⊤,

u := (u⊤
1 , . . . , u

⊤
N )⊤ , d := (d⊤1 , . . . , d

⊤
N )⊤,

S(q) := block.diag {S1(q1), . . . , SN (qN )} ,
M := block.diag {M1, . . . ,MN} .

We can now write (2) as follows:

q̇ = S(q) νi

M ν̇ = u+ d, (9)

B. Exosystem dynamics in compact form

With the aim of formulating the overall dynamics of the
N exosystems in compact form, we introduce the following
notation:

θ := (θ⊤1 , . . . , θ
⊤
N )⊤ , f := (f⊤

1 , . . . , f⊤
N )⊤,

σ := (σ⊤
1 , . . . , σ

⊤
N )⊤,

Tσ := block.diag {T σ1
1 , . . . , TσN

N } ,
Φσ := block.diag {Φσ1

1 , . . . ,ΦσN

N } ,
Ψ := block.diag {Ψ1, . . . ,ΨN} .

We can now write (3) as follows:

θ̇ = TσΦσ(T σ)−1θ

d = −Ψ(Tσ)−1θ. (10)

Note that θ ∈ Rk, where k := k1, . . . , kN , i.e. the sum of
the dimension of the state of each exosystem (3).

C. Linear parametrization for model mismatches

We assume that the uncertainties in model (9) are struc-
tured. Let δi ∈ Rnδ,i denote the linear mismatches between
the nominal and real matrix Mi. In order to fully char-
acterize δi, we introduce the nominal mass matrix M0

i =
diag

{
m0

i , I0
i

}
, with m0

i and I0
i respectively denoting the

nominal mass and inertia of robot i. Furthermore, we define
the matrix function M1

i :∈ R2 → RN×nδi in such a way that
the following linear parametrization for robot i = 1, . . . N
holds true for all vectors s ∈ R2:

Mis =: M0
i s+M1

i (s) δi, (11)

We can then define M0 := block.diag
{
M0

1 , . . . ,M
0
N

}
,

M1 := block.diag
{
M1

1 , . . . ,M
1
N

}
, and δ = (δ⊤1 , . . . , δ⊤N )

so that the following linear parametrization holds true for the
overall network:

Ms =: M0s+M1(s) δ. (12)

for all s ∈ R2N .

D. Error system definition

In the spirit of [7] and [4], an error system is built from
the overall network dynamics (9) in order to embed the
disturbance rejection and formation control goals (8). To this
end, we first recall the control law used in [8], [17], [16] to
achieve formation control without disturbance rejection, then
we define our error system according to such control law. By
defining

ϕ := (ϕ⊤
1 , . . . , ϕ

⊤
N )⊤,

G(ϕ) := block.diag {G1(ϕ1), . . . , GN (ϕN )} ,

it is then immediate to check from (5) and (7) that

˙̃z = (B ⊗ I2)
⊤ G(ϕ)⊤ ν. (13)

The control law u = uf used in [8], [17], [16] to achieve
formation control, namely

uf = −G(ϕ) (B ⊗ I2)
(
Kp z̃ +Kd (B ⊗ I2)

⊤
G(ϕ)⊤ ν

)
,

(14)

where Kp,Kv are diagonal positive definite matrices of
appropriate dimensions. Based upon (14), we define the
following error variables:

Z := ν +A(ϕ)z̃ (15)
V := −A(ϕ)z̃, (16)

where A(ϕ) := (M0)−1G(ϕ)(B⊗ I2)λz̃ with λz̃ > 0 being
a tunable scalar controller gain. Observe that Z + V = ν,
and thus it follows from the second equation of (9) that:
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1 , . . . , u

⊤
N )⊤ , d := (d⊤1 , . . . , d

⊤
N )⊤,

S(q) := block.diag {S1(q1), . . . , SN (qN )} ,
M := block.diag {M1, . . . ,MN} .

We can now write (2) as follows:

q̇ = S(q) νi

M ν̇ = u+ d, (9)

B. Exosystem dynamics in compact form

With the aim of formulating the overall dynamics of the
N exosystems in compact form, we introduce the following
notation:

θ := (θ⊤1 , . . . , θ
⊤
N )⊤ , f := (f⊤

1 , . . . , f⊤
N )⊤,

σ := (σ⊤
1 , . . . , σ

⊤
N )⊤,

Tσ := block.diag {T σ1
1 , . . . , TσN

N } ,
Φσ := block.diag {Φσ1

1 , . . . ,ΦσN

N } ,
Ψ := block.diag {Ψ1, . . . ,ΨN} .

We can now write (3) as follows:

θ̇ = TσΦσ(T σ)−1θ

d = −Ψ(Tσ)−1θ. (10)

Note that θ ∈ Rk, where k := k1, . . . , kN , i.e. the sum of
the dimension of the state of each exosystem (3).

C. Linear parametrization for model mismatches

We assume that the uncertainties in model (9) are struc-
tured. Let δi ∈ Rnδ,i denote the linear mismatches between
the nominal and real matrix Mi. In order to fully char-
acterize δi, we introduce the nominal mass matrix M0

i =
diag

{
m0

i , I0
i

}
, with m0

i and I0
i respectively denoting the

nominal mass and inertia of robot i. Furthermore, we define
the matrix function M1

i :∈ R2 → RN×nδi in such a way that
the following linear parametrization for robot i = 1, . . . N
holds true for all vectors s ∈ R2:

Mis =: M0
i s+M1

i (s) δi, (11)

We can then define M0 := block.diag
{
M0

1 , . . . ,M
0
N

}
,

M1 := block.diag
{
M1

1 , . . . ,M
1
N

}
, and δ = (δ⊤1 , . . . , δ⊤N )

so that the following linear parametrization holds true for the
overall network:

Ms =: M0s+M1(s) δ. (12)

for all s ∈ R2N .

D. Error system definition

In the spirit of [7] and [4], an error system is built from
the overall network dynamics (9) in order to embed the
disturbance rejection and formation control goals (8). To this
end, we first recall the control law used in [8], [17], [16] to
achieve formation control without disturbance rejection, then
we define our error system according to such control law. By
defining

ϕ := (ϕ⊤
1 , . . . , ϕ

⊤
N )⊤,

G(ϕ) := block.diag {G1(ϕ1), . . . , GN (ϕN )} ,

it is then immediate to check from (5) and (7) that

˙̃z = (B ⊗ I2)
⊤ G(ϕ)⊤ ν. (13)

The control law u = uf used in [8], [17], [16] to achieve
formation control, namely

uf = −G(ϕ) (B ⊗ I2)
(
Kp z̃ +Kd (B ⊗ I2)

⊤
G(ϕ)⊤ ν

)
,

(14)

where Kp,Kv are diagonal positive definite matrices of
appropriate dimensions. Based upon (14), we define the
following error variables:

Z := ν +A(ϕ)z̃ (15)
V := −A(ϕ)z̃, (16)

where A(ϕ) := (M0)−1G(ϕ)(B⊗ I2)λz̃ with λz̃ > 0 being
a tunable scalar controller gain. Observe that Z + V = ν,
and thus it follows from the second equation of (9) that:

MŻ = u+ d+ F0(V̇ ) + F1(V̇ )δ (17)
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them into the vector z̃ := [z̃⊤1 , . . . , z̃⊤M ]⊤. By introducing
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Gi(ϕi) :=
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)
, (6)

it is straightforward to obtain from (2) and (4) that

ṙi = Gi(ϕi)
⊤ νi. (7)

We can now formally state the control goal as formation
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and thus it follows from the second equation of (9) that:
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Where A(ϕ) := (M0)−1G(ϕ)(B ⊗I2)λz˜ with λz˜ > 0 being a tunable 
scalar controller gain. Observe that Z + V = ν, and thus it follows 
from the second equation of (9) that:

With F0(V
˙) := −M0V˙ and F1(V˙) := −M1(V˙). Therefore the 

control input u¯ := u + F0(V˙) applied to (17) yields the error 
system:

The following Lemma motivates the choice of Z in the definition 
of error system (18).

Lemma 1: If Z(t) is a L2 signal, then limt→+∞ z(t) = 0 and limt→+∞ 
z˙(t) = 0 for any arbitrary continuous signal ϕ(t).
Proof: Pre-multiply the definition of Z(t) in (15) by (B⊤ ⊗ I2)
G(ϕ(t))⊤ so as to obtain:

where we made use of equality (13). Note that G(ϕ) is nonsingular 
for all ϕ ∈ [0,π)N. It follows that                                  is symmetric 
positive definite for all ϕ ∈ [0,π) , and thus there exists a matrix 
M ≻ 0 such that G(ϕ)⊤(M0)−1G(ϕ) ⪰ M for all ϕ ∈ [0,π)N. Consider 
the following Lyapunov function                             Note that V is 
radially unbounded. Let η(t) := (B ⊗ I2)z (t) and e(t) := G(ϕ(t))
Z(t). Then, taking the time derivative of V along the trajectories 
of (19) yields:

Dissipation (20) shows that system (19) is strictly output passive 
wrt output η(t) and input e(t). Since Z(t) is a L2 signal and ∥G(ϕ)∥ 
≤ b < +∞ for any ϕ ∈ [0,π), it follows that e(t) is also a L2 signal.

System (19) is zero-state detectable. Indeed, if η ≡ 0 and e ≡ 0, 
then z ∈ N(B ⊗ I2) = R(B⊤ ⊗ I2)

⊥, with N and R denoting null- 
and range-space respectively. Relation (5) proves that z = R(B⊤ 
⊗ I2), and we thus conclude that z = 0.

Given strict output passivity and zero-state detectability of the 
system, and due to e(t) being aL2 signal and V being a radially 
unbounded storage function, we conclude by virtue of [9, 
Theorem III.1] that z → 0 as t → +∞. By virtue of Barbalat’s 
Lemma, it follows z˙ → 0 as t → +∞.  

E. Linear Parametrization for Frequency Mismatches
As in standard model-based approaches, an internal model of 
exosystem (10) has to be incorporated in the dynamic controller. 
According to the procedure proposed in [12], let H ∈ℝ(2k+1)×(2k+1) 
and N ∈ ℝ(2k+1)×n be matrices satisfying the following set of 
assumptions:
• (A0) H is Hurwitz; 
• (A1) the couple (H,N) is controllable;
• (A2) H,Φσ have disjoint spectra. Since (A2) holds, Sylvester 
equation

has a unique nonsingular solution Tσ. The dynamics of the 
internal model unit are then defined as:

where η ∈ ℝ(2k+1) is the internal state and P0 will be defined 
in section IV. In order to make the internal model unit also 
adaptive, additional states taking the form of a matrix ζ ∈ 
ℝ(2k+1)×nδ are imported in the dynamics and the following linear 
parametrization is introduced:

with functions Q1(·, ·),Q2(·, ·),Q3(·) vanishing at σ = 0. Note 
that if T0 denotes the solution of Sylvester equation (21) for the 
nominal case (σ = 0), then we have l32(η) = −Ψ(T0)−1η. We are 
now ready to state our main result.

4. Main Result and Proof’s Discussion
Let ξ and ρ respectively denote the vector of unknown parameters 
and regressor matrix, as follows:

Let ξ :=  − ξ denote the parameter estimation error. The adaptive 
controller is then defined as:

where KZ, Γξ are positive-definite controller gains and P0, P1 are 
given as:

Theorem 1: (Convergence of proposed controller) Consider 
system (10) and (18). Controller (23) achieves the disturbance 
rejection and formation control goal (8), for any initial condition 
of the closed-loop system.
Proof: Consider the change of coordinates:

Taking the time derivative of η yields:

φi

yC,i

yA,i

xA,i xC,i

Fig. 1. Unicycle robot i.

them into the vector z̃ := [z̃⊤1 , . . . , z̃⊤M ]⊤. By introducing
the matrix Gi : S → R2×2 as

Gi(ϕi) :=

(
cosϕi sinϕi

−dAC,i sinϕi dAC,i cosϕi

)
, (6)

it is straightforward to obtain from (2) and (4) that

ṙi = Gi(ϕi)
⊤ νi. (7)

We can now formally state the control goal as formation
control plus disturbance rejection, namely:

lim
t→+∞

z̃i = 0 for 1, . . . ,M, (8)

in presence of matched input disturbances di, generated by
exosystems (3).

III. PRELIMINARY MANIPULATIONS

A. Robot dynamics of the overall network

We first write the dynamics of the overall network of
N robots in compact form. To this end, we introduce the
following notation:

q := (q⊤1 , . . . , q
⊤
N )⊤ , ν := (ν⊤1 , . . . , ν⊤N )⊤,

u := (u⊤
1 , . . . , u

⊤
N )⊤ , d := (d⊤1 , . . . , d

⊤
N )⊤,

S(q) := block.diag {S1(q1), . . . , SN (qN )} ,
M := block.diag {M1, . . . ,MN} .

We can now write (2) as follows:

q̇ = S(q) νi

M ν̇ = u+ d, (9)

B. Exosystem dynamics in compact form

With the aim of formulating the overall dynamics of the
N exosystems in compact form, we introduce the following
notation:

θ := (θ⊤1 , . . . , θ
⊤
N )⊤ , f := (f⊤

1 , . . . , f⊤
N )⊤,

σ := (σ⊤
1 , . . . , σ

⊤
N )⊤,

Tσ := block.diag {T σ1
1 , . . . , TσN

N } ,
Φσ := block.diag {Φσ1

1 , . . . ,ΦσN

N } ,
Ψ := block.diag {Ψ1, . . . ,ΨN} .

We can now write (3) as follows:

θ̇ = TσΦσ(T σ)−1θ

d = −Ψ(Tσ)−1θ. (10)

Note that θ ∈ Rk, where k := k1, . . . , kN , i.e. the sum of
the dimension of the state of each exosystem (3).

C. Linear parametrization for model mismatches

We assume that the uncertainties in model (9) are struc-
tured. Let δi ∈ Rnδ,i denote the linear mismatches between
the nominal and real matrix Mi. In order to fully char-
acterize δi, we introduce the nominal mass matrix M0

i =
diag

{
m0

i , I0
i

}
, with m0

i and I0
i respectively denoting the

nominal mass and inertia of robot i. Furthermore, we define
the matrix function M1

i :∈ R2 → RN×nδi in such a way that
the following linear parametrization for robot i = 1, . . . N
holds true for all vectors s ∈ R2:

Mis =: M0
i s+M1

i (s) δi, (11)

We can then define M0 := block.diag
{
M0

1 , . . . ,M
0
N

}
,

M1 := block.diag
{
M1

1 , . . . ,M
1
N

}
, and δ = (δ⊤1 , . . . , δ⊤N )

so that the following linear parametrization holds true for the
overall network:

Ms =: M0s+M1(s) δ. (12)

for all s ∈ R2N .

D. Error system definition

In the spirit of [7] and [4], an error system is built from
the overall network dynamics (9) in order to embed the
disturbance rejection and formation control goals (8). To this
end, we first recall the control law used in [8], [17], [16] to
achieve formation control without disturbance rejection, then
we define our error system according to such control law. By
defining

ϕ := (ϕ⊤
1 , . . . , ϕ

⊤
N )⊤,

G(ϕ) := block.diag {G1(ϕ1), . . . , GN (ϕN )} ,

it is then immediate to check from (5) and (7) that

˙̃z = (B ⊗ I2)
⊤ G(ϕ)⊤ ν. (13)

The control law u = uf used in [8], [17], [16] to achieve
formation control, namely

uf = −G(ϕ) (B ⊗ I2)
(
Kp z̃ +Kd (B ⊗ I2)

⊤
G(ϕ)⊤ ν

)
,

(14)

where Kp,Kv are diagonal positive definite matrices of
appropriate dimensions. Based upon (14), we define the
following error variables:

Z := ν +A(ϕ)z̃ (15)
V := −A(ϕ)z̃, (16)

where A(ϕ) := (M0)−1G(ϕ)(B⊗ I2)λz̃ with λz̃ > 0 being
a tunable scalar controller gain. Observe that Z + V = ν,
and thus it follows from the second equation of (9) that:

MŻ = u+ d+ F0(V̇ ) + F1(V̇ )δ (17)

with F0(V̇ ) := −M0V̇ and F1(V̇ ) := −M1(V̇ ). Therefore
the control input ū := u+ F0(V̇ ) applied to (17) yields the
error system:

MŻ = F1(V̇ )δ + ū+ d. (18)

The following Lemma motivates the choice of Z in the
definition of error system (18).

Lemma 1: If Z(t) is a L2 signal, then limt→+∞ z̃(t) = 0
and limt→+∞ ˙̃z(t) = 0 for any arbitrary continuous signal
ϕ(t).

Proof: Pre-multiply the definition of Z(t) in (15) by
(B⊤ ⊗ I2)G(ϕ(t))⊤ so as to obtain:
˙̃z(t) = (B⊤ ⊗ I2)G(ϕ(t))⊤ Z(t)

− (B⊤ ⊗ I2)G(ϕ(t))⊤(M0)−1G(ϕ(t))(B ⊗ I2)λz̃ z̃(t). (19)

where we made use of equality (13). Note that G(ϕ)
is nonsingular for all ϕ ∈ [0, π)

N . It follows that
G(ϕ)⊤(M0)−1G(ϕ) is symmetric positive definite for all
ϕ ∈ [0, π)

N , and thus there exists a matrix M̄ ≻ 0 such
that G(ϕ)⊤(M0)−1G(ϕ) ⪰ M̄ for all ϕ ∈ [0, π)

N . Consider
the following Lyapunov function V := 1

2 z̃
⊤z̃ Note that

V is radially unbounded. Let η(t) := (B ⊗ I2)z̃(t) and
e(t) := G(ϕ(t))Z(t). Then, taking the time derivative of
V along the trajectories of (19) yields:

V̇ = −η⊤G(ϕ)⊤(M0)−1G(ϕ)η + η⊤G(ϕ)Z

≤ −η⊤M̄η + η⊤e. (20)

Dissipation (20) shows that system (19) is strictly output
passive wrt output η(t) and input e(t). Since Z(t) is a L2

signal and ∥G(ϕ)∥ ≤ b < +∞ for any ϕ ∈ [0, π), it follows
that e(t) is also a L2 signal.

System (19) is zero-state detectable. Indeed, if η ≡ 0 and
e ≡ 0, then z̃ ∈ N (B ⊗ I2) = R(B⊤ ⊗ I2)

⊥, with N and
R denoting null- and range-space respectively. Relation (5)
proves that z̃ = R(B⊤ ⊗ I2), and we thus conclude that
z̃ = 0.

Given strict output passivity and zero-state detectability of
the system, and due to e(t) being a L2 signal and V being a
radially unbounded storage function, we conclude by virtue
of [9, Theorem III.1] that z̃ → 0 as t → +∞. By virtue of
Barbalat’s Lemma, it follows ˙̃z → 0 as t → +∞.

E. Linear parametrization for frequency mismatches
As in standard model-based approaches, an internal model

of exosystem (10) has to be incorporated in the dynamic
controller. According to the procedure proposed in [12],
let H ∈ R(2k+1)×(2k+1) and N ∈ R(2k+1)×n be matrices
satisfying the following set of assumptions:

• (A0) H is Hurwitz;
• (A1) the couple (H,N) is controllable;
• (A2) H,Φσ have disjoint spectra.

