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Abstract
The unified theory of SAR imagining of the ocean surface is presented in a concise form. The theory describes both the image of 
ocean waves and the speckle noise, which in the spectrum of the image appears as a pedestal under the spectrum of the waves 
themselves.

Based on this theory, a spectral estimate is developed that does not use any a priori model of speckle noise and is free from speckle 
noise pedestal. Besides, the pedestal can be singled out and its shape can be visually shown in each particular case. Examples 
of applying the estimate using SAR data of ERS-2 and RADARSAT-2 are given.

Introduction
As known, the microwave synthetic aperture radar (SAR) is the 
only tool for global all- weather monitoring of the ocean surface 
from space with high resolution, which is provided by the spe-
cial coherent processing of the echo signal. However, the mecha-
nism of SAR imaging of the ocean is specific due to ocean surface 
movement, and misunderstanding of this specificity leads to errors 
in the interpretation of SAR images of the ocean surface.

In addition, the interpretation is complicated by the presence of 
speckle noise, which appears in the image spectrum as a pedestal 
under the spectrum of the image of the ocean waves themselves, 
as a result the details of the latter can be distorted or completely 
hidden. Тherefore reducing the speckle noise is an urgent task.

Existing methods for suppressing speckle noise in SAR imagery of 
the ocean are different ways of filtering the signal. Obviously, each 
filtering method, explicitly or implicitly, implies a priori some kind 
of noise model that needs substantiation.

In contrast, we present a theory in which all the results both for the 
image of waves themselves and for speckle noise stem from the 
only formula of the microwave radar signal backscattered by the 
ocean surface, and therefore we do not need any a priori model of 
noise. On this basis, a spectral estimate was developed for the SAR 
image of the ocean, which is completely free from speckle noise 
pedestal over the entire spectrum of the image.

SAR Image Correlation Function
The material of this section is set out “dotted” in order not to load 
the reader with the cumbersome formulas, which, if desired, can 
be found in the book [1].

Let us turn to the scheme of the surface survey shown in Figure 
1. In order to understand how ocean waves affect the formation 
of SAR images of the ocean surface, one should turn to the well-
known theory of radio microwave scattering by a rough water sur-
face.According to the theory, confirmed by numerous experiments, 
the surface of the water is represented by the so- called two-scale 
model. The actual scattering occurs on small-scale gravity-capil-
lary ripples, whose wavelength is of the order of the radar’s work-
ing wavelength, and the influence of large waves is manifested 
in amplitude and frequency modulation of the scattered electro-
magnetic field. In accordance with these concepts, the complex 
amplitude of the echo signal is written in the following form [2].

Figure 1: Radar probing geometry
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profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x,t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modulation 
caused by changes in the local incidence angle with respect to dif-
ferent elements of the large-wave profile, and hydrodynamic one 
associated with non- uniform distribution of actual (i.e., not "stan-
dard") ripples along this profile. The factor m (r⃗',t) presenting in 
(1) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
	
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk 
denotes complex conjugation) and compose the corresponding 
correlation function:

here ρ={ρx ,ρy=vT}, where τ is the temporal shift. Using (3) we 
write down the expression for             and then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1, I2, I3 are integrals that are the random field ζ(r ,t)  
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, just as BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor. Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book [1], determine the complete correlation 
function of the image of the ocean surface.

SAR Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along y assuming Δt « T0 and Δx « Λ0 
where T0 and Λ0 are characteristic period and wavelength of the 
surface waves. After a series of calculations, we have got for the 
SAR signal intensity [1].
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 
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homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 
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conjugation)  and compose the corresponding correlation function: 
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for          and then perform averaging over the realizations of the normal field of small-scale 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(4)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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a point scatterer. 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 
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hand part of (7) only    is the correlation function of the real (see below) value   . 
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out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 
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[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 
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integration is within the physical resolution cell. The incidence angle    and the slant range   are 

(1)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 
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where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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where the integration time       determines the nominal azimuthal SAR resolution, we get:   
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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for          and then perform averaging over the realizations of the normal field of small-scale 
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uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 

(1)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  
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only starting one for all subsequent reasoning and results. 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  
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only starting one for all subsequent reasoning and results. 
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a point scatterer. 

      We introduce the SAR signal intensity           
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conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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for          and then perform averaging over the realizations of the normal field of small-scale 
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 
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out to be at least         less to     due to the integrand of    includes fast oscillating factor  
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3 SAR imaging of ocean waves themselves 
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As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 
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homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 
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into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 
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hand part of (7) only    is the correlation function of the real (see below) value   . 
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out to be at least         less to     due to the integrand of    includes fast oscillating factor  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 
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into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          
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out to be at least         less to     due to the integrand of    includes fast oscillating factor  
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nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  

(6)

                                                         

                                                      

                                                      

                                                                                            (6) 

 

where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  

(7)

(8)

(9)

(10)

                                                         

                                                      

                                                      

                                                                                            (6) 

 

where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  

(11)

       Consider the image row along  , assuming           and          where      and     are 
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where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x,t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modulation 
caused by changes in the local incidence angle with respect to dif-
ferent elements of the large-wave profile, and hydrodynamic one 
associated with non- uniform distribution of actual (i.e., not "stan-
dard") ripples along this profile. The factor m (r⃗',t) presenting in 
(1) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk 
denotes complex conjugation) and compose the corresponding 
correlation function:

here ρ={ρx ,ρy=Vτ}, where τ is the temporal shift. Using (3) we 
write down the expression for          and then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1, I2, I3 are integrals that are the random field ζ(r ,t)  
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, just as BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor. Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book [1], determine the complete correlation 
function of the image of the ocean surface.

SAR Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along y assuming Δt « T0 and Δx « Λ0 
where T0 and Λ0 are characteristic period and wavelength of the 
surface waves. After a series of calculations, we have got for the 
SAR signal intensity [1].
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scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.
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BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 
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homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
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conjugation)  and compose the corresponding correlation function: 
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ripples        . Taking into account that  

(2)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 
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here              , where    is the temporal shift. Using (3) we write down the expression 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 
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      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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for          and then perform averaging over the realizations of the normal field of small-scale 
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 
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where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)

     Volume 4 | Issue 3 | 239J Mari Scie Res Ocean, 2021 www.opastonline.com

Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 

(1)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 
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Therefore, we will change the subscript and then instead of    we will write   .  
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 

(1)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(2)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 
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into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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a point scatterer. 
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here              , where    is the temporal shift. Using (3) we write down the expression 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-
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presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(5)

                                                         

                                                      

                                                      

                                                                                            (6) 

 

where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 

(1)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 
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out to be at least         less to     due to the integrand of    includes fast oscillating factor  
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[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 
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       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x,t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modulation 
caused by changes in the local incidence angle with respect to dif-
ferent elements of the large-wave profile, and hydrodynamic one 
associated with non- uniform distribution of actual (i.e., not "stan-
dard") ripples along this profile. The factor m (r⃗',t) presenting in 
(1) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk 
denotes complex conjugation) and compose the corresponding 
correlation function:

here ρ={ρx ,ρy=Vτ}, where τ is the temporal shift. Using (3) we 
write down the expression for          and then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1, I2, I3 are integrals that are the random field ζ(r ,t)  
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, just as BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor. Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book [1], determine the complete correlation 
function of the image of the ocean surface.

SAR Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along y assuming Δt « T0 and Δx « Λ0 
where T0 and Λ0 are characteristic period and wavelength of the 
surface waves. After a series of calculations, we have got for the 
SAR signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 
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      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  

(11)

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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ripples        . Taking into account that  

(2)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 
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for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(3)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  
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Therefore, we will change the subscript and then instead of    we will write   .  

(6)

                                                         

                                                      

                                                      

                                                                                            (6) 

 

where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  

(7)

(8)

(9)

(10)

                                                         

                                                      

                                                      

                                                                                            (6) 

 

where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          
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      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 
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where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 
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      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          
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where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 
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needs more detailed consideration. 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:
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is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:
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write down the expression for and B1(P⃗) then perform averaging 
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Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(2)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(3)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(4)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(5)

                                                         

                                                      

                                                      

                                                                                            (6) 

 

where    is the correlation function of "standard" ripples, the SAR image correlation function is 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 
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where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 

(1)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  
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Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 
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3 SAR imaging of ocean waves themselves 
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(7)

(8)

(9)

(10)

                                                         

                                                      

                                                      

                                                                                            (6) 

 

where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  

(11)

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 

(1)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(2)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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where the integration time       determines the nominal azimuthal SAR resolution, we get:   
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 
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nothing more than the intensity of the SAR signal forming the image of the waves themselves. 
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As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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a point scatterer. 

      We introduce the SAR signal intensity           
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conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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a point scatterer. 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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⃗

⃗

     Volume 4 | Issue 3 | 239J Mari Scie Res Ocean, 2021 www.opastonline.com

Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x,t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modulation 
caused by changes in the local incidence angle with respect to dif-
ferent elements of the large-wave profile, and hydrodynamic one 
associated with non- uniform distribution of actual (i.e., not "stan-
dard") ripples along this profile. The factor m (r⃗',t) presenting in 
(1) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk 
denotes complex conjugation) and compose the corresponding 
correlation function:

here ρ={ρx ,ρy=Vτ}, where τ is the temporal shift. Using (3) we 
write down the expression for          and then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1, I2, I3 are integrals that are the random field ζ(r ,t)  
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, just as BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor. Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book [1], determine the complete correlation 
function of the image of the ocean surface.

SAR Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along y assuming Δt « T0 and Δx « Λ0 
where T0 and Λ0 are characteristic period and wavelength of the 
surface waves. After a series of calculations, we have got for the 
SAR signal intensity [1].
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  
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only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  
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for          and then perform averaging over the realizations of the normal field of small-scale 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 

(1)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(3)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 
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homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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Therefore, the last term on the right-hand side of (7) can be neglected: 
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          
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out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 
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      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 
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where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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Therefore, we will change the subscript and then instead of    we will write   .  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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realizations of small-scale ripples is equal to the normalized radar cross section   .     
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
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averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  

(11)

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 

(1)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(2)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(3)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(4)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 
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hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 

(1)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(2)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(3)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  
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where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 
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between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x,t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modulation 
caused by changes in the local incidence angle with respect to dif-
ferent elements of the large-wave profile, and hydrodynamic one 
associated with non- uniform distribution of actual (i.e., not "stan-
dard") ripples along this profile. The factor m (r⃗',t) presenting in 
(1) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk 
denotes complex conjugation) and compose the corresponding 
correlation function:

here ρ={ρx ,ρy=Vτ}, where τ is the temporal shift. Using (3) we 
write down the expression for          and then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1, I2, I3 are integrals that are the random field ζ(r ,t)  
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, just as BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor. Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book [1], determine the complete correlation 
function of the image of the ocean surface.

SAR Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along y assuming Δt « T0 and Δx « Λ0 
where T0 and Λ0 are characteristic period and wavelength of the 
surface waves. After a series of calculations, we have got for the 
SAR signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 
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homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
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conjugation)  and compose the corresponding correlation function: 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)     Volume 4 | Issue 3 | 239J Mari Scie Res Ocean, 2021 www.opastonline.com

Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
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conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  
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only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
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conjugation)  and compose the corresponding correlation function: 
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for          and then perform averaging over the realizations of the normal field of small-scale 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 
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averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 
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      The terms     and       of the correlation function describe the wave image itself and 
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Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 

(1)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)

     Volume 4 | Issue 3 | 239J Mari Scie Res Ocean, 2021 www.opastonline.com

Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 
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into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 
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conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(2)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(3)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 
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averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 
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hand part of (7) only    is the correlation function of the real (see below) value   . 
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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a point scatterer. 
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only starting one for all subsequent reasoning and results. 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 
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where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  

(11)

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 

(1)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  
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only starting one for all subsequent reasoning and results. 
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a point scatterer. 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  
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only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 
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[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  
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(11)

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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theory, confirmed by numerous experiments, the surface of the water is represented by the so-
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waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 
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into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          
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only starting one for all subsequent reasoning and results. 
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here              , where    is the temporal shift. Using (3) we write down the expression 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 
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3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  

(6)

                                                         

                                                      

                                                      

                                                                                            (6) 

 

where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  

(7)

(8)

(9)

(10)

                                                         

                                                      

                                                      

                                                                                            (6) 

 

where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  

(11)
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where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x,t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modulation 
caused by changes in the local incidence angle with respect to dif-
ferent elements of the large-wave profile, and hydrodynamic one 
associated with non- uniform distribution of actual (i.e., not "stan-
dard") ripples along this profile. The factor m (r⃗',t) presenting in 
(1) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk 
denotes complex conjugation) and compose the corresponding 
correlation function:

here ρ={ρx ,ρy=Vτ}, where τ is the temporal shift. Using (3) we 
write down the expression for          and then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1, I2, I3 are integrals that are the random field ζ(r ,t)  
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, just as BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor. Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book [1], determine the complete correlation 
function of the image of the ocean surface.

SAR Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along y assuming Δt « T0 and Δx « Λ0 
where T0 and Λ0 are characteristic period and wavelength of the 
surface waves. After a series of calculations, we have got for the 
SAR signal intensity [1].
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tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
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The terms B1 and B2 of the correlation function describe the wave 
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As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 
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Therefore, we will change the subscript and then instead of    we will write   .  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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where the integration time       determines the nominal azimuthal SAR resolution, we get:   
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 
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corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
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Therefore, we will change the subscript and then instead of    we will write   .  

(11)

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 

(1)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
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conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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hand part of (7) only    is the correlation function of the real (see below) value   . 
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corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
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sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 
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corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  

(11)

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 

(1)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(2)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 
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into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
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conjugation)  and compose the corresponding correlation function: 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 
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averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)

     Volume 4 | Issue 3 | 239J Mari Scie Res Ocean, 2021 www.opastonline.com

Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 
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waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 
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homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 
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(6)

                                                         

                                                      

                                                      

                                                                                            (6) 

 

where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  

(7)

(8)

(9)

(10)

                                                         

                                                      

                                                      

                                                                                            (6) 

 

where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 
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Therefore, we will change the subscript and then instead of    we will write   .  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 
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where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(2)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(3)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 

(1)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(2)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(3)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x,t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modulation 
caused by changes in the local incidence angle with respect to dif-
ferent elements of the large-wave profile, and hydrodynamic one 
associated with non- uniform distribution of actual (i.e., not "stan-
dard") ripples along this profile. The factor m (r⃗',t) presenting in 
(1) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk 
denotes complex conjugation) and compose the corresponding 
correlation function:

here ρ={ρx ,ρy=Vτ}, where τ is the temporal shift. Using (3) we 
write down the expression for          and then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1, I2, I3 are integrals that are the random field ζ(r ,t)  
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, just as BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor. Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book [1], determine the complete correlation 
function of the image of the ocean surface.

SAR Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along y assuming Δt « T0 and Δx « Λ0 
where T0 and Λ0 are characteristic period and wavelength of the 
surface waves. After a series of calculations, we have got for the 
SAR signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 
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image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  

(11)

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 

(1)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  
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only starting one for all subsequent reasoning and results. 
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a point scatterer. 

      We introduce the SAR signal intensity           
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conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  
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only starting one for all subsequent reasoning and results. 
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a point scatterer. 

      We introduce the SAR signal intensity           
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conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  
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a point scatterer. 

      We introduce the SAR signal intensity           
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conjugation)  and compose the corresponding correlation function: 
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for          and then perform averaging over the realizations of the normal field of small-scale 
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 
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out to be at least         less to     due to the integrand of    includes fast oscillating factor  
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       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 

(1)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 
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speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 
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out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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a point scatterer. 
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averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 
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hand part of (7) only    is the correlation function of the real (see below) value   . 
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corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
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where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
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Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(2)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(3)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(4)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(5)

                                                         

                                                      

                                                      

                                                                                            (6) 

 

where    is the correlation function of "standard" ripples, the SAR image correlation function is 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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Therefore, we will change the subscript and then instead of    we will write   .  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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where the integration time       determines the nominal azimuthal SAR resolution, we get:   
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 
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hand part of (7) only    is the correlation function of the real (see below) value   . 
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where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 

(1)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(2)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(3)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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      The terms     and       of the correlation function describe the wave image itself and 
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corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 
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averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 
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speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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⃗

⃗

     Volume 4 | Issue 3 | 239J Mari Scie Res Ocean, 2021 www.opastonline.com

Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x,t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modulation 
caused by changes in the local incidence angle with respect to dif-
ferent elements of the large-wave profile, and hydrodynamic one 
associated with non- uniform distribution of actual (i.e., not "stan-
dard") ripples along this profile. The factor m (r⃗',t) presenting in 
(1) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk 
denotes complex conjugation) and compose the corresponding 
correlation function:

here ρ={ρx ,ρy=Vτ}, where τ is the temporal shift. Using (3) we 
write down the expression for          and then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1, I2, I3 are integrals that are the random field ζ(r ,t)  
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, just as BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor. Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book [1], determine the complete correlation 
function of the image of the ocean surface.

SAR Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along y assuming Δt « T0 and Δx « Λ0 
where T0 and Λ0 are characteristic period and wavelength of the 
surface waves. After a series of calculations, we have got for the 
SAR signal intensity [1].
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a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
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scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 

(1)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 
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      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 
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where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 
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needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 
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proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  
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(12)

     Volume 4 | Issue 3 | 239J Mari Scie Res Ocean, 2021 www.opastonline.com

Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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for          and then perform averaging over the realizations of the normal field of small-scale 
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 

(1)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  
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only starting one for all subsequent reasoning and results. 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(5)

                                                         

                                                      

                                                      

                                                                                            (6) 

 

where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 
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[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  
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As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  

(11)

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 
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homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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a point scatterer. 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
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Therefore, we will change the subscript and then instead of    we will write   .  

(11)

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 
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here              , where    is the temporal shift. Using (3) we write down the expression 
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to different elements of the large-wave profile, and hydrodynamic one associated with non-
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only starting one for all subsequent reasoning and results. 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 
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into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          
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      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(2)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(3)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(4)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(5)

                                                         

                                                      

                                                      

                                                                                            (6) 

 

where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 
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hand part of (7) only    is the correlation function of the real (see below) value   . 
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where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 

(1)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
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conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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for          and then perform averaging over the realizations of the normal field of small-scale 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  

(6)

                                                         

                                                      

                                                      

                                                                                            (6) 

 

where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
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averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 
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speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 
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out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 

(1)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(2)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(3)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x,t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modulation 
caused by changes in the local incidence angle with respect to dif-
ferent elements of the large-wave profile, and hydrodynamic one 
associated with non- uniform distribution of actual (i.e., not "stan-
dard") ripples along this profile. The factor m (r⃗',t) presenting in 
(1) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk 
denotes complex conjugation) and compose the corresponding 
correlation function:

here ρ={ρx ,ρy=Vτ}, where τ is the temporal shift. Using (3) we 
write down the expression for          and then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1, I2, I3 are integrals that are the random field ζ(r ,t)  
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, just as BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor. Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book [1], determine the complete correlation 
function of the image of the ocean surface.

SAR Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along y assuming Δt « T0 and Δx « Λ0 
where T0 and Λ0 are characteristic period and wavelength of the 
surface waves. After a series of calculations, we have got for the 
SAR signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(2)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(3)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(4)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(5)

                                                         

                                                      

                                                      

                                                                                            (6) 

 

where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  
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profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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here              , where    is the temporal shift. Using (3) we write down the expression 
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realizations of small-scale ripples is equal to the normalized radar cross section   .     
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 
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characteristic period and wavelength of the surface waves. After a series of calculations, we have 
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where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 

(1)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(4)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 
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[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 
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Therefore, we will change the subscript and then instead of    we will write   .  
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 

(1)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 
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uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          
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only starting one for all subsequent reasoning and results. 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 
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averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 
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      The terms     and       of the correlation function describe the wave image itself and 
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Therefore, the last term on the right-hand side of (7) can be neglected: 
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 

(1)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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a point scatterer. 
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                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)

     Volume 4 | Issue 3 | 239J Mari Scie Res Ocean, 2021 www.opastonline.com

Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          
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where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 
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needs more detailed consideration. 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 
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homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 
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[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  
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3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x,t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modulation 
caused by changes in the local incidence angle with respect to dif-
ferent elements of the large-wave profile, and hydrodynamic one 
associated with non- uniform distribution of actual (i.e., not "stan-
dard") ripples along this profile. The factor m (r⃗',t) presenting in 
(1) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk 
denotes complex conjugation) and compose the corresponding 
correlation function:

here ρ={ρx ,ρy=Vτ}, where τ is the temporal shift. Using (3) we 
write down the expression for          and then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1, I2, I3 are integrals that are the random field ζ(r ,t)  
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, just as BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor. Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book [1], determine the complete correlation 
function of the image of the ocean surface.

SAR Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along y assuming Δt « T0 and Δx « Λ0 
where T0 and Λ0 are characteristic period and wavelength of the 
surface waves. After a series of calculations, we have got for the 
SAR signal intensity [1].
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ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.
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that formula (1) is the only starting one for all subsequent reason-
ing and results.
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SAR resolution, we get:

Here, the function
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BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
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(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
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can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].
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real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 
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Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 
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where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 
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theory, confirmed by numerous experiments, the surface of the water is represented by the so-
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whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     
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where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 
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the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:
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is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:
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write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
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Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].
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As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  

(6)

                                                         

                                                      

                                                      

                                                                                            (6) 

 

where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  

(7)

(8)

(9)

(10)

                                                         

                                                      

                                                      

                                                                                            (6) 

 

where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  
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Therefore, we will change the subscript and then instead of    we will write   .  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(3)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 
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out to be at least         less to     due to the integrand of    includes fast oscillating factor  
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characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 
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hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 
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averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 
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speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 

(1)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(3)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 
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      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 
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homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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ripples        . Taking into account that  

(2)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          
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only starting one for all subsequent reasoning and results. 
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The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 
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       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].
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          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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(2)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(3)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(4)

shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  

   

         
                  

           
      

      
                                

where the integration time       determines the nominal azimuthal SAR resolution, we get:   

             

    
           

 

  

           

   

                                         

                                    
                                              

     

Here, the function  

                    
   

 
                                                            

is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 

                                                                           (5)                                                                                                                  

here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  

(5)

                                                         

                                                      

                                                      

                                                                                            (6) 

 

where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 

nothing more than the intensity of the SAR signal forming the image of the waves themselves. 

Therefore, we will change the subscript and then instead of    we will write   .  
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3 SAR imaging of ocean waves themselves 
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Therefore, we will change the subscript and then instead of    we will write   .  

(11)

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(12)
(5)
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Here k=2π/λ, where λ is the radar’s working wavelength, and 
ξ (r⃗',t) is a statistically homogeneous (“standard”) small-scale 
ripple with statistical characteristics constant along the profile of 
a large wave,ζ(r⃗',t) are surface elevations due to large waves, a 
factor m (r⃗',t)takes into account the amplitude modulation of the 
scattered field caused by large-scale waves; integration is within 
the physical resolution cell. The incidence angle θ0 and the slant 
range R are shown in Figure 1. The amplitude a(x, t) is normalized 
so that the intensity averaged over the realizations of small-scale 
ripples is equal to the normalized radar cross section σ0.

Note that the amplitude modulation of the scattered field due to 
large-scale waves is divided into two types: geometric modula-
tion caused by changes in the local incidence angle with respect 
to different elements of the large-wave profile, and hydrodynamic 
one associated with non- uniform distribution of actual (i.e., not 
"standard") ripples along this profile. The factorm (r⃗',t)presenting 
in (4.8) includes both types of modulation.

We would like to especially draw the reader’s attention to the fact 
that formula (1) is the only starting one for all subsequent reason-
ing and results.

Applying to (1) the aperture synthesis operation

where the integration time Δt determines the nominal azimuthal 
SAR resolution, we get:

Here, the function

is inserted in (3) in order to smooth the side lobes of the type 
(sin u)2/u2 in the SAR response to a point scatterer.
 
We introduce the SAR signal intensity I=aSAR a*SAR(the asterisk de-
notes complex conjugation) and compose the corresponding cor-
relation function:

hereP⃗={Px,Py=VT}, where T is the temporal shift. Using (3) we 
write down the expression for and B1(P⃗) then perform averaging 
over the realizations of the normal field of small-scale ripples
ξ(r⃗',t). Taking into account that

Where Bξ is the correlation function of "standard" ripples, the SAR 
image correlation function is represented as a sum:

The quantities I1,I2,I3 are integrals that are the random field ζ(r⃗^',t) 
functionals,and therefore averaging in (8) - (10) is over the large-
scale waves realizations. Notably, these integrals do not sum to 
SAR signal intensity, justas BI does not equal the sum of correla-
tion functions for I1, I2, I3. The form of relations (8)-(10) indicates 
that out of the three summands from the right-hand part of (7) only 
BI is the correlation function of the real (see below) value I1 .

The terms B1 and B2 of the correlation function describe the wave 
image itself and speckled background (or "clutter" according to 
[3]) relatively; the corresponding parts of SAR image are consid-
ered in sections 3 and 4. As for B3 , this term turns out to be at least 
(λ/Δx)2 less to B2 due to the integrand of I3 includes fast oscillating 
factor Therefore, the last term on the right-hand side of (7) can 
beneglected:

Thus, the integrals I1, I2, whose rather cumbersome explicit form 
can be found in the book, determine the complete correlation func-
tion of the image of the ocean surface [1].

Sar Imaging Of Ocean Waves Themselves
As mentioned above, B1 represents the correlation function of the 
real value I1, which is nothing more than the intensity of the SAR 
signal forming the image of the waves themselves. Therefore, we 
will change the subscript and then instead of I1, we will write Ii,.

Consider the image row along, assuming Δt « T0 and Δx « Λ0 where 
To and Λ0 are characteristic period and wavelength of the surface 
waves. After a series of calculations, we have got for the SAR 
signal intensity [1].

                    
                                                          Fig.1. Radar probing geometry                                       

          Let us  turn to the scheme of the surface survey shown in Fig.1. In order to understand how 

ocean waves affect the formation of SAR images of the ocean surface, one should turn to the 

well-known theory of radio microwave scattering by a rough water surface. According to the 

theory, confirmed by numerous experiments, the surface of the water is represented by the so-

called two-scale model. The actual scattering occurs on small-scale gravity-capillary ripples, 

whose wavelength is of the order of the radar's working wavelength, and the influence of large 

waves is manifested in amplitude and frequency modulation of the scattered electromagnetic 

field. In accordance with these concepts, the complex amplitude of the echo signal is written in 

the following form [Kanevsky 2004]: 

          

  
                  

   

                             

                
                                                                

Here       , where   is the radar's working wavelength, and              is a statistically 

homogeneous (“standard”) small-scale ripple with statistical characteristics constant along the 

profile of a large wave,          are surface elevations due to large waves, a factor          takes 

into account the amplitude modulation of the scattered field caused by large-scale waves; 

integration is within the physical resolution cell. The incidence angle    and the slant range   are 
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 

only starting one for all subsequent reasoning and results. 

       Applying to (1) the aperture synthesis operation  
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is inserted in (3) in order to smooth the side lobes of the type            in the SAR response to 

a point scatterer. 

      We introduce the SAR signal intensity           
  (the asterisk denotes complex 

conjugation)  and compose the corresponding correlation function: 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-

uniform distribution of actual (i.e., not "standard") ripples along this profile. The factor          

presenting in (4.8) includes both types of modulation.  
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only starting one for all subsequent reasoning and results. 
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-
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here              , where    is the temporal shift. Using (3) we write down the expression 

for          and then perform averaging over the realizations of the normal field of small-scale 

ripples        . Taking into account that  
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shown in Fig.1. The amplitude         is normalized so that the intensity averaged over the 

realizations of small-scale ripples is equal to the normalized radar cross section   .     

      Note that the amplitude modulation of the scattered field due to large-scale waves is divided 

into two types: geometric modulation caused by changes in the local incidence angle with respect 

to different elements of the large-wave profile, and hydrodynamic one associated with non-
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presenting in (4.8) includes both types of modulation.  

       We would like to especially draw the reader’s attention to the fact that formula (1) is the 
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where    is the correlation function of "standard" ripples, the SAR image correlation function is 

represented as a sum:  

                                                                                                                                  

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                                                                      

The quantities           are integrals that are the random field         functionals, and therefore 

averaging in (8) - (10) is over the large-scale waves realizations. Notably, these integrals do not 

sum to SAR signal intensity, just as    does not equal the sum of correlation functions for 

        .  The form of relations (8)-(10) indicates that out of the three summands from the right 

hand part of (7) only    is the correlation function of the real (see below) value   . 

      The terms     and       of the correlation function describe the wave image itself and 

speckled background (or "clutter" according to [Alpers and Hasselmann 1982]) relatively; the 

corresponding parts of SAR image are considered in sections 3 and 4. As for   , this term turns 

out to be at least         less to     due to the integrand of    includes fast oscillating factor  
Therefore, the last term on the right-hand side of (7) can be neglected: 

                                                                                           

       Thus, the integrals       , whose rather cumbersome explicit form can be found in the book 

[Kanevsky 2008], determine the complete correlation function of the image of the ocean surface.  

 

3 SAR imaging of ocean waves themselves 

As mentioned above,     represents the correlation function of the real value   , which is 
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characteristic period and wavelength of the surface waves. After a series of calculations, we have 
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where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 
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where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the surface, 
and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The integration 
interval is limited at both sides due to descending of the integrand. 
This formula at a glance is quite transparent. The first factor in the 
integrand indicates the source of scattering (small-scale ripples) 
and its intensity, and the second - the location of the scattering 
spot and its size. One can see that in the absence of velocities on 
the surface, the SAR echo-signal is formed by the spot with an az-
imuthal size of about Δ0.SAR, concentrated around the point y = Vt. 
However, in the presence of waves the picture essentially changes. 
The fact is that in reality there is a wide continuous spectrum of or-
bital velocity on the surface with scales small and large compared 
to Δ0.SAR so the issue of the location and size of the scattering are a 
needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight line Vt-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area (b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly ΔO.SAR Obviously, if two adjacent intersection points are space 
dapart by a distance less than ΔO.SAR,then the function between 
them f(w) does not fall off, but remains close to unity, i.e. the res-
olution cell smears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.This is an ex-
tended resolution cell, the average size of which, unlike the nomi-
nal,is denoted as ΔSAR. We describe the considered effect quantita-
tively, for which we represent the orbital velocity, and accordingly, 
its radial component as the sum of two terms:

where ṽrad and v̆rad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal 
resolution cell Δo.SAR, respectively. Let us average the SAR signal 
intensity (12) over ṽ the “internal” velocities under the assumption 
of their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over ṽ in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed <σ0> from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained in [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation condi-
tions. However, as will be seen later, the effects associated with 
large-scale velocities are much more significant.

Let us turn to Figure 3 and Figure 4, where the elements of the in-
tegrand of (12) are presented, obtained using numerical simulation 
based on the Pearson-Moskowitz wave spectrum for two values of 
near-surface wind speed and corresponding to the case of azimuth-
al (i.e., along or against the Y-axis) wave propagation. In this case, 
there are no fluctuations of the radar cross section σ0, and the wave 
image is formed only due to the orbital velocities on the surface.
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where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the surface, 
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This formula at a glance is quite transparent. The first factor in the 
integrand indicates the source of scattering (small-scale ripples) 
and its intensity, and the second - the location of the scattering 
spot and its size. One can see that in the absence of velocities on 
the surface, the SAR echo-signal is formed by the spot with an az-
imuthal size of about Δ0.SAR, concentrated around the point y = Vt. 
However, in the presence of waves the picture essentially changes. 
The fact is that in reality there is a wide continuous spectrum of or-
bital velocity on the surface with scales small and large compared 
to Δ0.SAR so the issue of the location and size of the scattering are a 
needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
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the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area (b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly ΔO.SAR Obviously, if two adjacent intersection points are space 
dapart by a distance less than ΔO.SAR,then the function between 
them f(w) does not fall off, but remains close to unity, i.e. the res-
olution cells smears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.This is an ex-
tended resolution cell, the average size of which, unlike the nomi-
nal,is denoted as ΔSAR. We describe the considered effect quantita-
tively, for which we represent the orbital velocity, and accordingly, 
its radial component as the sum of two terms:

where ṽrad and v̆rad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal 
resolution cell Δo.SAR, respectively. Let us average the SAR signal 
intensity (12) over ṽ the “internal” velocities under the assumption 
of their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over ṽ in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed <σ0> from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained in [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation condi-
tions. However, as will be seen later, the effects associated with 
large-scale velocities are much more significant.

Let us turn to Figure 3 and Figure 4, where the elements of the in-
tegrand of (12) are presented, obtained using numerical simulation 
based on the Pearson-Moskowitz wave spectrum for two values of 
near-surface wind speed and corresponding to the case of azimuth-
al (i.e., along or against the Y-axis) wave propagation. In this case, 
there are no fluctuations of the radar cross section σ0, and the wave 
image is formed only due to the orbital velocities on the surface.
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
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f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.
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resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 
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velocity, and accordingly, its radial component as the sum of two terms: 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].
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large-scale velocities are much moresignificant.
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integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.
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got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(13)

               
  Fig. 2 Illustration on the effect of azmuthal smearing of SAR resolution cell. 

 

 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 

     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 

                   ,                                                   (14) 

where        and         are the “internal” (small-scale) and “external” (large-scale) radial 

velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  

                           .                                              (15) 

               
  Fig. 2 Illustration on the effect of azmuthal smearing of SAR resolution cell. 

 

 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 

     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 

                   ,                                                   (14) 

where        and         are the “internal” (small-scale) and “external” (large-scale) radial 

velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  

                           .                                              (15) 

(14)

               
  Fig. 2 Illustration on the effect of azmuthal smearing of SAR resolution cell. 

 

 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 

     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 

                   ,                                                   (14) 

where        and         are the “internal” (small-scale) and “external” (large-scale) radial 

velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  

                           .                                              (15) (15)
Multiplying               by the Gaussian probability distribution function and integrating 
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  
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Multiplying               by the Gaussian probability distribution function and integrating 
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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Multiplying               by the Gaussian probability distribution function and integrating 
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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Multiplying               by the Gaussian probability distribution function and integrating 
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 
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intersection  point (where       is approximately       . Obviously, if two adjacent 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 

     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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random curve approach each other and, accordingly, the function       value is close to unity. 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 
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where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the surface, 
and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The integration 
interval is limited at both sides due to descending of the integrand. 
This formula at a glance is quite transparent. The first factor in the 
integrand indicates the source of scattering (small-scale ripples) 
and its intensity, and the second - the location of the scattering 
spot and its size. One can see that in the absence of velocities on 
the surface, the SAR echo-signal is formed by the spot with an az-
imuthal size of about Δ0.SAR, concentrated around the point y = Vt. 
However, in the presence of waves the picture essentially changes. 
The fact is that in reality there is a wide continuous spectrum of or-
bital velocity on the surface with scales small and large compared 
to Δ0.SAR so the issue of the location and size of the scattering are a 
needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line Vt-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area (b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly ΔO.SAR Obviously, if two adjacent intersection points are space 
dapart by a distance less than ΔO.SAR,then the function between 
them f(w) does not fall off, but remains close to unity, i.e. the res-
olution cells smears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.This is an ex-
tended resolution cell, the average size of which, unlike the nomi-
nal,is denoted as ΔSAR. We describe the considered effect quantita-
tively, for which we represent the orbital velocity, and accordingly, 
its radial component as the sum of two terms:

where ṽrad and v̆rad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal 
resolution cell Δo.SAR, respectively. Let us average the SAR signal 
intensity (12) over ṽ the “internal” velocities under the assumption 
of their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over ṽ in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed <σ0> from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained in [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation condi-
tions. However, as will be seen later, the effects associated with 
large-scale velocities are much more significant.

Let us turn to Figure 3 and Figure 4, where the elements of the in-
tegrand of (12) are presented, obtained using numerical simulation 
based on the Pearson-Moskowitz wave spectrum for two values of 
near-surface wind speed and corresponding to the case of azimuth-
al (i.e., along or against the Y-axis) wave propagation. In this case, 
there are no fluctuations of the radar cross section σ0, and the wave 
image is formed only due to the orbital velocities on the surface.
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
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scale ripples) and its intensity, and the second - the location of the 
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Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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distribution; here we will  assume that  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

(19)

     Volume 4 | Issue 3 | 240J Mari Scie Res Ocean, 2021 www.opastonline.com

Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 

     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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where        and         are the “internal” (small-scale) and “external” (large-scale) radial 

velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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velocity, and accordingly, its radial component as the sum of two terms: 
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distribution; here we will  assume that  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

(19)
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 

     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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where        and         are the “internal” (small-scale) and “external” (large-scale) radial 

velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 
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 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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where        and         are the “internal” (small-scale) and “external” (large-scale) radial 

velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 
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over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

(19)
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 
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echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 

     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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where        and         are the “internal” (small-scale) and “external” (large-scale) radial 

velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 
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 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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where        and         are the “internal” (small-scale) and “external” (large-scale) radial 

velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  

                           .                                              (15) 

               
  Fig. 2 Illustration on the effect of azmuthal smearing of SAR resolution cell. 

 

 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 

     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 

                   ,                                                   (14) 

where        and         are the “internal” (small-scale) and “external” (large-scale) radial 

velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  

                           .                                              (15) 

(14)

               
  Fig. 2 Illustration on the effect of azmuthal smearing of SAR resolution cell. 

 

 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 

     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 

                   ,                                                   (14) 

where        and         are the “internal” (small-scale) and “external” (large-scale) radial 

velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  

                           .                                              (15) (15)
Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 
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          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 
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equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 

     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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where        and         are the “internal” (small-scale) and “external” (large-scale) radial 

velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 
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 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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where        and         are the “internal” (small-scale) and “external” (large-scale) radial 

velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

(19)

     Volume 4 | Issue 3 | 240J Mari Scie Res Ocean, 2021 www.opastonline.com

Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 

     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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velocities with respect to the nominal resolution cell       , respectively.  Let us average the 
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distribution; here we will  assume that  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the surface, 
and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The integration 
interval is limited at both sides due to descending of the integrand. 
This formula at a glance is quite transparent. The first factor in the 
integrand indicates the source of scattering (small-scale ripples) 
and its intensity, and the second - the location of the scattering 
spot and its size. One can see that in the absence of velocities on 
the surface, the SAR echo-signal is formed by the spot with an az-
imuthal size of about Δ0.SAR, concentrated around the point y = Vt. 
However, in the presence of waves the picture essentially changes. 
The fact is that in reality there is a wide continuous spectrum of or-
bital velocity on the surface with scales small and large compared 
to Δ0.SAR so the issue of the location and size of the scattering are a 
needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line Vt-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area (b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly ΔO.SAR Obviously, if two adjacent intersection points are space 
dapart by a distance less than ΔO.SAR,then the function between 
them f(w) does not fall off, but remains close to unity, i.e. the res-
olution cells smears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.This is an ex-
tended resolution cell, the average size of which, unlike the nomi-
nal,is denoted as ΔSAR. We describe the considered effect quantita-
tively, for which we represent the orbital velocity, and accordingly, 
its radial component as the sum of two terms:

where ṽrad and v̆rad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal 
resolution cell Δo.SAR, respectively. Let us average the SAR signal 
intensity (12) over ṽ the “internal” velocities under the assumption 
of their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over ṽ in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed <σ0> from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained in [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation condi-
tions. However, as will be seen later, the effects associated with 
large-scale velocities are much more significant.

Let us turn to Figure 3 and Figure 4, where the elements of the in-
tegrand of (12) are presented, obtained using numerical simulation 
based on the Pearson-Moskowitz wave spectrum for two values of 
near-surface wind speed and corresponding to the case of azimuth-
al (i.e., along or against the Y-axis) wave propagation. In this case, 
there are no fluctuations of the radar cross section σ0, and the wave 
image is formed only due to the orbital velocities on the surface.
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.
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ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
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Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
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for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 
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 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.
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characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(13)

               
  Fig. 2 Illustration on the effect of azmuthal smearing of SAR resolution cell. 

 

 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 

     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 

                   ,                                                   (14) 

where        and         are the “internal” (small-scale) and “external” (large-scale) radial 

velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  

                           .                                              (15) 

               
  Fig. 2 Illustration on the effect of azmuthal smearing of SAR resolution cell. 

 

 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 

     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 

                   ,                                                   (14) 

where        and         are the “internal” (small-scale) and “external” (large-scale) radial 

velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  

                           .                                              (15) 

(14)

               
  Fig. 2 Illustration on the effect of azmuthal smearing of SAR resolution cell. 

 

 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 

     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 

                   ,                                                   (14) 

where        and         are the “internal” (small-scale) and “external” (large-scale) radial 

velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  

                           .                                              (15) (15)
Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

(16)

(17)

(18)

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

(19)

     Volume 4 | Issue 3 | 240J Mari Scie Res Ocean, 2021 www.opastonline.com

Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.
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characteristic period and wavelength of the surface waves. After a series of calculations, we have 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the surface, 
and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The integration 
interval is limited at both sides due to descending of the integrand. 
This formula at a glance is quite transparent. The first factor in the 
integrand indicates the source of scattering (small-scale ripples) 
and its intensity, and the second - the location of the scattering 
spot and its size. One can see that in the absence of velocities on 
the surface, the SAR echo-signal is formed by the spot with an az-
imuthal size of about Δ0.SAR, concentrated around the point y = Vt. 
However, in the presence of waves the picture essentially changes. 
The fact is that in reality there is a wide continuous spectrum of or-
bital velocity on the surface with scales small and large compared 
to Δ0.SAR so the issue of the location and size of the scattering are a 
needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line Vt-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area (b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly ΔO.SAR Obviously, if two adjacent intersection points are space 
dapart by a distance less than ΔO.SAR,then the function between 
them f(w) does not fall off, but remains close to unity, i.e. the res-
olution cells smears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.This is an ex-
tended resolution cell, the average size of which, unlike the nomi-
nal,is denoted as ΔSAR. We describe the considered effect quantita-
tively, for which we represent the orbital velocity, and accordingly, 
its radial component as the sum of two terms:

where ṽrad and v̆rad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal 
resolution cell Δo.SAR, respectively. Let us average the SAR signal 
intensity (12) over ṽ the “internal” velocities under the assumption 
of their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over ṽ in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed <σ0> from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained in [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation condi-
tions. However, as will be seen later, the effects associated with 
large-scale velocities are much more significant.

Let us turn to Figure 3 and Figure 4, where the elements of the in-
tegrand of (12) are presented, obtained using numerical simulation 
based on the Pearson-Moskowitz wave spectrum for two values of 
near-surface wind speed and corresponding to the case of azimuth-
al (i.e., along or against the Y-axis) wave propagation. In this case, 
there are no fluctuations of the radar cross section σ0, and the wave 
image is formed only due to the orbital velocities on the surface.
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Where σ0 is the normalized radar cross section of small-scale rip-
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denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:
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their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:
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orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:
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tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
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integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    
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obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:
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orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.
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of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.
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proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
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accordingly, the function f(w) value is close to unity.Thisisanex-
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denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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Multiplying               by the Gaussian probability distribution function and integrating 
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:
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orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
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ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.
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of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.
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got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
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the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:
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orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].
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large-scale velocities are much moresignificant.
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of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
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got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  
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only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
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The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  

(13)

               
  Fig. 2 Illustration on the effect of azmuthal smearing of SAR resolution cell. 

 

 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 

     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 

                   ,                                                   (14) 

where        and         are the “internal” (small-scale) and “external” (large-scale) radial 

velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  

                           .                                              (15) 

               
  Fig. 2 Illustration on the effect of azmuthal smearing of SAR resolution cell. 

 

 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 

     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 

                   ,                                                   (14) 

where        and         are the “internal” (small-scale) and “external” (large-scale) radial 

velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  

                           .                                              (15) 

(14)

               
  Fig. 2 Illustration on the effect of azmuthal smearing of SAR resolution cell. 

 

 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 

     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 

                   ,                                                   (14) 

where        and         are the “internal” (small-scale) and “external” (large-scale) radial 

velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  

                           .                                              (15) (15)
Multiplying               by the Gaussian probability distribution function and integrating 
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 
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estimate        for various observation conditions. However, as will be seen later, the effects 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.
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resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:
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tion for SAR signal intensity obtained by [4].
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proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 
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proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  
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intersection  point (where       is approximately       . Obviously, if two adjacent 
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between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 
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 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
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ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.
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of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.
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proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  
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intersection  point (where       is approximately       . Obviously, if two adjacent 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the surface, 
and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The integration 
interval is limited at both sides due to descending of the integrand. 
This formula at a glance is quite transparent. The first factor in the 
integrand indicates the source of scattering (small-scale ripples) 
and its intensity, and the second - the location of the scattering 
spot and its size. One can see that in the absence of velocities on 
the surface, the SAR echo-signal is formed by the spot with an az-
imuthal size of about Δ0.SAR, concentrated around the point y = Vt. 
However, in the presence of waves the picture essentially changes. 
The fact is that in reality there is a wide continuous spectrum of or-
bital velocity on the surface with scales small and large compared 
to Δ0.SAR so the issue of the location and size of the scattering are a 
needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line Vt-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area (b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly ΔO.SAR Obviously, if two adjacent intersection points are space 
dapart by a distance less than ΔO.SAR,then the function between 
them f(w) does not fall off, but remains close to unity, i.e. the res-
olution cells smears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.This is an ex-
tended resolution cell, the average size of which, unlike the nomi-
nal,is denoted as ΔSAR. We describe the considered effect quantita-
tively, for which we represent the orbital velocity, and accordingly, 
its radial component as the sum of two terms:

where ṽrad and v̆rad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal 
resolution cell Δo.SAR, respectively. Let us average the SAR signal 
intensity (12) over ṽ the “internal” velocities under the assumption 
of their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over ṽ in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed <σ0> from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained in [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation condi-
tions. However, as will be seen later, the effects associated with 
large-scale velocities are much more significant.

Let us turn to Figure 3 and Figure 4, where the elements of the in-
tegrand of (12) are presented, obtained using numerical simulation 
based on the Pearson-Moskowitz wave spectrum for two values of 
near-surface wind speed and corresponding to the case of azimuth-
al (i.e., along or against the Y-axis) wave propagation. In this case, 
there are no fluctuations of the radar cross section σ0, and the wave 
image is formed only due to the orbital velocities on the surface.
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the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
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denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
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tion function and integrating over in infinite limits, we get:
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 
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against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 
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 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 
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against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 

     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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where        and         are the “internal” (small-scale) and “external” (large-scale) radial 

velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  

                           .                                              (15) 

               
  Fig. 2 Illustration on the effect of azmuthal smearing of SAR resolution cell. 

 

 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 

     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 

                   ,                                                   (14) 

where        and         are the “internal” (small-scale) and “external” (large-scale) radial 

velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  

                           .                                              (15) 

(14)

               
  Fig. 2 Illustration on the effect of azmuthal smearing of SAR resolution cell. 

 

 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 

     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 

                   ,                                                   (14) 

where        and         are the “internal” (small-scale) and “external” (large-scale) radial 

velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  

                           .                                              (15) (15)
Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  
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     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 

                   ,                                                   (14) 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 
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 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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distribution; here we will  assume that  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 
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velocity, and accordingly, its radial component as the sum of two terms: 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 

the point y = Vt. However, in the presence of waves the picture essentially changes. The fact is 

that in reality there is a wide continuous spectrum of orbital velocity on the surface with scales 

small and  large compared to           so the issue of the location and size of the scattering area 

needs more detailed consideration. 

       Let us turn to the integrand in (12) and introduce the designations:  

               

   
        

        
                                                          

It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 
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the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 
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where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the surface, 
and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The integration 
interval is limited at both sides due to descending of the integrand. 
This formula at a glance is quite transparent. The first factor in the 
integrand indicates the source of scattering (small-scale ripples) 
and its intensity, and the second - the location of the scattering 
spot and its size. One can see that in the absence of velocities on 
the surface, the SAR echo-signal is formed by the spot with an az-
imuthal size of about Δ0.SAR, concentrated around the point y = Vt. 
However, in the presence of waves the picture essentially changes. 
The fact is that in reality there is a wide continuous spectrum of or-
bital velocity on the surface with scales small and large compared 
to Δ0.SAR so the issue of the location and size of the scattering are a 
needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line Vt-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area (b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly ΔO.SAR Obviously, if two adjacent intersection points are space 
dapart by a distance less than ΔO.SAR,then the function between 
them f(w) does not fall off, but remains close to unity, i.e. the res-
olution cells smears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.This is an ex-
tended resolution cell, the average size of which, unlike the nomi-
nal,is denoted as ΔSAR. We describe the considered effect quantita-
tively, for which we represent the orbital velocity, and accordingly, 
its radial component as the sum of two terms:

where ṽrad and v̆rad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal 
resolution cell Δo.SAR, respectively. Let us average the SAR signal 
intensity (12) over ṽ the “internal” velocities under the assumption 
of their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over ṽ in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed <σ0> from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained in [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation condi-
tions. However, as will be seen later, the effects associated with 
large-scale velocities are much more significant.

Let us turn to Figure 3 and Figure 4, where the elements of the in-
tegrand of (12) are presented, obtained using numerical simulation 
based on the Pearson-Moskowitz wave spectrum for two values of 
near-surface wind speed and corresponding to the case of azimuth-
al (i.e., along or against the Y-axis) wave propagation. In this case, 
there are no fluctuations of the radar cross section σ0, and the wave 
image is formed only due to the orbital velocities on the surface.
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
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locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
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distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    
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values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  
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between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 
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intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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random curve approach each other and, accordingly, the function       value is close to unity. 
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 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.
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resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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Multiplying               by the Gaussian probability distribution function and integrating 
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 
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where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the surface, 
and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The integration 
interval is limited at both sides due to descending of the integrand. 
This formula at a glance is quite transparent. The first factor in the 
integrand indicates the source of scattering (small-scale ripples) 
and its intensity, and the second - the location of the scattering 
spot and its size. One can see that in the absence of velocities on 
the surface, the SAR echo-signal is formed by the spot with an az-
imuthal size of about Δ0.SAR, concentrated around the point y = Vt. 
However, in the presence of waves the picture essentially changes. 
The fact is that in reality there is a wide continuous spectrum of or-
bital velocity on the surface with scales small and large compared 
to Δ0.SAR so the issue of the location and size of the scattering are a 
needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line Vt-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area (b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly ΔO.SAR Obviously, if two adjacent intersection points are space 
dapart by a distance less than ΔO.SAR,then the function between 
them f(w) does not fall off, but remains close to unity, i.e. the res-
olution cells smears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.This is an ex-
tended resolution cell, the average size of which, unlike the nomi-
nal,is denoted as ΔSAR. We describe the considered effect quantita-
tively, for which we represent the orbital velocity, and accordingly, 
its radial component as the sum of two terms:

where ṽrad and v̆rad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal 
resolution cell Δo.SAR, respectively. Let us average the SAR signal 
intensity (12) over ṽ the “internal” velocities under the assumption 
of their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over ṽ in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed <σ0> from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained in [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation condi-
tions. However, as will be seen later, the effects associated with 
large-scale velocities are much more significant.

Let us turn to Figure 3 and Figure 4, where the elements of the in-
tegrand of (12) are presented, obtained using numerical simulation 
based on the Pearson-Moskowitz wave spectrum for two values of 
near-surface wind speed and corresponding to the case of azimuth-
al (i.e., along or against the Y-axis) wave propagation. In this case, 
there are no fluctuations of the radar cross section σ0, and the wave 
image is formed only due to the orbital velocities on the surface.
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
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scale ripples) and its intensity, and the second - the location of the 
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Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

(16)

(17)

(18)

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 
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the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 
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values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 

     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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where        and         are the “internal” (small-scale) and “external” (large-scale) radial 

velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 

     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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where        and         are the “internal” (small-scale) and “external” (large-scale) radial 

velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 
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equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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over    in infinite limits, we get: 
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obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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component of orbital velocity      on the surface, and                  is the  SAR nominal 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 

     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 
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 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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where        and         are the “internal” (small-scale) and “external” (large-scale) radial 
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SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 

     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  
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intersection  point (where       is approximately       . Obviously, if two adjacent 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 
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section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 

     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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random curve approach each other and, accordingly, the function       value is close to unity. 
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 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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where        and         are the “internal” (small-scale) and “external” (large-scale) radial 

velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 
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 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the surface, 
and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The integration 
interval is limited at both sides due to descending of the integrand. 
This formula at a glance is quite transparent. The first factor in the 
integrand indicates the source of scattering (small-scale ripples) 
and its intensity, and the second - the location of the scattering 
spot and its size. One can see that in the absence of velocities on 
the surface, the SAR echo-signal is formed by the spot with an az-
imuthal size of about Δ0.SAR, concentrated around the point y = Vt. 
However, in the presence of waves the picture essentially changes. 
The fact is that in reality there is a wide continuous spectrum of or-
bital velocity on the surface with scales small and large compared 
to Δ0.SAR so the issue of the location and size of the scattering are a 
needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line Vt-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area (b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly ΔO.SAR Obviously, if two adjacent intersection points are space 
dapart by a distance less than ΔO.SAR,then the function between 
them f(w) does not fall off, but remains close to unity, i.e. the res-
olution cells smears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.This is an ex-
tended resolution cell, the average size of which, unlike the nomi-
nal,is denoted as ΔSAR. We describe the considered effect quantita-
tively, for which we represent the orbital velocity, and accordingly, 
its radial component as the sum of two terms:

where ṽrad and v̆rad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal 
resolution cell Δo.SAR, respectively. Let us average the SAR signal 
intensity (12) over ṽ the “internal” velocities under the assumption 
of their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over ṽ in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed <σ0> from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained in [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation condi-
tions. However, as will be seen later, the effects associated with 
large-scale velocities are much more significant.

Let us turn to Figure 3 and Figure 4, where the elements of the in-
tegrand of (12) are presented, obtained using numerical simulation 
based on the Pearson-Moskowitz wave spectrum for two values of 
near-surface wind speed and corresponding to the case of azimuth-
al (i.e., along or against the Y-axis) wave propagation. In this case, 
there are no fluctuations of the radar cross section σ0, and the wave 
image is formed only due to the orbital velocities on the surface.

     Volume 4 | Issue 3 | 240J Mari Scie Res Ocean, 2021 www.opastonline.com

Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
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Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 
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equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 
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estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    
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values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

(16)

(17)

(18)

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

(19)

     Volume 4 | Issue 3 | 240J Mari Scie Res Ocean, 2021 www.opastonline.com

Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.
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characteristic period and wavelength of the surface waves. After a series of calculations, we have 
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equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 
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estimate        for various observation conditions. However, as will be seen later, the effects 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    
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obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 
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section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    
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obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 
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Multiplying               by the Gaussian probability distribution function and integrating 
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the surface, 
and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The integration 
interval is limited at both sides due to descending of the integrand. 
This formula at a glance is quite transparent. The first factor in the 
integrand indicates the source of scattering (small-scale ripples) 
and its intensity, and the second - the location of the scattering 
spot and its size. One can see that in the absence of velocities on 
the surface, the SAR echo-signal is formed by the spot with an az-
imuthal size of about Δ0.SAR, concentrated around the point y = Vt. 
However, in the presence of waves the picture essentially changes. 
The fact is that in reality there is a wide continuous spectrum of or-
bital velocity on the surface with scales small and large compared 
to Δ0.SAR so the issue of the location and size of the scattering are a 
needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line Vt-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area (b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly ΔO.SAR Obviously, if two adjacent intersection points are space 
dapart by a distance less than ΔO.SAR,then the function between 
them f(w) does not fall off, but remains close to unity, i.e. the res-
olution cells smears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.This is an ex-
tended resolution cell, the average size of which, unlike the nomi-
nal,is denoted as ΔSAR. We describe the considered effect quantita-
tively, for which we represent the orbital velocity, and accordingly, 
its radial component as the sum of two terms:

where ṽrad and v̆rad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal 
resolution cell Δo.SAR, respectively. Let us average the SAR signal 
intensity (12) over ṽ the “internal” velocities under the assumption 
of their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over ṽ in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed <σ0> from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained in [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation condi-
tions. However, as will be seen later, the effects associated with 
large-scale velocities are much more significant.