Since (A2) holds, Sylvester equation

T σΦσ −HT σ = NΨ (21)

has a unique nonsingular solution Tσ . The dynamics of the
internal model unit are then defined as:

η̇ = Hη +Nū+ P0(Z),

where η ∈ R(2k+1) is the internal state and P0 will be defined
in section IV. In order to make the internal model unit also
adaptive, additional states taking the form of a matrix ζ ∈
R(2k+1)×nδ are imported in the dynamics and the following
linear parametrization is introduced:

l11(ζ)δ + l12(ζ)Q1(δ, σ) := Ψ(Tσ)−1ζδ

l21(q, Z)δ + l22(q, Z)Q2(δ, σ) + l23(q, Z) := Ψ(Tσ)−1NMZ

l31(η)Q3(σ) + l32(η) := −Ψ(Tσ)−1η,
(22)

with functions Q1(·, ·), Q2(·, ·), Q3(·) vanishing at σ = 0.
Note that if T 0 denotes the solution of Sylvester equation
(21) for the nominal case (σ = 0), then we have l32(η) =
−Ψ(T 0)−1η. We are now ready to state our main result.

IV. MAIN RESULT AND PROOF’S DISCUSSION

Let ξ and ρ respectively denote the vector of unknown
parameters and regressor matrix, as follows:

ξ :=




δ
Q1(δ, σ)
Q2(δ, σ)
Q3(σ)


 ,

ρ(q, q̇, v, v̇, z, η, ζ) :=





F1(V̇ ) + l11(ζ) + l21(q, Z)

⊤

l12(ζ)
⊤

l22(q, Z)⊤

l31(η)
⊤




⊤

.

Let ξ̃ := ξ̂ − ξ denote the parameter estimation error. The
adaptive controller is then defined as:




ζ̇ = Hζ + P1(V̇ , Z)

η̇ = Hη +Nū+ P0(Z)

ξ̂ = Γξ̂ ρ
⊤Z

ū = Ψ(T 0)−1η − l23(Z)−KZZ − ρ ξ̂,

(23)

where KZ , Γξ̂ are positive-definite controller gains and P0,
P1 are given as:

P0(Z) := −HNM0Z

P1(V̇ , Z) := HNM1(Z)−NF1(V̇ ).

Theorem 1: (Convergence of proposed controller) Con-
sider system (10) and (18). Controller (23) achieves the
disturbance rejection and formation control goal (8), for any
initial condition of the closed-loop system.

Proof: Consider the change of coordinates:


ξ̃ = ξ̂ − ξ

η̃ = η − θ −NMZ.

with F0(V̇ ) := −M0V̇ and F1(V̇ ) := −M1(V̇ ). Therefore
the control input ū := u+ F0(V̇ ) applied to (17) yields the
error system:

MŻ = F1(V̇ )δ + ū+ d. (18)

The following Lemma motivates the choice of Z in the
definition of error system (18).

Lemma 1: If Z(t) is a L2 signal, then limt→+∞ z̃(t) = 0
and limt→+∞ ˙̃z(t) = 0 for any arbitrary continuous signal
ϕ(t).

Proof: Pre-multiply the definition of Z(t) in (15) by
(B⊤ ⊗ I2)G(ϕ(t))⊤ so as to obtain:
˙̃z(t) = (B⊤ ⊗ I2)G(ϕ(t))⊤ Z(t)

− (B⊤ ⊗ I2)G(ϕ(t))⊤(M0)−1G(ϕ(t))(B ⊗ I2)λz̃ z̃(t). (19)

where we made use of equality (13). Note that G(ϕ)
is nonsingular for all ϕ ∈ [0, π)

N . It follows that
G(ϕ)⊤(M0)−1G(ϕ) is symmetric positive definite for all
ϕ ∈ [0, π)

N , and thus there exists a matrix M̄ ≻ 0 such
that G(ϕ)⊤(M0)−1G(ϕ) ⪰ M̄ for all ϕ ∈ [0, π)

N . Consider
the following Lyapunov function V := 1

2 z̃
⊤z̃ Note that

V is radially unbounded. Let η(t) := (B ⊗ I2)z̃(t) and
e(t) := G(ϕ(t))Z(t). Then, taking the time derivative of
V along the trajectories of (19) yields:

V̇ = −η⊤G(ϕ)⊤(M0)−1G(ϕ)η + η⊤G(ϕ)Z

≤ −η⊤M̄η + η⊤e. (20)

Dissipation (20) shows that system (19) is strictly output
passive wrt output η(t) and input e(t). Since Z(t) is a L2

signal and ∥G(ϕ)∥ ≤ b < +∞ for any ϕ ∈ [0, π), it follows
that e(t) is also a L2 signal.

System (19) is zero-state detectable. Indeed, if η ≡ 0 and
e ≡ 0, then z̃ ∈ N (B ⊗ I2) = R(B⊤ ⊗ I2)

⊥, with N and
R denoting null- and range-space respectively. Relation (5)
proves that z̃ = R(B⊤ ⊗ I2), and we thus conclude that
z̃ = 0.

Given strict output passivity and zero-state detectability of
the system, and due to e(t) being a L2 signal and V being a
radially unbounded storage function, we conclude by virtue
of [9, Theorem III.1] that z̃ → 0 as t → +∞. By virtue of
Barbalat’s Lemma, it follows ˙̃z → 0 as t → +∞.

E. Linear parametrization for frequency mismatches
As in standard model-based approaches, an internal model

of exosystem (10) has to be incorporated in the dynamic
controller. According to the procedure proposed in [12],
let H ∈ R(2k+1)×(2k+1) and N ∈ R(2k+1)×n be matrices
satisfying the following set of assumptions:

• (A0) H is Hurwitz;
• (A1) the couple (H,N) is controllable;
• (A2) H,Φσ have disjoint spectra.

Since (A2) holds, Sylvester equation

T σΦσ −HT σ = NΨ (21)

has a unique nonsingular solution Tσ . The dynamics of the
internal model unit are then defined as:

η̇ = Hη +Nū+ P0(Z),

where η ∈ R(2k+1) is the internal state and P0 will be defined
in section IV. In order to make the internal model unit also
adaptive, additional states taking the form of a matrix ζ ∈
R(2k+1)×nδ are imported in the dynamics and the following
linear parametrization is introduced:

l11(ζ)δ + l12(ζ)Q1(δ, σ) := Ψ(Tσ)−1ζδ

l21(q, Z)δ + l22(q, Z)Q2(δ, σ) + l23(q, Z) := Ψ(Tσ)−1NMZ

l31(η)Q3(σ) + l32(η) := −Ψ(Tσ)−1η,
(22)

with functions Q1(·, ·), Q2(·, ·), Q3(·) vanishing at σ = 0.
Note that if T 0 denotes the solution of Sylvester equation
(21) for the nominal case (σ = 0), then we have l32(η) =
−Ψ(T 0)−1η. We are now ready to state our main result.

IV. MAIN RESULT AND PROOF’S DISCUSSION

Let ξ and ρ respectively denote the vector of unknown
parameters and regressor matrix, as follows:

ξ :=




δ
Q1(δ, σ)
Q2(δ, σ)
Q3(σ)


 ,

ρ(q, q̇, v, v̇, z, η, ζ) :=





F1(V̇ ) + l11(ζ) + l21(q, Z)

⊤

l12(ζ)
⊤

l22(q, Z)⊤

l31(η)
⊤




⊤

.

Let ξ̃ := ξ̂ − ξ denote the parameter estimation error. The
adaptive controller is then defined as:





ζ̇ = Hζ + P1(V̇ , Z)

η̇ = Hη +Nū+ P0(Z)

ξ̂ = Γξ̂ ρ
⊤Z

ū = Ψ(T 0)−1η − l23(Z)−KZZ − ρ ξ̂,

(23)

where KZ , Γξ̂ are positive-definite controller gains and P0,
P1 are given as:

P0(Z) := −HNM0Z

P1(V̇ , Z) := HNM1(Z)−NF1(V̇ ).

Theorem 1: (Convergence of proposed controller) Con-
sider system (10) and (18). Controller (23) achieves the
disturbance rejection and formation control goal (8), for any
initial condition of the closed-loop system.

Proof: Consider the change of coordinates:


ξ̃ = ξ̂ − ξ

η̃ = η − θ −NMZ.

with F0(V̇ ) := −M0V̇ and F1(V̇ ) := −M1(V̇ ). Therefore
the control input ū := u+ F0(V̇ ) applied to (17) yields the
error system:

MŻ = F1(V̇ )δ + ū+ d. (18)

The following Lemma motivates the choice of Z in the
definition of error system (18).

Lemma 1: If Z(t) is a L2 signal, then limt→+∞ z̃(t) = 0
and limt→+∞ ˙̃z(t) = 0 for any arbitrary continuous signal
ϕ(t).

Proof: Pre-multiply the definition of Z(t) in (15) by
(B⊤ ⊗ I2)G(ϕ(t))⊤ so as to obtain:
˙̃z(t) = (B⊤ ⊗ I2)G(ϕ(t))⊤ Z(t)

− (B⊤ ⊗ I2)G(ϕ(t))⊤(M0)−1G(ϕ(t))(B ⊗ I2)λz̃ z̃(t). (19)

where we made use of equality (13). Note that G(ϕ)
is nonsingular for all ϕ ∈ [0, π)

N . It follows that
G(ϕ)⊤(M0)−1G(ϕ) is symmetric positive definite for all
ϕ ∈ [0, π)

N , and thus there exists a matrix M̄ ≻ 0 such
that G(ϕ)⊤(M0)−1G(ϕ) ⪰ M̄ for all ϕ ∈ [0, π)

N . Consider
the following Lyapunov function V := 1

2 z̃
⊤z̃ Note that

V is radially unbounded. Let η(t) := (B ⊗ I2)z̃(t) and
e(t) := G(ϕ(t))Z(t). Then, taking the time derivative of
V along the trajectories of (19) yields:

V̇ = −η⊤G(ϕ)⊤(M0)−1G(ϕ)η + η⊤G(ϕ)Z

≤ −η⊤M̄η + η⊤e. (20)

Dissipation (20) shows that system (19) is strictly output
passive wrt output η(t) and input e(t). Since Z(t) is a L2

signal and ∥G(ϕ)∥ ≤ b < +∞ for any ϕ ∈ [0, π), it follows
that e(t) is also a L2 signal.

System (19) is zero-state detectable. Indeed, if η ≡ 0 and
e ≡ 0, then z̃ ∈ N (B ⊗ I2) = R(B⊤ ⊗ I2)

⊥, with N and
R denoting null- and range-space respectively. Relation (5)
proves that z̃ = R(B⊤ ⊗ I2), and we thus conclude that
z̃ = 0.

Given strict output passivity and zero-state detectability of
the system, and due to e(t) being a L2 signal and V being a
radially unbounded storage function, we conclude by virtue
of [9, Theorem III.1] that z̃ → 0 as t → +∞. By virtue of
Barbalat’s Lemma, it follows ˙̃z → 0 as t → +∞.

E. Linear parametrization for frequency mismatches
As in standard model-based approaches, an internal model

of exosystem (10) has to be incorporated in the dynamic
controller. According to the procedure proposed in [12],
let H ∈ R(2k+1)×(2k+1) and N ∈ R(2k+1)×n be matrices
satisfying the following set of assumptions:

• (A0) H is Hurwitz;
• (A1) the couple (H,N) is controllable;
• (A2) H,Φσ have disjoint spectra.

Since (A2) holds, Sylvester equation

T σΦσ −HT σ = NΨ (21)

has a unique nonsingular solution Tσ . The dynamics of the
internal model unit are then defined as:

η̇ = Hη +Nū+ P0(Z),

where η ∈ R(2k+1) is the internal state and P0 will be defined
in section IV. In order to make the internal model unit also
adaptive, additional states taking the form of a matrix ζ ∈
R(2k+1)×nδ are imported in the dynamics and the following
linear parametrization is introduced:

l11(ζ)δ + l12(ζ)Q1(δ, σ) := Ψ(Tσ)−1ζδ

l21(q, Z)δ + l22(q, Z)Q2(δ, σ) + l23(q, Z) := Ψ(Tσ)−1NMZ

l31(η)Q3(σ) + l32(η) := −Ψ(Tσ)−1η,
(22)

with functions Q1(·, ·), Q2(·, ·), Q3(·) vanishing at σ = 0.
Note that if T 0 denotes the solution of Sylvester equation
(21) for the nominal case (σ = 0), then we have l32(η) =
−Ψ(T 0)−1η. We are now ready to state our main result.

IV. MAIN RESULT AND PROOF’S DISCUSSION

Let ξ and ρ respectively denote the vector of unknown
parameters and regressor matrix, as follows:

ξ :=




δ
Q1(δ, σ)
Q2(δ, σ)
Q3(σ)


 ,

ρ(q, q̇, v, v̇, z, η, ζ) :=





F1(V̇ ) + l11(ζ) + l21(q, Z)

⊤

l12(ζ)
⊤

l22(q, Z)⊤

l31(η)
⊤




⊤

.

Let ξ̃ := ξ̂ − ξ denote the parameter estimation error. The
adaptive controller is then defined as:





ζ̇ = Hζ + P1(V̇ , Z)

η̇ = Hη +Nū+ P0(Z)

ξ̂ = Γξ̂ ρ
⊤Z

ū = Ψ(T 0)−1η − l23(Z)−KZZ − ρ ξ̂,

(23)

where KZ , Γξ̂ are positive-definite controller gains and P0,
P1 are given as:

P0(Z) := −HNM0Z

P1(V̇ , Z) := HNM1(Z)−NF1(V̇ ).

Theorem 1: (Convergence of proposed controller) Con-
sider system (10) and (18). Controller (23) achieves the
disturbance rejection and formation control goal (8), for any
initial condition of the closed-loop system.

Proof: Consider the change of coordinates:


ξ̃ = ξ̂ − ξ

η̃ = η − θ −NMZ.

with F0(V̇ ) := −M0V̇ and F1(V̇ ) := −M1(V̇ ). Therefore
the control input ū := u+ F0(V̇ ) applied to (17) yields the
error system:

MŻ = F1(V̇ )δ + ū+ d. (18)

The following Lemma motivates the choice of Z in the
definition of error system (18).

Lemma 1: If Z(t) is a L2 signal, then limt→+∞ z̃(t) = 0
and limt→+∞ ˙̃z(t) = 0 for any arbitrary continuous signal
ϕ(t).

Proof: Pre-multiply the definition of Z(t) in (15) by
(B⊤ ⊗ I2)G(ϕ(t))⊤ so as to obtain:
˙̃z(t) = (B⊤ ⊗ I2)G(ϕ(t))⊤ Z(t)

− (B⊤ ⊗ I2)G(ϕ(t))⊤(M0)−1G(ϕ(t))(B ⊗ I2)λz̃ z̃(t). (19)

where we made use of equality (13). Note that G(ϕ)
is nonsingular for all ϕ ∈ [0, π)

N . It follows that
G(ϕ)⊤(M0)−1G(ϕ) is symmetric positive definite for all
ϕ ∈ [0, π)

N , and thus there exists a matrix M̄ ≻ 0 such
that G(ϕ)⊤(M0)−1G(ϕ) ⪰ M̄ for all ϕ ∈ [0, π)

N . Consider
the following Lyapunov function V := 1

2 z̃
⊤z̃ Note that

V is radially unbounded. Let η(t) := (B ⊗ I2)z̃(t) and
e(t) := G(ϕ(t))Z(t). Then, taking the time derivative of
V along the trajectories of (19) yields:

V̇ = −η⊤G(ϕ)⊤(M0)−1G(ϕ)η + η⊤G(ϕ)Z

≤ −η⊤M̄η + η⊤e. (20)

Dissipation (20) shows that system (19) is strictly output
passive wrt output η(t) and input e(t). Since Z(t) is a L2

signal and ∥G(ϕ)∥ ≤ b < +∞ for any ϕ ∈ [0, π), it follows
that e(t) is also a L2 signal.

System (19) is zero-state detectable. Indeed, if η ≡ 0 and
e ≡ 0, then z̃ ∈ N (B ⊗ I2) = R(B⊤ ⊗ I2)

⊥, with N and
R denoting null- and range-space respectively. Relation (5)
proves that z̃ = R(B⊤ ⊗ I2), and we thus conclude that
z̃ = 0.

Given strict output passivity and zero-state detectability of
the system, and due to e(t) being a L2 signal and V being a
radially unbounded storage function, we conclude by virtue
of [9, Theorem III.1] that z̃ → 0 as t → +∞. By virtue of
Barbalat’s Lemma, it follows ˙̃z → 0 as t → +∞.

E. Linear parametrization for frequency mismatches
As in standard model-based approaches, an internal model

of exosystem (10) has to be incorporated in the dynamic
controller. According to the procedure proposed in [12],
let H ∈ R(2k+1)×(2k+1) and N ∈ R(2k+1)×n be matrices
satisfying the following set of assumptions:

• (A0) H is Hurwitz;
• (A1) the couple (H,N) is controllable;
• (A2) H,Φσ have disjoint spectra.

Since (A2) holds, Sylvester equation

T σΦσ −HT σ = NΨ (21)

has a unique nonsingular solution T σ . The dynamics of the
internal model unit are then defined as:

η̇ = Hη +Nū+ P0(Z),

where η ∈ R(2k+1) is the internal state and P0 will be defined
in section IV. In order to make the internal model unit also
adaptive, additional states taking the form of a matrix ζ ∈
R(2k+1)×nδ are imported in the dynamics and the following
linear parametrization is introduced:

l11(ζ)δ + l12(ζ)Q1(δ, σ) := Ψ(Tσ)−1ζδ

l21(q, Z)δ + l22(q, Z)Q2(δ, σ) + l23(q, Z) := Ψ(Tσ)−1NMZ

l31(η)Q3(σ) + l32(η) := −Ψ(Tσ)−1η,
(22)

with functions Q1(·, ·), Q2(·, ·), Q3(·) vanishing at σ = 0.
Note that if T 0 denotes the solution of Sylvester equation
(21) for the nominal case (σ = 0), then we have l32(η) =
−Ψ(T 0)−1η. We are now ready to state our main result.

IV. MAIN RESULT AND PROOF’S DISCUSSION

Let ξ and ρ respectively denote the vector of unknown
parameters and regressor matrix, as follows:

ξ :=




δ
Q1(δ, σ)
Q2(δ, σ)
Q3(σ)


 ,

ρ(q, q̇, v, v̇, z, η, ζ) :=





F1(V̇ ) + l11(ζ) + l21(q, Z)

⊤

l12(ζ)
⊤

l22(q, Z)⊤

l31(η)
⊤




⊤

.

Let ξ̃ := ξ̂ − ξ denote the parameter estimation error. The
adaptive controller is then defined as:





ζ̇ = Hζ + P1(V̇ , Z)

η̇ = Hη +Nū+ P0(Z)

ξ̂ = Γξ̂ ρ
⊤Z

ū = Ψ(T 0)−1η − l23(Z)−KZZ − ρ ξ̂,

(23)

where KZ , Γξ̂ are positive-definite controller gains and P0,
P1 are given as:

P0(Z) := −HNM0Z

P1(V̇ , Z) := HNM1(Z)−NF1(V̇ ).

Theorem 1: (Convergence of proposed controller) Con-
sider system (10) and (18). Controller (23) achieves the
disturbance rejection and formation control goal (8), for any
initial condition of the closed-loop system.

Proof: Consider the change of coordinates:


ξ̃ = ξ̂ − ξ

η̃ = η − θ −NMZ.

with F0(V̇ ) := −M0V̇ and F1(V̇ ) := −M1(V̇ ). Therefore
the control input ū := u+ F0(V̇ ) applied to (17) yields the
error system:

MŻ = F1(V̇ )δ + ū+ d. (18)

The following Lemma motivates the choice of Z in the
definition of error system (18).

Lemma 1: If Z(t) is a L2 signal, then limt→+∞ z̃(t) = 0
and limt→+∞ ˙̃z(t) = 0 for any arbitrary continuous signal
ϕ(t).

Proof: Pre-multiply the definition of Z(t) in (15) by
(B⊤ ⊗ I2)G(ϕ(t))⊤ so as to obtain:
˙̃z(t) = (B⊤ ⊗ I2)G(ϕ(t))⊤ Z(t)

− (B⊤ ⊗ I2)G(ϕ(t))⊤(M0)−1G(ϕ(t))(B ⊗ I2)λz̃ z̃(t). (19)

where we made use of equality (13). Note that G(ϕ)
is nonsingular for all ϕ ∈ [0, π)

N . It follows that
G(ϕ)⊤(M0)−1G(ϕ) is symmetric positive definite for all
ϕ ∈ [0, π)

N , and thus there exists a matrix M̄ ≻ 0 such
that G(ϕ)⊤(M0)−1G(ϕ) ⪰ M̄ for all ϕ ∈ [0, π)

N . Consider
the following Lyapunov function V := 1

2 z̃
⊤z̃ Note that

V is radially unbounded. Let η(t) := (B ⊗ I2)z̃(t) and
e(t) := G(ϕ(t))Z(t). Then, taking the time derivative of
V along the trajectories of (19) yields:

V̇ = −η⊤G(ϕ)⊤(M0)−1G(ϕ)η + η⊤G(ϕ)Z

≤ −η⊤M̄η + η⊤e. (20)

Dissipation (20) shows that system (19) is strictly output
passive wrt output η(t) and input e(t). Since Z(t) is a L2

signal and ∥G(ϕ)∥ ≤ b < +∞ for any ϕ ∈ [0, π), it follows
that e(t) is also a L2 signal.

System (19) is zero-state detectable. Indeed, if η ≡ 0 and
e ≡ 0, then z̃ ∈ N (B ⊗ I2) = R(B⊤ ⊗ I2)

⊥, with N and
R denoting null- and range-space respectively. Relation (5)
proves that z̃ = R(B⊤ ⊗ I2), and we thus conclude that
z̃ = 0.

Given strict output passivity and zero-state detectability of
the system, and due to e(t) being a L2 signal and V being a
radially unbounded storage function, we conclude by virtue
of [9, Theorem III.1] that z̃ → 0 as t → +∞. By virtue of
Barbalat’s Lemma, it follows ˙̃z → 0 as t → +∞.

E. Linear parametrization for frequency mismatches
As in standard model-based approaches, an internal model

of exosystem (10) has to be incorporated in the dynamic
controller. According to the procedure proposed in [12],
let H ∈ R(2k+1)×(2k+1) and N ∈ R(2k+1)×n be matrices
satisfying the following set of assumptions:

• (A0) H is Hurwitz;
• (A1) the couple (H,N) is controllable;
• (A2) H,Φσ have disjoint spectra.

Since (A2) holds, Sylvester equation

T σΦσ −HT σ = NΨ (21)

has a unique nonsingular solution Tσ . The dynamics of the
internal model unit are then defined as:

η̇ = Hη +Nū+ P0(Z),

where η ∈ R(2k+1) is the internal state and P0 will be defined
in section IV. In order to make the internal model unit also
adaptive, additional states taking the form of a matrix ζ ∈
R(2k+1)×nδ are imported in the dynamics and the following
linear parametrization is introduced:

l11(ζ)δ + l12(ζ)Q1(δ, σ) := Ψ(Tσ)−1ζδ

l21(q, Z)δ + l22(q, Z)Q2(δ, σ) + l23(q, Z) := Ψ(Tσ)−1NMZ

l31(η)Q3(σ) + l32(η) := −Ψ(Tσ)−1η,
(22)

with functions Q1(·, ·), Q2(·, ·), Q3(·) vanishing at σ = 0.
Note that if T 0 denotes the solution of Sylvester equation
(21) for the nominal case (σ = 0), then we have l32(η) =
−Ψ(T 0)−1η. We are now ready to state our main result.

IV. MAIN RESULT AND PROOF’S DISCUSSION

Let ξ and ρ respectively denote the vector of unknown
parameters and regressor matrix, as follows:

ξ :=




δ
Q1(δ, σ)
Q2(δ, σ)
Q3(σ)


 ,

ρ(q, q̇, v, v̇, z, η, ζ) :=





F1(V̇ ) + l11(ζ) + l21(q, Z)

⊤

l12(ζ)
⊤

l22(q, Z)⊤

l31(η)
⊤




⊤

.

Let ξ̃ := ξ̂ − ξ denote the parameter estimation error. The
adaptive controller is then defined as:




ζ̇ = Hζ + P1(V̇ , Z)

η̇ = Hη +Nū+ P0(Z)

ξ̂ = Γξ̂ ρ
⊤Z

ū = Ψ(T 0)−1η − l23(Z)−KZZ − ρ ξ̂,

(23)

where KZ , Γξ̂ are positive-definite controller gains and P0,
P1 are given as:

P0(Z) := −HNM0Z

P1(V̇ , Z) := HNM1(Z)−NF1(V̇ ).

Theorem 1: (Convergence of proposed controller) Con-
sider system (10) and (18). Controller (23) achieves the
disturbance rejection and formation control goal (8), for any
initial condition of the closed-loop system.

Proof: Consider the change of coordinates:


ξ̃ = ξ̂ − ξ

η̃ = η − θ −NMZ.

with F0(V̇ ) := −M0V̇ and F1(V̇ ) := −M1(V̇ ). Therefore
the control input ū := u+ F0(V̇ ) applied to (17) yields the
error system:

MŻ = F1(V̇ )δ + ū+ d. (18)

The following Lemma motivates the choice of Z in the
definition of error system (18).

Lemma 1: If Z(t) is a L2 signal, then limt→+∞ z̃(t) = 0
and limt→+∞ ˙̃z(t) = 0 for any arbitrary continuous signal
ϕ(t).

Proof: Pre-multiply the definition of Z(t) in (15) by
(B⊤ ⊗ I2)G(ϕ(t))⊤ so as to obtain:
˙̃z(t) = (B⊤ ⊗ I2)G(ϕ(t))⊤ Z(t)

− (B⊤ ⊗ I2)G(ϕ(t))⊤(M0)−1G(ϕ(t))(B ⊗ I2)λz̃ z̃(t). (19)

where we made use of equality (13). Note that G(ϕ)
is nonsingular for all ϕ ∈ [0, π)

N . It follows that
G(ϕ)⊤(M0)−1G(ϕ) is symmetric positive definite for all
ϕ ∈ [0, π)

N , and thus there exists a matrix M̄ ≻ 0 such
that G(ϕ)⊤(M0)−1G(ϕ) ⪰ M̄ for all ϕ ∈ [0, π)

N . Consider
the following Lyapunov function V := 1

2 z̃
⊤z̃ Note that

V is radially unbounded. Let η(t) := (B ⊗ I2)z̃(t) and
e(t) := G(ϕ(t))Z(t). Then, taking the time derivative of
V along the trajectories of (19) yields:

V̇ = −η⊤G(ϕ)⊤(M0)−1G(ϕ)η + η⊤G(ϕ)Z

≤ −η⊤M̄η + η⊤e. (20)

Dissipation (20) shows that system (19) is strictly output
passive wrt output η(t) and input e(t). Since Z(t) is a L2

signal and ∥G(ϕ)∥ ≤ b < +∞ for any ϕ ∈ [0, π), it follows
that e(t) is also a L2 signal.

System (19) is zero-state detectable. Indeed, if η ≡ 0 and
e ≡ 0, then z̃ ∈ N (B ⊗ I2) = R(B⊤ ⊗ I2)

⊥, with N and
R denoting null- and range-space respectively. Relation (5)
proves that z̃ = R(B⊤ ⊗ I2), and we thus conclude that
z̃ = 0.

Given strict output passivity and zero-state detectability of
the system, and due to e(t) being a L2 signal and V being a
radially unbounded storage function, we conclude by virtue
of [9, Theorem III.1] that z̃ → 0 as t → +∞. By virtue of
Barbalat’s Lemma, it follows ˙̃z → 0 as t → +∞.

E. Linear parametrization for frequency mismatches
As in standard model-based approaches, an internal model

of exosystem (10) has to be incorporated in the dynamic
controller. According to the procedure proposed in [12],
let H ∈ R(2k+1)×(2k+1) and N ∈ R(2k+1)×n be matrices
satisfying the following set of assumptions:

• (A0) H is Hurwitz;
• (A1) the couple (H,N) is controllable;
• (A2) H,Φσ have disjoint spectra.

Since (A2) holds, Sylvester equation

T σΦσ −HT σ = NΨ (21)

has a unique nonsingular solution Tσ . The dynamics of the
internal model unit are then defined as:

η̇ = Hη +Nū+ P0(Z),

where η ∈ R(2k+1) is the internal state and P0 will be defined
in section IV. In order to make the internal model unit also
adaptive, additional states taking the form of a matrix ζ ∈
R(2k+1)×nδ are imported in the dynamics and the following
linear parametrization is introduced:

l11(ζ)δ + l12(ζ)Q1(δ, σ) := Ψ(Tσ)−1ζδ

l21(q, Z)δ + l22(q, Z)Q2(δ, σ) + l23(q, Z) := Ψ(Tσ)−1NMZ

l31(η)Q3(σ) + l32(η) := −Ψ(Tσ)−1η,
(22)

with functions Q1(·, ·), Q2(·, ·), Q3(·) vanishing at σ = 0.
Note that if T 0 denotes the solution of Sylvester equation
(21) for the nominal case (σ = 0), then we have l32(η) =
−Ψ(T 0)−1η. We are now ready to state our main result.

IV. MAIN RESULT AND PROOF’S DISCUSSION

Let ξ and ρ respectively denote the vector of unknown
parameters and regressor matrix, as follows:

ξ :=




δ
Q1(δ, σ)
Q2(δ, σ)
Q3(σ)


 ,

ρ(q, q̇, v, v̇, z, η, ζ) :=





F1(V̇ ) + l11(ζ) + l21(q, Z)

⊤

l12(ζ)
⊤

l22(q, Z)⊤

l31(η)
⊤




⊤

.

Let ξ̃ := ξ̂ − ξ denote the parameter estimation error. The
adaptive controller is then defined as:




ζ̇ = Hζ + P1(V̇ , Z)

η̇ = Hη +Nū+ P0(Z)

ξ̂ = Γξ̂ ρ
⊤Z

ū = Ψ(T 0)−1η − l23(Z)−KZZ − ρ ξ̂,

(23)

where KZ , Γξ̂ are positive-definite controller gains and P0,
P1 are given as:

P0(Z) := −HNM0Z

P1(V̇ , Z) := HNM1(Z)−NF1(V̇ ).

Theorem 1: (Convergence of proposed controller) Con-
sider system (10) and (18). Controller (23) achieves the
disturbance rejection and formation control goal (8), for any
initial condition of the closed-loop system.

Proof: Consider the change of coordinates:


ξ̃ = ξ̂ − ξ

η̃ = η − θ −NMZ.

with F0(V̇ ) := −M0V̇ and F1(V̇ ) := −M1(V̇ ). Therefore
the control input ū := u+ F0(V̇ ) applied to (17) yields the
error system:

MŻ = F1(V̇ )δ + ū+ d. (18)

The following Lemma motivates the choice of Z in the
definition of error system (18).

Lemma 1: If Z(t) is a L2 signal, then limt→+∞ z̃(t) = 0
and limt→+∞ ˙̃z(t) = 0 for any arbitrary continuous signal
ϕ(t).

Proof: Pre-multiply the definition of Z(t) in (15) by
(B⊤ ⊗ I2)G(ϕ(t))⊤ so as to obtain:
˙̃z(t) = (B⊤ ⊗ I2)G(ϕ(t))⊤ Z(t)

− (B⊤ ⊗ I2)G(ϕ(t))⊤(M0)−1G(ϕ(t))(B ⊗ I2)λz̃ z̃(t). (19)

where we made use of equality (13). Note that G(ϕ)
is nonsingular for all ϕ ∈ [0, π)

N . It follows that
G(ϕ)⊤(M0)−1G(ϕ) is symmetric positive definite for all
ϕ ∈ [0, π)

N , and thus there exists a matrix M̄ ≻ 0 such
that G(ϕ)⊤(M0)−1G(ϕ) ⪰ M̄ for all ϕ ∈ [0, π)

N . Consider
the following Lyapunov function V := 1

2 z̃
⊤z̃ Note that

V is radially unbounded. Let η(t) := (B ⊗ I2)z̃(t) and
e(t) := G(ϕ(t))Z(t). Then, taking the time derivative of
V along the trajectories of (19) yields:

V̇ = −η⊤G(ϕ)⊤(M0)−1G(ϕ)η + η⊤G(ϕ)Z

≤ −η⊤M̄η + η⊤e. (20)

Dissipation (20) shows that system (19) is strictly output
passive wrt output η(t) and input e(t). Since Z(t) is a L2

signal and ∥G(ϕ)∥ ≤ b < +∞ for any ϕ ∈ [0, π), it follows
that e(t) is also a L2 signal.

System (19) is zero-state detectable. Indeed, if η ≡ 0 and
e ≡ 0, then z̃ ∈ N (B ⊗ I2) = R(B⊤ ⊗ I2)

⊥, with N and
R denoting null- and range-space respectively. Relation (5)
proves that z̃ = R(B⊤ ⊗ I2), and we thus conclude that
z̃ = 0.

Given strict output passivity and zero-state detectability of
the system, and due to e(t) being a L2 signal and V being a
radially unbounded storage function, we conclude by virtue
of [9, Theorem III.1] that z̃ → 0 as t → +∞. By virtue of
Barbalat’s Lemma, it follows ˙̃z → 0 as t → +∞.

E. Linear parametrization for frequency mismatches
As in standard model-based approaches, an internal model

of exosystem (10) has to be incorporated in the dynamic
controller. According to the procedure proposed in [12],
let H ∈ R(2k+1)×(2k+1) and N ∈ R(2k+1)×n be matrices
satisfying the following set of assumptions:

• (A0) H is Hurwitz;
• (A1) the couple (H,N) is controllable;
• (A2) H,Φσ have disjoint spectra.

Since (A2) holds, Sylvester equation

T σΦσ −HT σ = NΨ (21)

has a unique nonsingular solution Tσ . The dynamics of the
internal model unit are then defined as:

η̇ = Hη +Nū+ P0(Z),

where η ∈ R(2k+1) is the internal state and P0 will be defined
in section IV. In order to make the internal model unit also
adaptive, additional states taking the form of a matrix ζ ∈
R(2k+1)×nδ are imported in the dynamics and the following
linear parametrization is introduced:

l11(ζ)δ + l12(ζ)Q1(δ, σ) := Ψ(Tσ)−1ζδ

l21(q, Z)δ + l22(q, Z)Q2(δ, σ) + l23(q, Z) := Ψ(Tσ)−1NMZ

l31(η)Q3(σ) + l32(η) := −Ψ(Tσ)−1η,
(22)

with functions Q1(·, ·), Q2(·, ·), Q3(·) vanishing at σ = 0.
Note that if T 0 denotes the solution of Sylvester equation
(21) for the nominal case (σ = 0), then we have l32(η) =
−Ψ(T 0)−1η. We are now ready to state our main result.

IV. MAIN RESULT AND PROOF’S DISCUSSION

Let ξ and ρ respectively denote the vector of unknown
parameters and regressor matrix, as follows:

ξ :=




δ
Q1(δ, σ)
Q2(δ, σ)
Q3(σ)


 ,

ρ(q, q̇, v, v̇, z, η, ζ) :=





F1(V̇ ) + l11(ζ) + l21(q, Z)

⊤

l12(ζ)
⊤

l22(q, Z)⊤

l31(η)
⊤




⊤

.

Let ξ̃ := ξ̂ − ξ denote the parameter estimation error. The
adaptive controller is then defined as:





ζ̇ = Hζ + P1(V̇ , Z)

η̇ = Hη +Nū+ P0(Z)

ξ̂ = Γξ̂ ρ
⊤Z

ū = Ψ(T 0)−1η − l23(Z)−KZZ − ρ ξ̂,

(23)

where KZ , Γξ̂ are positive-definite controller gains and P0,
P1 are given as:

P0(Z) := −HNM0Z

P1(V̇ , Z) := HNM1(Z)−NF1(V̇ ).

Theorem 1: (Convergence of proposed controller) Con-
sider system (10) and (18). Controller (23) achieves the
disturbance rejection and formation control goal (8), for any
initial condition of the closed-loop system.

Proof: Consider the change of coordinates:


ξ̃ = ξ̂ − ξ

η̃ = η − θ −NMZ.

with F0(V̇ ) := −M0V̇ and F1(V̇ ) := −M1(V̇ ). Therefore
the control input ū := u+ F0(V̇ ) applied to (17) yields the
error system:

MŻ = F1(V̇ )δ + ū+ d. (18)

The following Lemma motivates the choice of Z in the
definition of error system (18).

Lemma 1: If Z(t) is a L2 signal, then limt→+∞ z̃(t) = 0
and limt→+∞ ˙̃z(t) = 0 for any arbitrary continuous signal
ϕ(t).

Proof: Pre-multiply the definition of Z(t) in (15) by
(B⊤ ⊗ I2)G(ϕ(t))⊤ so as to obtain:
˙̃z(t) = (B⊤ ⊗ I2)G(ϕ(t))⊤ Z(t)

− (B⊤ ⊗ I2)G(ϕ(t))⊤(M0)−1G(ϕ(t))(B ⊗ I2)λz̃ z̃(t). (19)

where we made use of equality (13). Note that G(ϕ)
is nonsingular for all ϕ ∈ [0, π)

N . It follows that
G(ϕ)⊤(M0)−1G(ϕ) is symmetric positive definite for all
ϕ ∈ [0, π)

N , and thus there exists a matrix M̄ ≻ 0 such
that G(ϕ)⊤(M0)−1G(ϕ) ⪰ M̄ for all ϕ ∈ [0, π)

N . Consider
the following Lyapunov function V := 1

2 z̃
⊤z̃ Note that

V is radially unbounded. Let η(t) := (B ⊗ I2)z̃(t) and
e(t) := G(ϕ(t))Z(t). Then, taking the time derivative of
V along the trajectories of (19) yields:

V̇ = −η⊤G(ϕ)⊤(M0)−1G(ϕ)η + η⊤G(ϕ)Z

≤ −η⊤M̄η + η⊤e. (20)

Dissipation (20) shows that system (19) is strictly output
passive wrt output η(t) and input e(t). Since Z(t) is a L2

signal and ∥G(ϕ)∥ ≤ b < +∞ for any ϕ ∈ [0, π), it follows
that e(t) is also a L2 signal.

System (19) is zero-state detectable. Indeed, if η ≡ 0 and
e ≡ 0, then z̃ ∈ N (B ⊗ I2) = R(B⊤ ⊗ I2)

⊥, with N and
R denoting null- and range-space respectively. Relation (5)
proves that z̃ = R(B⊤ ⊗ I2), and we thus conclude that
z̃ = 0.

Given strict output passivity and zero-state detectability of
the system, and due to e(t) being a L2 signal and V being a
radially unbounded storage function, we conclude by virtue
of [9, Theorem III.1] that z̃ → 0 as t → +∞. By virtue of
Barbalat’s Lemma, it follows ˙̃z → 0 as t → +∞.