Let us turn to Figure 3 and Figure 4, where the elements of the in-
tegrand of (12) are presented, obtained using numerical simulation 
based on the Pearson-Moskowitz wave spectrum for two values of 
near-surface wind speed and corresponding to the case of azimuth-
al (i.e., along or against the Y-axis) wave propagation. In this case, 
there are no fluctuations of the radar cross section σ0, and the wave 
image is formed only due to the orbital velocities on the surface.
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
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with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
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large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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Multiplying               by the Gaussian probability distribution function and integrating 
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:
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orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].
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ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.
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In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
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proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 
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intersection points are spaced apart by a distance less than        , then the function        
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:
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orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:
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velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].
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and the wave image is formed only due to the orbital velocities on 
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proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 
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 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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distribution; here we will  assume that  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.
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characteristic period and wavelength of the surface waves. After a series of calculations, we have 
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only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

(19)

     Volume 4 | Issue 3 | 240J Mari Scie Res Ocean, 2021 www.opastonline.com

Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 
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proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  
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between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 
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 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 
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proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

(19)
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 

            
                      

       
         

            
 
              

 

where    is the normalized radar cross section of small-scale  ripples,        is the radial 

component of orbital velocity      on the surface, and                  is the  SAR nominal 

resolution. The integration interval is limited at both sides due to descending of the integrand. 

       This formula at a glance is quite transparent. The first factor in the integrand indicates the 

source of scattering (small-scale ripples) and its intensity, and the second - the location of the 

scattering spot and its size. One can see that in the absence of velocities on the surface, the SAR 

echo-signal is formed by the spot with an azimuthal size of about        , concentrated around 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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  Fig. 2 Illustration on the effect of azmuthal smearing of SAR resolution cell. 

 

 The dotted vertical straight lines in Fig.2 denote the area where the straight line and the 

random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 

     . 

 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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where        and         are the “internal” (small-scale) and “external” (large-scale) radial 

velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 
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Where σ0 is the normalized radar cross section of small-scale rip-
ples, vrad is the radial component of orbital velocity on the sur-
face, and Δ0.SAR=λR/2VΔ t is the SAR nominal resolution. The 
integration interval is limited at both sides due to descending of the 
integrand. This formula at a glance is quite transparent. The first 
factor in the integrand indicates the source of scattering (small-
scale ripples) and its intensity, and the second - the location of the 
scattering spot and its size. One can see that in the absence of ve-
locities on the surface, the SAR echo-signal is formed by the spot 
with an azimuthal size of about Δo.SAR, concentrated around the 
point y = Vt. However, in the presence of waves the picture essen-
tially changes. The fact is that in reality there is a wide continuous 
spectrum of orbital velocity on the surface with scales small and 
large compared to Δo.SAR so the issue of the location and size of 
the scattering are a needs more detailed consideration.

Let us turn to the integrand in (12) and introduce the designations:

It is easy to see that f(w) and, therefore, the integrand function 
significantly differ from zero only when the straight-line V t-y' and 
the random curve (R/V)vrad (x,y') are in sufficient proximity to one 
another. Figure 2 shows an area containing the intersection points 
of a straight line and a random curve (a), as well as the function 
f(w) in this area(b).

The size of the interval at which f(w) significantly decreases with 
distance from the intersection point (where w = 0) is approximate-
ly Δo.SAR. Obviously, if two adjacent intersection points are space 
dapart by a distanceless than Δo.SAR,then the function between them 
f(w)does not fall off, but remains close to unity, i.e. the resolution 
cells mears.

Figure 2: Illustration on the effect of azmuthal smearing of SAR 
resolution cell.

The dotted vertical straight lines in Figure 2 denote the area where 
the straight line and the random curve approach each other and, 
accordingly, the function f(w) value is close to unity.Thisisanex-
tendedresolutioncell,theaveragesizeofwhich,unlikethenominal,is-
denoted as ΔSAR. We describe the considered effect quantitatively, 
for which we represent the orbital velocity, and accordingly, its 
radial component as the sum of two terms:

Where ṽrad and ṽrad are the “internal”(small-scale) and “exter-
nal”(large-scale) radial velocities with respect to the nominal res-
olution cell Δo.SAR, respectively. Let us average the SAR signal in-
tensity (12) over the “internal” velocities under the assumption of 
their normal distribution; here we will assume that

Multiplying f(w) = exp(-w2) by the Gaussian probability distribu-
tion function and integrating over in infinite limits, we get:

where                is the rms of the radial component of the “internal” 
orbital velocity. Consequently, the intensity of the SAR signal av-
eraged over “internal” velocities is recorded as follows:

where σ ̃0 is renamed› σ0 ‹from Eqn.(15). As we see, the integrand 
of (19) includes an extended resolution cell and a smoothed radial 
velocity. Note, that Eqn. (19) practically coincides with the equa-
tion for SAR signal intensity obtained by [4].

By specifying the model of the wave spectrum, it is possible with 
the formula (17) to estimate ΔSAR for various observation con-
ditions. However, as will be seen later, the effectsassociated with 
large-scale velocities are much moresignificant.

Let us turn to Figure 3 and Figure 4, where the elements of the 
integrand of (12) are presented, obtained using numerical simu-
lation based on the Pearson-Moskowitz wave spectrum for two 
values of near-surface wind velocity and corresponding to the case 
of azimuthal (i.e., along or against the Y-axis) wave propagation. 
In this case, there are no fluctuations of the radar cross section σ0, 
and the wave image is formed only due to the orbital velocities on 
the surface.

       Consider the image row along  , assuming           and          where      and     are 

characteristic period and wavelength of the surface waves. After a series of calculations, we have 

got for the SAR signal intensity [Kanevsky 2008]: 
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It is easy to see that      and, therefore, the integrand function significantly differ from zero 

only when the straight line        and the random curve                  are  in sufficient 

proximity to one another. Fig. 2 shows an area containing the intersection points of a straight line 

and a random curve (a), as well as the function       in this area (b).  

       The size of the interval at which      significantly decreases with distance from the 

intersection  point (where       is approximately       . Obviously, if two adjacent 

intersection points are spaced apart by a distance less than        , then the function        

between them does not fall off, but remains close to unity, i.e.  the resolution cell smears.  
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random curve approach each other and, accordingly, the function       value is close to unity. 

This is an extended resolution cell, the average size of which, unlike the nominal, is denoted as 
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 We describe the considered effect quantitatively, for which we represent the orbital 

velocity, and accordingly, its radial component as the sum of two terms: 
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where        and         are the “internal” (small-scale) and “external” (large-scale) radial 

velocities with respect to the nominal resolution cell       , respectively.  Let us average the 

SAR signal intensity (12) over the “internal” velocities under the assumption of their normal 

distribution; here we will  assume that  
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                 
    

                                                             

 

    
      

        
                                                          

    

            
        

 
       

  
   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

           
         

    
                     

     
         

             
 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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Figure 3: Crossing of straight lineVt-y' and random function 
(R/V)vrad for (R/V)=120s and θ0=30̊ wind sea at the wind speed 
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Figure 4: Crossing of straight-line Vt-y' and random function 
(R/V)vrad for (R/V)=120s and θ0=30̊ windsea at the wind speed 
U=6m/s (a). SAR resolution cell function exp(-w2) for Δ0.SAR=7.5 
m(b).

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V) ͝σv.rad
where ͝σv.rad is the rms of  ͝vrad Consequently, the size along the re-
gion, where the intersection points of the straight line f(y') =Vt-y' 
with the smoothed random curve are concentrated, is (2÷3)(R/V) 
͝σv.rad, which d etermines the actual SAR azimuth resolution. On the 
other hand, based on the same formula (12), it can be shown (see 
[1]) that there is a pruning multiplier in the spectrum of the wave 

image, the so-called cut-off factor for the azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities, expanding the 
resolution cell of the SAR, as well as “external” velocities, causing 
random displacements and overlapping images of different surface 
areas, located with in an interval of approximately π(R/V)͝σV.rad. 
However, for numerical evaluations, formula(20) is more conve-
nient, because it gives the actual azimuthal resolution

without necessity of calculations of ΔSAR and ͝σv.rad . As to  ͝σv.rad, in 
order to estimate it one can use simple formulas:

Here θ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σv.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range wave-number axis.
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From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V) ͝σv.rad
where ͝σv.rad is the rms of  ͝vrad Consequently, the size along the re-
gion, where the intersection points of the straight line f(y') =Vt-y' 
with the smoothed random curve are concentrated, is (2÷3)(R/V) 
͝σv.rad, which d etermines the actual SAR azimuth resolution. On the 
other hand, based on the same formula (12), it can be shown (see 
[1]) that there is a pruning multiplier in the spectrum of the wave 

image, the so-called cut-off factor for the azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities, expanding the 
resolution element of the SAR, as well as “external” velocities, 
causing random displacements and overlapping images of dif-
ferent surface areas, located with in an interval of approximately 
π(R/V)͝σV.rad. However, for numerical evaluations, formula(20) is 
more convenient, because it gives the actual azimuthal resolution

without necessity of calculations of ΔSAR and ͝σv.rad with ͝σv.rad, in 
order to estimate it one can use simple formulas:
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tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σv.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range wave-number axis.
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Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                     
                                                             

 

    
      

                                                                  

    

                    
 
         

   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  
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carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:
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form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)
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velocities, causing random displacements and overlapping images 
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without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
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Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
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Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                     
                                                             

 

    
      

                                                                  

    

                    
 
         

   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                     
                                                             

 

    
      

                                                                  

    

                    
 
         

   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-

looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 

300 m [Passaro et al. 2016], this term is quite significant.)   

          Formula (22) is convenient for physical interpretation: the cut-off factor acts as a low-pass 

filter for azimuthal wave-numbers, whose characteristic is determined by “internal” velocities, 
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          Formula (22) is convenient for physical interpretation: the cut-off factor acts as a low-pass 
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                     
                                                             

 

    
      

                                                                  

    

                    
 
         

   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                     
                                                             

 

    
      

                                                                  

    

                    
 
         

   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    
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obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-

looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 

300 m [Passaro et al. 2016], this term is quite significant.)   

          Formula (22) is convenient for physical interpretation: the cut-off factor acts as a low-pass 

filter for azimuthal wave-numbers, whose characteristic is determined by “internal” velocities, 
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
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without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:
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tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 
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section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 
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for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 
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carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-
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         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 
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section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 
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carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 
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section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-

looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 

300 m [Passaro et al. 2016], this term is quite significant.)   

          Formula (22) is convenient for physical interpretation: the cut-off factor acts as a low-pass 
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 
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Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight lineVt-y' and random function 
(R/V)vrad for (R/V)=120s and θ0=30̊ wind sea at the wind speed 
U=6m/s (a). SAR resolution cell function exp(-w2) for Δ0.SAR=7.5 
m (b).

Figure 4: Crossing of straight-line Vt-y' and random function 
(R/V)vrad for (R/V)=120s and θ0=30̊ windsea at the wind speed 
U=6m/s (a). SAR resolution cell function exp(-w2) for Δ0.SAR=7.5 
m(b).

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V) ͝σv.rad
where ͝σv.rad is the rms of  ͝vrad Consequently, the size along the re-
gion, where the intersection points of the straight line f(y') =Vt-y' 
with the smoothed random curve are concentrated, is (2÷3)(R/V) 
͝σv.rad, which d etermines the actual SAR azimuth resolution. On the 
other hand, based on the same formula (12), it can be shown (see 
[1]) that there is a pruning multiplier in the spectrum of the wave 

image, the so-called cut-off factor for the azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities, expanding the 
resolution element of the SAR, as well as “external” velocities, 
causing random displacements and overlapping images of dif-
ferent surface areas, located with in an interval of approximately 
π(R/V)͝σV.rad. However, for numerical evaluations, formula(20) is 
more convenient, because it gives the actual azimuthal resolution

without necessity of calculations of ΔSAR and ͝σv.rad with ͝σv.rad, in 
order to estimate it one can use simple formulas:

Here θ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σv.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range wave-number axis.
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                     
                                                             

 

    
      

                                                                  

    

                    
 
         

   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 
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section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                     
                                                             

 

    
      

                                                                  

    

                    
 
         

   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-

looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 
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factor for the azimuth wave-number:  

                         
 

       
 
                                                           

 

From (18) it follows: 

                    
 
                                                                       

            

Considering that                             , rewrite (20) in the form: 

 

                   
     

       
 
                                               

 

(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-

looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 

300 m [Passaro et al. 2016], this term is quite significant.)   

          Formula (22) is convenient for physical interpretation: the cut-off factor acts as a low-pass 

filter for azimuthal wave-numbers, whose characteristic is determined by “internal” velocities, 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  

                         
 

       
 
                                                           

 

From (18) it follows: 

                    
 
                                                                       

            

Considering that                             , rewrite (20) in the form: 

 

                   
     

       
 
                                               

 

(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-

looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 

300 m [Passaro et al. 2016], this term is quite significant.)   

          Formula (22) is convenient for physical interpretation: the cut-off factor acts as a low-pass 

filter for azimuthal wave-numbers, whose characteristic is determined by “internal” velocities, 
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                     
                                                             

 

    
      

                                                                  

    

                    
 
         

   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                     
                                                             

 

    
      

                                                                  

    

                    
 
         

   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  

                         
 

       
 
                                                           

 

From (18) it follows: 

                    
 
                                                                       

            

Considering that                             , rewrite (20) in the form: 

 

                   
     

       
 
                                               

 

(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-

looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 

300 m [Passaro et al. 2016], this term is quite significant.)   

          Formula (22) is convenient for physical interpretation: the cut-off factor acts as a low-pass 

filter for azimuthal wave-numbers, whose characteristic is determined by “internal” velocities, 
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.
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the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
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2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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approximately              . However, for numerical evaluations, formula (20) is more 
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         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 
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scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
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Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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Multiplying               by the Gaussian probability distribution function and integrating 
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 
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areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  
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         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:
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(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
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without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:

                   

 
Fig.3  Crossing of straight line         and random function           for            and 
        windsea at the wind speed        (a). SAR resolution cell function           for 
             (b). 
   

                         
                                     Fig.4 Same as a Fig.4.2 but for         . 

                   

 
Fig.3  Crossing of straight line         and random function           for            and 
        windsea at the wind speed        (a). SAR resolution cell function           for 
             (b). 
   

                         
                                     Fig.4 Same as a Fig.4.2 but for         . 
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 
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vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 
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From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 
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Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 
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can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight lineVt-y' and random function 
(R/V)vrad for (R/V)=120s and θ0=30̊ wind sea at the wind speed 
U=6m/s (a). SAR resolution cell function exp(-w2) for Δ0.SAR=7.5 
m (b).

Figure 4: Crossing of straight-line Vt-y' and random function 
(R/V)vrad for (R/V)=120s and θ0=30̊ windsea at the wind speed 
U=6m/s (a). SAR resolution cell function exp(-w2) for Δ0.SAR=7.5 
m(b).

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V) ͝σv.rad
where ͝σv.rad is the rms of  ͝vrad Consequently, the size along the re-
gion, where the intersection points of the straight line f(y') =Vt-y' 
with the smoothed random curve are concentrated, is (2÷3)(R/V) 
͝σv.rad, which d etermines the actual SAR azimuth resolution. On the 
other hand, based on the same formula (12), it can be shown (see 
[1]) that there is a pruning multiplier in the spectrum of the wave 

image, the so-called cut-off factor for the azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities, expanding the 
resolution element of the SAR, as well as “external” velocities, 
causing random displacements and overlapping images of dif-
ferent surface areas, located with in an interval of approximately 
π(R/V)͝σV.rad. However, for numerical evaluations, formula(20) is 
more convenient, because it gives the actual azimuthal resolution

without necessity of calculations of ΔSAR and ͝σv.rad with ͝σv.rad, in 
order to estimate it one can use simple formulas:

Here θ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σv.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range wave-number axis.
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:

                   

 
Fig.3  Crossing of straight line         and random function           for            and 
        windsea at the wind speed        (a). SAR resolution cell function           for 
             (b). 
   

                         
                                     Fig.4 Same as a Fig.4.2 but for         . 

                   

 
Fig.3  Crossing of straight line         and random function           for            and 
        windsea at the wind speed        (a). SAR resolution cell function           for 
             (b). 
   

                         
                                     Fig.4 Same as a Fig.4.2 but for         . 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 
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the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  
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Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:

                   

 
Fig.3  Crossing of straight line         and random function           for            and 
        windsea at the wind speed        (a). SAR resolution cell function           for 
             (b). 
   

                         
                                     Fig.4 Same as a Fig.4.2 but for         . 

                   

 
Fig.3  Crossing of straight line         and random function           for            and 
        windsea at the wind speed        (a). SAR resolution cell function           for 
             (b). 
   

                         
                                     Fig.4 Same as a Fig.4.2 but for         . 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                     
                                                             

 

    
      

                                                                  

    

                    
 
         

   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 
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2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  
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Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
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(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
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(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
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without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:
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tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 
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section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 
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for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
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curve are concentrated, is                    which determines the actual SAR azimuth 
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2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 
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section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:

                   

 
Fig.3  Crossing of straight line         and random function           for            and 
        windsea at the wind speed        (a). SAR resolution cell function           for 
             (b). 
   

                         
                                     Fig.4 Same as a Fig.4.2 but for         . 

                   

 
Fig.3  Crossing of straight line         and random function           for            and 
        windsea at the wind speed        (a). SAR resolution cell function           for 
             (b). 
   

                         
                                     Fig.4 Same as a Fig.4.2 but for         . 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                     
                                                             

 

    
      

                                                                  

    

                    
 
         

   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 
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for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 
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         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 
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        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 
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against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-

looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 

300 m [Passaro et al. 2016], this term is quite significant.)   

          Formula (22) is convenient for physical interpretation: the cut-off factor acts as a low-pass 

filter for azimuthal wave-numbers, whose characteristic is determined by “internal” velocities, 
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 
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Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight lineVt-y' and random function 
(R/V)vrad for (R/V)=120s and θ0=30̊ wind sea at the wind speed 
U=6m/s (a). SAR resolution cell function exp(-w2) for Δ0.SAR=7.5 
m (b).

Figure 4: Crossing of straight-line Vt-y' and random function 
(R/V)vrad for (R/V)=120s and θ0=30̊ windsea at the wind speed 
U=6m/s (a). SAR resolution cell function exp(-w2) for Δ0.SAR=7.5 
m(b).

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V) ͝σv.rad
where ͝σv.rad is the rms of  ͝vrad Consequently, the size along the re-
gion, where the intersection points of the straight line f(y') =Vt-y' 
with the smoothed random curve are concentrated, is (2÷3)(R/V) 
͝σv.rad, which d etermines the actual SAR azimuth resolution. On the 
other hand, based on the same formula (12), it can be shown (see 
[1]) that there is a pruning multiplier in the spectrum of the wave 

image, the so-called cut-off factor for the azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities, expanding the 
resolution element of the SAR, as well as “external” velocities, 
causing random displacements and overlapping images of dif-
ferent surface areas, located with in an interval of approximately 
π(R/V)͝σV.rad. However, for numerical evaluations, formula(20) is 
more convenient, because it gives the actual azimuthal resolution

without necessity of calculations of ΔSAR and ͝σv.rad with ͝σv.rad, in 
order to estimate it one can use simple formulas:

Here θ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σv.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range wave-number axis.
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.
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ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
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plied to the side- looking SAR [5]. However, in the case of a SAR 
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                     
                                                             

 

    
      

                                                                  

    

                    
 
         

   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 
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over    in infinite limits, we get: 

                     
                                                             

 

    
      

                                                                  

    

                    
 
         

   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-
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1991] without the first term in the exponent, which is quite reasonable when applied to the side-

looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 

300 m [Passaro et al. 2016], this term is quite significant.)   

          Formula (22) is convenient for physical interpretation: the cut-off factor acts as a low-pass 

filter for azimuthal wave-numbers, whose characteristic is determined by “internal” velocities, 
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                     
                                                             

 

    
      

                                                                  

    

                    
 
         

   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                     
                                                             

 

    
      

                                                                  

    

                    
 
         

   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-

looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 

300 m [Passaro et al. 2016], this term is quite significant.)   

          Formula (22) is convenient for physical interpretation: the cut-off factor acts as a low-pass 

filter for azimuthal wave-numbers, whose characteristic is determined by “internal” velocities, 
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  

                          
                                                          

        
  

     
 

 

      

Key to the theory of SAR imaging of sea waves parameter      is defined as follows:  

   
        
   

                                                                     

(23)

expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  

                          
                                                          

        
  

     
 

 

      

Key to the theory of SAR imaging of sea waves parameter      is defined as follows:  

   
        
   

                                                                     

(24)

     Volume 4 | Issue 3 | 241J Mari Scie Res Ocean, 2021 www.opastonline.com

Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
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without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:
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travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
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curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:
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Considering that                                                , rewrite (20) in the 
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the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
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without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 
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Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  

                          
                                                          

        
  

     
 

 

      

Key to the theory of SAR imaging of sea waves parameter      is defined as follows:  

   
        
   

                                                                     

(23)

expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 
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section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  
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for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
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(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  
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looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 
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          Formula (22) is convenient for physical interpretation: the cut-off factor acts as a low-pass 

filter for azimuthal wave-numbers, whose characteristic is determined by “internal” velocities, 
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carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 
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against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-

looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 

300 m [Passaro et al. 2016], this term is quite significant.)   

          Formula (22) is convenient for physical interpretation: the cut-off factor acts as a low-pass 

filter for azimuthal wave-numbers, whose characteristic is determined by “internal” velocities, 
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 
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Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 
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(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-

looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 
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scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
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where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight lineVt-y' and random function 
(R/V)vrad for (R/V)=120s and θ0=30̊ wind sea at the wind speed 
U=6m/s (a). SAR resolution cell function exp(-w2) for Δ0.SAR=7.5 
m (b).

Figure 4: Crossing of straight-line Vt-y' and random function 
(R/V)vrad for (R/V)=120s and θ0=30̊ windsea at the wind speed 
U=6m/s (a). SAR resolution cell function exp(-w2) for Δ0.SAR=7.5 
m(b).

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V) ͝σv.rad
where ͝σv.rad is the rms of  ͝vrad Consequently, the size along the re-
gion, where the intersection points of the straight line f(y') =Vt-y' 
with the smoothed random curve are concentrated, is (2÷3)(R/V) 
͝σv.rad, which d etermines the actual SAR azimuth resolution. On the 
other hand, based on the same formula (12), it can be shown (see 
[1]) that there is a pruning multiplier in the spectrum of the wave 

image, the so-called cut-off factor for the azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities, expanding the 
resolution element of the SAR, as well as “external” velocities, 
causing random displacements and overlapping images of dif-
ferent surface areas, located with in an interval of approximately 
π(R/V)͝σV.rad. However, for numerical evaluations, formula(20) is 
more convenient, because it gives the actual azimuthal resolution

without necessity of calculations of ΔSAR and ͝σv.rad with ͝σv.rad, in 
order to estimate it one can use simple formulas:

Here θ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σv.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range wave-number axis.
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
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without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 
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scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
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curve are concentrated, is                    which determines the actual SAR azimuth 
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2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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displacements and overlapping images of different surface areas, located within an interval of 
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         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 
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          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 
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scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 
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Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 
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From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 
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for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
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        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  

                          
                                                          

        
  

     
 

 

      

Key to the theory of SAR imaging of sea waves parameter      is defined as follows:  

   
        
   

                                                                     

(23)

expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  

                          
                                                          

        
  

     
 

 

      

Key to the theory of SAR imaging of sea waves parameter      is defined as follows:  

   
        
   

                                                                     

(24)

     Volume 4 | Issue 3 | 241J Mari Scie Res Ocean, 2021 www.opastonline.com

Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 
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From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 
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carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
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without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 
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displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 
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for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 
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         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 
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        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 
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against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-
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300 m [Passaro et al. 2016], this term is quite significant.)   
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 
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Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight lineVt-y' and random function 
(R/V)vrad for (R/V)=120s and θ0=30̊ wind sea at the wind speed 
U=6m/s (a). SAR resolution cell function exp(-w2) for Δ0.SAR=7.5 
m (b).

Figure 4: Crossing of straight-line Vt-y' and random function 
(R/V)vrad for (R/V)=120s and θ0=30̊ windsea at the wind speed 
U=6m/s (a). SAR resolution cell function exp(-w2) for Δ0.SAR=7.5 
m(b).

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V) ͝σv.rad
where ͝σv.rad is the rms of  ͝vrad Consequently, the size along the re-
gion, where the intersection points of the straight line f(y') =Vt-y' 
with the smoothed random curve are concentrated, is (2÷3)(R/V) 
͝σv.rad, which d etermines the actual SAR azimuth resolution. On the 
other hand, based on the same formula (12), it can be shown (see 
[1]) that there is a pruning multiplier in the spectrum of the wave 

image, the so-called cut-off factor for the azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities, expanding the 
resolution element of the SAR, as well as “external” velocities, 
causing random displacements and overlapping images of dif-
ferent surface areas, located with in an interval of approximately 
π(R/V)͝σV.rad. However, for numerical evaluations, formula(20) is 
more convenient, because it gives the actual azimuthal resolution

without necessity of calculations of ΔSAR and ͝σv.rad with ͝σv.rad, in 
order to estimate it one can use simple formulas:

Here θ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σv.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range wave-number axis.
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                     
                                                             

 

    
      

                                                                  

    

                    
 
         

   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  

                         
 

       
 
                                                           

 

From (18) it follows: 

                    
 
                                                                       

            

Considering that                             , rewrite (20) in the form: 

 

                   
     

       
 
                                               

 

(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-

looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 

300 m [Passaro et al. 2016], this term is quite significant.)   

          Formula (22) is convenient for physical interpretation: the cut-off factor acts as a low-pass 

filter for azimuthal wave-numbers, whose characteristic is determined by “internal” velocities, 
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                     
                                                             

 

    
      

                                                                  

    

                    
 
         

   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 
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resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 
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values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-

looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 

300 m [Passaro et al. 2016], this term is quite significant.)   

          Formula (22) is convenient for physical interpretation: the cut-off factor acts as a low-pass 

filter for azimuthal wave-numbers, whose characteristic is determined by “internal” velocities, 
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 
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section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  

                         
 

       
 
                                                           

 

From (18) it follows: 

                    
 
                                                                       

            

Considering that                             , rewrite (20) in the form: 

 

                   
     

       
 
                                               

 

(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-

looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 

300 m [Passaro et al. 2016], this term is quite significant.)   

          Formula (22) is convenient for physical interpretation: the cut-off factor acts as a low-pass 

filter for azimuthal wave-numbers, whose characteristic is determined by “internal” velocities, 

(20)

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  

                         
 

       
 
                                                           

 

From (18) it follows: 

                    
 
                                                                       

            

Considering that                             , rewrite (20) in the form: 

 

                   
     

       
 
                                               

 

(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-

looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 

300 m [Passaro et al. 2016], this term is quite significant.)   

          Formula (22) is convenient for physical interpretation: the cut-off factor acts as a low-pass 

filter for azimuthal wave-numbers, whose characteristic is determined by “internal” velocities, 

(21)

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  

                         
 

       
 
                                                           

 

From (18) it follows: 

                    
 
                                                                       

            

Considering that                             , rewrite (20) in the form: 

 

                   
     

       
 
                                               

 

(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-

looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 

300 m [Passaro et al. 2016], this term is quite significant.)   

          Formula (22) is convenient for physical interpretation: the cut-off factor acts as a low-pass 

filter for azimuthal wave-numbers, whose characteristic is determined by “internal” velocities, 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  

                         
 

       
 
                                                           

 

From (18) it follows: 

                    
 
                                                                       

            

Considering that                             , rewrite (20) in the form: 

 

                   
     

       
 
                                               

 

(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-

looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 

300 m [Passaro et al. 2016], this term is quite significant.)   

          Formula (22) is convenient for physical interpretation: the cut-off factor acts as a low-pass 

filter for azimuthal wave-numbers, whose characteristic is determined by “internal” velocities, 

(22)

expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 
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for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
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2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 
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(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  
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          Formula (22) is convenient for physical interpretation: the cut-off factor acts as a low-pass 

filter for azimuthal wave-numbers, whose characteristic is determined by “internal” velocities, 

(20)

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  

                         
 

       
 
                                                           

 

From (18) it follows: 

                    
 
                                                                       

            

Considering that                             , rewrite (20) in the form: 

 

                   
     

       
 
                                               

 

(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-

looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 

300 m [Passaro et al. 2016], this term is quite significant.)   