E. Linear parametrization for frequency mismatches
As in standard model-based approaches, an internal model

of exosystem (10) has to be incorporated in the dynamic
controller. According to the procedure proposed in [12],
let H ∈ R(2k+1)×(2k+1) and N ∈ R(2k+1)×n be matrices
satisfying the following set of assumptions:

• (A0) H is Hurwitz;
• (A1) the couple (H,N) is controllable;
• (A2) H,Φσ have disjoint spectra.

Since (A2) holds, Sylvester equation

T σΦσ −HT σ = NΨ (21)

has a unique nonsingular solution Tσ . The dynamics of the
internal model unit are then defined as:

η̇ = Hη +Nū+ P0(Z),

where η ∈ R(2k+1) is the internal state and P0 will be defined
in section IV. In order to make the internal model unit also
adaptive, additional states taking the form of a matrix ζ ∈
R(2k+1)×nδ are imported in the dynamics and the following
linear parametrization is introduced:

l11(ζ)δ + l12(ζ)Q1(δ, σ) := Ψ(Tσ)−1ζδ

l21(q, Z)δ + l22(q, Z)Q2(δ, σ) + l23(q, Z) := Ψ(Tσ)−1NMZ

l31(η)Q3(σ) + l32(η) := −Ψ(Tσ)−1η,
(22)

with functions Q1(·, ·), Q2(·, ·), Q3(·) vanishing at σ = 0.
Note that if T 0 denotes the solution of Sylvester equation
(21) for the nominal case (σ = 0), then we have l32(η) =
−Ψ(T 0)−1η. We are now ready to state our main result.

IV. MAIN RESULT AND PROOF’S DISCUSSION

Let ξ and ρ respectively denote the vector of unknown
parameters and regressor matrix, as follows:

ξ :=




δ
Q1(δ, σ)
Q2(δ, σ)
Q3(σ)


 ,
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
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l31(η)
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
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Let ξ̃ := ξ̂ − ξ denote the parameter estimation error. The
adaptive controller is then defined as:




ζ̇ = Hζ + P1(V̇ , Z)

η̇ = Hη +Nū+ P0(Z)

ξ̂ = Γξ̂ ρ
⊤Z
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(23)

where KZ , Γξ̂ are positive-definite controller gains and P0,
P1 are given as:

P0(Z) := −HNM0Z

P1(V̇ , Z) := HNM1(Z)−NF1(V̇ ).

Theorem 1: (Convergence of proposed controller) Con-
sider system (10) and (18). Controller (23) achieves the
disturbance rejection and formation control goal (8), for any
initial condition of the closed-loop system.

Proof: Consider the change of coordinates:


ξ̃ = ξ̂ − ξ

η̃ = η − θ −NMZ.
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error system:
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and limt→+∞ ˙̃z(t) = 0 for any arbitrary continuous signal
ϕ(t).

Proof: Pre-multiply the definition of Z(t) in (15) by
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e(t) := G(ϕ(t))Z(t). Then, taking the time derivative of
V along the trajectories of (19) yields:
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≤ −η⊤M̄η + η⊤e. (20)

Dissipation (20) shows that system (19) is strictly output
passive wrt output η(t) and input e(t). Since Z(t) is a L2

signal and ∥G(ϕ)∥ ≤ b < +∞ for any ϕ ∈ [0, π), it follows
that e(t) is also a L2 signal.

System (19) is zero-state detectable. Indeed, if η ≡ 0 and
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⊥, with N and
R denoting null- and range-space respectively. Relation (5)
proves that z̃ = R(B⊤ ⊗ I2), and we thus conclude that
z̃ = 0.

Given strict output passivity and zero-state detectability of
the system, and due to e(t) being a L2 signal and V being a
radially unbounded storage function, we conclude by virtue
of [9, Theorem III.1] that z̃ → 0 as t → +∞. By virtue of
Barbalat’s Lemma, it follows ˙̃z → 0 as t → +∞.
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let H ∈ R(2k+1)×(2k+1) and N ∈ R(2k+1)×n be matrices
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• (A0) H is Hurwitz;
• (A1) the couple (H,N) is controllable;
• (A2) H,Φσ have disjoint spectra.

Since (A2) holds, Sylvester equation

T σΦσ −HT σ = NΨ (21)

has a unique nonsingular solution Tσ . The dynamics of the
internal model unit are then defined as:

η̇ = Hη +Nū+ P0(Z),

where η ∈ R(2k+1) is the internal state and P0 will be defined
in section IV. In order to make the internal model unit also
adaptive, additional states taking the form of a matrix ζ ∈
R(2k+1)×nδ are imported in the dynamics and the following
linear parametrization is introduced:

l11(ζ)δ + l12(ζ)Q1(δ, σ) := Ψ(Tσ)−1ζδ

l21(q, Z)δ + l22(q, Z)Q2(δ, σ) + l23(q, Z) := Ψ(Tσ)−1NMZ

l31(η)Q3(σ) + l32(η) := −Ψ(Tσ)−1η,
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with functions Q1(·, ·), Q2(·, ·), Q3(·) vanishing at σ = 0.
Note that if T 0 denotes the solution of Sylvester equation
(21) for the nominal case (σ = 0), then we have l32(η) =
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ξ̂ = Γξ̂ ρ
⊤Z
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where KZ , Γξ̂ are positive-definite controller gains and P0,
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P0(Z) := −HNM0Z
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error system:
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the control input ū := u+ F0(V̇ ) applied to (17) yields the
error system:
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that e(t) is also a L2 signal.

System (19) is zero-state detectable. Indeed, if η ≡ 0 and
e ≡ 0, then z̃ ∈ N (B ⊗ I2) = R(B⊤ ⊗ I2)

⊥, with N and
R denoting null- and range-space respectively. Relation (5)
proves that z̃ = R(B⊤ ⊗ I2), and we thus conclude that
z̃ = 0.

Given strict output passivity and zero-state detectability of
the system, and due to e(t) being a L2 signal and V being a
radially unbounded storage function, we conclude by virtue
of [9, Theorem III.1] that z̃ → 0 as t → +∞. By virtue of
Barbalat’s Lemma, it follows ˙̃z → 0 as t → +∞.

E. Linear parametrization for frequency mismatches
As in standard model-based approaches, an internal model

of exosystem (10) has to be incorporated in the dynamic
controller. According to the procedure proposed in [12],
let H ∈ R(2k+1)×(2k+1) and N ∈ R(2k+1)×n be matrices
satisfying the following set of assumptions:

• (A0) H is Hurwitz;
• (A1) the couple (H,N) is controllable;
• (A2) H,Φσ have disjoint spectra.

Since (A2) holds, Sylvester equation

T σΦσ −HT σ = NΨ (21)

has a unique nonsingular solution Tσ . The dynamics of the
internal model unit are then defined as:

η̇ = Hη +Nū+ P0(Z),

where η ∈ R(2k+1) is the internal state and P0 will be defined
in section IV. In order to make the internal model unit also
adaptive, additional states taking the form of a matrix ζ ∈
R(2k+1)×nδ are imported in the dynamics and the following
linear parametrization is introduced:

l11(ζ)δ + l12(ζ)Q1(δ, σ) := Ψ(Tσ)−1ζδ

l21(q, Z)δ + l22(q, Z)Q2(δ, σ) + l23(q, Z) := Ψ(Tσ)−1NMZ

l31(η)Q3(σ) + l32(η) := −Ψ(Tσ)−1η,
(22)

with functions Q1(·, ·), Q2(·, ·), Q3(·) vanishing at σ = 0.
Note that if T 0 denotes the solution of Sylvester equation
(21) for the nominal case (σ = 0), then we have l32(η) =
−Ψ(T 0)−1η. We are now ready to state our main result.

IV. MAIN RESULT AND PROOF’S DISCUSSION

Let ξ and ρ respectively denote the vector of unknown
parameters and regressor matrix, as follows:

ξ :=




δ
Q1(δ, σ)
Q2(δ, σ)
Q3(σ)


 ,

ρ(q, q̇, v, v̇, z, η, ζ) :=





F1(V̇ ) + l11(ζ) + l21(q, Z)

⊤

l12(ζ)
⊤

l22(q, Z)⊤

l31(η)
⊤




⊤

.

Let ξ̃ := ξ̂ − ξ denote the parameter estimation error. The
adaptive controller is then defined as:




ζ̇ = Hζ + P1(V̇ , Z)

η̇ = Hη +Nū+ P0(Z)

ξ̂ = Γξ̂ ρ
⊤Z

ū = Ψ(T 0)−1η − l23(Z)−KZZ − ρ ξ̂,

(23)

where KZ , Γξ̂ are positive-definite controller gains and P0,
P1 are given as:

P0(Z) := −HNM0Z

P1(V̇ , Z) := HNM1(Z)−NF1(V̇ ).

Theorem 1: (Convergence of proposed controller) Con-
sider system (10) and (18). Controller (23) achieves the
disturbance rejection and formation control goal (8), for any
initial condition of the closed-loop system.

Proof: Consider the change of coordinates:


ξ̃ = ξ̂ − ξ

η̃ = η − θ −NMZ.

with F0(V̇ ) := −M0V̇ and F1(V̇ ) := −M1(V̇ ). Therefore
the control input ū := u+ F0(V̇ ) applied to (17) yields the
error system:

MŻ = F1(V̇ )δ + ū+ d. (18)

The following Lemma motivates the choice of Z in the
definition of error system (18).

Lemma 1: If Z(t) is a L2 signal, then limt→+∞ z̃(t) = 0
and limt→+∞ ˙̃z(t) = 0 for any arbitrary continuous signal
ϕ(t).

Proof: Pre-multiply the definition of Z(t) in (15) by
(B⊤ ⊗ I2)G(ϕ(t))⊤ so as to obtain:
˙̃z(t) = (B⊤ ⊗ I2)G(ϕ(t))⊤ Z(t)

− (B⊤ ⊗ I2)G(ϕ(t))⊤(M0)−1G(ϕ(t))(B ⊗ I2)λz̃ z̃(t). (19)

where we made use of equality (13). Note that G(ϕ)
is nonsingular for all ϕ ∈ [0, π)

N . It follows that
G(ϕ)⊤(M0)−1G(ϕ) is symmetric positive definite for all
ϕ ∈ [0, π)

N , and thus there exists a matrix M̄ ≻ 0 such
that G(ϕ)⊤(M0)−1G(ϕ) ⪰ M̄ for all ϕ ∈ [0, π)

N . Consider
the following Lyapunov function V := 1

2 z̃
⊤z̃ Note that

V is radially unbounded. Let η(t) := (B ⊗ I2)z̃(t) and
e(t) := G(ϕ(t))Z(t). Then, taking the time derivative of
V along the trajectories of (19) yields:

V̇ = −η⊤G(ϕ)⊤(M0)−1G(ϕ)η + η⊤G(ϕ)Z

≤ −η⊤M̄η + η⊤e. (20)

Dissipation (20) shows that system (19) is strictly output
passive wrt output η(t) and input e(t). Since Z(t) is a L2

signal and ∥G(ϕ)∥ ≤ b < +∞ for any ϕ ∈ [0, π), it follows
that e(t) is also a L2 signal.

System (19) is zero-state detectable. Indeed, if η ≡ 0 and
e ≡ 0, then z̃ ∈ N (B ⊗ I2) = R(B⊤ ⊗ I2)

⊥, with N and
R denoting null- and range-space respectively. Relation (5)
proves that z̃ = R(B⊤ ⊗ I2), and we thus conclude that
z̃ = 0.

Given strict output passivity and zero-state detectability of
the system, and due to e(t) being a L2 signal and V being a
radially unbounded storage function, we conclude by virtue
of [9, Theorem III.1] that z̃ → 0 as t → +∞. By virtue of
Barbalat’s Lemma, it follows ˙̃z → 0 as t → +∞.

E. Linear parametrization for frequency mismatches
As in standard model-based approaches, an internal model

of exosystem (10) has to be incorporated in the dynamic
controller. According to the procedure proposed in [12],
let H ∈ R(2k+1)×(2k+1) and N ∈ R(2k+1)×n be matrices
satisfying the following set of assumptions:

• (A0) H is Hurwitz;
• (A1) the couple (H,N) is controllable;
• (A2) H,Φσ have disjoint spectra.

Since (A2) holds, Sylvester equation

T σΦσ −HT σ = NΨ (21)

has a unique nonsingular solution Tσ . The dynamics of the
internal model unit are then defined as:

η̇ = Hη +Nū+ P0(Z),

where η ∈ R(2k+1) is the internal state and P0 will be defined
in section IV. In order to make the internal model unit also
adaptive, additional states taking the form of a matrix ζ ∈
R(2k+1)×nδ are imported in the dynamics and the following
linear parametrization is introduced:

l11(ζ)δ + l12(ζ)Q1(δ, σ) := Ψ(Tσ)−1ζδ

l21(q, Z)δ + l22(q, Z)Q2(δ, σ) + l23(q, Z) := Ψ(Tσ)−1NMZ

l31(η)Q3(σ) + l32(η) := −Ψ(Tσ)−1η,
(22)

with functions Q1(·, ·), Q2(·, ·), Q3(·) vanishing at σ = 0.
Note that if T 0 denotes the solution of Sylvester equation
(21) for the nominal case (σ = 0), then we have l32(η) =
−Ψ(T 0)−1η. We are now ready to state our main result.

IV. MAIN RESULT AND PROOF’S DISCUSSION

Let ξ and ρ respectively denote the vector of unknown
parameters and regressor matrix, as follows:

ξ :=




δ
Q1(δ, σ)
Q2(δ, σ)
Q3(σ)


 ,

ρ(q, q̇, v, v̇, z, η, ζ) :=





F1(V̇ ) + l11(ζ) + l21(q, Z)

⊤

l12(ζ)
⊤

l22(q, Z)⊤

l31(η)
⊤




⊤

.

Let ξ̃ := ξ̂ − ξ denote the parameter estimation error. The
adaptive controller is then defined as:




ζ̇ = Hζ + P1(V̇ , Z)

η̇ = Hη +Nū+ P0(Z)

ξ̂ = Γξ̂ ρ
⊤Z

ū = Ψ(T 0)−1η − l23(Z)−KZZ − ρ ξ̂,

(23)

where KZ , Γξ̂ are positive-definite controller gains and P0,
P1 are given as:

P0(Z) := −HNM0Z

P1(V̇ , Z) := HNM1(Z)−NF1(V̇ ).

Theorem 1: (Convergence of proposed controller) Con-
sider system (10) and (18). Controller (23) achieves the
disturbance rejection and formation control goal (8), for any
initial condition of the closed-loop system.

Proof: Consider the change of coordinates:


ξ̃ = ξ̂ − ξ

η̃ = η − θ −NMZ.

with F0(V̇ ) := −M0V̇ and F1(V̇ ) := −M1(V̇ ). Therefore
the control input ū := u+ F0(V̇ ) applied to (17) yields the
error system:

MŻ = F1(V̇ )δ + ū+ d. (18)

The following Lemma motivates the choice of Z in the
definition of error system (18).

Lemma 1: If Z(t) is a L2 signal, then limt→+∞ z̃(t) = 0
and limt→+∞ ˙̃z(t) = 0 for any arbitrary continuous signal
ϕ(t).

Proof: Pre-multiply the definition of Z(t) in (15) by
(B⊤ ⊗ I2)G(ϕ(t))⊤ so as to obtain:
˙̃z(t) = (B⊤ ⊗ I2)G(ϕ(t))⊤ Z(t)

− (B⊤ ⊗ I2)G(ϕ(t))⊤(M0)−1G(ϕ(t))(B ⊗ I2)λz̃ z̃(t). (19)

where we made use of equality (13). Note that G(ϕ)
is nonsingular for all ϕ ∈ [0, π)

N . It follows that
G(ϕ)⊤(M0)−1G(ϕ) is symmetric positive definite for all
ϕ ∈ [0, π)

N , and thus there exists a matrix M̄ ≻ 0 such
that G(ϕ)⊤(M0)−1G(ϕ) ⪰ M̄ for all ϕ ∈ [0, π)

N . Consider
the following Lyapunov function V := 1

2 z̃
⊤z̃ Note that

V is radially unbounded. Let η(t) := (B ⊗ I2)z̃(t) and
e(t) := G(ϕ(t))Z(t). Then, taking the time derivative of
V along the trajectories of (19) yields:

V̇ = −η⊤G(ϕ)⊤(M0)−1G(ϕ)η + η⊤G(ϕ)Z

≤ −η⊤M̄η + η⊤e. (20)

Dissipation (20) shows that system (19) is strictly output
passive wrt output η(t) and input e(t). Since Z(t) is a L2

signal and ∥G(ϕ)∥ ≤ b < +∞ for any ϕ ∈ [0, π), it follows
that e(t) is also a L2 signal.

System (19) is zero-state detectable. Indeed, if η ≡ 0 and
e ≡ 0, then z̃ ∈ N (B ⊗ I2) = R(B⊤ ⊗ I2)

⊥, with N and
R denoting null- and range-space respectively. Relation (5)
proves that z̃ = R(B⊤ ⊗ I2), and we thus conclude that
z̃ = 0.

Given strict output passivity and zero-state detectability of
the system, and due to e(t) being a L2 signal and V being a
radially unbounded storage function, we conclude by virtue
of [9, Theorem III.1] that z̃ → 0 as t → +∞. By virtue of
Barbalat’s Lemma, it follows ˙̃z → 0 as t → +∞.

E. Linear parametrization for frequency mismatches
As in standard model-based approaches, an internal model

of exosystem (10) has to be incorporated in the dynamic
controller. According to the procedure proposed in [12],
let H ∈ R(2k+1)×(2k+1) and N ∈ R(2k+1)×n be matrices
satisfying the following set of assumptions:

• (A0) H is Hurwitz;
• (A1) the couple (H,N) is controllable;
• (A2) H,Φσ have disjoint spectra.

Since (A2) holds, Sylvester equation

T σΦσ −HT σ = NΨ (21)

has a unique nonsingular solution Tσ . The dynamics of the
internal model unit are then defined as:

η̇ = Hη +Nū+ P0(Z),

where η ∈ R(2k+1) is the internal state and P0 will be defined
in section IV. In order to make the internal model unit also
adaptive, additional states taking the form of a matrix ζ ∈
R(2k+1)×nδ are imported in the dynamics and the following
linear parametrization is introduced:

l11(ζ)δ + l12(ζ)Q1(δ, σ) := Ψ(Tσ)−1ζδ

l21(q, Z)δ + l22(q, Z)Q2(δ, σ) + l23(q, Z) := Ψ(Tσ)−1NMZ

l31(η)Q3(σ) + l32(η) := −Ψ(Tσ)−1η,
(22)

with functions Q1(·, ·), Q2(·, ·), Q3(·) vanishing at σ = 0.
Note that if T 0 denotes the solution of Sylvester equation
(21) for the nominal case (σ = 0), then we have l32(η) =
−Ψ(T 0)−1η. We are now ready to state our main result.

IV. MAIN RESULT AND PROOF’S DISCUSSION

Let ξ and ρ respectively denote the vector of unknown
parameters and regressor matrix, as follows:

ξ :=




δ
Q1(δ, σ)
Q2(δ, σ)
Q3(σ)


 ,

ρ(q, q̇, v, v̇, z, η, ζ) :=





F1(V̇ ) + l11(ζ) + l21(q, Z)

⊤

l12(ζ)
⊤

l22(q, Z)⊤

l31(η)
⊤




⊤

.

Let ξ̃ := ξ̂ − ξ denote the parameter estimation error. The
adaptive controller is then defined as:




ζ̇ = Hζ + P1(V̇ , Z)

η̇ = Hη +Nū+ P0(Z)

ξ̂ = Γξ̂ ρ
⊤Z

ū = Ψ(T 0)−1η − l23(Z)−KZZ − ρ ξ̂,

(23)

where KZ , Γξ̂ are positive-definite controller gains and P0,
P1 are given as:

P0(Z) := −HNM0Z

P1(V̇ , Z) := HNM1(Z)−NF1(V̇ ).