          Formula (22) is convenient for physical interpretation: the cut-off factor acts as a low-pass 

filter for azimuthal wave-numbers, whose characteristic is determined by “internal” velocities, 

(21)

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  

                         
 

       
 
                                                           

 

From (18) it follows: 

                    
 
                                                                       

            

Considering that                             , rewrite (20) in the form: 

 

                   
     

       
 
                                               

 

(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-

looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 

300 m [Passaro et al. 2016], this term is quite significant.)   

          Formula (22) is convenient for physical interpretation: the cut-off factor acts as a low-pass 

filter for azimuthal wave-numbers, whose characteristic is determined by “internal” velocities, 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  

                         
 

       
 
                                                           

 

From (18) it follows: 

                    
 
                                                                       

            

Considering that                             , rewrite (20) in the form: 

 

                   
     

       
 
                                               

 

(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-

looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 

300 m [Passaro et al. 2016], this term is quite significant.)   

          Formula (22) is convenient for physical interpretation: the cut-off factor acts as a low-pass 

filter for azimuthal wave-numbers, whose characteristic is determined by “internal” velocities, 

(22)
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carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 
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        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 
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known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 
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        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  

                          
                                                          

        
  

     
 

 

      

Key to the theory of SAR imaging of sea waves parameter      is defined as follows:  

   
        
   

                                                                     

(24)

     Volume 4 | Issue 3 | 241J Mari Scie Res Ocean, 2021 www.opastonline.com

Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
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without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 
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section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 
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carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
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without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 
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carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 
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Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
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without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 
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1991] without the first term in the exponent, which is quite reasonable when applied to the side-
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scale random curve. Physically, this means that in the SAR image plane, a random number of 
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight lineVt-y' and random function 
(R/V)vrad for (R/V)=120s and θ0=30̊ wind sea at the wind speed 
U=6m/s (a). SAR resolution cell function exp(-w2) for Δ0.SAR=7.5 
m (b).

Figure 4: Crossing of straight-line Vt-y' and random function 
(R/V)vrad for (R/V)=120s and θ0=30̊ windsea at the wind speed 
U=6m/s (a). SAR resolution cell function exp(-w2) for Δ0.SAR=7.5 
m(b).

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V) ͝σv.rad
where ͝σv.rad is the rms of  ͝vrad Consequently, the size along the re-
gion, where the intersection points of the straight line f(y') =Vt-y' 
with the smoothed random curve are concentrated, is (2÷3)(R/V) 
͝σv.rad, which d etermines the actual SAR azimuth resolution. On the 
other hand, based on the same formula (12), it can be shown (see 
[1]) that there is a pruning multiplier in the spectrum of the wave 

image, the so-called cut-off factor for the azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities, expanding the 
resolution element of the SAR, as well as “external” velocities, 
causing random displacements and overlapping images of dif-
ferent surface areas, located with in an interval of approximately 
π(R/V)͝σV.rad. However, for numerical evaluations, formula(20) is 
more convenient, because it gives the actual azimuthal resolution

without necessity of calculations of ΔSAR and ͝σv.rad with ͝σv.rad, in 
order to estimate it one can use simple formulas:

Here θ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σv.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range wave-number axis.
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                     
                                                             

 

    
      

                                                                  

    

                    
 
         

   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-

looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 

300 m [Passaro et al. 2016], this term is quite significant.)   

          Formula (22) is convenient for physical interpretation: the cut-off factor acts as a low-pass 

filter for azimuthal wave-numbers, whose characteristic is determined by “internal” velocities, 
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
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Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
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of the radius- vector of the spectrum gravity center to the ground 
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the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 
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From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
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resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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approximately              . However, for numerical evaluations, formula (20) is more 
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for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:

                   

 
Fig.3  Crossing of straight line         and random function           for            and 
        windsea at the wind speed        (a). SAR resolution cell function           for 
             (b). 
   

                         
                                     Fig.4 Same as a Fig.4.2 but for         . 

                   

 
Fig.3  Crossing of straight line         and random function           for            and 
        windsea at the wind speed        (a). SAR resolution cell function           for 
             (b). 
   

                         
                                     Fig.4 Same as a Fig.4.2 but for         . 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
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Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 
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From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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1991] without the first term in the exponent, which is quite reasonable when applied to the side-
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  
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in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
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(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  
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carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:

                   

 
Fig.3  Crossing of straight line         and random function           for            and 
        windsea at the wind speed        (a). SAR resolution cell function           for 
             (b). 
   

                         
                                     Fig.4 Same as a Fig.4.2 but for         . 

                   

 
Fig.3  Crossing of straight line         and random function           for            and 
        windsea at the wind speed        (a). SAR resolution cell function           for 
             (b). 
   

                         
                                     Fig.4 Same as a Fig.4.2 but for         . 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                     
                                                             

 

    
      

                                                                  

    

                    
 
         

   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 
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From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 
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Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 
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in (23), it is usually (but not always, see above) negligible compared to the second one. 
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        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 
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maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 
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against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-
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(20)

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  

                         
 

       
 
                                                           

 

From (18) it follows: 

                    
 
                                                                       

            

Considering that                             , rewrite (20) in the form: 

 

                   
     

       
 
                                               

 

(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-

looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 

300 m [Passaro et al. 2016], this term is quite significant.)   

          Formula (22) is convenient for physical interpretation: the cut-off factor acts as a low-pass 

filter for azimuthal wave-numbers, whose characteristic is determined by “internal” velocities, 

(21)

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  

                         
 

       
 
                                                           

 

From (18) it follows: 

                    
 
                                                                       

            

Considering that                             , rewrite (20) in the form: 

 

                   
     

       
 
                                               

 

(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-

looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 

300 m [Passaro et al. 2016], this term is quite significant.)   

          Formula (22) is convenient for physical interpretation: the cut-off factor acts as a low-pass 

filter for azimuthal wave-numbers, whose characteristic is determined by “internal” velocities, 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  

                         
 

       
 
                                                           

 

From (18) it follows: 

                    
 
                                                                       

            

Considering that                             , rewrite (20) in the form: 

 

                   
     

       
 
                                               

 

(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-

looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 

300 m [Passaro et al. 2016], this term is quite significant.)   

          Formula (22) is convenient for physical interpretation: the cut-off factor acts as a low-pass 

filter for azimuthal wave-numbers, whose characteristic is determined by “internal” velocities, 

(22)

expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 
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Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight lineVt-y' and random function 
(R/V)vrad for (R/V)=120s and θ0=30̊ wind sea at the wind speed 
U=6m/s (a). SAR resolution cell function exp(-w2) for Δ0.SAR=7.5 
m (b).

Figure 4: Crossing of straight-line Vt-y' and random function 
(R/V)vrad for (R/V)=120s and θ0=30̊ windsea at the wind speed 
U=6m/s (a). SAR resolution cell function exp(-w2) for Δ0.SAR=7.5 
m(b).

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V) ͝σv.rad
where ͝σv.rad is the rms of  ͝vrad Consequently, the size along the re-
gion, where the intersection points of the straight line f(y') =Vt-y' 
with the smoothed random curve are concentrated, is (2÷3)(R/V) 
͝σv.rad, which d etermines the actual SAR azimuth resolution. On the 
other hand, based on the same formula (12), it can be shown (see 
[1]) that there is a pruning multiplier in the spectrum of the wave 

image, the so-called cut-off factor for the azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities, expanding the 
resolution element of the SAR, as well as “external” velocities, 
causing random displacements and overlapping images of dif-
ferent surface areas, located with in an interval of approximately 
π(R/V)͝σV.rad. However, for numerical evaluations, formula(20) is 
more convenient, because it gives the actual azimuthal resolution

without necessity of calculations of ΔSAR and ͝σv.rad with ͝σv.rad, in 
order to estimate it one can use simple formulas:

Here θ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σv.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range wave-number axis.
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
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Figure 4: Same as a Fig.4.2 but for  U=10 m/s.
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Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 

                     
                                                             

 

    
      

                                                                  

    

                    
 
         

   

                                              

 

where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 
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estimate        for various observation conditions. However, as will be seen later, the effects 
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obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  

1991] without the first term in the exponent, which is quite reasonable when applied to the side-
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300 m [Passaro et al. 2016], this term is quite significant.)   
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 
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Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
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(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
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(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
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without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:
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tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 
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section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 
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for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 
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2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 

Multiplying               by the Gaussian probability distribution function and integrating 

over    in infinite limits, we get: 
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section     , and the wave image is formed only due to the orbital velocities on the surface. 

From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  
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Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where          is the rms of the radial component of the “internal” orbital velocity. Consequently, 

the intensity of the SAR signal averaged over “internal” velocities is recorded as follows: 

 

          
 
   

      
    

                   
  

                        
   

 
              

where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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From Fig.3 and Fig.4 it can be seen that the  SAR signal is formed by several surface 

areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 
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        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
mately π(R/V)͝σV.rad. However, for numerical evaluations, formu-
la(20) is more convenient, because it gives the actual azimuthal 
resolution

without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 

section     , and the wave image is formed only due to the orbital velocities on the surface. 
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areas, the location of which is determined by the intersections of the straight line and the large-

scale random curve. Physically, this means that in the SAR image plane, a random number of 

sub-images of surface elements are summed, each of which is shifted randomly in the field of 

large-scale velocities. In other words, the area from which the echo signal comes in becomes 

generally non-simply-connected. 

Obviously, the values of the random curve are within approximately     
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resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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(Note that the cut-off factor (20) was obtained earlier by [Hasselmann K. and Hasselmann S.  
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looking SAR. However, in the case of a SAR altimeter with a nominal azimuthal resolution of 
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displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  
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carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 
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Figure 3: Crossing of straight-lineVt-y' and random function (R/V)
vrad for (R/V)=120s andθ0=30̊ wind sea at the wind speed U=6m/s 
(a). SAR resolution cell function exp(-w2) for Δo.SAR=7.5 m(b).

Figure 4: Same as a Fig.4.2 but for  U=10 m/s.

From Figure 3 and Figure 4 it can be seen that the SAR signal is 
formed by several surface areas, the location of which is deter-
mined by the intersections of the straight line and the large- scale 
random curve. Physically, this means that in the SAR image plane, 
a random number of sub-images of surface elements are summed, 
each of which is shifted randomly in the field of large-scale veloc-
ities. In other words, the area from which the echo signal comes in 
becomes generally non-simply-connected. Obviously, the values 
of the random curve are within approximately ±(1÷1.5)(R/V)
               where                   where σ͝rad is the rms of v͝rad. Consequent-
ly, the size along the region, where the intersection points of the 
straight-line f(y') =Vt-y' with the smoothed random curve are con-
centrated, is (2÷3)(R/V)͝ σV.rad, which determines the actual SAR 
azimuth resolution. On the other hand, based on the same formula 
(12), it can be shown (see [1]) that there is a pruning multiplier in 
the spectrum of the wave image, the so-called cut-off factor for the 
azimuth wave-number:

From (18) it follows:

Considering that                                                , rewrite (20) in the 
form:

(Note that the cut-off factor (20) was obtained earlier by without 
the first term in the exponent, which is quite reasonable when ap-
plied to the side- looking SAR [5]. However, in the case of a SAR 
altimeter with a nominal azimuthal resolution of 300 m [6], this 
term is quite significant.)

Formula (22) is convenient for physical interpretation: the cut-off 
factor acts as a low-pass filter for azimuthal wave-numbers, whose 
characteristic is determined by “internal” velocities,
 
expanding the resolution element of the SAR, as well as “external” 
velocities, causing random displacements and overlapping images 
of different surface areas, located with in an interval of approxi-
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without necessity of calculations of and ΔSAR and ͝σV.rad. As to 
σV.rad, in order to estimate it one can use simple formulas:

Hereθ0 is the angle of incidence, ϕ0 is the angle between the direc-
tion of motion of the SAR carrier and the general direction of wave 
travel, U is the speed of the surface wind; the formula for σV.orb fol-
lows from the Pearson-Moskowitz spectrum. As for the first term 
in square brackets in (23), it is usually (but not always, see above) 
negligible compared to the second one.

Thus, the actual resolution obtained as a result of calculating the 
image spectrum coincides with the simple estimate made above.

The cut-off phenomenon of the high-frequency part of the wave 
image spectrum is well known in the practice of SAR monitoring 
of the ocean surface. It leads to a shift of the spectral maximum 
towards small azimuthal wave numbers and, as a result, to rotation 
of the radius- vector of the spectrum gravity center to the ground 
range axis.

The average number of large-scale intersections is calculated us-
ing the following formula [7]:
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where     is renamed      from Eqn.(15). As we see, the integrand of (19) includes an extended 

resolution cell and a smoothed radial velocity. Note, that Eqn. (19) practically coincides with the 

equation for SAR signal intensity obtained by [Alpers and Rufenach 1979]. 

          By specifying the model of the wave spectrum, it is possible with the formula (17) to 

estimate        for various observation conditions. However, as will be seen later, the effects 

associated with large-scale velocities are much more significant.    

          Let us turn to Fig.3 and Fig.4, where the elements of the integrand of (12) are presented, 

obtained using numerical simulation based on the Pearson-Moskowitz wave spectrum for two 

values of near-surface wind velocity and corresponding to the case of azimuthal (i.e., along or 

against the Y-axis) wave propagation. In this case, there are no fluctuations of the radar cross 
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                , where         is the rms of         . Consequently, the size along the    region, 

where the intersection points of the straight line             with the smoothed random 

curve are concentrated, is                    which determines the actual SAR azimuth 

resolution. On the other hand, based on the same formula (12), it can be shown (see [Kanevsky 

2008]) that there is a pruning multiplier in the spectrum of the wave image, the so-called cut-off 

factor for the azimuth wave-number:  
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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The average number of large-scale intersections is calculated us-
ing the following formula [7]:

Key to the theory of SAR imaging of sea waves parameter βv is 
defined as follows:

where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value ‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where Λv in Eq.(26) 
is replaced by Λ0, the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.

Figure 5: Dependence of the mean number <N> on the parameter 
βv

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, therefore, 
in the integrand (19) there is a single maximum. However, the ab-

sence of fluctuations of the value of N does not mean that the SAR 
does not see a swell propagating in the azimuthal direction. In-
deed,  expanding  ͝vrad (y') in the integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of 1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity), the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In SAR Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the term B2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of Ii and n, we write:
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will be shifted forward along the SAR flight direction at a dis-
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SAR imagery of the ocean (for more details see [9]).
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In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the term B2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).
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Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
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expansion term, we get:
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expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   

              
       

                           Fig. 5 Dependence of the mean number     on the parameter   . 

 

The value      as a function of    is given in Fig. 5. Note that one should not confuse parameter  

   with at first glance more visual and often used for evaluations parameter     , where     in 

Eqn.(26) is replaced by      , the characteristic wavelength in the spectrum of large-scale 

elevations. As it is shown in [Kanevsky 2008] for  the case of fully developed wind sea, the 

dependence       significantly differs from      . We emphasize once again that the key 

parameter of the theory is namely   . 

        A separate case of   = 1, when the spectrum of orbital velocities (in its projection onto the 

axis of azimuthal wave-numbers   ) falls into the passband of the filter associated with 

"external" orbital velocities. This case is realized when waves are directed close to the axis of the 

ground range, or it is a rather gentle swell, regardless of the direction of propagation. 

       
       Fig.6 Same as an Figs 3 and 4, but for swell with wavelength of 200 m and the height of.1.5 m.  

 

        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      

(27)
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      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      

       This theory describes well the known features of the SAR imagery of the ocean (for more 

details see [Kanevsky 2020]).         

 

4 Speckle noise in SAR imagery of the ocean surface      

         

In the previous section, it was stated that the noise part of the full correlation function of the 

image (11) is described by the term   . Let us explain what this statement is based on and 

simultaneously eliminate the apparent contradiction between the multiplicative nature of speckle 

noise and the additive form of Eqn.(11).         

       We represent the intensity of the SAR signal in the form       , where    is the noise 

function defined in the area of positive values with the average      . Renaming     and    as 

   and    , and  assuming statistical independence of     and  , we write: 

                                                ,                     (28) 

where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 

as above,          and           where      and        are characteristic period and 

wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 

(28)
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correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:

expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  
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Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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The value      as a function of    is given in Fig. 5. Note that one should not confuse parameter  

   with at first glance more visual and often used for evaluations parameter     , where     in 

Eqn.(26) is replaced by      , the characteristic wavelength in the spectrum of large-scale 

elevations. As it is shown in [Kanevsky 2008] for  the case of fully developed wind sea, the 

dependence       significantly differs from      . We emphasize once again that the key 

parameter of the theory is namely   . 

        A separate case of   = 1, when the spectrum of orbital velocities (in its projection onto the 

axis of azimuthal wave-numbers   ) falls into the passband of the filter associated with 

"external" orbital velocities. This case is realized when waves are directed close to the axis of the 

ground range, or it is a rather gentle swell, regardless of the direction of propagation. 

       
       Fig.6 Same as an Figs 3 and 4, but for swell with wavelength of 200 m and the height of.1.5 m.  

 

        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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In the previous section, it was stated that the noise part of the full correlation function of the 

image (11) is described by the term   . Let us explain what this statement is based on and 

simultaneously eliminate the apparent contradiction between the multiplicative nature of speckle 

noise and the additive form of Eqn.(11).         

       We represent the intensity of the SAR signal in the form       , where    is the noise 

function defined in the area of positive values with the average      . Renaming     and    as 
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 

as above,          and           where      and        are characteristic period and 

wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 
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Key to the theory of SAR imaging of sea waves parameter βv is 
defined as follows:

where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.

Figure 5: Dependence of the mean numberon the parameter

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In Sar Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:

expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  
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carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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In the previous section, it was stated that the noise part of the full correlation function of the 

image (11) is described by the term   . Let us explain what this statement is based on and 

simultaneously eliminate the apparent contradiction between the multiplicative nature of speckle 

noise and the additive form of Eqn.(11).         

       We represent the intensity of the SAR signal in the form       , where    is the noise 

function defined in the area of positive values with the average      . Renaming     and    as 
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                                                ,                     (28) 

where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 

as above,          and           where      and        are characteristic period and 

wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 
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Key to the theory of SAR imaging of sea waves parameter βv is 
defined as follows:

where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.

Figure 5: Dependence of the mean numberon the parameter

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In Sar Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:
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for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  
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The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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4 Speckle noise in SAR imagery of the ocean surface      

         

In the previous section, it was stated that the noise part of the full correlation function of the 

image (11) is described by the term   . Let us explain what this statement is based on and 

simultaneously eliminate the apparent contradiction between the multiplicative nature of speckle 

noise and the additive form of Eqn.(11).         

       We represent the intensity of the SAR signal in the form       , where    is the noise 

function defined in the area of positive values with the average      . Renaming     and    as 
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                                                ,                     (28) 

where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 

as above,          and           where      and        are characteristic period and 

wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 
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Key to the theory of SAR imaging of sea waves parameter βv is 
defined as follows:

where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.

Figure 5: Dependence of the mean numberon the parameter

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In Sar Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:
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displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  
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Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 
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Key to the theory of SAR imaging of sea waves parameter βv is 
defined as follows:

where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.

Figure 5: Dependence of the mean numberon the parameter

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In Sar Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:
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carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   

              
       

                           Fig. 5 Dependence of the mean number     on the parameter   . 

 

The value      as a function of    is given in Fig. 5. Note that one should not confuse parameter  

   with at first glance more visual and often used for evaluations parameter     , where     in 

Eqn.(26) is replaced by      , the characteristic wavelength in the spectrum of large-scale 

elevations. As it is shown in [Kanevsky 2008] for  the case of fully developed wind sea, the 

dependence       significantly differs from      . We emphasize once again that the key 

parameter of the theory is namely   . 

        A separate case of   = 1, when the spectrum of orbital velocities (in its projection onto the 

axis of azimuthal wave-numbers   ) falls into the passband of the filter associated with 

"external" orbital velocities. This case is realized when waves are directed close to the axis of the 

ground range, or it is a rather gentle swell, regardless of the direction of propagation. 

       
       Fig.6 Same as an Figs 3 and 4, but for swell with wavelength of 200 m and the height of.1.5 m.  

 

        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 
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The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 
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The average number of large-scale intersections is calculated us-
ing the following formula [7]:

Key to the theory of SAR imaging of sea waves parameter βv is 
defined as follows:

where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value ‹N› as a function of βv is given in Figure 5. Note that 
one should not confuse parameter βv with at first glance more vi-
sual and often used for evaluations Λv parameter βϛ, where Λv in 
Eq.(26) is replaced by Λ0, the characteristic wavelength in the 
spectrum of large-scale elevations. As it is shown in for the case 
of fully developed wind sea, the dependence βϛ (U) significantly 
differs from βv(U) [1]. We emphasize once again that the key pa-
rameter of the theory is namely βv.

Figure 5: Dependence of the mean number <N> on the parameter 
βv

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, therefore, 
in the integrand (19) there is a single maximum. However, the ab-

sence of fluctuations of the value of N does not mean that the SAR 
does not see a swell propagating in the azimuthal direction. In-
deed,  expanding  ͝vrad (y') in the integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of 1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity), the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In SAR Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the term B2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of Ii and n, we write:
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carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   

              
       

                           Fig. 5 Dependence of the mean number     on the parameter   . 

 

The value      as a function of    is given in Fig. 5. Note that one should not confuse parameter  

   with at first glance more visual and often used for evaluations parameter     , where     in 

Eqn.(26) is replaced by      , the characteristic wavelength in the spectrum of large-scale 

elevations. As it is shown in [Kanevsky 2008] for  the case of fully developed wind sea, the 

dependence       significantly differs from      . We emphasize once again that the key 

parameter of the theory is namely   . 

        A separate case of   = 1, when the spectrum of orbital velocities (in its projection onto the 
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ground range, or it is a rather gentle swell, regardless of the direction of propagation. 

       
       Fig.6 Same as an Figs 3 and 4, but for swell with wavelength of 200 m and the height of.1.5 m.  

 

        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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4 Speckle noise in SAR imagery of the ocean surface      

         

In the previous section, it was stated that the noise part of the full correlation function of the 

image (11) is described by the term   . Let us explain what this statement is based on and 

simultaneously eliminate the apparent contradiction between the multiplicative nature of speckle 

noise and the additive form of Eqn.(11).         

       We represent the intensity of the SAR signal in the form       , where    is the noise 

function defined in the area of positive values with the average      . Renaming     and    as 
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 

as above,          and           where      and        are characteristic period and 

wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 
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where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.
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A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).
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ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:
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         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 
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scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.
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should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.
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A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In Sar Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:

expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  
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carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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The value      as a function of    is given in Fig. 5. Note that one should not confuse parameter  

   with at first glance more visual and often used for evaluations parameter     , where     in 

Eqn.(26) is replaced by      , the characteristic wavelength in the spectrum of large-scale 

elevations. As it is shown in [Kanevsky 2008] for  the case of fully developed wind sea, the 

dependence       significantly differs from      . We emphasize once again that the key 

parameter of the theory is namely   . 

        A separate case of   = 1, when the spectrum of orbital velocities (in its projection onto the 

axis of azimuthal wave-numbers   ) falls into the passband of the filter associated with 

"external" orbital velocities. This case is realized when waves are directed close to the axis of the 

ground range, or it is a rather gentle swell, regardless of the direction of propagation. 

       
       Fig.6 Same as an Figs 3 and 4, but for swell with wavelength of 200 m and the height of.1.5 m.  

 

        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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In the previous section, it was stated that the noise part of the full correlation function of the 

image (11) is described by the term   . Let us explain what this statement is based on and 

simultaneously eliminate the apparent contradiction between the multiplicative nature of speckle 

noise and the additive form of Eqn.(11).         

       We represent the intensity of the SAR signal in the form       , where    is the noise 

function defined in the area of positive values with the average      . Renaming     and    as 
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 

as above,          and           where      and        are characteristic period and 

wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 
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Key to the theory of SAR imaging of sea waves parameter βv is 
defined as follows:

where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.

Figure 5: Dependence of the mean numberon the parameter

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In Sar Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:
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carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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noise and the additive form of Eqn.(11).         
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 

as above,          and           where      and        are characteristic period and 

wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 
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where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.

Figure 5: Dependence of the mean numberon the parameter

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In Sar Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:
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known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 
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change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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       This theory describes well the known features of the SAR imagery of the ocean (for more 

details see [Kanevsky 2020]).         

 

4 Speckle noise in SAR imagery of the ocean surface      

         

In the previous section, it was stated that the noise part of the full correlation function of the 

image (11) is described by the term   . Let us explain what this statement is based on and 

simultaneously eliminate the apparent contradiction between the multiplicative nature of speckle 

noise and the additive form of Eqn.(11).         

       We represent the intensity of the SAR signal in the form       , where    is the noise 

function defined in the area of positive values with the average      . Renaming     and    as 

   and    , and  assuming statistical independence of     and  , we write: 
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 

as above,          and           where      and        are characteristic period and 

wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 

(28)
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Key to the theory of SAR imaging of sea waves parameter βv is 
defined as follows:

where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.

Figure 5: Dependence of the mean numberon the parameter

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In Sar Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:
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for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 

as above,          and           where      and        are characteristic period and 

wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 
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The average number of large-scale intersections is calculated us-
ing the following formula [7]:

Key to the theory of SAR imaging of sea waves parameter βv is 
defined as follows:

where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value ‹N› as a function of βv is given in Figure 5. Note that 
one should not confuse parameter βv with at first glance more vi-
sual and often used for evaluations Λv parameter βϛ, where Λv in 
Eq.(26) is replaced by Λ0, the characteristic wavelength in the 
spectrum of large-scale elevations. As it is shown in for the case 
of fully developed wind sea, the dependence βϛ (U) significantly 
differs from βv(U) [1]. We emphasize once again that the key pa-
rameter of the theory is namely βv.

Figure 5: Dependence of the mean number <N> on the parameter 
βv

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, therefore, 
in the integrand (19) there is a single maximum. However, the ab-

sence of fluctuations of the value of N does not mean that the SAR 
does not see a swell propagating in the azimuthal direction. In-
deed,  expanding  ͝vrad (y') in the integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of 1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity), the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In SAR Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the term B2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of Ii and n, we write:
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where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
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veloped wind sea, the dependence βϛ (U) significantly differs from 
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the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In Sar Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
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displacements and overlapping images of different surface areas, located within an interval of 
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for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 
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The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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       This theory describes well the known features of the SAR imagery of the ocean (for more 
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4 Speckle noise in SAR imagery of the ocean surface      

         

In the previous section, it was stated that the noise part of the full correlation function of the 

image (11) is described by the term   . Let us explain what this statement is based on and 

simultaneously eliminate the apparent contradiction between the multiplicative nature of speckle 

noise and the additive form of Eqn.(11).         
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 

as above,          and           where      and        are characteristic period and 

wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 
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Key to the theory of SAR imaging of sea waves parameter βv is 
defined as follows:

where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.

Figure 5: Dependence of the mean numberon the parameter

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In Sar Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:

expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  
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carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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"external" orbital velocities. This case is realized when waves are directed close to the axis of the 

ground range, or it is a rather gentle swell, regardless of the direction of propagation. 

       
       Fig.6 Same as an Figs 3 and 4, but for swell with wavelength of 200 m and the height of.1.5 m.  

 

        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 

as above,          and           where      and        are characteristic period and 

wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 
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where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.

Figure 5: Dependence of the mean numberon the parameter

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In Sar Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:

expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  
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Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 
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where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.
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A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).
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In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:

expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   

              
       

                           Fig. 5 Dependence of the mean number     on the parameter   . 

 

The value      as a function of    is given in Fig. 5. Note that one should not confuse parameter  

   with at first glance more visual and often used for evaluations parameter     , where     in 

Eqn.(26) is replaced by      , the characteristic wavelength in the spectrum of large-scale 

elevations. As it is shown in [Kanevsky 2008] for  the case of fully developed wind sea, the 

dependence       significantly differs from      . We emphasize once again that the key 

parameter of the theory is namely   . 