Theorem 1: (Convergence of proposed controller) Con-
sider system (10) and (18). Controller (23) achieves the
disturbance rejection and formation control goal (8), for any
initial condition of the closed-loop system.

Proof: Consider the change of coordinates:


ξ̃ = ξ̂ − ξ

η̃ = η − θ −NMZ.

˜ ˆ

ˆ
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In the new coordinates, equation of motion (18) reads as:

A further change of coordinates is introduced to deal with model 
uncertainty δ, namely:

Thanks to the change of coordinates (26), model uncertainty δ is 
embedded in the internal model of the system. In fact, the time 
derivative of η now reads as:

In the new coordinates, equation (25) reads as:

Therefore the final form of the closed-loop system is:

Let Q be a positive-definite matrix such that H⊤Q+QH = −I and 
ϵ > 0 a positive real constant. Let V (η,Z, ξ ) be the following 
candidate Lyapunov function:

Then, taking the time derivative of (29) along the trajectories of 
(28) yields:

where last inequality stems from a Young’s inequality argument 
and by setting ϵ such that ϵ ≥ Ψ(Tσ)−1 /kz,min with kz,min being the 
smallest eigenvalue of KZ. Since inequality (30) holds, states η, 
z, ξ are bounded. In particular, integration of (30) yields:

for all t ≥ 0 and for some positive constant c0, and thus Z(s) is a 
L2 signal. By virtue of Lemma 1, it holds that z(t), ˙ z(t) → 0 as t 
→ +∞, and we have thus proved the formation control goal (8).

5. Simulation
We do numerical simulations on a fleet of wheeled robots to 
illustrate the viability of the suggested strategy. The simulation 
results demonstrate that even in the face of sinusoidal 
disturbances with unknown frequencies, the suggested technique 
may provide reliable formation control. The robots can maintain 
the proper configuration even in the face of disturbances, and the 
formation error is greatly decreased.

To the end of showing the effectiveness of controller (23), we 
simulate a network of 4 unicycle robots. For ease of presentation, 
we assumed same nominal mass, nominal inertia, front-end 
distance, and same scalar mismatch δ = 0.2 (with according 
units) for each robot i ∈ {1, . . . , 4}, namely mi = m0

i + δ, Ii = 
I0

i +     δ with m0
i = 1 kg, I0

i = 0.1 kgm2, and dAC,i = 0.2m. For 
this robot network, we have considered 6 virtual springs, thus a 
connectivity graph described by the following incidence matrix:

Our goal is to drive the 4 robots into a formation described by 
the following desired relative positions:

A common incoming input disturbance of frequency f0 + σ with 
f0 = 6 [rad/s] is generated by exosystem (10). Given the nominal 
disturbance frequency f0, we have selected

Taking the time derivative of η̃ yields:
˙̃η = Hη +Nū+ P0(Z)  

η̇

−T σΦσ(Tσ)−1θ

−N

ū+ F1(V̇ )δ −Ψ(Tσ)−1θ


  

MŻ

= Hη −

T σΦσ(Tσ)−1 −NΨ(Tσ)−1
  

H (by assumption A3)

θ −HNMZ

  
Hη̃

+HNMZ −HNM0(Z)−NF1(V̇ )δ

= Hη̃ + P1(V̇ , Z)δ. (24)

In the new coordinates, equation of motion (18) reads as:

MŻ = F1(V̇ ) δ +Ψ(T 0)−1η  
−l32(η)

−l23(Z)−KZZ − ρ ξ̂−Ψ(Tσ)−1θ  
d

= F1(V̇ ) δ−l32(η)− l31(η)Q3(σ)  
Ψ(Tσ)−1η

+l31(η)Q3(σ)

−l23(Z)− l22(Z)Q2(δ, σ)− l21(z)δ  
−Ψ(Tσ)−1NMZ

+ l21(Z)δ + l22(Z)Q2(δ, σ)−KZZ − ρ ξ̂ −Ψ(Tσ)−1θ =

= F1(V̇ )δ +Ψ(Tσ)−1η̃ −Kzz

− ρ ξ̂ +

l21 l22 l23





δ
Q2

Q3


 . (25)

A further change of coordinates is introduced to deal with
model uncertainty δ, namely:

η̂ := η̃ − ζδ. (26)

Thanks to the change of coordinates (26), model uncertainty
δ is embedded in the internal model of the system. In fact,
the time derivative of η̂ now reads as:

˙̂η = ˙̃η − ζ̇δ = Hη̃ + P1δ − (Hζ + P1)δ = Hη̂. (27)

In the new coordinates, equation (25) reads as:

MŻ = F1(V̇ )δ +Ψ(Tσ)−1η̂ −KZZ − ρ ξ̂

+ Ψ(Tσ)−1ζδ  
l11(ζ)δ+l12(ζ)Q1(δ,σ)

+

l21 l22 l23





δ
Q2

Q3




= Ψ(T σ)−1η̂ −KZZ − ρ ξ̃.

Therefore the final form of the closed-loop system is:


MŻ = Ψ(Tσ)−1η̂ −KZZ − ρ ξ̃

ζ̇ = Hζ + P1(V̇ , Z)
˙̂η = Hη̂
˙̃
ξ =

˙̂
ξ = Γξ̂ ρ

⊤Z.

(28)

Let Q be a positive-definite matrix such that H⊤Q+QH =
−I and ϵ > 0 a positive real constant. Let V (η̂, Z, ξ̃) be the
following candidate Lyapunov function:

V (η̂, Z, ξ̃) = ϵη̂⊤Qη̂ +
1

2
Z⊤MZ +

1

2
ξ̃⊤Γ−1

ξ̂
ξ̃. (29)

Then, taking the time derivative of (29) along the trajectories
of (28) yields:

dV (η̂, Z, ξ̃)

dt
= −ϵ η̂⊤


H⊤Q+QH


η̂ + Z⊤MŻ + ξ̃⊤Γ−1

ξ̂

˙̂
ξ

= −ϵ ∥η̂∥2 +−Z⊤KzZ

+Z⊤

Ψ(T σ)−1η̂ − ρ ξ̃


+ ξ̃⊤Γ−1

ξ̃
Γξ̃ ρ

⊤ Z

= −ϵ ∥η̂∥2 − Z⊤KZZ + Z⊤Ψ(T σ)−1η̂

≤ −1

2
ϵ ∥η̂∥2 − 1

2
Z⊤KZZ, (30)

where last inequality stems from a Young’s inequality
argument and by setting ϵ such that ϵ ≥

Ψ(Tσ)−1
 /kz,min

with kz,min being the smallest eigenvalue of KZ . Since
inequality (30) holds, states η̂, z, ξ̃ are bounded. In particular,
integration of (30) yields:

c0

 t

0

∥Z(s)∥ ds ≤
 t

0

1

2
Z(s)⊤KZZ(s) ds ≤ V (0),

for all t ≥ 0 and for some positive constant c0, and thus
Z(s) is a L2 signal. By virtue of Lemma 1, it holds that
z̃(t), ˙̃z(t) → 0 as t → +∞, and we have thus proved the
formation control goal (8).

V. SIMULATION

We do numerical simulations on a fleet of wheeled robots
to illustrate the viability of the suggested strategy. The
simulation results demonstrate that even in the face of sinu-
soidal disturbances with unknown frequencies, the suggested
technique may provide reliable formation control. The robots
can maintain the proper configuration even in the face of
disturbances, and the formation error is greatly decreased.

To the end of showing the effectiveness of controller
(23), we simulate a network of 4 unicycle robots. For ease
of presentation, we assumed same nominal mass, nominal
inertia, front-end distance, and same scalar mismatch δ =
0.2 (with according units) for each robot i ∈ {1, . . . , 4},
namely mi = m0

i + δ, Ii = I0
i + 1

2δ with m0
i = 1kg,

I0
i = 0.1 kgm2, and dAC,i = 0.2m. For this robot network,

we have considered 6 virtual springs, thus a connectivity
graph described by the following incidence matrix:

B =



−1 0 0 1 0 1
1 −1 0 0 1 0
0 1 −1 0 0 −1
0 0 1 −1 −1 0


 .

Our goal is to drive the 4 robots into a formation described
by the following desired relative positions:

z⋆1 =


8
0


, z⋆2 =


−4
8


, z⋆3 =


0
−4



z⋆4 =


−4
−4


, z⋆5 =


4
−4


, z⋆5 =


4
−4


. (31)

A common incoming input disturbance of frequency f0 + σ
with f0 = 6 [rad/s] is generated by exosystem (10). Given
the nominal disturbance frequency f0, we have selected

Φ0
i =


0 −f0
f0 0


, Ψi =


2 1
0 1


.

Taking the time derivative of η̃ yields:
˙̃η = Hη +Nū+ P0(Z)  

η̇

−T σΦσ(Tσ)−1θ

−N

ū+ F1(V̇ )δ −Ψ(Tσ)−1θ


  

MŻ

= Hη −

T σΦσ(Tσ)−1 −NΨ(Tσ)−1
  

H (by assumption A3)

θ −HNMZ

  
Hη̃

+HNMZ −HNM0(Z)−NF1(V̇ )δ

= Hη̃ + P1(V̇ , Z)δ. (24)

In the new coordinates, equation of motion (18) reads as:

MŻ = F1(V̇ ) δ +Ψ(T 0)−1η  
−l32(η)

−l23(Z)−KZZ − ρ ξ̂−Ψ(Tσ)−1θ  
d

= F1(V̇ ) δ−l32(η)− l31(η)Q3(σ)  
Ψ(Tσ)−1η

+l31(η)Q3(σ)

−l23(Z)− l22(Z)Q2(δ, σ)− l21(z)δ  
−Ψ(Tσ)−1NMZ

+ l21(Z)δ + l22(Z)Q2(δ, σ)−KZZ − ρ ξ̂ −Ψ(Tσ)−1θ =

= F1(V̇ )δ +Ψ(Tσ)−1η̃ −Kzz

− ρ ξ̂ +

l21 l22 l23





δ
Q2

Q3


 . (25)

A further change of coordinates is introduced to deal with
model uncertainty δ, namely:

η̂ := η̃ − ζδ. (26)

Thanks to the change of coordinates (26), model uncertainty
δ is embedded in the internal model of the system. In fact,
the time derivative of η̂ now reads as:

˙̂η = ˙̃η − ζ̇δ = Hη̃ + P1δ − (Hζ + P1)δ = Hη̂. (27)

In the new coordinates, equation (25) reads as:

MŻ = F1(V̇ )δ +Ψ(Tσ)−1η̂ −KZZ − ρ ξ̂

+ Ψ(Tσ)−1ζδ  
l11(ζ)δ+l12(ζ)Q1(δ,σ)

+

l21 l22 l23





δ
Q2

Q3




= Ψ(T σ)−1η̂ −KZZ − ρ ξ̃.

Therefore the final form of the closed-loop system is:


MŻ = Ψ(Tσ)−1η̂ −KZZ − ρ ξ̃

ζ̇ = Hζ + P1(V̇ , Z)
˙̂η = Hη̂
˙̃
ξ =

˙̂
ξ = Γξ̂ ρ

⊤Z.

(28)

Let Q be a positive-definite matrix such that H⊤Q+QH =
−I and ϵ > 0 a positive real constant. Let V (η̂, Z, ξ̃) be the
following candidate Lyapunov function:

V (η̂, Z, ξ̃) = ϵη̂⊤Qη̂ +
1

2
Z⊤MZ +

1

2
ξ̃⊤Γ−1

ξ̂
ξ̃. (29)

Then, taking the time derivative of (29) along the trajectories
of (28) yields:

dV (η̂, Z, ξ̃)

dt
= −ϵ η̂⊤


H⊤Q+QH


η̂ + Z⊤MŻ + ξ̃⊤Γ−1

ξ̂

˙̂
ξ

= −ϵ ∥η̂∥2 +−Z⊤KzZ

+Z⊤

Ψ(T σ)−1η̂ − ρ ξ̃


+ ξ̃⊤Γ−1

ξ̃
Γξ̃ ρ

⊤ Z

= −ϵ ∥η̂∥2 − Z⊤KZZ + Z⊤Ψ(T σ)−1η̂

≤ −1

2
ϵ ∥η̂∥2 − 1

2
Z⊤KZZ, (30)

where last inequality stems from a Young’s inequality
argument and by setting ϵ such that ϵ ≥

Ψ(Tσ)−1
 /kz,min

with kz,min being the smallest eigenvalue of KZ . Since
inequality (30) holds, states η̂, z, ξ̃ are bounded. In particular,
integration of (30) yields:

c0

 t

0

∥Z(s)∥ ds ≤
 t

0

1

2
Z(s)⊤KZZ(s) ds ≤ V (0),

for all t ≥ 0 and for some positive constant c0, and thus
Z(s) is a L2 signal. By virtue of Lemma 1, it holds that
z̃(t), ˙̃z(t) → 0 as t → +∞, and we have thus proved the
formation control goal (8).

V. SIMULATION

We do numerical simulations on a fleet of wheeled robots
to illustrate the viability of the suggested strategy. The
simulation results demonstrate that even in the face of sinu-
soidal disturbances with unknown frequencies, the suggested
technique may provide reliable formation control. The robots
can maintain the proper configuration even in the face of
disturbances, and the formation error is greatly decreased.

To the end of showing the effectiveness of controller
(23), we simulate a network of 4 unicycle robots. For ease
of presentation, we assumed same nominal mass, nominal
inertia, front-end distance, and same scalar mismatch δ =
0.2 (with according units) for each robot i ∈ {1, . . . , 4},
namely mi = m0

i + δ, Ii = I0
i + 1

2δ with m0
i = 1kg,

I0
i = 0.1 kgm2, and dAC,i = 0.2m. For this robot network,

we have considered 6 virtual springs, thus a connectivity
graph described by the following incidence matrix:

B =



−1 0 0 1 0 1
1 −1 0 0 1 0
0 1 −1 0 0 −1
0 0 1 −1 −1 0


 .

Our goal is to drive the 4 robots into a formation described
by the following desired relative positions:

z⋆1 =


8
0


, z⋆2 =


−4
8


, z⋆3 =


0
−4



z⋆4 =


−4
−4


, z⋆5 =


4
−4


, z⋆5 =


4
−4


. (31)

A common incoming input disturbance of frequency f0 + σ
with f0 = 6 [rad/s] is generated by exosystem (10). Given
the nominal disturbance frequency f0, we have selected

Φ0
i =


0 −f0
f0 0


, Ψi =


2 1
0 1


.

Taking the time derivative of η̃ yields:
˙̃η = Hη +Nū+ P0(Z)  

η̇

−T σΦσ(Tσ)−1θ

−N

ū+ F1(V̇ )δ −Ψ(Tσ)−1θ


  

MŻ

= Hη −

T σΦσ(Tσ)−1 −NΨ(Tσ)−1
  

H (by assumption A3)

θ −HNMZ

  
Hη̃

+HNMZ −HNM0(Z)−NF1(V̇ )δ

= Hη̃ + P1(V̇ , Z)δ. (24)

In the new coordinates, equation of motion (18) reads as:

MŻ = F1(V̇ ) δ +Ψ(T 0)−1η  
−l32(η)

−l23(Z)−KZZ − ρ ξ̂−Ψ(Tσ)−1θ  
d

= F1(V̇ ) δ−l32(η)− l31(η)Q3(σ)  
Ψ(Tσ)−1η

+l31(η)Q3(σ)

−l23(Z)− l22(Z)Q2(δ, σ)− l21(z)δ  
−Ψ(Tσ)−1NMZ

+ l21(Z)δ + l22(Z)Q2(δ, σ)−KZZ − ρ ξ̂ −Ψ(Tσ)−1θ =

= F1(V̇ )δ +Ψ(Tσ)−1η̃ −Kzz

− ρ ξ̂ +

l21 l22 l23





δ
Q2

Q3


 . (25)

A further change of coordinates is introduced to deal with
model uncertainty δ, namely:

η̂ := η̃ − ζδ. (26)

Thanks to the change of coordinates (26), model uncertainty
δ is embedded in the internal model of the system. In fact,
the time derivative of η̂ now reads as:

˙̂η = ˙̃η − ζ̇δ = Hη̃ + P1δ − (Hζ + P1)δ = Hη̂. (27)

In the new coordinates, equation (25) reads as:

MŻ = F1(V̇ )δ +Ψ(Tσ)−1η̂ −KZZ − ρ ξ̂

+ Ψ(Tσ)−1ζδ  
l11(ζ)δ+l12(ζ)Q1(δ,σ)

+

l21 l22 l23





δ
Q2

Q3




= Ψ(T σ)−1η̂ −KZZ − ρ ξ̃.

Therefore the final form of the closed-loop system is:



MŻ = Ψ(Tσ)−1η̂ −KZZ − ρ ξ̃

ζ̇ = Hζ + P1(V̇ , Z)
˙̂η = Hη̂
˙̃
ξ =

˙̂
ξ = Γξ̂ ρ

⊤Z.

(28)

Let Q be a positive-definite matrix such that H⊤Q+QH =
−I and ϵ > 0 a positive real constant. Let V (η̂, Z, ξ̃) be the
following candidate Lyapunov function:

V (η̂, Z, ξ̃) = ϵη̂⊤Qη̂ +
1

2
Z⊤MZ +

1

2
ξ̃⊤Γ−1

ξ̂
ξ̃. (29)

Then, taking the time derivative of (29) along the trajectories
of (28) yields:

dV (η̂, Z, ξ̃)

dt
= −ϵ η̂⊤


H⊤Q+QH


η̂ + Z⊤MŻ + ξ̃⊤Γ−1

ξ̂

˙̂
ξ

= −ϵ ∥η̂∥2 +−Z⊤KzZ

+Z⊤

Ψ(T σ)−1η̂ − ρ ξ̃


+ ξ̃⊤Γ−1

ξ̃
Γξ̃ ρ

⊤ Z

= −ϵ ∥η̂∥2 − Z⊤KZZ + Z⊤Ψ(T σ)−1η̂

≤ −1

2
ϵ ∥η̂∥2 − 1

2
Z⊤KZZ, (30)

where last inequality stems from a Young’s inequality
argument and by setting ϵ such that ϵ ≥

Ψ(Tσ)−1
 /kz,min

with kz,min being the smallest eigenvalue of KZ . Since
inequality (30) holds, states η̂, z, ξ̃ are bounded. In particular,
integration of (30) yields:

c0

 t

0

∥Z(s)∥ ds ≤
 t

0

1

2
Z(s)⊤KZZ(s) ds ≤ V (0),

for all t ≥ 0 and for some positive constant c0, and thus
Z(s) is a L2 signal. By virtue of Lemma 1, it holds that
z̃(t), ˙̃z(t) → 0 as t → +∞, and we have thus proved the
formation control goal (8).

V. SIMULATION

We do numerical simulations on a fleet of wheeled robots
to illustrate the viability of the suggested strategy. The
simulation results demonstrate that even in the face of sinu-
soidal disturbances with unknown frequencies, the suggested
technique may provide reliable formation control. The robots
can maintain the proper configuration even in the face of
disturbances, and the formation error is greatly decreased.