        A separate case of   = 1, when the spectrum of orbital velocities (in its projection onto the 

axis of azimuthal wave-numbers   ) falls into the passband of the filter associated with 

"external" orbital velocities. This case is realized when waves are directed close to the axis of the 

ground range, or it is a rather gentle swell, regardless of the direction of propagation. 

       
       Fig.6 Same as an Figs 3 and 4, but for swell with wavelength of 200 m and the height of.1.5 m.  

 

        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      

(27)
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 

as above,          and           where      and        are characteristic period and 

wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 
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Key to the theory of SAR imaging of sea waves parameter βv is 
defined as follows:

where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.

Figure 5: Dependence of the mean numberon the parameter

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).
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in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 
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where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.

Figure 5: Dependence of the mean numberon the parameter

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).
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In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:
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effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 
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      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 
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wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 

(28)

     Volume 4 | Issue 3 | 242J Mari Scie Res Ocean, 2021 www.opastonline.com

The average number of large-scale intersections is calculated us-
ing the following formula [7]:

Key to the theory of SAR imaging of sea waves parameter βv is 
defined as follows:

where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value ‹N› as a function of βv is given in Figure 5. Note that 
one should not confuse parameter βv with at first glance more vi-
sual and often used for evaluations Λv parameter βϛ, where Λv in 
Eq.(26) is replaced by Λ0, the characteristic wavelength in the 
spectrum of large-scale elevations. As it is shown in for the case 
of fully developed wind sea, the dependence βϛ (U) significantly 
differs from βv(U) [1]. We emphasize once again that the key pa-
rameter of the theory is namely βv.

Figure 5: Dependence of the mean number <N> on the parameter 
βv

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, therefore, 
in the integrand (19) there is a single maximum. However, the ab-

sence of fluctuations of the value of N does not mean that the SAR 
does not see a swell propagating in the azimuthal direction. In-
deed,  expanding  ͝vrad (y') in the integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of 1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity), the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In SAR Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the term B2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of Ii and n, we write:
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carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 

as above,          and           where      and        are characteristic period and 

wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 
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where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.
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A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).
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In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:
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for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  
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The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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In the previous section, it was stated that the noise part of the full correlation function of the 

image (11) is described by the term   . Let us explain what this statement is based on and 
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noise and the additive form of Eqn.(11).         
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 

as above,          and           where      and        are characteristic period and 

wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 
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Key to the theory of SAR imaging of sea waves parameter βv is 
defined as follows:

where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.

Figure 5: Dependence of the mean numberon the parameter

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In Sar Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:

expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  
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carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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ground range, or it is a rather gentle swell, regardless of the direction of propagation. 

       
       Fig.6 Same as an Figs 3 and 4, but for swell with wavelength of 200 m and the height of.1.5 m.  

 

        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 
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wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 
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where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.

Figure 5: Dependence of the mean numberon the parameter

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In Sar Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:

expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  
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Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 
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where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
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and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
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veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.

Figure 5: Dependence of the mean numberon the parameter

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).
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In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:
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approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  
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Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   

              
       

                           Fig. 5 Dependence of the mean number     on the parameter   . 

 

The value      as a function of    is given in Fig. 5. Note that one should not confuse parameter  

   with at first glance more visual and often used for evaluations parameter     , where     in 

Eqn.(26) is replaced by      , the characteristic wavelength in the spectrum of large-scale 

elevations. As it is shown in [Kanevsky 2008] for  the case of fully developed wind sea, the 

dependence       significantly differs from      . We emphasize once again that the key 

parameter of the theory is namely   . 

        A separate case of   = 1, when the spectrum of orbital velocities (in its projection onto the 

axis of azimuthal wave-numbers   ) falls into the passband of the filter associated with 

"external" orbital velocities. This case is realized when waves are directed close to the axis of the 

ground range, or it is a rather gentle swell, regardless of the direction of propagation. 

       
       Fig.6 Same as an Figs 3 and 4, but for swell with wavelength of 200 m and the height of.1.5 m.  

 

        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      

(27)
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precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      

       This theory describes well the known features of the SAR imagery of the ocean (for more 

details see [Kanevsky 2020]).         

 

4 Speckle noise in SAR imagery of the ocean surface      

         

In the previous section, it was stated that the noise part of the full correlation function of the 

image (11) is described by the term   . Let us explain what this statement is based on and 

simultaneously eliminate the apparent contradiction between the multiplicative nature of speckle 

noise and the additive form of Eqn.(11).         

       We represent the intensity of the SAR signal in the form       , where    is the noise 

function defined in the area of positive values with the average      . Renaming     and    as 

   and    , and  assuming statistical independence of     and  , we write: 
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 

as above,          and           where      and        are characteristic period and 

wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 

(28)
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Key to the theory of SAR imaging of sea waves parameter βv is 
defined as follows:

where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.

Figure 5: Dependence of the mean numberon the parameter

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In Sar Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:

expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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ground range, or it is a rather gentle swell, regardless of the direction of propagation. 

       
       Fig.6 Same as an Figs 3 and 4, but for swell with wavelength of 200 m and the height of.1.5 m.  

 

        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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4 Speckle noise in SAR imagery of the ocean surface      

         

In the previous section, it was stated that the noise part of the full correlation function of the 

image (11) is described by the term   . Let us explain what this statement is based on and 

simultaneously eliminate the apparent contradiction between the multiplicative nature of speckle 

noise and the additive form of Eqn.(11).         

       We represent the intensity of the SAR signal in the form       , where    is the noise 

function defined in the area of positive values with the average      . Renaming     and    as 

   and    , and  assuming statistical independence of     and  , we write: 
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 

as above,          and           where      and        are characteristic period and 

wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 
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The average number of large-scale intersections is calculated us-
ing the following formula [7]:

Key to the theory of SAR imaging of sea waves parameter βv is 
defined as follows:

where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value ‹N› as a function of βv is given in Figure 5. Note that 
one should not confuse parameter βv with at first glance more vi-
sual and often used for evaluations Λv parameter βϛ, where Λv in 
Eq.(26) is replaced by Λ0, the characteristic wavelength in the 
spectrum of large-scale elevations. As it is shown in for the case 
of fully developed wind sea, the dependence βϛ (U) significantly 
differs from βv(U) [1]. We emphasize once again that the key pa-
rameter of the theory is namely βv.

Figure 5: Dependence of the mean number <N> on the parameter 
βv

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, therefore, 
in the integrand (19) there is a single maximum. However, the ab-

sence of fluctuations of the value of N does not mean that the SAR 
does not see a swell propagating in the azimuthal direction. In-
deed,  expanding  ͝vrad (y') in the integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of 1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity), the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In SAR Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the term B2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of Ii and n, we write:
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[8].
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Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).
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nature of speckle noise and the additive form of Eqn.(11).
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displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 
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Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  
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with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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The value      as a function of    is given in Fig. 5. Note that one should not confuse parameter  

   with at first glance more visual and often used for evaluations parameter     , where     in 

Eqn.(26) is replaced by      , the characteristic wavelength in the spectrum of large-scale 

elevations. As it is shown in [Kanevsky 2008] for  the case of fully developed wind sea, the 

dependence       significantly differs from      . We emphasize once again that the key 

parameter of the theory is namely   . 

        A separate case of   = 1, when the spectrum of orbital velocities (in its projection onto the 

axis of azimuthal wave-numbers   ) falls into the passband of the filter associated with 

"external" orbital velocities. This case is realized when waves are directed close to the axis of the 

ground range, or it is a rather gentle swell, regardless of the direction of propagation. 

       
       Fig.6 Same as an Figs 3 and 4, but for swell with wavelength of 200 m and the height of.1.5 m.  

 

        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      

       This theory describes well the known features of the SAR imagery of the ocean (for more 

details see [Kanevsky 2020]).         

 

4 Speckle noise in SAR imagery of the ocean surface      

         

In the previous section, it was stated that the noise part of the full correlation function of the 

image (11) is described by the term   . Let us explain what this statement is based on and 

simultaneously eliminate the apparent contradiction between the multiplicative nature of speckle 

noise and the additive form of Eqn.(11).         

       We represent the intensity of the SAR signal in the form       , where    is the noise 

function defined in the area of positive values with the average      . Renaming     and    as 

   and    , and  assuming statistical independence of     and  , we write: 
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 

as above,          and           where      and        are characteristic period and 

wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 

(28)
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Key to the theory of SAR imaging of sea waves parameter βv is 
defined as follows:

where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.

Figure 5: Dependence of the mean numberon the parameter

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In Sar Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:

expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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"external" orbital velocities. This case is realized when waves are directed close to the axis of the 

ground range, or it is a rather gentle swell, regardless of the direction of propagation. 

       
       Fig.6 Same as an Figs 3 and 4, but for swell with wavelength of 200 m and the height of.1.5 m.  

 

        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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In the previous section, it was stated that the noise part of the full correlation function of the 

image (11) is described by the term   . Let us explain what this statement is based on and 

simultaneously eliminate the apparent contradiction between the multiplicative nature of speckle 

noise and the additive form of Eqn.(11).         

       We represent the intensity of the SAR signal in the form       , where    is the noise 

function defined in the area of positive values with the average      . Renaming     and    as 

   and    , and  assuming statistical independence of     and  , we write: 
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 

as above,          and           where      and        are characteristic period and 

wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 
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defined as follows:

where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.

Figure 5: Dependence of the mean numberon the parameter

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In Sar Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:

expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  
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Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 

as above,          and           where      and        are characteristic period and 

wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 
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Key to the theory of SAR imaging of sea waves parameter βv is 
defined as follows:

where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.

Figure 5: Dependence of the mean numberon the parameter

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In Sar Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:

expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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axis of azimuthal wave-numbers   ) falls into the passband of the filter associated with 

"external" orbital velocities. This case is realized when waves are directed close to the axis of the 

ground range, or it is a rather gentle swell, regardless of the direction of propagation. 

       
       Fig.6 Same as an Figs 3 and 4, but for swell with wavelength of 200 m and the height of.1.5 m.  

 

        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 

as above,          and           where      and        are characteristic period and 

wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 
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where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.

Figure 5: Dependence of the mean numberon the parameter

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In Sar Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:

expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  
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Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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ground range, or it is a rather gentle swell, regardless of the direction of propagation. 
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        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 
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where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.
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A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).
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In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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The value      as a function of    is given in Fig. 5. Note that one should not confuse parameter  

   with at first glance more visual and often used for evaluations parameter     , where     in 

Eqn.(26) is replaced by      , the characteristic wavelength in the spectrum of large-scale 

elevations. As it is shown in [Kanevsky 2008] for  the case of fully developed wind sea, the 

dependence       significantly differs from      . We emphasize once again that the key 

parameter of the theory is namely   . 

        A separate case of   = 1, when the spectrum of orbital velocities (in its projection onto the 

axis of azimuthal wave-numbers   ) falls into the passband of the filter associated with 

"external" orbital velocities. This case is realized when waves are directed close to the axis of the 

ground range, or it is a rather gentle swell, regardless of the direction of propagation. 

       
       Fig.6 Same as an Figs 3 and 4, but for swell with wavelength of 200 m and the height of.1.5 m.  

 

        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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       This theory describes well the known features of the SAR imagery of the ocean (for more 

details see [Kanevsky 2020]).         

 

4 Speckle noise in SAR imagery of the ocean surface      

         

In the previous section, it was stated that the noise part of the full correlation function of the 

image (11) is described by the term   . Let us explain what this statement is based on and 

simultaneously eliminate the apparent contradiction between the multiplicative nature of speckle 

noise and the additive form of Eqn.(11).         

       We represent the intensity of the SAR signal in the form       , where    is the noise 

function defined in the area of positive values with the average      . Renaming     and    as 
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 

as above,          and           where      and        are characteristic period and 

wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 
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The average number of large-scale intersections is calculated us-
ing the following formula [7]:

Key to the theory of SAR imaging of sea waves parameter βv is 
defined as follows:

where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value ‹N› as a function of βv is given in Figure 5. Note that 
one should not confuse parameter βv with at first glance more vi-
sual and often used for evaluations Λv parameter βϛ, where Λv in 
Eq.(26) is replaced by Λ0, the characteristic wavelength in the 
spectrum of large-scale elevations. As it is shown in for the case 
of fully developed wind sea, the dependence βϛ (U) significantly 
differs from βv(U) [1]. We emphasize once again that the key pa-
rameter of the theory is namely βv.

Figure 5: Dependence of the mean number <N> on the parameter 
βv

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, therefore, 
in the integrand (19) there is a single maximum. However, the ab-

sence of fluctuations of the value of N does not mean that the SAR 
does not see a swell propagating in the azimuthal direction. In-
deed,  expanding  ͝vrad (y') in the integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of 1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity), the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In SAR Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the term B2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of Ii and n, we write:
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displacements and overlapping images of different surface areas, located within an interval of 
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convenient,  because it gives the actual azimuthal resolution  
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Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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noise and the additive form of Eqn.(11).         

       We represent the intensity of the SAR signal in the form       , where    is the noise 

function defined in the area of positive values with the average      . Renaming     and    as 
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                                                ,                     (28) 

where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 

as above,          and           where      and        are characteristic period and 

wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 

(28)

     Volume 4 | Issue 3 | 242J Mari Scie Res Ocean, 2021 www.opastonline.com

Key to the theory of SAR imaging of sea waves parameter βv is 
defined as follows:

where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.
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A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).
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In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:
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carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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   with at first glance more visual and often used for evaluations parameter     , where     in 

Eqn.(26) is replaced by      , the characteristic wavelength in the spectrum of large-scale 

elevations. As it is shown in [Kanevsky 2008] for  the case of fully developed wind sea, the 

dependence       significantly differs from      . We emphasize once again that the key 

parameter of the theory is namely   . 

        A separate case of   = 1, when the spectrum of orbital velocities (in its projection onto the 

axis of azimuthal wave-numbers   ) falls into the passband of the filter associated with 

"external" orbital velocities. This case is realized when waves are directed close to the axis of the 

ground range, or it is a rather gentle swell, regardless of the direction of propagation. 

       
       Fig.6 Same as an Figs 3 and 4, but for swell with wavelength of 200 m and the height of.1.5 m.  

 

        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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plane, this point will be shifted forward along the SAR flight direction at a distance       .      

       This theory describes well the known features of the SAR imagery of the ocean (for more 

details see [Kanevsky 2020]).         

 

4 Speckle noise in SAR imagery of the ocean surface      

         

In the previous section, it was stated that the noise part of the full correlation function of the 

image (11) is described by the term   . Let us explain what this statement is based on and 

simultaneously eliminate the apparent contradiction between the multiplicative nature of speckle 

noise and the additive form of Eqn.(11).         

       We represent the intensity of the SAR signal in the form       , where    is the noise 

function defined in the area of positive values with the average      . Renaming     and    as 

   and    , and  assuming statistical independence of     and  , we write: 
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 

as above,          and           where      and        are characteristic period and 

wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 
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Key to the theory of SAR imaging of sea waves parameter βv is 
defined as follows:

where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.

Figure 5: Dependence of the mean numberon the parameter

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In Sar Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:

expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 

can use simple formulas:  

                                
                                                 

                     
Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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axis of azimuthal wave-numbers   ) falls into the passband of the filter associated with 

"external" orbital velocities. This case is realized when waves are directed close to the axis of the 

ground range, or it is a rather gentle swell, regardless of the direction of propagation. 

       
       Fig.6 Same as an Figs 3 and 4, but for swell with wavelength of 200 m and the height of.1.5 m.  

 

        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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In the previous section, it was stated that the noise part of the full correlation function of the 

image (11) is described by the term   . Let us explain what this statement is based on and 

simultaneously eliminate the apparent contradiction between the multiplicative nature of speckle 

noise and the additive form of Eqn.(11).         

       We represent the intensity of the SAR signal in the form       , where    is the noise 

function defined in the area of positive values with the average      . Renaming     and    as 

   and    , and  assuming statistical independence of     and  , we write: 
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 

as above,          and           where      and        are characteristic period and 

wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 
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Key to the theory of SAR imaging of sea waves parameter βv is 
defined as follows:

where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.

Figure 5: Dependence of the mean numberon the parameter

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In Sar Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:

expanding the resolution element of the SAR, as well as “external” velocities, causing random 

displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  

 

                           
 
        

   

                                    

 

without necessity of calculations of      and           . As to        , in order to estimate it one 
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Here     is the angle of incidence,    is the angle between the direction of motion of the SAR 

carrier and the general direction of wave travel,   is the speed of the surface wind; the formula 

for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 

as above,          and           where      and        are characteristic period and 

wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 
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Key to the theory of SAR imaging of sea waves parameter βv is 
defined as follows:

where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.

Figure 5: Dependence of the mean numberon the parameter

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In Sar Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:
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displacements and overlapping images of different surface areas, located within an interval of 

approximately              . However, for numerical evaluations, formula (20) is more 

convenient,  because it gives the actual azimuthal resolution  
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for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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       Fig.6 Same as an Figs 3 and 4, but for swell with wavelength of 200 m and the height of.1.5 m.  

 

        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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where     is the correlation function of noise fluctuations         . As it is known, the 
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spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 
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wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 

(28)

     Volume 4 | Issue 3 | 242J Mari Scie Res Ocean, 2021 www.opastonline.com

Key to the theory of SAR imaging of sea waves parameter βv is 
defined as follows:

where Λv is the characteristic wavelength in the spectrum of large-
scale velocities. Physically, the parameter βv is the ratio of the av-
erage shift of the SAR image due to the orbital velocity to the char-
acteristic wavelength corresponding to the projection of its wave 
vector on the direction of movement of the SAR carrier.

The value‹N› as a function of βv is given in Figure 5. Note that one 
should not confuse parameter βv with at first glance more visual 
and often used for evaluations parameter βϛ, where in Eqn.(26) 
is replaced by , the characteristic wavelength in the spectrum of 
large-scale elevations. As it is shown in for the case of fully de-
veloped wind sea, the dependence βϛ (U) significantly differs from 
βv(U) [1]. We emphasize once again that the key parameter of the 
theory is namely βv.

Figure 5: Dependence of the mean numberon the parameter

A separate case of N= 1, when the spectrum of orbital velocities (in 
its projection onto the axis of azimuthal wave-numbers) falls into 
the pass band of the filter associated with "external" orbital veloci-
ties. This case is realized when waves are directed close to the axis 
of the ground range, or it is a rather gentle swell, regardless of the 
direction of propagation.

Figure 6 shows the simulation result for a gentle swell propagating 
in the azimuthal direction. Here, N = 1 everywhere and, there-
fore, in the integrand (18) there is a single maximum. However, 
the absence of fluctuations of the value of N does not mean that the 
SAR does not see as well propagating in the azimuthal direction. 

Indeed, expanding in the ͝vrad(y') integrand function (19) in a series 
in vicinity of the intersection point and limiting itself to the linear 
expansion term, we get:

The denominator in Eqn.(27) includes the derivative of the radial 
component of the smoothed orbital velocity, which varies along 
the profile of the large wave. Therefore, SAR sees waves propa-
gating across the direction of sounding even in the case of N=1. In 
fact, this is due to a change in the width of the single maximum in 
Figure.6b as it moves along the Y axis. Nevertheless, adhering to 
the terminology of the work, one can interpret this mechanism of 
wave imaging as fluctuations of the density of effective scatterers 
[8].

Figure 6: Same as an Figs 3 and 4, but for swell with wavelength 
of 200 m and the height of.1.5 m.

Note that in this example, the echo signal comes from the inter-
section point(more precisely, from its vicinity, the average size of 
which is determined by Eqn.(18)). In the image plane, this point 
will be shifted forward along the SAR flight direction at a dis-
tanceVt-y0. This theory describes well the known features of the 
SAR imagery of the ocean (for more details see [9]).

Speckle Noise In Sar Imagery Of The Ocean Surface
In the previous section, it was stated that the noise part of the full 
correlation function of the image (11) is described by the termB2. 
Let us explain what this statement is based on and simultaneous-
ly eliminate the apparent contradiction between the multiplicative 
nature of speckle noise and the additive form of Eqn.(11).

We represent the intensity of the SAR signal in the form I=Iin, 
where n is the noise function defined in the area of positive values 
with the average ‹ n ›=1. Renaming B1 and B2 as Bi and Bs, and 
assuming statistical independence of I=Iin, and n, we write:
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for        follows from the Pearson-Moskowitz spectrum. As for the first term in square brackets 

in (23), it is usually (but not always, see above) negligible compared to the second one. 

         Thus, the actual resolution obtained as a result of calculating the image spectrum  coincides 

with the simple estimate made above.        

        The cut-off phenomenon of the high-frequency part of the wave image spectrum is well 

known in the practice of SAR monitoring of the ocean surface. It leads to a shift of the spectral 

maximum towards small azimuthal wave numbers and, as a result, to rotation of the radius-

vector of the spectrum gravity center to the ground range axis.  

        The average number of large-scale intersections is calculated using the following formula 

[Kanevsky 1993]:  
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where       is the characteristic wavelength in the spectrum of large-scale velocities. Physically, 

the parameter       is the ratio of the average shift of the SAR image due to the orbital velocity to 

the characteristic wavelength corresponding to the projection of its wave vector on the direction 

of movement of the SAR carrier.   
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        Fig.6 shows the simulation result for a gentle swell propagating in the azimuthal direction. 

Here, N = 1 everywhere and, therefore, in the integrand (18) there is a single maximum. 

However, the absence of fluctuations of the value of N does not mean that the SAR does not see 

a swell propagating in the azimuthal direction. Indeed, expanding            in the integrand 

function (19) in a series in vicinity of the intersection point     and limiting itself to the linear 

expansion term, we get: 

    
       

    
   
      
       

                                                             

The denominator in Eqn.(27) includes the derivative of the radial component of the smoothed 

orbital velocity, which varies along the profile of the large wave. Therefore, SAR sees waves 

propagating across the direction of sounding even in the case of    . In fact, this is due to a 

change in the width of the single maximum in Fig.6b as it moves along the Y axis. Nevertheless, 

adhering to the terminology of the work [Alpers et al. 1981], one can interpret this mechanism of 

wave imaging as fluctuations of the density of effective scatterers.  

      Note that in this example, the echo signal comes from the intersection point     (more 

precisely, from its vicinity, the average size of which is determined by Eqn.(18)). In the image 

plane, this point will be shifted forward along the SAR flight direction at a distance       .      
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where     is the correlation function of noise fluctuations         . As it is known, the 

spectrum of the product of two functions is a convolution of their spectra. Therefore, the full 

spectrum of the image is the sum of the spectrum of the image of waves itself and its convolution 

with the noise spectrum. As one can see, the pedestal inspired by speckle noise is additive here, 

but not the noise itself. 

       Existing methods for suppressing speckle noise are the different ways of filtering the signal, 

including those based on a priori models of speckle noise. As a rule, the criterion for the 

effectiveness of a particular method is how well the appropriate processing suppresses the high-

frequency part of the image spectrum, leaving the region of large waves intact. However, 

experience shows that speckle noise energy is distributed throughout the spectrum, including the 

large wave region. Consequently, in fact, the actual task is to remove the speckle noise pedestal 

from the entire image spectrum. 

      Further  we are going to show the possibility of a statistically completely removal of speckle-

noise pedestal without using any  a priori model of noise and signal filtering. 

     We consider the integral   , after replacing the subscript "2" by "s" (for "speckle"). Assuming, 

as above,          and           where      and        are characteristic period and 

wavelength of the surface waves, one can obtain (see [Kanevsky 2008] for details): 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing 
suppresses the high-frequency part of the image spectrum, leav-
ing the region of large waves intact. However, experience shows 
that speckle noise energy is distributed throughout the spectrum, 
including the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral I2, after replacing the subscript "2" by "s" 
(for "speckle"). Assuming, as above, Δt«T0 and Δx«Λ0 whereT0 and 
Λ0 are characteristic period and wavelength of the surface waves, 
one can obtain (see [1]):

Equation (29) hold true provided |ρx| ≤ Δx, and In the case 
| ρx| ≥ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =aSAR, term it "complex in-
tensity" and compose its correlation function:

As well as B1 (see Eqn.(7)) Bc is the sum of three terms, of which 
the first two are the same in magnitude and equal to                    , 
and the third, due to its smallness, can be neglected (see [1]). 
Thus,                                        and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where ͝Ŵc1 and Ŵc2 are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ 
) and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value W̅i (k⃗) in some points may be negative, i.e. non-
physical. To get rid of negative values and obtain a steady estimate 
of the spectrum, the periodogram should be smoothed by any of 
the deployed means. There are many ways to get steady spectral 
estimates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-2). 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing 
suppresses the high-frequency part of the image spectrum, leav-
ing the region of large waves intact. However, experience shows 
that speckle noise energy is distributed throughout the spectrum, 
including the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
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Further we are going to show the possibility of a statistically com-
pletely removal of speckle noise pedestal without using any a pri-
ori model of noise and signal filtering.
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(for "speckle"). Assuming, as above, Δt«T0 and Δx«Λ0 whereT0 and 
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Equation (29) hold true provided |ρx| ≤ Δx, and In the case 
| ρx| ≥ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =aSAR, term it "complex in-
tensity" and compose its correlation function:

As well as B1 (see Eqn.(7)) Bc is the sum of three terms, of which 
the first two are the same in magnitude and equal to                 , 
and the third, due to its smallness, can be neglected (see [1]). Thu
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Consequently,
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spectrum. As is known, the complex field spectrum, which corre-
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is a real value [11] and
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One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value W̅i (k⃗) in some points may be negative, i.e. non-
physical. To get rid of negative values and obtain a steady estimate 
of the spectrum, the periodogram should be smoothed by any of 
the deployed means. There are many ways to get steady spectral 
estimates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-2). 
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the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
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the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-

           
      

    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 

        Let us introduce the complex value         
  ,  term it "complex intensity" and compose 

its correlation function: 

                                                                                        

 

As well as    (see Eqn.(7))    is the sum of three terms, of which the first two are the same in 

magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  

                
                                                                      

Consequently,  

                  
                                                                    

                             

where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 

                                                                              

(29)
           

      
    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 

        Let us introduce the complex value         
  ,  term it "complex intensity" and compose 

its correlation function: 

                                                                                        

 

As well as    (see Eqn.(7))    is the sum of three terms, of which the first two are the same in 

magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  

                
                                                                      

Consequently,  

                  
                                                                    

                             

where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 

                                                                              

(30)

           
      

    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 

        Let us introduce the complex value         
  ,  term it "complex intensity" and compose 

its correlation function: 

                                                                                        

 

As well as    (see Eqn.(7))    is the sum of three terms, of which the first two are the same in 

magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  

                
                                                                      

Consequently,  

                  
                                                                    

                             

where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 

                                                                              

(31)

           
      

    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 

        Let us introduce the complex value         
  ,  term it "complex intensity" and compose 

its correlation function: 

                                                                                        

 

As well as    (see Eqn.(7))    is the sum of three terms, of which the first two are the same in 

magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  

                
                                                                      

Consequently,  

                  
                                                                    

                             

where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 

                                                                              

(32)

           
      

    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 

        Let us introduce the complex value         
  ,  term it "complex intensity" and compose 

its correlation function: 

                                                                                        

 

As well as    (see Eqn.(7))    is the sum of three terms, of which the first two are the same in 

magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  

                
                                                                      

Consequently,  

                  
                                                                    

                             

where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 

                                                                              (33)

is a real value [Rytov et al. 1989] and  

                                                                                

where      and        are the spectra of                               and     
                          , respectively. 

      One of the commonly accepted estimates of the spectrum is a periodogram [Marple 1987], 

which is usually calculated with fast Fourier transformation: 

                                                                                   (35)                                                                                             

where       is the signal realization (FFT is the sum of  squares of Fourier sinus and cosine 

transformations). Then Eqn.(33) gives the expression for the spectrum estimate of free of speckle 

noise: 

                                       

  
                                                                                 

 

The first member in the right part of Eqn.(36) is a usual spectral estimate containing speckle 

noise, and the other two are the speckle-noise pedestal.  

       Eqns.(31) and (32), which are the basis for estimate (36), hold for statistically average 

values, which are correlation functions and their respective spectra; while estimate  (36) is a 

random value subject to statistical fluctuations. Since the right part of Eqn.(32) and, 

consequently, the right part of Eqn.(36) are the differences, the random value            in some 

points may be negative, i.e. nonphysical. To get rid of negative values and obtain a steady 

estimate of the spectrum, the periodogram should be smoothed by any of the deployed means. 