To the end of showing the effectiveness of controller
(23), we simulate a network of 4 unicycle robots. For ease
of presentation, we assumed same nominal mass, nominal
inertia, front-end distance, and same scalar mismatch δ =
0.2 (with according units) for each robot i ∈ {1, . . . , 4},
namely mi = m0

i + δ, Ii = I0
i + 1

2δ with m0
i = 1kg,

I0
i = 0.1 kgm2, and dAC,i = 0.2m. For this robot network,

we have considered 6 virtual springs, thus a connectivity
graph described by the following incidence matrix:

B =



−1 0 0 1 0 1
1 −1 0 0 1 0
0 1 −1 0 0 −1
0 0 1 −1 −1 0


 .

Our goal is to drive the 4 robots into a formation described
by the following desired relative positions:

z⋆1 =


8
0


, z⋆2 =


−4
8


, z⋆3 =


0
−4



z⋆4 =


−4
−4


, z⋆5 =


4
−4


, z⋆5 =


4
−4


. (31)

A common incoming input disturbance of frequency f0 + σ
with f0 = 6 [rad/s] is generated by exosystem (10). Given
the nominal disturbance frequency f0, we have selected

Φ0
i =


0 −f0
f0 0


, Ψi =


2 1
0 1


.

Taking the time derivative of η̃ yields:
˙̃η = Hη +Nū+ P0(Z)  

η̇

−T σΦσ(Tσ)−1θ

−N

ū+ F1(V̇ )δ −Ψ(Tσ)−1θ


  

MŻ

= Hη −

T σΦσ(Tσ)−1 −NΨ(Tσ)−1
  

H (by assumption A3)

θ −HNMZ

  
Hη̃

+HNMZ −HNM0(Z)−NF1(V̇ )δ

= Hη̃ + P1(V̇ , Z)δ. (24)

In the new coordinates, equation of motion (18) reads as:

MŻ = F1(V̇ ) δ +Ψ(T 0)−1η  
−l32(η)

−l23(Z)−KZZ − ρ ξ̂−Ψ(Tσ)−1θ  
d

= F1(V̇ ) δ−l32(η)− l31(η)Q3(σ)  
Ψ(Tσ)−1η

+l31(η)Q3(σ)

−l23(Z)− l22(Z)Q2(δ, σ)− l21(z)δ  
−Ψ(Tσ)−1NMZ

+ l21(Z)δ + l22(Z)Q2(δ, σ)−KZZ − ρ ξ̂ −Ψ(Tσ)−1θ =

= F1(V̇ )δ +Ψ(Tσ)−1η̃ −Kzz

− ρ ξ̂ +

l21 l22 l23





δ
Q2

Q3


 . (25)

A further change of coordinates is introduced to deal with
model uncertainty δ, namely:

η̂ := η̃ − ζδ. (26)

Thanks to the change of coordinates (26), model uncertainty
δ is embedded in the internal model of the system. In fact,
the time derivative of η̂ now reads as:

˙̂η = ˙̃η − ζ̇δ = Hη̃ + P1δ − (Hζ + P1)δ = Hη̂. (27)

In the new coordinates, equation (25) reads as:

MŻ = F1(V̇ )δ +Ψ(Tσ)−1η̂ −KZZ − ρ ξ̂

+ Ψ(Tσ)−1ζδ  
l11(ζ)δ+l12(ζ)Q1(δ,σ)

+

l21 l22 l23





δ
Q2

Q3




= Ψ(T σ)−1η̂ −KZZ − ρ ξ̃.

Therefore the final form of the closed-loop system is:



MŻ = Ψ(Tσ)−1η̂ −KZZ − ρ ξ̃

ζ̇ = Hζ + P1(V̇ , Z)
˙̂η = Hη̂
˙̃
ξ =

˙̂
ξ = Γξ̂ ρ

⊤Z.

(28)

Let Q be a positive-definite matrix such that H⊤Q+QH =
−I and ϵ > 0 a positive real constant. Let V (η̂, Z, ξ̃) be the
following candidate Lyapunov function:

V (η̂, Z, ξ̃) = ϵη̂⊤Qη̂ +
1

2
Z⊤MZ +

1

2
ξ̃⊤Γ−1

ξ̂
ξ̃. (29)

Then, taking the time derivative of (29) along the trajectories
of (28) yields:

dV (η̂, Z, ξ̃)

dt
= −ϵ η̂⊤


H⊤Q+QH


η̂ + Z⊤MŻ + ξ̃⊤Γ−1

ξ̂

˙̂
ξ

= −ϵ ∥η̂∥2 +−Z⊤KzZ

+Z⊤

Ψ(T σ)−1η̂ − ρ ξ̃


+ ξ̃⊤Γ−1

ξ̃
Γξ̃ ρ

⊤ Z

= −ϵ ∥η̂∥2 − Z⊤KZZ + Z⊤Ψ(T σ)−1η̂

≤ −1

2
ϵ ∥η̂∥2 − 1

2
Z⊤KZZ, (30)

where last inequality stems from a Young’s inequality
argument and by setting ϵ such that ϵ ≥

Ψ(Tσ)−1
 /kz,min

with kz,min being the smallest eigenvalue of KZ . Since
inequality (30) holds, states η̂, z, ξ̃ are bounded. In particular,
integration of (30) yields:

c0

 t

0

∥Z(s)∥ ds ≤
 t

0

1

2
Z(s)⊤KZZ(s) ds ≤ V (0),

for all t ≥ 0 and for some positive constant c0, and thus
Z(s) is a L2 signal. By virtue of Lemma 1, it holds that
z̃(t), ˙̃z(t) → 0 as t → +∞, and we have thus proved the
formation control goal (8).

V. SIMULATION

We do numerical simulations on a fleet of wheeled robots
to illustrate the viability of the suggested strategy. The
simulation results demonstrate that even in the face of sinu-
soidal disturbances with unknown frequencies, the suggested
technique may provide reliable formation control. The robots
can maintain the proper configuration even in the face of
disturbances, and the formation error is greatly decreased.

To the end of showing the effectiveness of controller
(23), we simulate a network of 4 unicycle robots. For ease
of presentation, we assumed same nominal mass, nominal
inertia, front-end distance, and same scalar mismatch δ =
0.2 (with according units) for each robot i ∈ {1, . . . , 4},
namely mi = m0

i + δ, Ii = I0
i + 1

2δ with m0
i = 1kg,

I0
i = 0.1 kgm2, and dAC,i = 0.2m. For this robot network,

we have considered 6 virtual springs, thus a connectivity
graph described by the following incidence matrix:

B =



−1 0 0 1 0 1
1 −1 0 0 1 0
0 1 −1 0 0 −1
0 0 1 −1 −1 0


 .

Our goal is to drive the 4 robots into a formation described
by the following desired relative positions:

z⋆1 =


8
0


, z⋆2 =


−4
8


, z⋆3 =


0
−4



z⋆4 =


−4
−4


, z⋆5 =


4
−4


, z⋆5 =


4
−4


. (31)

A common incoming input disturbance of frequency f0 + σ
with f0 = 6 [rad/s] is generated by exosystem (10). Given
the nominal disturbance frequency f0, we have selected

Φ0
i =


0 −f0
f0 0


, Ψi =


2 1
0 1


.

Taking the time derivative of η̃ yields:
˙̃η = Hη +Nū+ P0(Z)  

η̇

−T σΦσ(Tσ)−1θ

−N

ū+ F1(V̇ )δ −Ψ(Tσ)−1θ


  

MŻ

= Hη −

T σΦσ(Tσ)−1 −NΨ(Tσ)−1
  

H (by assumption A3)

θ −HNMZ

  
Hη̃

+HNMZ −HNM0(Z)−NF1(V̇ )δ

= Hη̃ + P1(V̇ , Z)δ. (24)

In the new coordinates, equation of motion (18) reads as:

MŻ = F1(V̇ ) δ +Ψ(T 0)−1η  
−l32(η)

−l23(Z)−KZZ − ρ ξ̂−Ψ(Tσ)−1θ  
d

= F1(V̇ ) δ−l32(η)− l31(η)Q3(σ)  
Ψ(Tσ)−1η

+l31(η)Q3(σ)

−l23(Z)− l22(Z)Q2(δ, σ)− l21(z)δ  
−Ψ(Tσ)−1NMZ

+ l21(Z)δ + l22(Z)Q2(δ, σ)−KZZ − ρ ξ̂ −Ψ(Tσ)−1θ =

= F1(V̇ )δ +Ψ(Tσ)−1η̃ −Kzz

− ρ ξ̂ +

l21 l22 l23





δ
Q2

Q3


 . (25)

A further change of coordinates is introduced to deal with
model uncertainty δ, namely:

η̂ := η̃ − ζδ. (26)

Thanks to the change of coordinates (26), model uncertainty
δ is embedded in the internal model of the system. In fact,
the time derivative of η̂ now reads as:

˙̂η = ˙̃η − ζ̇δ = Hη̃ + P1δ − (Hζ + P1)δ = Hη̂. (27)

In the new coordinates, equation (25) reads as:

MŻ = F1(V̇ )δ +Ψ(Tσ)−1η̂ −KZZ − ρ ξ̂

+ Ψ(Tσ)−1ζδ  
l11(ζ)δ+l12(ζ)Q1(δ,σ)

+

l21 l22 l23





δ
Q2

Q3




= Ψ(T σ)−1η̂ −KZZ − ρ ξ̃.

Therefore the final form of the closed-loop system is:


MŻ = Ψ(Tσ)−1η̂ −KZZ − ρ ξ̃

ζ̇ = Hζ + P1(V̇ , Z)
˙̂η = Hη̂
˙̃
ξ =

˙̂
ξ = Γξ̂ ρ

⊤Z.

(28)

Let Q be a positive-definite matrix such that H⊤Q+QH =
−I and ϵ > 0 a positive real constant. Let V (η̂, Z, ξ̃) be the
following candidate Lyapunov function:

V (η̂, Z, ξ̃) = ϵη̂⊤Qη̂ +
1

2
Z⊤MZ +

1

2
ξ̃⊤Γ−1

ξ̂
ξ̃. (29)

Then, taking the time derivative of (29) along the trajectories
of (28) yields:

dV (η̂, Z, ξ̃)

dt
= −ϵ η̂⊤


H⊤Q+QH


η̂ + Z⊤MŻ + ξ̃⊤Γ−1

ξ̂

˙̂
ξ

= −ϵ ∥η̂∥2 +−Z⊤KzZ

+Z⊤

Ψ(T σ)−1η̂ − ρ ξ̃


+ ξ̃⊤Γ−1

ξ̃
Γξ̃ ρ

⊤ Z

= −ϵ ∥η̂∥2 − Z⊤KZZ + Z⊤Ψ(T σ)−1η̂

≤ −1

2
ϵ ∥η̂∥2 − 1

2
Z⊤KZZ, (30)

where last inequality stems from a Young’s inequality
argument and by setting ϵ such that ϵ ≥

Ψ(Tσ)−1
 /kz,min

with kz,min being the smallest eigenvalue of KZ . Since
inequality (30) holds, states η̂, z, ξ̃ are bounded. In particular,
integration of (30) yields:

c0

 t

0

∥Z(s)∥ ds ≤
 t

0

1

2
Z(s)⊤KZZ(s) ds ≤ V (0),

for all t ≥ 0 and for some positive constant c0, and thus
Z(s) is a L2 signal. By virtue of Lemma 1, it holds that
z̃(t), ˙̃z(t) → 0 as t → +∞, and we have thus proved the
formation control goal (8).

V. SIMULATION

We do numerical simulations on a fleet of wheeled robots
to illustrate the viability of the suggested strategy. The
simulation results demonstrate that even in the face of sinu-
soidal disturbances with unknown frequencies, the suggested
technique may provide reliable formation control. The robots
can maintain the proper configuration even in the face of
disturbances, and the formation error is greatly decreased.

To the end of showing the effectiveness of controller
(23), we simulate a network of 4 unicycle robots. For ease
of presentation, we assumed same nominal mass, nominal
inertia, front-end distance, and same scalar mismatch δ =
0.2 (with according units) for each robot i ∈ {1, . . . , 4},
namely mi = m0

i + δ, Ii = I0
i + 1

2δ with m0
i = 1kg,

I0
i = 0.1 kgm2, and dAC,i = 0.2m. For this robot network,

we have considered 6 virtual springs, thus a connectivity
graph described by the following incidence matrix:

B =



−1 0 0 1 0 1
1 −1 0 0 1 0
0 1 −1 0 0 −1
0 0 1 −1 −1 0


 .

Our goal is to drive the 4 robots into a formation described
by the following desired relative positions:

z⋆1 =


8
0


, z⋆2 =


−4
8


, z⋆3 =


0
−4



z⋆4 =


−4
−4


, z⋆5 =


4
−4


, z⋆5 =


4
−4


. (31)

A common incoming input disturbance of frequency f0 + σ
with f0 = 6 [rad/s] is generated by exosystem (10). Given
the nominal disturbance frequency f0, we have selected

Φ0
i =


0 −f0
f0 0


, Ψi =


2 1
0 1


.

Taking the time derivative of η̃ yields:
˙̃η = Hη +Nū+ P0(Z)  

η̇

−T σΦσ(Tσ)−1θ

−N

ū+ F1(V̇ )δ −Ψ(Tσ)−1θ


  

MŻ

= Hη −

T σΦσ(Tσ)−1 −NΨ(Tσ)−1
  

H (by assumption A3)

θ −HNMZ

  
Hη̃

+HNMZ −HNM0(Z)−NF1(V̇ )δ

= Hη̃ + P1(V̇ , Z)δ. (24)

In the new coordinates, equation of motion (18) reads as:

MŻ = F1(V̇ ) δ +Ψ(T 0)−1η  
−l32(η)

−l23(Z)−KZZ − ρ ξ̂−Ψ(Tσ)−1θ  
d

= F1(V̇ ) δ−l32(η)− l31(η)Q3(σ)  
Ψ(Tσ)−1η

+l31(η)Q3(σ)

−l23(Z)− l22(Z)Q2(δ, σ)− l21(z)δ  
−Ψ(Tσ)−1NMZ

+ l21(Z)δ + l22(Z)Q2(δ, σ)−KZZ − ρ ξ̂ −Ψ(Tσ)−1θ =

= F1(V̇ )δ +Ψ(Tσ)−1η̃ −Kzz

− ρ ξ̂ +

l21 l22 l23





δ
Q2

Q3


 . (25)

A further change of coordinates is introduced to deal with
model uncertainty δ, namely:

η̂ := η̃ − ζδ. (26)

Thanks to the change of coordinates (26), model uncertainty
δ is embedded in the internal model of the system. In fact,
the time derivative of η̂ now reads as:

˙̂η = ˙̃η − ζ̇δ = Hη̃ + P1δ − (Hζ + P1)δ = Hη̂. (27)

In the new coordinates, equation (25) reads as:

MŻ = F1(V̇ )δ +Ψ(Tσ)−1η̂ −KZZ − ρ ξ̂

+ Ψ(Tσ)−1ζδ  
l11(ζ)δ+l12(ζ)Q1(δ,σ)

+

l21 l22 l23





δ
Q2

Q3




= Ψ(T σ)−1η̂ −KZZ − ρ ξ̃.

Therefore the final form of the closed-loop system is:



MŻ = Ψ(Tσ)−1η̂ −KZZ − ρ ξ̃

ζ̇ = Hζ + P1(V̇ , Z)
˙̂η = Hη̂
˙̃
ξ =

˙̂
ξ = Γξ̂ ρ

⊤Z.

(28)

Let Q be a positive-definite matrix such that H⊤Q+QH =
−I and ϵ > 0 a positive real constant. Let V (η̂, Z, ξ̃) be the
following candidate Lyapunov function:

V (η̂, Z, ξ̃) = ϵη̂⊤Qη̂ +
1

2
Z⊤MZ +

1

2
ξ̃⊤Γ−1

ξ̂
ξ̃. (29)

Then, taking the time derivative of (29) along the trajectories
of (28) yields:

dV (η̂, Z, ξ̃)

dt
= −ϵ η̂⊤


H⊤Q+QH


η̂ + Z⊤MŻ + ξ̃⊤Γ−1

ξ̂

˙̂
ξ

= −ϵ ∥η̂∥2 +−Z⊤KzZ

+Z⊤

Ψ(T σ)−1η̂ − ρ ξ̃


+ ξ̃⊤Γ−1

ξ̃
Γξ̃ ρ

⊤ Z

= −ϵ ∥η̂∥2 − Z⊤KZZ + Z⊤Ψ(T σ)−1η̂

≤ −1

2
ϵ ∥η̂∥2 − 1

2
Z⊤KZZ, (30)

where last inequality stems from a Young’s inequality
argument and by setting ϵ such that ϵ ≥

Ψ(Tσ)−1
 /kz,min

with kz,min being the smallest eigenvalue of KZ . Since
inequality (30) holds, states η̂, z, ξ̃ are bounded. In particular,
integration of (30) yields:

c0

 t

0

∥Z(s)∥ ds ≤
 t

0

1

2
Z(s)⊤KZZ(s) ds ≤ V (0),

for all t ≥ 0 and for some positive constant c0, and thus
Z(s) is a L2 signal. By virtue of Lemma 1, it holds that
z̃(t), ˙̃z(t) → 0 as t → +∞, and we have thus proved the
formation control goal (8).

V. SIMULATION

We do numerical simulations on a fleet of wheeled robots
to illustrate the viability of the suggested strategy. The
simulation results demonstrate that even in the face of sinu-
soidal disturbances with unknown frequencies, the suggested
technique may provide reliable formation control. The robots
can maintain the proper configuration even in the face of
disturbances, and the formation error is greatly decreased.

To the end of showing the effectiveness of controller
(23), we simulate a network of 4 unicycle robots. For ease
of presentation, we assumed same nominal mass, nominal
inertia, front-end distance, and same scalar mismatch δ =
0.2 (with according units) for each robot i ∈ {1, . . . , 4},
namely mi = m0

i + δ, Ii = I0
i + 1

2δ with m0
i = 1kg,

I0
i = 0.1 kgm2, and dAC,i = 0.2m. For this robot network,

we have considered 6 virtual springs, thus a connectivity
graph described by the following incidence matrix:

B =



−1 0 0 1 0 1
1 −1 0 0 1 0
0 1 −1 0 0 −1
0 0 1 −1 −1 0


 .

Our goal is to drive the 4 robots into a formation described
by the following desired relative positions:

z⋆1 =


8
0


, z⋆2 =


−4
8


, z⋆3 =


0
−4



z⋆4 =


−4
−4


, z⋆5 =


4
−4


, z⋆5 =


4
−4


. (31)

A common incoming input disturbance of frequency f0 + σ
with f0 = 6 [rad/s] is generated by exosystem (10). Given
the nominal disturbance frequency f0, we have selected

Φ0
i =


0 −f0
f0 0


, Ψi =


2 1
0 1


.