There are many ways to get steady spectral estimates; respective information is presented in the 

book [Marple 1987]. 

     The examined method of spectral estimating provides the spectrum of the ocean SAR image 

statistically completely free of speckle noise all over the spectrum. We emphasize that both 

Eqn.(12) for the intensity of a “pure” SAR signal and spectral estimate (36) stem from  the 

transformation (2) applied to Eqn.(1). Therefore, we did not have the need to introduce from the 

outside any speckle noise model that was not organically connected with the theory of the 

formation of wave image itself. 

(34)

is a real value [Rytov et al. 1989] and  

                                                                                

where      and        are the spectra of                               and     
                          , respectively. 

      One of the commonly accepted estimates of the spectrum is a periodogram [Marple 1987], 

which is usually calculated with fast Fourier transformation: 

                                                                                   (35)                                                                                             

where       is the signal realization (FFT is the sum of  squares of Fourier sinus and cosine 

transformations). Then Eqn.(33) gives the expression for the spectrum estimate of free of speckle 

noise: 

                                       

  
                                                                                 

 

The first member in the right part of Eqn.(36) is a usual spectral estimate containing speckle 

noise, and the other two are the speckle-noise pedestal.  

       Eqns.(31) and (32), which are the basis for estimate (36), hold for statistically average 

values, which are correlation functions and their respective spectra; while estimate  (36) is a 

random value subject to statistical fluctuations. Since the right part of Eqn.(32) and, 

consequently, the right part of Eqn.(36) are the differences, the random value            in some 

points may be negative, i.e. nonphysical. To get rid of negative values and obtain a steady 

estimate of the spectrum, the periodogram should be smoothed by any of the deployed means. 

There are many ways to get steady spectral estimates; respective information is presented in the 

book [Marple 1987]. 

     The examined method of spectral estimating provides the spectrum of the ocean SAR image 

statistically completely free of speckle noise all over the spectrum. We emphasize that both 

Eqn.(12) for the intensity of a “pure” SAR signal and spectral estimate (36) stem from  the 

transformation (2) applied to Eqn.(1). Therefore, we did not have the need to introduce from the 

outside any speckle noise model that was not organically connected with the theory of the 

formation of wave image itself. 

(35)

is a real value [Rytov et al. 1989] and  

                                                                                

where      and        are the spectra of                               and     
                          , respectively. 

      One of the commonly accepted estimates of the spectrum is a periodogram [Marple 1987], 

which is usually calculated with fast Fourier transformation: 

                                                                                   (35)                                                                                             

where       is the signal realization (FFT is the sum of  squares of Fourier sinus and cosine 

transformations). Then Eqn.(33) gives the expression for the spectrum estimate of free of speckle 

noise: 

                                       

  
                                                                                 

 

The first member in the right part of Eqn.(36) is a usual spectral estimate containing speckle 

noise, and the other two are the speckle-noise pedestal.  

       Eqns.(31) and (32), which are the basis for estimate (36), hold for statistically average 

values, which are correlation functions and their respective spectra; while estimate  (36) is a 

random value subject to statistical fluctuations. Since the right part of Eqn.(32) and, 

consequently, the right part of Eqn.(36) are the differences, the random value            in some 

points may be negative, i.e. nonphysical. To get rid of negative values and obtain a steady 

estimate of the spectrum, the periodogram should be smoothed by any of the deployed means. 

There are many ways to get steady spectral estimates; respective information is presented in the 

book [Marple 1987]. 

     The examined method of spectral estimating provides the spectrum of the ocean SAR image 

statistically completely free of speckle noise all over the spectrum. We emphasize that both 

Eqn.(12) for the intensity of a “pure” SAR signal and spectral estimate (36) stem from  the 

transformation (2) applied to Eqn.(1). Therefore, we did not have the need to introduce from the 

outside any speckle noise model that was not organically connected with the theory of the 

formation of wave image itself. 

(36)

     Volume 4 | Issue 3 | 243J Mari Scie Res Ocean, 2021 www.opastonline.com

where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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There are many ways to get steady spectral estimates; respective information is presented in the 
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     The examined method of spectral estimating provides the spectrum of the ocean SAR image 

statistically completely free of speckle noise all over the spectrum. We emphasize that both 

Eqn.(12) for the intensity of a “pure” SAR signal and spectral estimate (36) stem from  the 

transformation (2) applied to Eqn.(1). Therefore, we did not have the need to introduce from the 

outside any speckle noise model that was not organically connected with the theory of the 

formation of wave image itself. 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing 
suppresses the high-frequency part of the image spectrum, leav-
ing the region of large waves intact. However, experience shows 
that speckle noise energy is distributed throughout the spectrum, 
including the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral I2, after replacing the subscript "2" by "s" 
(for "speckle"). Assuming, as above, Δt«T0 and Δx«Λ0 whereT0 and 
Λ0 are characteristic period and wavelength of the surface waves, 
one can obtain (see [1]):

Equation (29) hold true provided |ρx| ≤ Δx, and In the case 
| ρx| ≥ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =aSAR, term it "complex in-
tensity" and compose its correlation function:

As well as B1 (see Eqn.(7)) Bc is the sum of three terms, of which 
the first two are the same in magnitude and equal to                 , 
and the third, due to its smallness, can be neglected (see [1]). Thu
s,                                        and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where ͝Ŵc1 and Ŵc2 are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ 
) and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value W̅i (k⃗) in some points may be negative, i.e. non-
physical. To get rid of negative values and obtain a steady estimate 
of the spectrum, the periodogram should be smoothed by any of 
the deployed means. There are many ways to get steady spectral 
estimates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-2). 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-

           
      

    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 

        Let us introduce the complex value         
  ,  term it "complex intensity" and compose 

its correlation function: 

                                                                                        

 

As well as    (see Eqn.(7))    is the sum of three terms, of which the first two are the same in 

magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  

                
                                                                      

Consequently,  

                  
                                                                    

                             

where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 

                                                                              

(29)
           

      
    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 

        Let us introduce the complex value         
  ,  term it "complex intensity" and compose 

its correlation function: 

                                                                                        

 

As well as    (see Eqn.(7))    is the sum of three terms, of which the first two are the same in 

magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  

                
                                                                      

Consequently,  

                  
                                                                    

                             

where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 

                                                                              

(30)

           
      

    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 

        Let us introduce the complex value         
  ,  term it "complex intensity" and compose 

its correlation function: 

                                                                                        

 

As well as    (see Eqn.(7))    is the sum of three terms, of which the first two are the same in 

magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  

                
                                                                      

Consequently,  

                  
                                                                    

                             

where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 

                                                                              

(31)

           
      

    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 

        Let us introduce the complex value         
  ,  term it "complex intensity" and compose 

its correlation function: 

                                                                                        

 

As well as    (see Eqn.(7))    is the sum of three terms, of which the first two are the same in 

magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  

                
                                                                      

Consequently,  

                  
                                                                    

                             

where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 

                                                                              

(32)

           
      

    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 

        Let us introduce the complex value         
  ,  term it "complex intensity" and compose 

its correlation function: 

                                                                                        

 

As well as    (see Eqn.(7))    is the sum of three terms, of which the first two are the same in 

magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  

                
                                                                      

Consequently,  

                  
                                                                    

                             

where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 

                                                                              (33)

is a real value [Rytov et al. 1989] and  

                                                                                

where      and        are the spectra of                               and     
                          , respectively. 

      One of the commonly accepted estimates of the spectrum is a periodogram [Marple 1987], 

which is usually calculated with fast Fourier transformation: 

                                                                                   (35)                                                                                             

where       is the signal realization (FFT is the sum of  squares of Fourier sinus and cosine 

transformations). Then Eqn.(33) gives the expression for the spectrum estimate of free of speckle 

noise: 

                                       

  
                                                                                 

 

The first member in the right part of Eqn.(36) is a usual spectral estimate containing speckle 

noise, and the other two are the speckle-noise pedestal.  

       Eqns.(31) and (32), which are the basis for estimate (36), hold for statistically average 

values, which are correlation functions and their respective spectra; while estimate  (36) is a 

random value subject to statistical fluctuations. Since the right part of Eqn.(32) and, 

consequently, the right part of Eqn.(36) are the differences, the random value            in some 

points may be negative, i.e. nonphysical. To get rid of negative values and obtain a steady 

estimate of the spectrum, the periodogram should be smoothed by any of the deployed means. 

There are many ways to get steady spectral estimates; respective information is presented in the 

book [Marple 1987]. 

     The examined method of spectral estimating provides the spectrum of the ocean SAR image 

statistically completely free of speckle noise all over the spectrum. We emphasize that both 

Eqn.(12) for the intensity of a “pure” SAR signal and spectral estimate (36) stem from  the 

transformation (2) applied to Eqn.(1). Therefore, we did not have the need to introduce from the 

outside any speckle noise model that was not organically connected with the theory of the 

formation of wave image itself. 

(34)

is a real value [Rytov et al. 1989] and  

                                                                                

where      and        are the spectra of                               and     
                          , respectively. 

      One of the commonly accepted estimates of the spectrum is a periodogram [Marple 1987], 

which is usually calculated with fast Fourier transformation: 

                                                                                   (35)                                                                                             

where       is the signal realization (FFT is the sum of  squares of Fourier sinus and cosine 

transformations). Then Eqn.(33) gives the expression for the spectrum estimate of free of speckle 

noise: 

                                       

  
                                                                                 

 

The first member in the right part of Eqn.(36) is a usual spectral estimate containing speckle 

noise, and the other two are the speckle-noise pedestal.  

       Eqns.(31) and (32), which are the basis for estimate (36), hold for statistically average 

values, which are correlation functions and their respective spectra; while estimate  (36) is a 

random value subject to statistical fluctuations. Since the right part of Eqn.(32) and, 

consequently, the right part of Eqn.(36) are the differences, the random value            in some 

points may be negative, i.e. nonphysical. To get rid of negative values and obtain a steady 

estimate of the spectrum, the periodogram should be smoothed by any of the deployed means. 

There are many ways to get steady spectral estimates; respective information is presented in the 

book [Marple 1987]. 

     The examined method of spectral estimating provides the spectrum of the ocean SAR image 

statistically completely free of speckle noise all over the spectrum. We emphasize that both 

Eqn.(12) for the intensity of a “pure” SAR signal and spectral estimate (36) stem from  the 

transformation (2) applied to Eqn.(1). Therefore, we did not have the need to introduce from the 

outside any speckle noise model that was not organically connected with the theory of the 

formation of wave image itself. 

(35)

is a real value [Rytov et al. 1989] and  

                                                                                

where      and        are the spectra of                               and     
                          , respectively. 

      One of the commonly accepted estimates of the spectrum is a periodogram [Marple 1987], 

which is usually calculated with fast Fourier transformation: 

                                                                                   (35)                                                                                             

where       is the signal realization (FFT is the sum of  squares of Fourier sinus and cosine 

transformations). Then Eqn.(33) gives the expression for the spectrum estimate of free of speckle 

noise: 

                                       

  
                                                                                 

 

The first member in the right part of Eqn.(36) is a usual spectral estimate containing speckle 

noise, and the other two are the speckle-noise pedestal.  

       Eqns.(31) and (32), which are the basis for estimate (36), hold for statistically average 

values, which are correlation functions and their respective spectra; while estimate  (36) is a 

random value subject to statistical fluctuations. Since the right part of Eqn.(32) and, 

consequently, the right part of Eqn.(36) are the differences, the random value            in some 

points may be negative, i.e. nonphysical. To get rid of negative values and obtain a steady 

estimate of the spectrum, the periodogram should be smoothed by any of the deployed means. 

There are many ways to get steady spectral estimates; respective information is presented in the 

book [Marple 1987]. 

     The examined method of spectral estimating provides the spectrum of the ocean SAR image 

statistically completely free of speckle noise all over the spectrum. We emphasize that both 

Eqn.(12) for the intensity of a “pure” SAR signal and spectral estimate (36) stem from  the 

transformation (2) applied to Eqn.(1). Therefore, we did not have the need to introduce from the 

outside any speckle noise model that was not organically connected with the theory of the 

formation of wave image itself. 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing 
suppresses the high-frequency part of the image spectrum, leav-
ing the region of large waves intact. However, experience shows 
that speckle noise energy is distributed throughout the spectrum, 
including the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral I2, after replacing the subscript "2" by "s" 
(for "speckle"). Assuming, as above, Δt«T0 and Δx«Λ0 whereT0 and 
Λ0 are characteristic period and wavelength of the surface waves, 
one can obtain (see [1]):

Equation (29) hold true provided |ρx| ≤ Δx, and In the case 
| ρx| ≥ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =aSAR, term it "complex in-
tensity" and compose its correlation function:

As well as B1 (see Eqn.(7)) Bc is the sum of three terms, of which 
the first two are the same in magnitude and equal to                 , 
and the third, due to its smallness, can be neglected (see [1]). Thu
s,                                        and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where ͝Ŵc1 and Ŵc2 are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ 
) and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value W̅i (k⃗) in some points may be negative, i.e. non-
physical. To get rid of negative values and obtain a steady estimate 
of the spectrum, the periodogram should be smoothed by any of 
the deployed means. There are many ways to get steady spectral 
estimates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-2). 
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ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.
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random value subject to statistical fluctuations. Since the right part of Eqn.(32) and, 
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statistically completely free of speckle noise all over the spectrum. We emphasize that both 

Eqn.(12) for the intensity of a “pure” SAR signal and spectral estimate (36) stem from  the 

transformation (2) applied to Eqn.(1). Therefore, we did not have the need to introduce from the 

outside any speckle noise model that was not organically connected with the theory of the 

formation of wave image itself. 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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From the formulas (12) and (29) it is clear that            , therefore    and    have the same 
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of the available experimental data is more reliable and much less expensive in the sense of a 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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The first member in the right part of Eqn.(36) is a usual spectral estimate containing speckle 
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points may be negative, i.e. nonphysical. To get rid of negative values and obtain a steady 

estimate of the spectrum, the periodogram should be smoothed by any of the deployed means. 

There are many ways to get steady spectral estimates; respective information is presented in the 

book [Marple 1987]. 
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statistically completely free of speckle noise all over the spectrum. We emphasize that both 

Eqn.(12) for the intensity of a “pure” SAR signal and spectral estimate (36) stem from  the 

transformation (2) applied to Eqn.(1). Therefore, we did not have the need to introduce from the 

outside any speckle noise model that was not organically connected with the theory of the 

formation of wave image itself. 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing 
suppresses the high-frequency part of the image spectrum, leav-
ing the region of large waves intact. However, experience shows 
that speckle noise energy is distributed throughout the spectrum, 
including the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral I2, after replacing the subscript "2" by "s" 
(for "speckle"). Assuming, as above, Δt«T0 and Δx«Λ0 whereT0 and 
Λ0 are characteristic period and wavelength of the surface waves, 
one can obtain (see [1]):

Equation (29) hold true provided |ρx| ≤ Δx, and In the case 
| ρx| ≥ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =aSAR, term it "complex in-
tensity" and compose its correlation function:

As well as B1 (see Eqn.(7)) Bc is the sum of three terms, of which 
the first two are the same in magnitude and equal to                 , 
and the third, due to its smallness, can be neglected (see [1]). Thu
s,                                        and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where ͝Ŵc1 and Ŵc2 are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ 
) and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value W̅i (k⃗) in some points may be negative, i.e. non-
physical. To get rid of negative values and obtain a steady estimate 
of the spectrum, the periodogram should be smoothed by any of 
the deployed means. There are many ways to get steady spectral 
estimates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-2). 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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There are many ways to get steady spectral estimates; respective information is presented in the 
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statistically completely free of speckle noise all over the spectrum. We emphasize that both 

Eqn.(12) for the intensity of a “pure” SAR signal and spectral estimate (36) stem from  the 

transformation (2) applied to Eqn.(1). Therefore, we did not have the need to introduce from the 

outside any speckle noise model that was not organically connected with the theory of the 

formation of wave image itself. 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-

           
      

    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 

        Let us introduce the complex value         
  ,  term it "complex intensity" and compose 

its correlation function: 

                                                                                        

 

As well as    (see Eqn.(7))    is the sum of three terms, of which the first two are the same in 

magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  

                
                                                                      

Consequently,  

                  
                                                                    

                             

where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 

                                                                              

(29)
           

      
    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 

        Let us introduce the complex value         
  ,  term it "complex intensity" and compose 

its correlation function: 

                                                                                        

 

As well as    (see Eqn.(7))    is the sum of three terms, of which the first two are the same in 

magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  

                
                                                                      

Consequently,  

                  
                                                                    

                             

where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 

                                                                              

(30)

           
      

    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 

        Let us introduce the complex value         
  ,  term it "complex intensity" and compose 

its correlation function: 

                                                                                        

 

As well as    (see Eqn.(7))    is the sum of three terms, of which the first two are the same in 

magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  

                
                                                                      

Consequently,  

                  
                                                                    

                             

where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 

                                                                              

(31)

           
      

    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 

        Let us introduce the complex value         
  ,  term it "complex intensity" and compose 

its correlation function: 

                                                                                        

 

As well as    (see Eqn.(7))    is the sum of three terms, of which the first two are the same in 

magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  

                
                                                                      

Consequently,  

                  
                                                                    

                             

where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 

                                                                              

(32)

           
      

    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 

        Let us introduce the complex value         
  ,  term it "complex intensity" and compose 

its correlation function: 

                                                                                        

 

As well as    (see Eqn.(7))    is the sum of three terms, of which the first two are the same in 

magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  

                
                                                                      

Consequently,  

                  
                                                                    

                             

where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 

                                                                              (33)

is a real value [Rytov et al. 1989] and  

                                                                                

where      and        are the spectra of                               and     
                          , respectively. 

      One of the commonly accepted estimates of the spectrum is a periodogram [Marple 1987], 

which is usually calculated with fast Fourier transformation: 

                                                                                   (35)                                                                                             

where       is the signal realization (FFT is the sum of  squares of Fourier sinus and cosine 

transformations). Then Eqn.(33) gives the expression for the spectrum estimate of free of speckle 

noise: 

                                       

  
                                                                                 

 

The first member in the right part of Eqn.(36) is a usual spectral estimate containing speckle 

noise, and the other two are the speckle-noise pedestal.  

       Eqns.(31) and (32), which are the basis for estimate (36), hold for statistically average 

values, which are correlation functions and their respective spectra; while estimate  (36) is a 

random value subject to statistical fluctuations. Since the right part of Eqn.(32) and, 

consequently, the right part of Eqn.(36) are the differences, the random value            in some 

points may be negative, i.e. nonphysical. To get rid of negative values and obtain a steady 

estimate of the spectrum, the periodogram should be smoothed by any of the deployed means. 

There are many ways to get steady spectral estimates; respective information is presented in the 

book [Marple 1987]. 

     The examined method of spectral estimating provides the spectrum of the ocean SAR image 

statistically completely free of speckle noise all over the spectrum. We emphasize that both 

Eqn.(12) for the intensity of a “pure” SAR signal and spectral estimate (36) stem from  the 

transformation (2) applied to Eqn.(1). Therefore, we did not have the need to introduce from the 

outside any speckle noise model that was not organically connected with the theory of the 

formation of wave image itself. 

(34)

is a real value [Rytov et al. 1989] and  

                                                                                

where      and        are the spectra of                               and     
                          , respectively. 

      One of the commonly accepted estimates of the spectrum is a periodogram [Marple 1987], 

which is usually calculated with fast Fourier transformation: 

                                                                                   (35)                                                                                             

where       is the signal realization (FFT is the sum of  squares of Fourier sinus and cosine 

transformations). Then Eqn.(33) gives the expression for the spectrum estimate of free of speckle 

noise: 

                                       

  
                                                                                 

 

The first member in the right part of Eqn.(36) is a usual spectral estimate containing speckle 

noise, and the other two are the speckle-noise pedestal.  

       Eqns.(31) and (32), which are the basis for estimate (36), hold for statistically average 

values, which are correlation functions and their respective spectra; while estimate  (36) is a 

random value subject to statistical fluctuations. Since the right part of Eqn.(32) and, 

consequently, the right part of Eqn.(36) are the differences, the random value            in some 

points may be negative, i.e. nonphysical. To get rid of negative values and obtain a steady 

estimate of the spectrum, the periodogram should be smoothed by any of the deployed means. 

There are many ways to get steady spectral estimates; respective information is presented in the 

book [Marple 1987]. 

     The examined method of spectral estimating provides the spectrum of the ocean SAR image 

statistically completely free of speckle noise all over the spectrum. We emphasize that both 

Eqn.(12) for the intensity of a “pure” SAR signal and spectral estimate (36) stem from  the 

transformation (2) applied to Eqn.(1). Therefore, we did not have the need to introduce from the 

outside any speckle noise model that was not organically connected with the theory of the 

formation of wave image itself. 

(35)

is a real value [Rytov et al. 1989] and  

                                                                                

where      and        are the spectra of                               and     
                          , respectively. 

      One of the commonly accepted estimates of the spectrum is a periodogram [Marple 1987], 

which is usually calculated with fast Fourier transformation: 

                                                                                   (35)                                                                                             

where       is the signal realization (FFT is the sum of  squares of Fourier sinus and cosine 

transformations). Then Eqn.(33) gives the expression for the spectrum estimate of free of speckle 

noise: 

                                       

  
                                                                                 

 

The first member in the right part of Eqn.(36) is a usual spectral estimate containing speckle 

noise, and the other two are the speckle-noise pedestal.  

       Eqns.(31) and (32), which are the basis for estimate (36), hold for statistically average 

values, which are correlation functions and their respective spectra; while estimate  (36) is a 

random value subject to statistical fluctuations. Since the right part of Eqn.(32) and, 

consequently, the right part of Eqn.(36) are the differences, the random value            in some 

points may be negative, i.e. nonphysical. To get rid of negative values and obtain a steady 

estimate of the spectrum, the periodogram should be smoothed by any of the deployed means. 

There are many ways to get steady spectral estimates; respective information is presented in the 

book [Marple 1987]. 

     The examined method of spectral estimating provides the spectrum of the ocean SAR image 

statistically completely free of speckle noise all over the spectrum. We emphasize that both 

Eqn.(12) for the intensity of a “pure” SAR signal and spectral estimate (36) stem from  the 

transformation (2) applied to Eqn.(1). Therefore, we did not have the need to introduce from the 

outside any speckle noise model that was not organically connected with the theory of the 

formation of wave image itself. 

(36)

     Volume 4 | Issue 3 | 243J Mari Scie Res Ocean, 2021 www.opastonline.com

where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing 
suppresses the high-frequency part of the image spectrum, leav-
ing the region of large waves intact. However, experience shows 
that speckle noise energy is distributed throughout the spectrum, 
including the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral I2, after replacing the subscript "2" by "s" 
(for "speckle"). Assuming, as above, Δt«T0 and Δx«Λ0 whereT0 and 
Λ0 are characteristic period and wavelength of the surface waves, 
one can obtain (see [1]):

Equation (29) hold true provided |ρx| ≤ Δx, and In the case 
| ρx| ≥ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =aSAR, term it "complex in-
tensity" and compose its correlation function:

As well as B1 (see Eqn.(7)) Bc is the sum of three terms, of which 
the first two are the same in magnitude and equal to                 , 
and the third, due to its smallness, can be neglected (see [1]). Thu
s,                                        and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where ͝Ŵc1 and Ŵc2 are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ 
) and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value W̅i (k⃗) in some points may be negative, i.e. non-
physical. To get rid of negative values and obtain a steady estimate 
of the spectrum, the periodogram should be smoothed by any of 
the deployed means. There are many ways to get steady spectral 
estimates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-2). 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-

           
      

    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 
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its correlation function: 
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magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  
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where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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estimate of the spectrum, the periodogram should be smoothed by any of the deployed means. 

There are many ways to get steady spectral estimates; respective information is presented in the 

book [Marple 1987]. 

     The examined method of spectral estimating provides the spectrum of the ocean SAR image 

statistically completely free of speckle noise all over the spectrum. We emphasize that both 

Eqn.(12) for the intensity of a “pure” SAR signal and spectral estimate (36) stem from  the 

transformation (2) applied to Eqn.(1). Therefore, we did not have the need to introduce from the 

outside any speckle noise model that was not organically connected with the theory of the 

formation of wave image itself. 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing 
suppresses the high-frequency part of the image spectrum, leav-
ing the region of large waves intact. However, experience shows 
that speckle noise energy is distributed throughout the spectrum, 
including the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral I2, after replacing the subscript "2" by "s" 
(for "speckle"). Assuming, as above, Δt«T0 and Δx«Λ0 whereT0 and 
Λ0 are characteristic period and wavelength of the surface waves, 
one can obtain (see [1]):

Equation (29) hold true provided |ρx| ≤ Δx, and In the case 
| ρx| ≥ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =aSAR, term it "complex in-
tensity" and compose its correlation function:

As well as B1 (see Eqn.(7)) Bc is the sum of three terms, of which 
the first two are the same in magnitude and equal to                 , 
and the third, due to its smallness, can be neglected (see [1]). Thu
s,                                        and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where ͝Ŵc1 and Ŵc2 are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ 
) and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value W̅i (k⃗) in some points may be negative, i.e. non-
physical. To get rid of negative values and obtain a steady estimate 
of the spectrum, the periodogram should be smoothed by any of 
the deployed means. There are many ways to get steady spectral 
estimates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-2). 
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Equation (29) allows to find the pedestal partly analytically and 
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ple processing (see below) of the available experimental data is 
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where each term is the result of Fourier transformation of the cor-
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spectrum. As is known, the complex field spectrum, which corre-
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estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-

           
      

    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 

        Let us introduce the complex value         
  ,  term it "complex intensity" and compose 

its correlation function: 

                                                                                        

 

As well as    (see Eqn.(7))    is the sum of three terms, of which the first two are the same in 

magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  

                
                                                                      

Consequently,  

                  
                                                                    

                             

where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 

                                                                              

(29)
           

      
    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 

        Let us introduce the complex value         
  ,  term it "complex intensity" and compose 

its correlation function: 

                                                                                        

 

As well as    (see Eqn.(7))    is the sum of three terms, of which the first two are the same in 

magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  

                
                                                                      

Consequently,  

                  
                                                                    

                             

where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 

                                                                              

(30)

           
      

    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 

        Let us introduce the complex value         
  ,  term it "complex intensity" and compose 

its correlation function: 

                                                                                        

 

As well as    (see Eqn.(7))    is the sum of three terms, of which the first two are the same in 

magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  

                
                                                                      

Consequently,  

                  
                                                                    

                             

where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 

                                                                              

(31)

           
      

    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 

        Let us introduce the complex value         
  ,  term it "complex intensity" and compose 

its correlation function: 

                                                                                        

 

As well as    (see Eqn.(7))    is the sum of three terms, of which the first two are the same in 

magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  

                
                                                                      

Consequently,  

                  
                                                                    

                             

where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 

                                                                              

(32)

           
      

    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 

        Let us introduce the complex value         
  ,  term it "complex intensity" and compose 

its correlation function: 

                                                                                        

 

As well as    (see Eqn.(7))    is the sum of three terms, of which the first two are the same in 

magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  

                
                                                                      

Consequently,  

                  
                                                                    

                             

where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 

                                                                              (33)

is a real value [Rytov et al. 1989] and  

                                                                                

where      and        are the spectra of                               and     
                          , respectively. 

      One of the commonly accepted estimates of the spectrum is a periodogram [Marple 1987], 

which is usually calculated with fast Fourier transformation: 

                                                                                   (35)                                                                                             

where       is the signal realization (FFT is the sum of  squares of Fourier sinus and cosine 

transformations). Then Eqn.(33) gives the expression for the spectrum estimate of free of speckle 

noise: 

                                       

  
                                                                                 

 

The first member in the right part of Eqn.(36) is a usual spectral estimate containing speckle 

noise, and the other two are the speckle-noise pedestal.  

       Eqns.(31) and (32), which are the basis for estimate (36), hold for statistically average 

values, which are correlation functions and their respective spectra; while estimate  (36) is a 

random value subject to statistical fluctuations. Since the right part of Eqn.(32) and, 

consequently, the right part of Eqn.(36) are the differences, the random value            in some 

points may be negative, i.e. nonphysical. To get rid of negative values and obtain a steady 

estimate of the spectrum, the periodogram should be smoothed by any of the deployed means. 