ˆ

ˆ ˜

Taking the time derivative of η̃ yields:
˙̃η = Hη +Nū+ P0(Z)  

η̇

−T σΦσ(Tσ)−1θ

−N

ū+ F1(V̇ )δ −Ψ(Tσ)−1θ


  

MŻ

= Hη −

T σΦσ(Tσ)−1 −NΨ(Tσ)−1
  

H (by assumption A3)

θ −HNMZ

  
Hη̃

+HNMZ −HNM0(Z)−NF1(V̇ )δ

= Hη̃ + P1(V̇ , Z)δ. (24)

In the new coordinates, equation of motion (18) reads as:

MŻ = F1(V̇ ) δ +Ψ(T 0)−1η  
−l32(η)

−l23(Z)−KZZ − ρ ξ̂−Ψ(Tσ)−1θ  
d

= F1(V̇ ) δ−l32(η)− l31(η)Q3(σ)  
Ψ(Tσ)−1η

+l31(η)Q3(σ)

−l23(Z)− l22(Z)Q2(δ, σ)− l21(z)δ  
−Ψ(Tσ)−1NMZ

+ l21(Z)δ + l22(Z)Q2(δ, σ)−KZZ − ρ ξ̂ −Ψ(Tσ)−1θ =

= F1(V̇ )δ +Ψ(Tσ)−1η̃ −Kzz

− ρ ξ̂ +

l21 l22 l23





δ
Q2

Q3


 . (25)

A further change of coordinates is introduced to deal with
model uncertainty δ, namely:

η̂ := η̃ − ζδ. (26)

Thanks to the change of coordinates (26), model uncertainty
δ is embedded in the internal model of the system. In fact,
the time derivative of η̂ now reads as:

˙̂η = ˙̃η − ζ̇δ = Hη̃ + P1δ − (Hζ + P1)δ = Hη̂. (27)

In the new coordinates, equation (25) reads as:

MŻ = F1(V̇ )δ +Ψ(Tσ)−1η̂ −KZZ − ρ ξ̂

+ Ψ(Tσ)−1ζδ  
l11(ζ)δ+l12(ζ)Q1(δ,σ)

+

l21 l22 l23





δ
Q2

Q3




= Ψ(T σ)−1η̂ −KZZ − ρ ξ̃.

Therefore the final form of the closed-loop system is:



MŻ = Ψ(Tσ)−1η̂ −KZZ − ρ ξ̃

ζ̇ = Hζ + P1(V̇ , Z)
˙̂η = Hη̂
˙̃
ξ =

˙̂
ξ = Γξ̂ ρ

⊤Z.

(28)

Let Q be a positive-definite matrix such that H⊤Q+QH =
−I and ϵ > 0 a positive real constant. Let V (η̂, Z, ξ̃) be the
following candidate Lyapunov function:

V (η̂, Z, ξ̃) = ϵη̂⊤Qη̂ +
1

2
Z⊤MZ +

1

2
ξ̃⊤Γ−1

ξ̂
ξ̃. (29)

Then, taking the time derivative of (29) along the trajectories
of (28) yields:

dV (η̂, Z, ξ̃)

dt
= −ϵ η̂⊤


H⊤Q+QH


η̂ + Z⊤MŻ + ξ̃⊤Γ−1

ξ̂

˙̂
ξ

= −ϵ ∥η̂∥2 +−Z⊤KzZ

+Z⊤

Ψ(T σ)−1η̂ − ρ ξ̃


+ ξ̃⊤Γ−1

ξ̃
Γξ̃ ρ

⊤ Z

= −ϵ ∥η̂∥2 − Z⊤KZZ + Z⊤Ψ(T σ)−1η̂

≤ −1

2
ϵ ∥η̂∥2 − 1

2
Z⊤KZZ, (30)

where last inequality stems from a Young’s inequality
argument and by setting ϵ such that ϵ ≥

Ψ(Tσ)−1
 /kz,min

with kz,min being the smallest eigenvalue of KZ . Since
inequality (30) holds, states η̂, z, ξ̃ are bounded. In particular,
integration of (30) yields:

c0

 t

0

∥Z(s)∥ ds ≤
 t

0

1

2
Z(s)⊤KZZ(s) ds ≤ V (0),

for all t ≥ 0 and for some positive constant c0, and thus
Z(s) is a L2 signal. By virtue of Lemma 1, it holds that
z̃(t), ˙̃z(t) → 0 as t → +∞, and we have thus proved the
formation control goal (8).

V. SIMULATION

We do numerical simulations on a fleet of wheeled robots
to illustrate the viability of the suggested strategy. The
simulation results demonstrate that even in the face of sinu-
soidal disturbances with unknown frequencies, the suggested
technique may provide reliable formation control. The robots
can maintain the proper configuration even in the face of
disturbances, and the formation error is greatly decreased.

To the end of showing the effectiveness of controller
(23), we simulate a network of 4 unicycle robots. For ease
of presentation, we assumed same nominal mass, nominal
inertia, front-end distance, and same scalar mismatch δ =
0.2 (with according units) for each robot i ∈ {1, . . . , 4},
namely mi = m0

i + δ, Ii = I0
i + 1

2δ with m0
i = 1kg,

I0
i = 0.1 kgm2, and dAC,i = 0.2m. For this robot network,

we have considered 6 virtual springs, thus a connectivity
graph described by the following incidence matrix:

B =



−1 0 0 1 0 1
1 −1 0 0 1 0
0 1 −1 0 0 −1
0 0 1 −1 −1 0


 .

Our goal is to drive the 4 robots into a formation described
by the following desired relative positions:

z⋆1 =


8
0


, z⋆2 =


−4
8


, z⋆3 =


0
−4



z⋆4 =


−4
−4


, z⋆5 =


4
−4


, z⋆5 =


4
−4


. (31)

A common incoming input disturbance of frequency f0 + σ
with f0 = 6 [rad/s] is generated by exosystem (10). Given
the nominal disturbance frequency f0, we have selected

Φ0
i =


0 −f0
f0 0


, Ψi =


2 1
0 1


.

Taking the time derivative of η̃ yields:
˙̃η = Hη +Nū+ P0(Z)  

η̇

−T σΦσ(Tσ)−1θ

−N

ū+ F1(V̇ )δ −Ψ(Tσ)−1θ


  

MŻ

= Hη −

T σΦσ(Tσ)−1 −NΨ(Tσ)−1
  

H (by assumption A3)

θ −HNMZ

  
Hη̃

+HNMZ −HNM0(Z)−NF1(V̇ )δ

= Hη̃ + P1(V̇ , Z)δ. (24)

In the new coordinates, equation of motion (18) reads as:

MŻ = F1(V̇ ) δ +Ψ(T 0)−1η  
−l32(η)

−l23(Z)−KZZ − ρ ξ̂−Ψ(Tσ)−1θ  
d

= F1(V̇ ) δ−l32(η)− l31(η)Q3(σ)  
Ψ(Tσ)−1η

+l31(η)Q3(σ)

−l23(Z)− l22(Z)Q2(δ, σ)− l21(z)δ  
−Ψ(Tσ)−1NMZ

+ l21(Z)δ + l22(Z)Q2(δ, σ)−KZZ − ρ ξ̂ −Ψ(Tσ)−1θ =

= F1(V̇ )δ +Ψ(Tσ)−1η̃ −Kzz

− ρ ξ̂ +

l21 l22 l23





δ
Q2

Q3


 . (25)

A further change of coordinates is introduced to deal with
model uncertainty δ, namely:

η̂ := η̃ − ζδ. (26)

Thanks to the change of coordinates (26), model uncertainty
δ is embedded in the internal model of the system. In fact,
the time derivative of η̂ now reads as:

˙̂η = ˙̃η − ζ̇δ = Hη̃ + P1δ − (Hζ + P1)δ = Hη̂. (27)

In the new coordinates, equation (25) reads as:

MŻ = F1(V̇ )δ +Ψ(Tσ)−1η̂ −KZZ − ρ ξ̂

+ Ψ(Tσ)−1ζδ  
l11(ζ)δ+l12(ζ)Q1(δ,σ)

+

l21 l22 l23





δ
Q2

Q3




= Ψ(T σ)−1η̂ −KZZ − ρ ξ̃.

Therefore the final form of the closed-loop system is:



MŻ = Ψ(Tσ)−1η̂ −KZZ − ρ ξ̃

ζ̇ = Hζ + P1(V̇ , Z)
˙̂η = Hη̂
˙̃
ξ =

˙̂
ξ = Γξ̂ ρ

⊤Z.

(28)

Let Q be a positive-definite matrix such that H⊤Q+QH =
−I and ϵ > 0 a positive real constant. Let V (η̂, Z, ξ̃) be the
following candidate Lyapunov function:

V (η̂, Z, ξ̃) = ϵη̂⊤Qη̂ +
1

2
Z⊤MZ +

1

2
ξ̃⊤Γ−1

ξ̂
ξ̃. (29)

Then, taking the time derivative of (29) along the trajectories
of (28) yields:

dV (η̂, Z, ξ̃)

dt
= −ϵ η̂⊤


H⊤Q+QH


η̂ + Z⊤MŻ + ξ̃⊤Γ−1

ξ̂

˙̂
ξ

= −ϵ ∥η̂∥2 +−Z⊤KzZ

+Z⊤

Ψ(T σ)−1η̂ − ρ ξ̃


+ ξ̃⊤Γ−1

ξ̃
Γξ̃ ρ

⊤ Z

= −ϵ ∥η̂∥2 − Z⊤KZZ + Z⊤Ψ(T σ)−1η̂

≤ −1

2
ϵ ∥η̂∥2 − 1

2
Z⊤KZZ, (30)

where last inequality stems from a Young’s inequality
argument and by setting ϵ such that ϵ ≥

Ψ(Tσ)−1
 /kz,min

with kz,min being the smallest eigenvalue of KZ . Since
inequality (30) holds, states η̂, z, ξ̃ are bounded. In particular,
integration of (30) yields:

c0

 t

0

∥Z(s)∥ ds ≤
 t

0

1

2
Z(s)⊤KZZ(s) ds ≤ V (0),

for all t ≥ 0 and for some positive constant c0, and thus
Z(s) is a L2 signal. By virtue of Lemma 1, it holds that
z̃(t), ˙̃z(t) → 0 as t → +∞, and we have thus proved the
formation control goal (8).

V. SIMULATION

We do numerical simulations on a fleet of wheeled robots
to illustrate the viability of the suggested strategy. The
simulation results demonstrate that even in the face of sinu-
soidal disturbances with unknown frequencies, the suggested
technique may provide reliable formation control. The robots
can maintain the proper configuration even in the face of
disturbances, and the formation error is greatly decreased.

To the end of showing the effectiveness of controller
(23), we simulate a network of 4 unicycle robots. For ease
of presentation, we assumed same nominal mass, nominal
inertia, front-end distance, and same scalar mismatch δ =
0.2 (with according units) for each robot i ∈ {1, . . . , 4},
namely mi = m0

i + δ, Ii = I0
i + 1

2δ with m0
i = 1kg,

I0
i = 0.1 kgm2, and dAC,i = 0.2m. For this robot network,

we have considered 6 virtual springs, thus a connectivity
graph described by the following incidence matrix:

B =



−1 0 0 1 0 1
1 −1 0 0 1 0
0 1 −1 0 0 −1
0 0 1 −1 −1 0


 .

Our goal is to drive the 4 robots into a formation described
by the following desired relative positions:

z⋆1 =


8
0


, z⋆2 =


−4
8


, z⋆3 =


0
−4



z⋆4 =


−4
−4


, z⋆5 =


4
−4


, z⋆5 =


4
−4


. (31)

A common incoming input disturbance of frequency f0 + σ
with f0 = 6 [rad/s] is generated by exosystem (10). Given
the nominal disturbance frequency f0, we have selected

Φ0
i =


0 −f0
f0 0


, Ψi =


2 1
0 1


.

Taking the time derivative of η̃ yields:
˙̃η = Hη +Nū+ P0(Z)  

η̇

−T σΦσ(Tσ)−1θ

−N

ū+ F1(V̇ )δ −Ψ(Tσ)−1θ


  

MŻ

= Hη −

T σΦσ(Tσ)−1 −NΨ(Tσ)−1
  

H (by assumption A3)

θ −HNMZ

  
Hη̃

+HNMZ −HNM0(Z)−NF1(V̇ )δ

= Hη̃ + P1(V̇ , Z)δ. (24)

In the new coordinates, equation of motion (18) reads as:

MŻ = F1(V̇ ) δ +Ψ(T 0)−1η  
−l32(η)

−l23(Z)−KZZ − ρ ξ̂−Ψ(Tσ)−1θ  
d

= F1(V̇ ) δ−l32(η)− l31(η)Q3(σ)  
Ψ(Tσ)−1η

+l31(η)Q3(σ)

−l23(Z)− l22(Z)Q2(δ, σ)− l21(z)δ  
−Ψ(Tσ)−1NMZ

+ l21(Z)δ + l22(Z)Q2(δ, σ)−KZZ − ρ ξ̂ −Ψ(Tσ)−1θ =

= F1(V̇ )δ +Ψ(Tσ)−1η̃ −Kzz

− ρ ξ̂ +

l21 l22 l23





δ
Q2

Q3


 . (25)

A further change of coordinates is introduced to deal with
model uncertainty δ, namely:

η̂ := η̃ − ζδ. (26)

Thanks to the change of coordinates (26), model uncertainty
δ is embedded in the internal model of the system. In fact,
the time derivative of η̂ now reads as:

˙̂η = ˙̃η − ζ̇δ = Hη̃ + P1δ − (Hζ + P1)δ = Hη̂. (27)

In the new coordinates, equation (25) reads as:

MŻ = F1(V̇ )δ +Ψ(Tσ)−1η̂ −KZZ − ρ ξ̂

+ Ψ(Tσ)−1ζδ  
l11(ζ)δ+l12(ζ)Q1(δ,σ)

+

l21 l22 l23





δ
Q2

Q3




= Ψ(T σ)−1η̂ −KZZ − ρ ξ̃.

Therefore the final form of the closed-loop system is:



MŻ = Ψ(Tσ)−1η̂ −KZZ − ρ ξ̃

ζ̇ = Hζ + P1(V̇ , Z)
˙̂η = Hη̂
˙̃
ξ =

˙̂
ξ = Γξ̂ ρ

⊤Z.

(28)

Let Q be a positive-definite matrix such that H⊤Q+QH =
−I and ϵ > 0 a positive real constant. Let V (η̂, Z, ξ̃) be the
following candidate Lyapunov function:

V (η̂, Z, ξ̃) = ϵη̂⊤Qη̂ +
1

2
Z⊤MZ +

1

2
ξ̃⊤Γ−1

ξ̂
ξ̃. (29)

Then, taking the time derivative of (29) along the trajectories
of (28) yields:

dV (η̂, Z, ξ̃)

dt
= −ϵ η̂⊤


H⊤Q+QH


η̂ + Z⊤MŻ + ξ̃⊤Γ−1

ξ̂

˙̂
ξ

= −ϵ ∥η̂∥2 +−Z⊤KzZ

+Z⊤

Ψ(T σ)−1η̂ − ρ ξ̃


+ ξ̃⊤Γ−1

ξ̃
Γξ̃ ρ

⊤ Z

= −ϵ ∥η̂∥2 − Z⊤KZZ + Z⊤Ψ(T σ)−1η̂

≤ −1

2
ϵ ∥η̂∥2 − 1

2
Z⊤KZZ, (30)

where last inequality stems from a Young’s inequality
argument and by setting ϵ such that ϵ ≥

Ψ(Tσ)−1
 /kz,min

with kz,min being the smallest eigenvalue of KZ . Since
inequality (30) holds, states η̂, z, ξ̃ are bounded. In particular,
integration of (30) yields:

c0

 t

0

∥Z(s)∥ ds ≤
 t

0

1

2
Z(s)⊤KZZ(s) ds ≤ V (0),

for all t ≥ 0 and for some positive constant c0, and thus
Z(s) is a L2 signal. By virtue of Lemma 1, it holds that
z̃(t), ˙̃z(t) → 0 as t → +∞, and we have thus proved the
formation control goal (8).

V. SIMULATION

We do numerical simulations on a fleet of wheeled robots
to illustrate the viability of the suggested strategy. The
simulation results demonstrate that even in the face of sinu-
soidal disturbances with unknown frequencies, the suggested
technique may provide reliable formation control. The robots
can maintain the proper configuration even in the face of
disturbances, and the formation error is greatly decreased.

To the end of showing the effectiveness of controller
(23), we simulate a network of 4 unicycle robots. For ease
of presentation, we assumed same nominal mass, nominal
inertia, front-end distance, and same scalar mismatch δ =
0.2 (with according units) for each robot i ∈ {1, . . . , 4},
namely mi = m0

i + δ, Ii = I0
i + 1

2δ with m0
i = 1kg,

I0
i = 0.1 kgm2, and dAC,i = 0.2m. For this robot network,

we have considered 6 virtual springs, thus a connectivity
graph described by the following incidence matrix:

B =



−1 0 0 1 0 1
1 −1 0 0 1 0
0 1 −1 0 0 −1
0 0 1 −1 −1 0


 .

Our goal is to drive the 4 robots into a formation described
by the following desired relative positions:

z⋆1 =


8
0


, z⋆2 =


−4
8


, z⋆3 =


0
−4



z⋆4 =


−4
−4


, z⋆5 =


4
−4


, z⋆5 =


4
−4


. (31)

A common incoming input disturbance of frequency f0 + σ
with f0 = 6 [rad/s] is generated by exosystem (10). Given
the nominal disturbance frequency f0, we have selected

Φ0
i =


0 −f0
f0 0


, Ψi =


2 1
0 1


.

Taking the time derivative of η̃ yields:
˙̃η = Hη +Nū+ P0(Z)  

η̇

−T σΦσ(Tσ)−1θ

−N

ū+ F1(V̇ )δ −Ψ(Tσ)−1θ


  

MŻ

= Hη −

T σΦσ(Tσ)−1 −NΨ(Tσ)−1
  

H (by assumption A3)

θ −HNMZ

  
Hη̃

+HNMZ −HNM0(Z)−NF1(V̇ )δ

= Hη̃ + P1(V̇ , Z)δ. (24)

In the new coordinates, equation of motion (18) reads as:

MŻ = F1(V̇ ) δ +Ψ(T 0)−1η  
−l32(η)

−l23(Z)−KZZ − ρ ξ̂−Ψ(Tσ)−1θ  
d

= F1(V̇ ) δ−l32(η)− l31(η)Q3(σ)  
Ψ(Tσ)−1η

+l31(η)Q3(σ)

−l23(Z)− l22(Z)Q2(δ, σ)− l21(z)δ  
−Ψ(Tσ)−1NMZ

+ l21(Z)δ + l22(Z)Q2(δ, σ)−KZZ − ρ ξ̂ −Ψ(Tσ)−1θ =

= F1(V̇ )δ +Ψ(Tσ)−1η̃ −Kzz

− ρ ξ̂ +

l21 l22 l23





δ
Q2

Q3


 . (25)

A further change of coordinates is introduced to deal with
model uncertainty δ, namely:

η̂ := η̃ − ζδ. (26)

Thanks to the change of coordinates (26), model uncertainty
δ is embedded in the internal model of the system. In fact,
the time derivative of η̂ now reads as:

˙̂η = ˙̃η − ζ̇δ = Hη̃ + P1δ − (Hζ + P1)δ = Hη̂. (27)

In the new coordinates, equation (25) reads as:

MŻ = F1(V̇ )δ +Ψ(Tσ)−1η̂ −KZZ − ρ ξ̂

+ Ψ(Tσ)−1ζδ  
l11(ζ)δ+l12(ζ)Q1(δ,σ)

+

l21 l22 l23





δ
Q2

Q3




= Ψ(T σ)−1η̂ −KZZ − ρ ξ̃.

Therefore the final form of the closed-loop system is:


MŻ = Ψ(Tσ)−1η̂ −KZZ − ρ ξ̃

ζ̇ = Hζ + P1(V̇ , Z)
˙̂η = Hη̂
˙̃
ξ =

˙̂
ξ = Γξ̂ ρ

⊤Z.

(28)

Let Q be a positive-definite matrix such that H⊤Q+QH =
−I and ϵ > 0 a positive real constant. Let V (η̂, Z, ξ̃) be the
following candidate Lyapunov function:

V (η̂, Z, ξ̃) = ϵη̂⊤Qη̂ +
1

2
Z⊤MZ +

1

2
ξ̃⊤Γ−1

ξ̂
ξ̃. (29)

Then, taking the time derivative of (29) along the trajectories
of (28) yields:

dV (η̂, Z, ξ̃)

dt
= −ϵ η̂⊤


H⊤Q+QH


η̂ + Z⊤MŻ + ξ̃⊤Γ−1

ξ̂

˙̂
ξ

= −ϵ ∥η̂∥2 +−Z⊤KzZ

+Z⊤

Ψ(T σ)−1η̂ − ρ ξ̃


+ ξ̃⊤Γ−1

ξ̃
Γξ̃ ρ

⊤ Z

= −ϵ ∥η̂∥2 − Z⊤KZZ + Z⊤Ψ(T σ)−1η̂

≤ −1

2
ϵ ∥η̂∥2 − 1

2
Z⊤KZZ, (30)

where last inequality stems from a Young’s inequality
argument and by setting ϵ such that ϵ ≥

Ψ(Tσ)−1
 /kz,min

with kz,min being the smallest eigenvalue of KZ . Since
inequality (30) holds, states η̂, z, ξ̃ are bounded. In particular,
integration of (30) yields:

c0

 t

0

∥Z(s)∥ ds ≤
 t

0

1

2
Z(s)⊤KZZ(s) ds ≤ V (0),

for all t ≥ 0 and for some positive constant c0, and thus
Z(s) is a L2 signal. By virtue of Lemma 1, it holds that
z̃(t), ˙̃z(t) → 0 as t → +∞, and we have thus proved the
formation control goal (8).

V. SIMULATION

We do numerical simulations on a fleet of wheeled robots
to illustrate the viability of the suggested strategy. The
simulation results demonstrate that even in the face of sinu-
soidal disturbances with unknown frequencies, the suggested
technique may provide reliable formation control. The robots
can maintain the proper configuration even in the face of
disturbances, and the formation error is greatly decreased.

To the end of showing the effectiveness of controller
(23), we simulate a network of 4 unicycle robots. For ease
of presentation, we assumed same nominal mass, nominal
inertia, front-end distance, and same scalar mismatch δ =
0.2 (with according units) for each robot i ∈ {1, . . . , 4},
namely mi = m0

i + δ, Ii = I0
i + 1

2δ with m0
i = 1kg,

I0
i = 0.1 kgm2, and dAC,i = 0.2m. For this robot network,

we have considered 6 virtual springs, thus a connectivity
graph described by the following incidence matrix:

B =



−1 0 0 1 0 1
1 −1 0 0 1 0
0 1 −1 0 0 −1
0 0 1 −1 −1 0


 .

Our goal is to drive the 4 robots into a formation described
by the following desired relative positions:

z⋆1 =


8
0


, z⋆2 =


−4
8


, z⋆3 =


0
−4



z⋆4 =


−4
−4


, z⋆5 =


4
−4


, z⋆5 =


4
−4


. (31)

A common incoming input disturbance of frequency f0 + σ
with f0 = 6 [rad/s] is generated by exosystem (10). Given
the nominal disturbance frequency f0, we have selected

Φ0
i =


0 −f0
f0 0


, Ψi =


2 1
0 1


.

Taking the time derivative of η̃ yields:
˙̃η = Hη +Nū+ P0(Z)  

η̇

−T σΦσ(Tσ)−1θ

−N

ū+ F1(V̇ )δ −Ψ(Tσ)−1θ


  

MŻ

= Hη −

T σΦσ(Tσ)−1 −NΨ(Tσ)−1
  

H (by assumption A3)

θ −HNMZ

  
Hη̃

+HNMZ −HNM0(Z)−NF1(V̇ )δ

= Hη̃ + P1(V̇ , Z)δ. (24)

In the new coordinates, equation of motion (18) reads as:

MŻ = F1(V̇ ) δ +Ψ(T 0)−1η  
−l32(η)

−l23(Z)−KZZ − ρ ξ̂−Ψ(Tσ)−1θ  
d

= F1(V̇ ) δ−l32(η)− l31(η)Q3(σ)  
Ψ(Tσ)−1η

+l31(η)Q3(σ)

−l23(Z)− l22(Z)Q2(δ, σ)− l21(z)δ  
−Ψ(Tσ)−1NMZ

+ l21(Z)δ + l22(Z)Q2(δ, σ)−KZZ − ρ ξ̂ −Ψ(Tσ)−1θ =

= F1(V̇ )δ +Ψ(Tσ)−1η̃ −Kzz

− ρ ξ̂ +

l21 l22 l23





δ
Q2

Q3


 . (25)

A further change of coordinates is introduced to deal with
model uncertainty δ, namely:

η̂ := η̃ − ζδ. (26)

Thanks to the change of coordinates (26), model uncertainty
δ is embedded in the internal model of the system. In fact,
the time derivative of η̂ now reads as:

˙̂η = ˙̃η − ζ̇δ = Hη̃ + P1δ − (Hζ + P1)δ = Hη̂. (27)

In the new coordinates, equation (25) reads as:

MŻ = F1(V̇ )δ +Ψ(Tσ)−1η̂ −KZZ − ρ ξ̂

+ Ψ(Tσ)−1ζδ  
l11(ζ)δ+l12(ζ)Q1(δ,σ)

+

l21 l22 l23





δ
Q2

Q3




= Ψ(T σ)−1η̂ −KZZ − ρ ξ̃.

Therefore the final form of the closed-loop system is:



MŻ = Ψ(Tσ)−1η̂ −KZZ − ρ ξ̃

ζ̇ = Hζ + P1(V̇ , Z)
˙̂η = Hη̂
˙̃
ξ =

˙̂
ξ = Γξ̂ ρ

⊤Z.

(28)

Let Q be a positive-definite matrix such that H⊤Q+QH =
−I and ϵ > 0 a positive real constant. Let V (η̂, Z, ξ̃) be the
following candidate Lyapunov function:

V (η̂, Z, ξ̃) = ϵη̂⊤Qη̂ +
1

2
Z⊤MZ +

1

2
ξ̃⊤Γ−1

ξ̂
ξ̃. (29)

Then, taking the time derivative of (29) along the trajectories
of (28) yields:

dV (η̂, Z, ξ̃)

dt
= −ϵ η̂⊤


H⊤Q+QH


η̂ + Z⊤MŻ + ξ̃⊤Γ−1

ξ̂

˙̂
ξ

= −ϵ ∥η̂∥2 +−Z⊤KzZ

+Z⊤

Ψ(T σ)−1η̂ − ρ ξ̃


+ ξ̃⊤Γ−1

ξ̃
Γξ̃ ρ

⊤ Z

= −ϵ ∥η̂∥2 − Z⊤KZZ + Z⊤Ψ(T σ)−1η̂

≤ −1

2
ϵ ∥η̂∥2 − 1

2
Z⊤KZZ, (30)

where last inequality stems from a Young’s inequality
argument and by setting ϵ such that ϵ ≥

Ψ(Tσ)−1
 /kz,min

with kz,min being the smallest eigenvalue of KZ . Since
inequality (30) holds, states η̂, z, ξ̃ are bounded. In particular,
integration of (30) yields:

c0

 t

0

∥Z(s)∥ ds ≤
 t

0

1

2
Z(s)⊤KZZ(s) ds ≤ V (0),

for all t ≥ 0 and for some positive constant c0, and thus
Z(s) is a L2 signal. By virtue of Lemma 1, it holds that
z̃(t), ˙̃z(t) → 0 as t → +∞, and we have thus proved the
formation control goal (8).

V. SIMULATION

We do numerical simulations on a fleet of wheeled robots
to illustrate the viability of the suggested strategy. The
simulation results demonstrate that even in the face of sinu-
soidal disturbances with unknown frequencies, the suggested
technique may provide reliable formation control. The robots
can maintain the proper configuration even in the face of
disturbances, and the formation error is greatly decreased.

To the end of showing the effectiveness of controller
(23), we simulate a network of 4 unicycle robots. For ease
of presentation, we assumed same nominal mass, nominal
inertia, front-end distance, and same scalar mismatch δ =
0.2 (with according units) for each robot i ∈ {1, . . . , 4},
namely mi = m0

i + δ, Ii = I0
i + 1

2δ with m0
i = 1kg,

I0
i = 0.1 kgm2, and dAC,i = 0.2m. For this robot network,

we have considered 6 virtual springs, thus a connectivity
graph described by the following incidence matrix:

B =



−1 0 0 1 0 1
1 −1 0 0 1 0
0 1 −1 0 0 −1
0 0 1 −1 −1 0


 .

Our goal is to drive the 4 robots into a formation described
by the following desired relative positions:

z⋆1 =


8
0


, z⋆2 =


−4
8


, z⋆3 =


0
−4



z⋆4 =


−4
−4


, z⋆5 =


4
−4


, z⋆5 =


4
−4


. (31)

A common incoming input disturbance of frequency f0 + σ
with f0 = 6 [rad/s] is generated by exosystem (10). Given
the nominal disturbance frequency f0, we have selected

Φ0
i =


0 −f0
f0 0


, Ψi =


2 1
0 1


.

Taking the time derivative of η̃ yields:
˙̃η = Hη +Nū+ P0(Z)  

η̇

−T σΦσ(Tσ)−1θ

−N

ū+ F1(V̇ )δ −Ψ(Tσ)−1θ


  

MŻ

= Hη −

T σΦσ(Tσ)−1 −NΨ(Tσ)−1
  

H (by assumption A3)

θ −HNMZ

  
Hη̃

+HNMZ −HNM0(Z)−NF1(V̇ )δ

= Hη̃ + P1(V̇ , Z)δ. (24)

In the new coordinates, equation of motion (18) reads as:

MŻ = F1(V̇ ) δ +Ψ(T 0)−1η  
−l32(η)

−l23(Z)−KZZ − ρ ξ̂−Ψ(Tσ)−1θ  
d

= F1(V̇ ) δ−l32(η)− l31(η)Q3(σ)  
Ψ(Tσ)−1η

+l31(η)Q3(σ)

−l23(Z)− l22(Z)Q2(δ, σ)− l21(z)δ  
−Ψ(Tσ)−1NMZ

+ l21(Z)δ + l22(Z)Q2(δ, σ)−KZZ − ρ ξ̂ −Ψ(Tσ)−1θ =

= F1(V̇ )δ +Ψ(Tσ)−1η̃ −Kzz

− ρ ξ̂ +

l21 l22 l23





δ
Q2

Q3


 . (25)

A further change of coordinates is introduced to deal with
model uncertainty δ, namely:

η̂ := η̃ − ζδ. (26)

Thanks to the change of coordinates (26), model uncertainty
δ is embedded in the internal model of the system. In fact,
the time derivative of η̂ now reads as:

˙̂η = ˙̃η − ζ̇δ = Hη̃ + P1δ − (Hζ + P1)δ = Hη̂. (27)

In the new coordinates, equation (25) reads as:

MŻ = F1(V̇ )δ +Ψ(Tσ)−1η̂ −KZZ − ρ ξ̂

+ Ψ(Tσ)−1ζδ  
l11(ζ)δ+l12(ζ)Q1(δ,σ)

+

l21 l22 l23





δ
Q2

Q3




= Ψ(T σ)−1η̂ −KZZ − ρ ξ̃.

Therefore the final form of the closed-loop system is:


MŻ = Ψ(Tσ)−1η̂ −KZZ − ρ ξ̃

ζ̇ = Hζ + P1(V̇ , Z)
˙̂η = Hη̂
˙̃
ξ =

˙̂
ξ = Γξ̂ ρ

⊤Z.

(28)

Let Q be a positive-definite matrix such that H⊤Q+QH =
−I and ϵ > 0 a positive real constant. Let V (η̂, Z, ξ̃) be the
following candidate Lyapunov function:

V (η̂, Z, ξ̃) = ϵη̂⊤Qη̂ +
1

2
Z⊤MZ +

1

2
ξ̃⊤Γ−1

ξ̂
ξ̃. (29)

Then, taking the time derivative of (29) along the trajectories
of (28) yields:

dV (η̂, Z, ξ̃)

dt
= −ϵ η̂⊤


H⊤Q+QH


η̂ + Z⊤MŻ + ξ̃⊤Γ−1

ξ̂

˙̂
ξ

= −ϵ ∥η̂∥2 +−Z⊤KzZ

+Z⊤

Ψ(T σ)−1η̂ − ρ ξ̃


+ ξ̃⊤Γ−1

ξ̃
Γξ̃ ρ

⊤ Z

= −ϵ ∥η̂∥2 − Z⊤KZZ + Z⊤Ψ(T σ)−1η̂

≤ −1

2
ϵ ∥η̂∥2 − 1

2
Z⊤KZZ, (30)

where last inequality stems from a Young’s inequality
argument and by setting ϵ such that ϵ ≥

Ψ(Tσ)−1
 /kz,min

with kz,min being the smallest eigenvalue of KZ . Since
inequality (30) holds, states η̂, z, ξ̃ are bounded. In particular,
integration of (30) yields:

c0

 t

0

∥Z(s)∥ ds ≤
 t

0

1

2
Z(s)⊤KZZ(s) ds ≤ V (0),

for all t ≥ 0 and for some positive constant c0, and thus
Z(s) is a L2 signal. By virtue of Lemma 1, it holds that
z̃(t), ˙̃z(t) → 0 as t → +∞, and we have thus proved the
formation control goal (8).

V. SIMULATION

We do numerical simulations on a fleet of wheeled robots
to illustrate the viability of the suggested strategy. The
simulation results demonstrate that even in the face of sinu-
soidal disturbances with unknown frequencies, the suggested
technique may provide reliable formation control. The robots
can maintain the proper configuration even in the face of
disturbances, and the formation error is greatly decreased.

To the end of showing the effectiveness of controller
(23), we simulate a network of 4 unicycle robots. For ease
of presentation, we assumed same nominal mass, nominal
inertia, front-end distance, and same scalar mismatch δ =
0.2 (with according units) for each robot i ∈ {1, . . . , 4},
namely mi = m0

i + δ, Ii = I0
i + 1

2δ with m0
i = 1kg,

I0
i = 0.1 kgm2, and dAC,i = 0.2m. For this robot network,

we have considered 6 virtual springs, thus a connectivity
graph described by the following incidence matrix:

B =



−1 0 0 1 0 1
1 −1 0 0 1 0
0 1 −1 0 0 −1
0 0 1 −1 −1 0


 .

Our goal is to drive the 4 robots into a formation described
by the following desired relative positions:

z⋆1 =


8
0


, z⋆2 =


−4
8


, z⋆3 =


0
−4



z⋆4 =


−4
−4


, z⋆5 =


4
−4


, z⋆5 =


4
−4


. (31)

A common incoming input disturbance of frequency f0 + σ
with f0 = 6 [rad/s] is generated by exosystem (10). Given
the nominal disturbance frequency f0, we have selected

Φ0
i =


0 −f0
f0 0


, Ψi =


2 1
0 1


.
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˜
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for i = 1, . . . , 4.
Controller parameters are set as follows:

H = block.diag {H1, . . . , H4}
N = block.diag {N1, . . . , N4}
KZ = 50M0, λz̃ = 2.

with

Hi =


−80 10
20 −100


, Ni =


20 8
10 15



for i = 1, . . . , 4. Due to space reasons, we omit the
presentation of linear parametrization (22). However, due to
the selected controller parameters and due to the structure
of linear parametrizations (22), we select the vector of
parameter estimates as:

ξ̂ = l(σ)
�
δ σ δσ σ2 δσ2 σ3 δσ3


,

with l(σ) := (203283290940 + 739810970σ +
25611080σ2)−1, and consequently we select the controller
gain Γξ̃ as:

Γξ̃ = diag {0.1, 0.3, 1, 10, 10, 100, 20} .

Initial positions of the robots are set as:

q1 =




0
0

π/2


 , q2 =




5
5

π/3


 , q3 =




−1
3

π/2


 , q4 =




4
3
−π


 ,

while νi = 0 for all i = 1, . . . , 4. We set η(0) = ζ(0) = 08×1

and ξ̂(0) = 07×1. In order to assess the validity of the
adaptive strategy in consideration, the simulation is carried
out as follows. First, the controller is initialized on the
nominal values of the frequency, mass and inertia of each
robot i = 1, . . . , 4, namely δ = σ = 0. Second, at t = 15 s,
uncertainty in the model and in the disturbing frequency
is introduced, namely σ = 6 [rad/s] and δ = 0.2 (accord-
ing units), while no adaptation of the controller follows

the parameters change, and thus the formation control and
disturbance rejection objectives are not achieved anymore.
Third, at t = 22 s, the adaptive strategy is turned on, hence
the parameter estimates converge to the real estimates and
formation control and disturbance rejection are restored.
Simulation results are depicted in Figure 2.

VI. CONCLUSION

Combining their contributions of [8], [17], [16] and [7],
[5], in this work we have proposed a distributed adaptive
controller which achieves formation control of a network
of unicycle-like robots despite the presence multi-harmonic
input disturbances of unknown frequencies and despite un-
certainty in the unicycle models (mass and inertia’s are
unknown). The internal model units of the adaptive controller
asymptotically estimate the frequency of the unknowns and
the model uncertainties. In order to deal with such uncertain-
ties, certain linear characterizations and a peculiar definition
of an error system have been introduced.

We believe that the current research is pertinent to all
applications that deal with formation control in the presence
of frequent multi-harmonic disturbances, or even in the case
of unsettled flexible or spinning equipment integrated on the
unicycles.
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while νi = 0 for all i = 1, . . . , 4. We set η(0) = ζ(0) = 08×1
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nominal values of the frequency, mass and inertia of each
robot i = 1, . . . , 4, namely δ = σ = 0. Second, at t = 15 s,
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is introduced, namely σ = 6 [rad/s] and δ = 0.2 (accord-
ing units), while no adaptation of the controller follows

the parameters change, and thus the formation control and
disturbance rejection objectives are not achieved anymore.
Third, at t = 22 s, the adaptive strategy is turned on, hence
the parameter estimates converge to the real estimates and
formation control and disturbance rejection are restored.
Simulation results are depicted in Figure 2.
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for i = 1, . . . , 4. Due to space reasons, we omit the
presentation of linear parametrization (22). However, due to
the selected controller parameters and due to the structure
of linear parametrizations (22), we select the vector of
parameter estimates as:

ξ̂ = l(σ)
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with l(σ) := (203283290940 + 739810970σ +
25611080σ2)−1, and consequently we select the controller
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while νi = 0 for all i = 1, . . . , 4. We set η(0) = ζ(0) = 08×1

and ξ̂(0) = 07×1. In order to assess the validity of the
adaptive strategy in consideration, the simulation is carried
out as follows. First, the controller is initialized on the
nominal values of the frequency, mass and inertia of each
robot i = 1, . . . , 4, namely δ = σ = 0. Second, at t = 15 s,
uncertainty in the model and in the disturbing frequency
is introduced, namely σ = 6 [rad/s] and δ = 0.2 (accord-
ing units), while no adaptation of the controller follows

the parameters change, and thus the formation control and
disturbance rejection objectives are not achieved anymore.
Third, at t = 22 s, the adaptive strategy is turned on, hence
the parameter estimates converge to the real estimates and
formation control and disturbance rejection are restored.
Simulation results are depicted in Figure 2.
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and ξ̂(0) = 07×1. In order to assess the validity of the
adaptive strategy in consideration, the simulation is carried
out as follows. First, the controller is initialized on the
nominal values of the frequency, mass and inertia of each
robot i = 1, . . . , 4, namely δ = σ = 0. Second, at t = 15 s,
uncertainty in the model and in the disturbing frequency
is introduced, namely σ = 6 [rad/s] and δ = 0.2 (accord-
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