There are many ways to get steady spectral estimates; respective information is presented in the 

book [Marple 1987]. 

     The examined method of spectral estimating provides the spectrum of the ocean SAR image 

statistically completely free of speckle noise all over the spectrum. We emphasize that both 

Eqn.(12) for the intensity of a “pure” SAR signal and spectral estimate (36) stem from  the 

transformation (2) applied to Eqn.(1). Therefore, we did not have the need to introduce from the 

outside any speckle noise model that was not organically connected with the theory of the 

formation of wave image itself. 

(34)

is a real value [Rytov et al. 1989] and  

                                                                                

where      and        are the spectra of                               and     
                          , respectively. 

      One of the commonly accepted estimates of the spectrum is a periodogram [Marple 1987], 

which is usually calculated with fast Fourier transformation: 

                                                                                   (35)                                                                                             

where       is the signal realization (FFT is the sum of  squares of Fourier sinus and cosine 

transformations). Then Eqn.(33) gives the expression for the spectrum estimate of free of speckle 

noise: 

                                       

  
                                                                                 

 

The first member in the right part of Eqn.(36) is a usual spectral estimate containing speckle 

noise, and the other two are the speckle-noise pedestal.  

       Eqns.(31) and (32), which are the basis for estimate (36), hold for statistically average 

values, which are correlation functions and their respective spectra; while estimate  (36) is a 

random value subject to statistical fluctuations. Since the right part of Eqn.(32) and, 

consequently, the right part of Eqn.(36) are the differences, the random value            in some 

points may be negative, i.e. nonphysical. To get rid of negative values and obtain a steady 

estimate of the spectrum, the periodogram should be smoothed by any of the deployed means. 

There are many ways to get steady spectral estimates; respective information is presented in the 

book [Marple 1987]. 

     The examined method of spectral estimating provides the spectrum of the ocean SAR image 

statistically completely free of speckle noise all over the spectrum. We emphasize that both 

Eqn.(12) for the intensity of a “pure” SAR signal and spectral estimate (36) stem from  the 

transformation (2) applied to Eqn.(1). Therefore, we did not have the need to introduce from the 

outside any speckle noise model that was not organically connected with the theory of the 

formation of wave image itself. 

(35)

is a real value [Rytov et al. 1989] and  

                                                                                

where      and        are the spectra of                               and     
                          , respectively. 

      One of the commonly accepted estimates of the spectrum is a periodogram [Marple 1987], 

which is usually calculated with fast Fourier transformation: 

                                                                                   (35)                                                                                             

where       is the signal realization (FFT is the sum of  squares of Fourier sinus and cosine 

transformations). Then Eqn.(33) gives the expression for the spectrum estimate of free of speckle 

noise: 

                                       

  
                                                                                 

 

The first member in the right part of Eqn.(36) is a usual spectral estimate containing speckle 

noise, and the other two are the speckle-noise pedestal.  

       Eqns.(31) and (32), which are the basis for estimate (36), hold for statistically average 

values, which are correlation functions and their respective spectra; while estimate  (36) is a 

random value subject to statistical fluctuations. Since the right part of Eqn.(32) and, 

consequently, the right part of Eqn.(36) are the differences, the random value            in some 

points may be negative, i.e. nonphysical. To get rid of negative values and obtain a steady 

estimate of the spectrum, the periodogram should be smoothed by any of the deployed means. 

There are many ways to get steady spectral estimates; respective information is presented in the 

book [Marple 1987]. 

     The examined method of spectral estimating provides the spectrum of the ocean SAR image 

statistically completely free of speckle noise all over the spectrum. We emphasize that both 

Eqn.(12) for the intensity of a “pure” SAR signal and spectral estimate (36) stem from  the 

transformation (2) applied to Eqn.(1). Therefore, we did not have the need to introduce from the 

outside any speckle noise model that was not organically connected with the theory of the 

formation of wave image itself. 

(36)

     Volume 4 | Issue 3 | 243J Mari Scie Res Ocean, 2021 www.opastonline.com

where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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formation of wave image itself. 

(34)

is a real value [Rytov et al. 1989] and  

                                                                                

where      and        are the spectra of                               and     
                          , respectively. 

      One of the commonly accepted estimates of the spectrum is a periodogram [Marple 1987], 

which is usually calculated with fast Fourier transformation: 

                                                                                   (35)                                                                                             

where       is the signal realization (FFT is the sum of  squares of Fourier sinus and cosine 

transformations). Then Eqn.(33) gives the expression for the spectrum estimate of free of speckle 

noise: 

                                       

  
                                                                                 

 

The first member in the right part of Eqn.(36) is a usual spectral estimate containing speckle 

noise, and the other two are the speckle-noise pedestal.  

       Eqns.(31) and (32), which are the basis for estimate (36), hold for statistically average 

values, which are correlation functions and their respective spectra; while estimate  (36) is a 

random value subject to statistical fluctuations. Since the right part of Eqn.(32) and, 

consequently, the right part of Eqn.(36) are the differences, the random value            in some 

points may be negative, i.e. nonphysical. To get rid of negative values and obtain a steady 

estimate of the spectrum, the periodogram should be smoothed by any of the deployed means. 

There are many ways to get steady spectral estimates; respective information is presented in the 

book [Marple 1987]. 

     The examined method of spectral estimating provides the spectrum of the ocean SAR image 

statistically completely free of speckle noise all over the spectrum. We emphasize that both 

Eqn.(12) for the intensity of a “pure” SAR signal and spectral estimate (36) stem from  the 

transformation (2) applied to Eqn.(1). Therefore, we did not have the need to introduce from the 

outside any speckle noise model that was not organically connected with the theory of the 

formation of wave image itself. 

(35)

is a real value [Rytov et al. 1989] and  

                                                                                

where      and        are the spectra of                               and     
                          , respectively. 

      One of the commonly accepted estimates of the spectrum is a periodogram [Marple 1987], 

which is usually calculated with fast Fourier transformation: 

                                                                                   (35)                                                                                             

where       is the signal realization (FFT is the sum of  squares of Fourier sinus and cosine 

transformations). Then Eqn.(33) gives the expression for the spectrum estimate of free of speckle 

noise: 

                                       

  
                                                                                 

 

The first member in the right part of Eqn.(36) is a usual spectral estimate containing speckle 

noise, and the other two are the speckle-noise pedestal.  

       Eqns.(31) and (32), which are the basis for estimate (36), hold for statistically average 

values, which are correlation functions and their respective spectra; while estimate  (36) is a 

random value subject to statistical fluctuations. Since the right part of Eqn.(32) and, 

consequently, the right part of Eqn.(36) are the differences, the random value            in some 

points may be negative, i.e. nonphysical. To get rid of negative values and obtain a steady 

estimate of the spectrum, the periodogram should be smoothed by any of the deployed means. 

There are many ways to get steady spectral estimates; respective information is presented in the 

book [Marple 1987]. 

     The examined method of spectral estimating provides the spectrum of the ocean SAR image 

statistically completely free of speckle noise all over the spectrum. We emphasize that both 

Eqn.(12) for the intensity of a “pure” SAR signal and spectral estimate (36) stem from  the 

transformation (2) applied to Eqn.(1). Therefore, we did not have the need to introduce from the 

outside any speckle noise model that was not organically connected with the theory of the 

formation of wave image itself. 

(36)

     Volume 4 | Issue 3 | 243J Mari Scie Res Ocean, 2021 www.opastonline.com

where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing 
suppresses the high-frequency part of the image spectrum, leav-
ing the region of large waves intact. However, experience shows 
that speckle noise energy is distributed throughout the spectrum, 
including the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral I2, after replacing the subscript "2" by "s" 
(for "speckle"). Assuming, as above, Δt«T0 and Δx«Λ0 whereT0 and 
Λ0 are characteristic period and wavelength of the surface waves, 
one can obtain (see [1]):

Equation (29) hold true provided |ρx| ≤ Δx, and In the case 
| ρx| ≥ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =aSAR, term it "complex in-
tensity" and compose its correlation function:

As well as B1 (see Eqn.(7)) Bc is the sum of three terms, of which 
the first two are the same in magnitude and equal to                 , 
and the third, due to its smallness, can be neglected (see [1]). Thu
s,                                        and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where ͝Ŵc1 and Ŵc2 are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ 
) and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value W̅i (k⃗) in some points may be negative, i.e. non-
physical. To get rid of negative values and obtain a steady estimate 
of the spectrum, the periodogram should be smoothed by any of 
the deployed means. There are many ways to get steady spectral 
estimates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-2). 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-

           
      

    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 
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its correlation function: 
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magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  
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where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 
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Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 
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of the available experimental data is more reliable and much less expensive in the sense of a 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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estimate of the spectrum, the periodogram should be smoothed by any of the deployed means. 
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statistically completely free of speckle noise all over the spectrum. We emphasize that both 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 

        Let us introduce the complex value         
  ,  term it "complex intensity" and compose 

its correlation function: 

                                                                                        

 

As well as    (see Eqn.(7))    is the sum of three terms, of which the first two are the same in 

magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  

                
                                                                      

Consequently,  

                  
                                                                    

                             

where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 

                                                                              

(29)
           

      
    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 

        Let us introduce the complex value         
  ,  term it "complex intensity" and compose 

its correlation function: 

                                                                                        

 

As well as    (see Eqn.(7))    is the sum of three terms, of which the first two are the same in 

magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  

                
                                                                      

Consequently,  

                  
                                                                    

                             

where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 

                                                                              

(30)

           
      

    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 

        Let us introduce the complex value         
  ,  term it "complex intensity" and compose 

its correlation function: 

                                                                                        

 

As well as    (see Eqn.(7))    is the sum of three terms, of which the first two are the same in 

magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  

                
                                                                      

Consequently,  

                  
                                                                    

                             

where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 

                                                                              

(31)

           
      

    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 

        Let us introduce the complex value         
  ,  term it "complex intensity" and compose 

its correlation function: 

                                                                                        

 

As well as    (see Eqn.(7))    is the sum of three terms, of which the first two are the same in 

magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  

                
                                                                      

Consequently,  

                  
                                                                    

                             

where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 

                                                                              

(32)

           
      

    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 

computing resource. Later we will return to issue of the pedestal shape but now will consider the 

way to remove the speckle noise pedestal from the image. 

        Let us introduce the complex value         
  ,  term it "complex intensity" and compose 

its correlation function: 

                                                                                        

 

As well as    (see Eqn.(7))    is the sum of three terms, of which the first two are the same in 

magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  

                
                                                                      

Consequently,  

                  
                                                                    

                             

where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 

                                                                              (33)

is a real value [Rytov et al. 1989] and  

                                                                                

where      and        are the spectra of                               and     
                          , respectively. 

      One of the commonly accepted estimates of the spectrum is a periodogram [Marple 1987], 

which is usually calculated with fast Fourier transformation: 

                                                                                   (35)                                                                                             

where       is the signal realization (FFT is the sum of  squares of Fourier sinus and cosine 

transformations). Then Eqn.(33) gives the expression for the spectrum estimate of free of speckle 

noise: 

                                       

  
                                                                                 

 

The first member in the right part of Eqn.(36) is a usual spectral estimate containing speckle 

noise, and the other two are the speckle-noise pedestal.  

       Eqns.(31) and (32), which are the basis for estimate (36), hold for statistically average 

values, which are correlation functions and their respective spectra; while estimate  (36) is a 

random value subject to statistical fluctuations. Since the right part of Eqn.(32) and, 

consequently, the right part of Eqn.(36) are the differences, the random value            in some 

points may be negative, i.e. nonphysical. To get rid of negative values and obtain a steady 

estimate of the spectrum, the periodogram should be smoothed by any of the deployed means. 

There are many ways to get steady spectral estimates; respective information is presented in the 

book [Marple 1987]. 

     The examined method of spectral estimating provides the spectrum of the ocean SAR image 

statistically completely free of speckle noise all over the spectrum. We emphasize that both 

Eqn.(12) for the intensity of a “pure” SAR signal and spectral estimate (36) stem from  the 

transformation (2) applied to Eqn.(1). Therefore, we did not have the need to introduce from the 

outside any speckle noise model that was not organically connected with the theory of the 

formation of wave image itself. 

(34)

is a real value [Rytov et al. 1989] and  

                                                                                

where      and        are the spectra of                               and     
                          , respectively. 

      One of the commonly accepted estimates of the spectrum is a periodogram [Marple 1987], 

which is usually calculated with fast Fourier transformation: 

                                                                                   (35)                                                                                             

where       is the signal realization (FFT is the sum of  squares of Fourier sinus and cosine 

transformations). Then Eqn.(33) gives the expression for the spectrum estimate of free of speckle 

noise: 

                                       

  
                                                                                 

 

The first member in the right part of Eqn.(36) is a usual spectral estimate containing speckle 

noise, and the other two are the speckle-noise pedestal.  

       Eqns.(31) and (32), which are the basis for estimate (36), hold for statistically average 

values, which are correlation functions and their respective spectra; while estimate  (36) is a 

random value subject to statistical fluctuations. Since the right part of Eqn.(32) and, 

consequently, the right part of Eqn.(36) are the differences, the random value            in some 

points may be negative, i.e. nonphysical. To get rid of negative values and obtain a steady 

estimate of the spectrum, the periodogram should be smoothed by any of the deployed means. 

There are many ways to get steady spectral estimates; respective information is presented in the 

book [Marple 1987]. 

     The examined method of spectral estimating provides the spectrum of the ocean SAR image 

statistically completely free of speckle noise all over the spectrum. We emphasize that both 

Eqn.(12) for the intensity of a “pure” SAR signal and spectral estimate (36) stem from  the 

transformation (2) applied to Eqn.(1). Therefore, we did not have the need to introduce from the 

outside any speckle noise model that was not organically connected with the theory of the 

formation of wave image itself. 

(35)

is a real value [Rytov et al. 1989] and  

                                                                                

where      and        are the spectra of                               and     
                          , respectively. 

      One of the commonly accepted estimates of the spectrum is a periodogram [Marple 1987], 

which is usually calculated with fast Fourier transformation: 

                                                                                   (35)                                                                                             

where       is the signal realization (FFT is the sum of  squares of Fourier sinus and cosine 

transformations). Then Eqn.(33) gives the expression for the spectrum estimate of free of speckle 

noise: 

                                       

  
                                                                                 

 

The first member in the right part of Eqn.(36) is a usual spectral estimate containing speckle 

noise, and the other two are the speckle-noise pedestal.  

       Eqns.(31) and (32), which are the basis for estimate (36), hold for statistically average 

values, which are correlation functions and their respective spectra; while estimate  (36) is a 

random value subject to statistical fluctuations. Since the right part of Eqn.(32) and, 

consequently, the right part of Eqn.(36) are the differences, the random value            in some 

points may be negative, i.e. nonphysical. To get rid of negative values and obtain a steady 

estimate of the spectrum, the periodogram should be smoothed by any of the deployed means. 

There are many ways to get steady spectral estimates; respective information is presented in the 

book [Marple 1987]. 

     The examined method of spectral estimating provides the spectrum of the ocean SAR image 

statistically completely free of speckle noise all over the spectrum. We emphasize that both 

Eqn.(12) for the intensity of a “pure” SAR signal and spectral estimate (36) stem from  the 

transformation (2) applied to Eqn.(1). Therefore, we did not have the need to introduce from the 

outside any speckle noise model that was not organically connected with the theory of the 

formation of wave image itself. 

(36)

     Volume 4 | Issue 3 | 243J Mari Scie Res Ocean, 2021 www.opastonline.com

where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing 
suppresses the high-frequency part of the image spectrum, leav-
ing the region of large waves intact. However, experience shows 
that speckle noise energy is distributed throughout the spectrum, 
including the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral I2, after replacing the subscript "2" by "s" 
(for "speckle"). Assuming, as above, Δt«T0 and Δx«Λ0 whereT0 and 
Λ0 are characteristic period and wavelength of the surface waves, 
one can obtain (see [1]):

Equation (29) hold true provided |ρx| ≤ Δx, and In the case 
| ρx| ≥ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =aSAR, term it "complex in-
tensity" and compose its correlation function:

As well as B1 (see Eqn.(7)) Bc is the sum of three terms, of which 
the first two are the same in magnitude and equal to                 , 
and the third, due to its smallness, can be neglected (see [1]). Thu
s,                                        and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where ͝Ŵc1 and Ŵc2 are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ 
) and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value W̅i (k⃗) in some points may be negative, i.e. non-
physical. To get rid of negative values and obtain a steady estimate 
of the spectrum, the periodogram should be smoothed by any of 
the deployed means. There are many ways to get steady spectral 
estimates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-2). 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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book [Marple 1987]. 

     The examined method of spectral estimating provides the spectrum of the ocean SAR image 

statistically completely free of speckle noise all over the spectrum. We emphasize that both 

Eqn.(12) for the intensity of a “pure” SAR signal and spectral estimate (36) stem from  the 

transformation (2) applied to Eqn.(1). Therefore, we did not have the need to introduce from the 

outside any speckle noise model that was not organically connected with the theory of the 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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Eqn.(12) for the intensity of a “pure” SAR signal and spectral estimate (36) stem from  the 

transformation (2) applied to Eqn.(1). Therefore, we did not have the need to introduce from the 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-

           
      

    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 
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i.e. is the centrally symmetric spatial spectrum. 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing 
suppresses the high-frequency part of the image spectrum, leav-
ing the region of large waves intact. However, experience shows 
that speckle noise energy is distributed throughout the spectrum, 
including the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral I2, after replacing the subscript "2" by "s" 
(for "speckle"). Assuming, as above, Δt«T0 and Δx«Λ0 whereT0 and 
Λ0 are characteristic period and wavelength of the surface waves, 
one can obtain (see [1]):

Equation (29) hold true provided |ρx| ≤ Δx, and In the case 
| ρx| ≥ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =aSAR, term it "complex in-
tensity" and compose its correlation function:

As well as B1 (see Eqn.(7)) Bc is the sum of three terms, of which 
the first two are the same in magnitude and equal to                 , 
and the third, due to its smallness, can be neglected (see [1]). Thu
s,                                        and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where ͝Ŵc1 and Ŵc2 are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ 
) and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value W̅i (k⃗) in some points may be negative, i.e. non-
physical. To get rid of negative values and obtain a steady estimate 
of the spectrum, the periodogram should be smoothed by any of 
the deployed means. There are many ways to get steady spectral 
estimates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-2). 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-

           
      

    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 

of the available experimental data is more reliable and much less expensive in the sense of a 
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way to remove the speckle noise pedestal from the image. 
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magnitude and equal to             , and the third, due to its smallness, can be neglected (see 

[Kanevsky 2008] for details). Thus,                      and therefore  
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where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 

i.e. is the centrally symmetric spatial spectrum. 

      As is known, the complex field spectrum, which corresponds to the complex intensity 
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of the available experimental data is more reliable and much less expensive in the sense of a 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing 
suppresses the high-frequency part of the image spectrum, leav-
ing the region of large waves intact. However, experience shows 
that speckle noise energy is distributed throughout the spectrum, 
including the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral I2, after replacing the subscript "2" by "s" 
(for "speckle"). Assuming, as above, Δt«T0 and Δx«Λ0 whereT0 and 
Λ0 are characteristic period and wavelength of the surface waves, 
one can obtain (see [1]):

Equation (29) hold true provided |ρx| ≤ Δx, and In the case 
| ρx| ≥ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =aSAR, term it "complex in-
tensity" and compose its correlation function:

As well as B1 (see Eqn.(7)) Bc is the sum of three terms, of which 
the first two are the same in magnitude and equal to                 , 
and the third, due to its smallness, can be neglected (see [1]). Thu
s,                                        and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where ͝Ŵc1 and Ŵc2 are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ 
) and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value W̅i (k⃗) in some points may be negative, i.e. non-
physical. To get rid of negative values and obtain a steady estimate 
of the spectrum, the periodogram should be smoothed by any of 
the deployed means. There are many ways to get steady spectral 
estimates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-2). 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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Eqn.(12) for the intensity of a “pure” SAR signal and spectral estimate (36) stem from  the 

transformation (2) applied to Eqn.(1). Therefore, we did not have the need to introduce from the 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-

           
      

    
                     

                 
   

                   

   
        

        
             

    
        

            
             

 

Equation (29) hold true provided        , and in the case         we evidently get     .  

From the formulas (12) and (29) it is clear that            , therefore    and    have the same 

energy, which, however, is distributed in different ways across the image spectrum. 

         Equation (29) allows to find the pedestal partly analytically and  partly with numerical 

simulation [Kanevsky and Panfilova 2019]. However, a relatively simple processing (see below) 
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where each term is the result of Fourier transformation of the corresponding term of Eqn. (31), 
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      As is known, the complex field spectrum, which corresponds to the complex intensity 
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where is the correlation function of noise fluctuations (Δn = n-1). 
As it is known, the spectrum of the product of two functions is a 
convolution of their spectra. Therefore, the full spectrum of the 
image is the sum of the spectrum of the image of waves itself and 
its convolution with the noise spectrum. As one can see, the ped-
estal inspired by speckle noise is additive here, but not the noise 
itself.
 
Existing methods for suppressing speckle noise are the different 
ways of filtering the signal, including those based on a priori mod-
els of speckle noise. As a rule, the criterion for the effectiveness 
of a particular method is how well the appropriate processing sup-
presses the high- frequency part of the image spectrum, leaving 
the region of large waves intact. However, experience shows that 
speckle noise energy is distributed throughout the spectrum, in-
cluding the large wave region. Consequently, in fact, the actual 
task is to remove the speckle noise pedestal from the entire image 
spectrum.

Further we are going to show the possibility of a statistically com-
pletely removal of speckle- noise pedestal without using any a pri-
ori model of noise and signal filtering.

We consider the integral, after replacing the subscript "2" 
by "s" (for "speckle"). Assuming, asabove, Δt«T0 and Δx«Λ0 
whereT0andΛ0arecharacteristicperiodand wavelength of the sur-
face waves, one can obtain (see [1]):

Equation (29) hold true provided |p1| ≤ Δx, and In the case 
|p1| ≤ Δx we evidently get Is=0. From the formulas (12) and (29) it 
is clear that Bi (0)=Bs(0), therefore Ii and Is have the same energy, 
which, however, is distributed in different ways across the image 
spectrum.
 
Equation (29) allows to find the pedestal partly analytically and 
partly with numerical simulation [10]. However, a relatively sim-
ple processing (see below) of the available experimental data is 
more reliable and much less expensive in the sense of a computing 
resource. Later we will return to issue of the pedestal shape but 
now will consider the way to remove the speckle noise pedestal 
from the image.

Let us introduce the complex value Ic =a2
SAR, term it "complex 

intensity" and compose its correlation function:

As well as B1‹I2s(r⃗,P⃗)›(see Eqn.(7)) is the sum of three terms, 
of which the first two are the same in magnitude and equal to, and 
the third, due to its smallness, can be neglected (see [1]). Thus, 
Bc=2‹I2

s(r⃗,P⃗)›=2Bs and therefore

Consequently,

where each term is the result of Fourier transformation of the cor-
responding term of Eqn. (31), i.e. is the centrally symmetric spatial 
spectrum. As is known, the complex field spectrum, which corre-
sponds to the complex intensity

is a real value [11] and

where͡͡Wc1 and͡Wc2are the spectra of Ic1=Re2 aSAR( r⃗ ) – Im2aSAR( r⃗ ) 
and Ic2=2 Re aSAR( r⃗ )  ImaSAR( r⃗ ) , respectively.

One of the commonly accepted estimates of the spectrum is a peri-
odogram, which is usually calculated with fast Fourier transfor-
mation [12]:

where I (r⃗) is the signal realization (FFT is the sum of squares of 
Fourier sinus and cosine transformations). Then Eqn.(33) gives the 
expression for the spectrum estimate of free of speckle noise:

The first member in the right part of Eqn.(36) is a usual spectral 
estimate containing speckle noise, and the other two are the speck-
le-noise pedestal.

Eqns.(31) and (32), which are the basis for estimate (36), hold for 
statistically average values, which are correlation functions and 
their respective spectra; while estimate (36) is a random value sub-
ject to statistical fluctuations. Since the right part of Eqn.(32) and, 
consequently, the right part of Eqn.(36) are the differences, the 
random value w̅i (k⃗) in some points may be negative, i.e. nonphys-
ical. To get rid of negative values and obtain a steady estimate of 
the spectrum, the periodogram should be smoothed by any of the 
deployed means. There are many ways to get steady spectral esti-
mates; respective information is presented in the book [12].
 
The examined method of spectral estimating provides the spectrum 
of the ocean SAR image statistically completely free of speckle 
noise all over the spectrum. We emphasize that both Eqn.(12) for 
the intensity of a “pure” SAR signal and spectral estimate (36) 
stem from the transformation (2) applied to Eqn.(1). Therefore, we 
did not have the need to introduce from the outside any speckle 
noise model that was not organically connected with the theory of 
the formation of wave image itself.

An example of the application of given method is shown in Fig-
ure7. A fragment of 10 × 10 km2 image of a part of the Gulf of 
Mexico was processed (SAR data of the European satellite ERS-
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Figure.7 shows the cross sections of the image spectrum before 
and after removal of the speckle noise pedestal [1].

Figure 7: Section of the initial image spectrum (curve 1) and of 
the cleaned one (curve 2).

As one can see, the processing allowed us to obtain a more pro-
nounced spectral maximum and to reveal the details of the image 
spectrum hidden by speckle noise. More examples of the applica-
tion of the method, this time when processing images of the area 
near the Drake Strait in the Southern Atlantic (Canadian satellite 
RADARSAT-2) are given below [10].

In Figure 8 and Figure 9 one such example of the complete remov-
al of a speckle noise pedestal is shown. These pictures demon-
strate the sections drawn through the spectral maximum of one 
of the images in two mutually perpendicular directions parallel to 
wave-number axes kx Figure 8 and ky Figure 9. Note that given 
image shows ocean waves running almost along the ground range 
direction. Аs a result, the maximum in Figure 9 turned out to be 
located almost at the zero of the ky- axis.

Аs already mentioned, the sum of last two terms in the spectral es-
timate (36) determines the speckle noise pedestal. It is desirable to 
have an idea of its shape in order to understand what distortions the 
pedestal introduces into the spectrum of the image of sea waves.

Figure 8: Sections of the spectra drawn parallel to-axis: the solid 
curve corresponds to the initial spectrum, the dotted curve corre-
sponds to the "cleaned" one (each curve is normalized by its own 
maximum).

Figure 9: Same as in Figure.1, but for sections drawn parallel to 
ky-axis.

In Figures 10 a,b,c the singled out pedestal is presented at three dif-
ferent ocean states near the Drake Strait (the pictures are smoothed 
and normalized to unity). The wind speed data were collected from 
a research ship located at distances of no more than 100 km from 
the scenes. First of all, one can see that the pedestal is cut off. The 
fact is that the FFT program gives a coordinate grid according to 
pixel spacing, but not the SAR nominal resolution at given images
Δx ×Δ0.SAR=5.2×7.7m2 whereas the pixel spacing is 
Δx× ∆y =4.7×5.1m2 [13]. Since the pixel spacing and the dimen-
sions of nominal resolution cell not coincide, the pedestal is not 
completely fit into the area allocated to it by the FFT program. 
That's why it turned out to be cutoff.

Figure 10: The speckle noise pedestals normalized to unity at 
wind speed equal to 7.8 m/s (a), 10 m/s (b),and 21m/s(c).
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Аs already mentioned, the sum of last two terms in the spectral es-
timate (36) determines the speckle noise pedestal. It is desirable to 
have an idea of its shape in order to understand what distortions the 
pedestal introduces into the spectrum of the image of sea waves.

Figure 8: Sections of the spectra drawn parallel to-axis: the solid 
curve corresponds to the initial spectrum, the dotted curve corre-
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Figure 9: Same as in Figure.1, but for sections drawn parallel to 
ky-axis.

In Figures.10 a,b,c the singled out pedestal is presented at three dif-
ferent ocean states near the Drake Strait (the pictures are smoothed 
and normalized to unity). The wind speed data were collected from 
a research ship located at distances of no more than 100 km from 
the scenes. First of all, one can see that the pedestal is cut off. The 
fact is that the FFT program gives a coordinate grid according to 
pixel spacing, but not the SAR nominal resolution at given images 
Δx ×Δ0.SAR=5.2×7.7m2 whereas the pixel spacing is 
Δx× ∆y =4.7×5.1m2 [13]. Since the pixel spacing and the dimen-
sions of nominal resolution cell not coincide, the pedestal is not 
completely fit into the area allocated to it by the FFT program. 
That's why it turned out to be cutoff.
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      An example of the application of given method is shown in Fig.7.  A fragment of 10 × 10 
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        One can see that the pedestal is asymmetrical and in average its shape is close to an 

elliptical cone  with smoothed apex. If we continue the cut off surface to the zero plane, then, as 
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        It should be noted that three normalized pictures of speckle noise pedestal obtained at 

different ocean states  turned out to be identical except for not completely smoothed small parts. 

It means that  the pedestal width doesn't depend (or, may be, depends quite a little) on the ocean 
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2). Figure.7 shows the cross sections of the image spectrum before 
and after removal of the speckle noise pedestal [1].

Figure 7: Section of the initial image spectrum (curve 1) and of 
the cleaned one (curve 2).

As one can see, the processing allowed us to obtain a more pro-
nounced spectral maximum and to reveal the details of the image 
spectrum hidden by speckle noise. More examples of the applica-
tion of the method, this time when processing images of the area 
near the Drake Strait in the Southern Atlantic  are given below 
[10].

In Figure.8 and Figure.9 one such example of the complete remov-
al of a speckle noise pedestal is shown. These pictures demon-
strate the sections drawn through the spectral maximum of one 
of the images in two mutually perpendicular directions parallel to 
wave-number axes kx (Figure.8) and ky (Figure.9). Note that given 
image shows ocean waves running almost along the ground range 
direction. Аs a result, the maximum in Figure.9 turned out to be 
located almost at the zero of the ky- axis.

Аs already mentioned, the sum of last two terms in the spectral es-
timate (36) determines the speckle noise pedestal. It is desirable to 
have an idea of its shape in order to understand what distortions the 
pedestal introduces into the spectrum of the image of sea waves.

Figure 8: Sections of the spectra drawn parallel to-axis: the solid 
curve corresponds to the initial spectrum, the dotted curve corre-
sponds to the "cleaned" one (each curve is normalized by its own 
maximum).

Figure 9: Same as in Figure.1, but for sections drawn parallel to 
ky-axis.

In Figures.10 a,b,c the singled out pedestal is presented at three dif-
ferent ocean states near the Drake Strait (the pictures are smoothed 
and normalized to unity). The wind speed data were collected from 
a research ship located at distances of no more than 100 km from 
the scenes. First of all, one can see that the pedestal is cut off. The 
fact is that the FFT program gives a coordinate grid according to 
pixel spacing, but not the SAR nominal resolution at given images 
Δx ×Δ0.SAR=5.2×7.7m2 whereas the pixel spacing is 
Δx× ∆y =4.7×5.1m2 [13]. Since the pixel spacing and the dimen-
sions of nominal resolution cell not coincide, the pedestal is not 
completely fit into the area allocated to it by the FFT program. 
That's why it turned out to be cutoff.
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2). Figure.7 shows the cross sections of the image spectrum before 
and after removal of the speckle noise pedestal [1].

Figure 7: Section of the initial image spectrum (curve 1) and of 
the cleaned one (curve 2).

As one can see, the processing allowed us to obtain a more pro-
nounced spectral maximum and to reveal the details of the image 
spectrum hidden by speckle noise. More examples of the applica-
tion of the method, this time when processing images of the area 
near the Drake Strait in the Southern Atlantic  are given below 
[10].

In Figure.8 and Figure.9 one such example of the complete remov-
al of a speckle noise pedestal is shown. These pictures demon-
strate the sections drawn through the spectral maximum of one 
of the images in two mutually perpendicular directions parallel to 
wave-number axes kx (Figure.8) and ky (Figure.9). Note that given 
image shows ocean waves running almost along the ground range 
direction. Аs a result, the maximum in Figure.9 turned out to be 
located almost at the zero of the ky- axis.

Аs already mentioned, the sum of last two terms in the spectral es-
timate (36) determines the speckle noise pedestal. It is desirable to 
have an idea of its shape in order to understand what distortions the 
pedestal introduces into the spectrum of the image of sea waves.

Figure 8: Sections of the spectra drawn parallel to-axis: the solid 
curve corresponds to the initial spectrum, the dotted curve corre-
sponds to the "cleaned" one (each curve is normalized by its own 
maximum).

Figure 9: Same as in Figure.1, but for sections drawn parallel to 
ky-axis.

In Figures.10 a,b,c the singled out pedestal is presented at three dif-
ferent ocean states near the Drake Strait (the pictures are smoothed 
and normalized to unity). The wind speed data were collected from 
a research ship located at distances of no more than 100 km from 
the scenes. First of all, one can see that the pedestal is cut off. The 
fact is that the FFT program gives a coordinate grid according to 
pixel spacing, but not the SAR nominal resolution at given images 
Δx ×Δ0.SAR=5.2×7.7m2 whereas the pixel spacing is 
Δx× ∆y =4.7×5.1m2 [13]. Since the pixel spacing and the dimen-
sions of nominal resolution cell not coincide, the pedestal is not 
completely fit into the area allocated to it by the FFT program. 
That's why it turned out to be cutoff.

Figure 10: The speckle noise pedestals normalized to unity at 
wind speed equal to 7.8 m/s (a), 10 m/s (b),and 21m/s(c).

      An example of the application of given method is shown in Fig.7.  A fragment of 10 × 10 

    image of a part of the Gulf of Mexico was processed (SAR data of the European satellite 

ERS-2). Fig.7 shows the cross sections of the image spectrum before and after removal of the 
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surface state and  is determined by the nominal dimensions of SAR resolution cell.   
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2). Figure.7 shows the cross sections of the image spectrum before 
and after removal of the speckle noise pedestal [1].

Figure 7: Section of the initial image spectrum (curve 1) and of 
the cleaned one (curve 2).

As one can see, the processing allowed us to obtain a more pro-
nounced spectral maximum and to reveal the details of the image 
spectrum hidden by speckle noise. More examples of the applica-
tion of the method, this time when processing images of the area 
near the Drake Strait in the Southern Atlantic  are given below 
[10].

In Figure.8 and Figure.9 one such example of the complete remov-
al of a speckle noise pedestal is shown. These pictures demon-
strate the sections drawn through the spectral maximum of one 
of the images in two mutually perpendicular directions parallel to 
wave-number axes kx (Figure.8) and ky (Figure.9). Note that given 
image shows ocean waves running almost along the ground range 
direction. Аs a result, the maximum in Figure.9 turned out to be 
located almost at the zero of the ky- axis.

Аs already mentioned, the sum of last two terms in the spectral es-
timate (36) determines the speckle noise pedestal. It is desirable to 
have an idea of its shape in order to understand what distortions the 
pedestal introduces into the spectrum of the image of sea waves.

Figure 8: Sections of the spectra drawn parallel to-axis: the solid 
curve corresponds to the initial spectrum, the dotted curve corre-
sponds to the "cleaned" one (each curve is normalized by its own 
maximum).

Figure 9: Same as in Figure.1, but for sections drawn parallel to 
ky-axis.

In Figures.10 a,b,c the singled out pedestal is presented at three dif-
ferent ocean states near the Drake Strait (the pictures are smoothed 
and normalized to unity). The wind speed data were collected from 
a research ship located at distances of no more than 100 km from 
the scenes. First of all, one can see that the pedestal is cut off. The 
fact is that the FFT program gives a coordinate grid according to 
pixel spacing, but not the SAR nominal resolution at given images 
Δx ×Δ0.SAR=5.2×7.7m2 whereas the pixel spacing is 
Δx× ∆y =4.7×5.1m2 [13]. Since the pixel spacing and the dimen-
sions of nominal resolution cell not coincide, the pedestal is not 
completely fit into the area allocated to it by the FFT program. 
That's why it turned out to be cutoff.

Figure 10: The speckle noise pedestals normalized to unity at 
wind speed equal to 7.8 m/s (a), 10 m/s (b),and 21m/s(c).
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Figure.7 shows the cross sections of the image spectrum before 
and after removal of the speckle noise pedestal [1].

Figure 7: Section of the initial image spectrum (curve 1) and of 
the cleaned one (curve 2).

As one can see, the processing allowed us to obtain a more pro-
nounced spectral maximum and to reveal the details of the image 
spectrum hidden by speckle noise. More examples of the applica-
tion of the method, this time when processing images of the area 
near the Drake Strait in the Southern Atlantic (Canadian satellite 
RADARSAT-2) are given below [10].

In Figure 8 and Figure 9 one such example of the complete remov-
al of a speckle noise pedestal is shown. These pictures demon-
strate the sections drawn through the spectral maximum of one 
of the images in two mutually perpendicular directions parallel to 
wave-number axes kx Figure 8 and ky Figure 9. Note that given 
image shows ocean waves running almost along the ground range 
direction. Аs a result, the maximum in Figure 9 turned out to be 
located almost at the zero of the ky- axis.

Аs already mentioned, the sum of last two terms in the spectral es-
timate (36) determines the speckle noise pedestal. It is desirable to 
have an idea of its shape in order to understand what distortions the 
pedestal introduces into the spectrum of the image of sea waves.

Figure 8: Sections of the spectra drawn parallel to-axis: the solid 
curve corresponds to the initial spectrum, the dotted curve corre-
sponds to the "cleaned" one (each curve is normalized by its own 
maximum).

Figure 9: Same as in Figure.1, but for sections drawn parallel to 
ky-axis.

In Figures 10 a,b,c the singled out pedestal is presented at three dif-
ferent ocean states near the Drake Strait (the pictures are smoothed 
and normalized to unity). The wind speed data were collected from 
a research ship located at distances of no more than 100 km from 
the scenes. First of all, one can see that the pedestal is cut off. The 
fact is that the FFT program gives a coordinate grid according to 
pixel spacing, but not the SAR nominal resolution at given images
Δx ×Δ0.SAR=5.2×7.7m2 whereas the pixel spacing is 
Δx× ∆y =4.7×5.1m2 [13]. Since the pixel spacing and the dimen-
sions of nominal resolution cell not coincide, the pedestal is not 
completely fit into the area allocated to it by the FFT program. 
That's why it turned out to be cutoff.

Figure 10: The speckle noise pedestals normalized to unity at 
wind speed equal to 7.8 m/s (a), 10 m/s (b),and 21m/s(c).
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2). Figure.7 shows the cross sections of the image spectrum before 
and after removal of the speckle noise pedestal [1].

Figure 7: Section of the initial image spectrum (curve 1) and of 
the cleaned one (curve 2).

As one can see, the processing allowed us to obtain a more pro-
nounced spectral maximum and to reveal the details of the image 
spectrum hidden by speckle noise. More examples of the applica-
tion of the method, this time when processing images of the area 
near the Drake Strait in the Southern Atlantic  are given below 
[10].

In Figure.8 and Figure.9 one such example of the complete remov-
al of a speckle noise pedestal is shown. These pictures demon-
strate the sections drawn through the spectral maximum of one 
of the images in two mutually perpendicular directions parallel to 
wave-number axes kx (Figure.8) and ky (Figure.9). Note that given 
image shows ocean waves running almost along the ground range 
direction. Аs a result, the maximum in Figure.9 turned out to be 
located almost at the zero of the ky- axis.
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have an idea of its shape in order to understand what distortions the 
pedestal introduces into the spectrum of the image of sea waves.
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sponds to the "cleaned" one (each curve is normalized by its own 
maximum).
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In Figures.10 a,b,c the singled out pedestal is presented at three dif-
ferent ocean states near the Drake Strait (the pictures are smoothed 
and normalized to unity). The wind speed data were collected from 
a research ship located at distances of no more than 100 km from 
the scenes. First of all, one can see that the pedestal is cut off. The 
fact is that the FFT program gives a coordinate grid according to 
pixel spacing, but not the SAR nominal resolution at given images 
Δx ×Δ0.SAR=5.2×7.7m2 whereas the pixel spacing is 
Δx× ∆y =4.7×5.1m2 [13]. Since the pixel spacing and the dimen-
sions of nominal resolution cell not coincide, the pedestal is not 
completely fit into the area allocated to it by the FFT program. 
That's why it turned out to be cutoff.

Figure 10: The speckle noise pedestals normalized to unity at 
wind speed equal to 7.8 m/s (a), 10 m/s (b),and 21m/s(c).

      An example of the application of given method is shown in Fig.7.  A fragment of 10 × 10 

    image of a part of the Gulf of Mexico was processed (SAR data of the European satellite 

ERS-2). Fig.7 shows the cross sections of the image spectrum before and after removal of the 

speckle noise pedestal [Kanevsky 2008]. 

 
              Fig.7 Section of the initial image spectrum (curve 1) and of the cleaned one (curve 2).  
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area near the Drake Strait in the Southern Atlantic (Canadian satellite RADARSAT-2) are given 
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[RADARSAT-2 Product Description 2016]).  Since the pixel spacing and the dimensions of 

nominal resolution cell  not coincide, the pedestal is not completely fit into the area allocated to 

it by the FFT program. That's why it turned out to be cut off.  

                    
Fig.10  The speckle noise pedestals normalized to unity at wind speed equal to 7.8 m/s (a), 10 m/s (b), 
and 21m/s (c).  
 
        One can see that the pedestal is asymmetrical and in average its shape is close to an 

elliptical cone  with smoothed apex. If we continue the cut off surface to the zero plane, then, as 

is easy to see, the dimensions of the semi-axes of the ellipse lying at the base of the cone will be 

about       and          along the ground range and azimuthal wave-number axes, 

respectively. 

        It should be noted that three normalized pictures of speckle noise pedestal obtained at 

different ocean states  turned out to be identical except for not completely smoothed small parts. 

It means that  the pedestal width doesn't depend (or, may be, depends quite a little) on the ocean 

surface state and  is determined by the nominal dimensions of SAR resolution cell.   

        In Fig. 11, the speckle noise pedestal is shown at level intervals indicated by different 

colors. Here you can clearly see the ellipse at the base of the pedestal with semi-axes determined 
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2). Figure.7 shows the cross sections of the image spectrum before 
and after removal of the speckle noise pedestal [1].

Figure 7: Section of the initial image spectrum (curve 1) and of 
the cleaned one (curve 2).

As one can see, the processing allowed us to obtain a more pro-
nounced spectral maximum and to reveal the details of the image 
spectrum hidden by speckle noise. More examples of the applica-
tion of the method, this time when processing images of the area 
near the Drake Strait in the Southern Atlantic  are given below 
[10].

In Figure.8 and Figure.9 one such example of the complete remov-
al of a speckle noise pedestal is shown. These pictures demon-
strate the sections drawn through the spectral maximum of one 
of the images in two mutually perpendicular directions parallel to 
wave-number axes kx (Figure.8) and ky (Figure.9). Note that given 
image shows ocean waves running almost along the ground range 
direction. Аs a result, the maximum in Figure.9 turned out to be 
located almost at the zero of the ky- axis.

Аs already mentioned, the sum of last two terms in the spectral es-
timate (36) determines the speckle noise pedestal. It is desirable to 
have an idea of its shape in order to understand what distortions the 
pedestal introduces into the spectrum of the image of sea waves.

Figure 8: Sections of the spectra drawn parallel to-axis: the solid 
curve corresponds to the initial spectrum, the dotted curve corre-
sponds to the "cleaned" one (each curve is normalized by its own 
maximum).

Figure 9: Same as in Figure.1, but for sections drawn parallel to 
ky-axis.

In Figures.10 a,b,c the singled out pedestal is presented at three dif-
ferent ocean states near the Drake Strait (the pictures are smoothed 
and normalized to unity). The wind speed data were collected from 
a research ship located at distances of no more than 100 km from 
the scenes. First of all, one can see that the pedestal is cut off. The 
fact is that the FFT program gives a coordinate grid according to 
pixel spacing, but not the SAR nominal resolution at given images 
Δx ×Δ0.SAR=5.2×7.7m2 whereas the pixel spacing is 
Δx× ∆y =4.7×5.1m2 [13]. Since the pixel spacing and the dimen-
sions of nominal resolution cell not coincide, the pedestal is not 
completely fit into the area allocated to it by the FFT program. 
That's why it turned out to be cutoff.
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wind speed equal to 7.8 m/s (a), 10 m/s (b),and 21m/s(c).
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2). Figure.7 shows the cross sections of the image spectrum before 
and after removal of the speckle noise pedestal [1].

Figure 7: Section of the initial image spectrum (curve 1) and of 
the cleaned one (curve 2).

As one can see, the processing allowed us to obtain a more pro-
nounced spectral maximum and to reveal the details of the image 
spectrum hidden by speckle noise. More examples of the applica-
tion of the method, this time when processing images of the area 
near the Drake Strait in the Southern Atlantic  are given below 
[10].

In Figure.8 and Figure.9 one such example of the complete remov-
al of a speckle noise pedestal is shown. These pictures demon-
strate the sections drawn through the spectral maximum of one 
of the images in two mutually perpendicular directions parallel to 
wave-number axes kx (Figure.8) and ky (Figure.9). Note that given 
image shows ocean waves running almost along the ground range 
direction. Аs a result, the maximum in Figure.9 turned out to be 
located almost at the zero of the ky- axis.

Аs already mentioned, the sum of last two terms in the spectral es-
timate (36) determines the speckle noise pedestal. It is desirable to 
have an idea of its shape in order to understand what distortions the 
pedestal introduces into the spectrum of the image of sea waves.

Figure 8: Sections of the spectra drawn parallel to-axis: the solid 
curve corresponds to the initial spectrum, the dotted curve corre-
sponds to the "cleaned" one (each curve is normalized by its own 
maximum).

Figure 9: Same as in Figure.1, but for sections drawn parallel to 
ky-axis.

In Figures.10 a,b,c the singled out pedestal is presented at three dif-
ferent ocean states near the Drake Strait (the pictures are smoothed 
and normalized to unity). The wind speed data were collected from 
a research ship located at distances of no more than 100 km from 
the scenes. First of all, one can see that the pedestal is cut off. The 
fact is that the FFT program gives a coordinate grid according to 
pixel spacing, but not the SAR nominal resolution at given images 
Δx ×Δ0.SAR=5.2×7.7m2 whereas the pixel spacing is 
Δx× ∆y =4.7×5.1m2 [13]. Since the pixel spacing and the dimen-
sions of nominal resolution cell not coincide, the pedestal is not 
completely fit into the area allocated to it by the FFT program. 
That's why it turned out to be cutoff.

Figure 10: The speckle noise pedestals normalized to unity at 
wind speed equal to 7.8 m/s (a), 10 m/s (b),and 21m/s(c).

      An example of the application of given method is shown in Fig.7.  A fragment of 10 × 10 

    image of a part of the Gulf of Mexico was processed (SAR data of the European satellite 

ERS-2). Fig.7 shows the cross sections of the image spectrum before and after removal of the 

speckle noise pedestal [Kanevsky 2008]. 
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2). Figure.7 shows the cross sections of the image spectrum before 
and after removal of the speckle noise pedestal [1].

Figure 7: Section of the initial image spectrum (curve 1) and of 
the cleaned one (curve 2).

As one can see, the processing allowed us to obtain a more pro-
nounced spectral maximum and to reveal the details of the image 
spectrum hidden by speckle noise. More examples of the applica-
tion of the method, this time when processing images of the area 
near the Drake Strait in the Southern Atlantic  are given below 
[10].

In Figure.8 and Figure.9 one such example of the complete remov-
al of a speckle noise pedestal is shown. These pictures demon-
strate the sections drawn through the spectral maximum of one 
of the images in two mutually perpendicular directions parallel to 
wave-number axes kx (Figure.8) and ky (Figure.9). Note that given 
image shows ocean waves running almost along the ground range 
direction. Аs a result, the maximum in Figure.9 turned out to be 
located almost at the zero of the ky- axis.

Аs already mentioned, the sum of last two terms in the spectral es-
timate (36) determines the speckle noise pedestal. It is desirable to 
have an idea of its shape in order to understand what distortions the 
pedestal introduces into the spectrum of the image of sea waves.

Figure 8: Sections of the spectra drawn parallel to-axis: the solid 
curve corresponds to the initial spectrum, the dotted curve corre-
sponds to the "cleaned" one (each curve is normalized by its own 
maximum).

Figure 9: Same as in Figure.1, but for sections drawn parallel to 
ky-axis.

In Figures.10 a,b,c the singled out pedestal is presented at three dif-
ferent ocean states near the Drake Strait (the pictures are smoothed 
and normalized to unity). The wind speed data were collected from 
a research ship located at distances of no more than 100 km from 
the scenes. First of all, one can see that the pedestal is cut off. The 
fact is that the FFT program gives a coordinate grid according to 
pixel spacing, but not the SAR nominal resolution at given images 
Δx ×Δ0.SAR=5.2×7.7m2 whereas the pixel spacing is 
Δx× ∆y =4.7×5.1m2 [13]. Since the pixel spacing and the dimen-
sions of nominal resolution cell not coincide, the pedestal is not 
completely fit into the area allocated to it by the FFT program. 
That's why it turned out to be cutoff.

Figure 10: The speckle noise pedestals normalized to unity at 
wind speed equal to 7.8 m/s (a), 10 m/s (b),and 21m/s(c).

      An example of the application of given method is shown in Fig.7.  A fragment of 10 × 10 

    image of a part of the Gulf of Mexico was processed (SAR data of the European satellite 

ERS-2). Fig.7 shows the cross sections of the image spectrum before and after removal of the 
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Fig.10  The speckle noise pedestals normalized to unity at wind speed equal to 7.8 m/s (a), 10 m/s (b), 
and 21m/s (c).  
 
        One can see that the pedestal is asymmetrical and in average its shape is close to an 

elliptical cone  with smoothed apex. If we continue the cut off surface to the zero plane, then, as 

is easy to see, the dimensions of the semi-axes of the ellipse lying at the base of the cone will be 

about       and          along the ground range and azimuthal wave-number axes, 

respectively. 

        It should be noted that three normalized pictures of speckle noise pedestal obtained at 

different ocean states  turned out to be identical except for not completely smoothed small parts. 

It means that  the pedestal width doesn't depend (or, may be, depends quite a little) on the ocean 

surface state and  is determined by the nominal dimensions of SAR resolution cell.   

        In Fig. 11, the speckle noise pedestal is shown at level intervals indicated by different 

colors. Here you can clearly see the ellipse at the base of the pedestal with semi-axes determined 
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Figure.7 shows the cross sections of the image spectrum before 
and after removal of the speckle noise pedestal [1].

Figure 7: Section of the initial image spectrum (curve 1) and of 
the cleaned one (curve 2).

As one can see, the processing allowed us to obtain a more pro-
nounced spectral maximum and to reveal the details of the image 
spectrum hidden by speckle noise. More examples of the applica-
tion of the method, this time when processing images of the area 
near the Drake Strait in the Southern Atlantic (Canadian satellite 
RADARSAT-2) are given below [10].

In Figure 8 and Figure 9 one such example of the complete remov-
al of a speckle noise pedestal is shown. These pictures demon-
strate the sections drawn through the spectral maximum of one 
of the images in two mutually perpendicular directions parallel to 
wave-number axes kx Figure 8 and ky Figure 9. Note that given 
image shows ocean waves running almost along the ground range 
direction. Аs a result, the maximum in Figure 9 turned out to be 
located almost at the zero of the ky- axis.

Аs already mentioned, the sum of last two terms in the spectral es-
timate (36) determines the speckle noise pedestal. It is desirable to 
have an idea of its shape in order to understand what distortions the 
pedestal introduces into the spectrum of the image of sea waves.

Figure 8: Sections of the spectra drawn parallel to-axis: the solid 
curve corresponds to the initial spectrum, the dotted curve corre-
sponds to the "cleaned" one (each curve is normalized by its own 
maximum).

Figure 9: Same as in Figure.1, but for sections drawn parallel to 
ky-axis.

In Figures 10 a,b,c the singled out pedestal is presented at three dif-
ferent ocean states near the Drake Strait (the pictures are smoothed 
and normalized to unity). The wind speed data were collected from 
a research ship located at distances of no more than 100 km from 
the scenes. First of all, one can see that the pedestal is cut off. The 
fact is that the FFT program gives a coordinate grid according to 
pixel spacing, but not the SAR nominal resolution at given images
Δx ×Δ0.SAR=5.2×7.7m2 whereas the pixel spacing is 
Δx× ∆y =4.7×5.1m2 [13]. Since the pixel spacing and the dimen-
sions of nominal resolution cell not coincide, the pedestal is not 
completely fit into the area allocated to it by the FFT program. 
That's why it turned out to be cutoff.

Figure 10: The speckle noise pedestals normalized to unity at 
wind speed equal to 7.8 m/s (a), 10 m/s (b),and 21m/s(c).

     Volume 4 | Issue 3 | 244J Mari Scie Res Ocean, 2021 www.opastonline.com

2). Figure.7 shows the cross sections of the image spectrum before 
and after removal of the speckle noise pedestal [1].

Figure 7: Section of the initial image spectrum (curve 1) and of 
the cleaned one (curve 2).

As one can see, the processing allowed us to obtain a more pro-
nounced spectral maximum and to reveal the details of the image 
spectrum hidden by speckle noise. More examples of the applica-
tion of the method, this time when processing images of the area 
near the Drake Strait in the Southern Atlantic  are given below 
[10].

In Figure.8 and Figure.9 one such example of the complete remov-
al of a speckle noise pedestal is shown. These pictures demon-
strate the sections drawn through the spectral maximum of one 
of the images in two mutually perpendicular directions parallel to 
wave-number axes kx (Figure.8) and ky (Figure.9). Note that given 
image shows ocean waves running almost along the ground range 
direction. Аs a result, the maximum in Figure.9 turned out to be 
located almost at the zero of the ky- axis.

Аs already mentioned, the sum of last two terms in the spectral es-
timate (36) determines the speckle noise pedestal. It is desirable to 
have an idea of its shape in order to understand what distortions the 
pedestal introduces into the spectrum of the image of sea waves.

Figure 8: Sections of the spectra drawn parallel to-axis: the solid 
curve corresponds to the initial spectrum, the dotted curve corre-
sponds to the "cleaned" one (each curve is normalized by its own 
maximum).

Figure 9: Same as in Figure.1, but for sections drawn parallel to 
ky-axis.

In Figures.10 a,b,c the singled out pedestal is presented at three dif-
ferent ocean states near the Drake Strait (the pictures are smoothed 
and normalized to unity). The wind speed data were collected from 
a research ship located at distances of no more than 100 km from 
the scenes. First of all, one can see that the pedestal is cut off. The 
fact is that the FFT program gives a coordinate grid according to 
pixel spacing, but not the SAR nominal resolution at given images 
Δx ×Δ0.SAR=5.2×7.7m2 whereas the pixel spacing is 
Δx× ∆y =4.7×5.1m2 [13]. Since the pixel spacing and the dimen-
sions of nominal resolution cell not coincide, the pedestal is not 
completely fit into the area allocated to it by the FFT program. 
That's why it turned out to be cutoff.

Figure 10: The speckle noise pedestals normalized to unity at 
wind speed equal to 7.8 m/s (a), 10 m/s (b),and 21m/s(c).

      An example of the application of given method is shown in Fig.7.  A fragment of 10 × 10 

    image of a part of the Gulf of Mexico was processed (SAR data of the European satellite 

ERS-2). Fig.7 shows the cross sections of the image spectrum before and after removal of the 

speckle noise pedestal [Kanevsky 2008]. 

 
              Fig.7 Section of the initial image spectrum (curve 1) and of the cleaned one (curve 2).  

 

       As one can see, the processing allowed us to obtain a more pronounced spectral maximum 

and to reveal the details of the image spectrum hidden by speckle noise. 

       More examples of the application of the method, this time when processing images of the 

area near the Drake Strait in the Southern Atlantic (Canadian satellite RADARSAT-2) are given 

below [Kanevsky and Panfilova 2019].  

       In Fig.8  and Fig.9 one such example of the complete removal of a speckle noise pedestal is 

shown. These pictures demonstrate the sections drawn through the spectral maximum of one of 

the images in two mutually perpendicular directions parallel to wave-number axes    (Fig.8) and 

   (Fig.9).  Note that given image shows ocean waves running almost along the ground range 

direction. Аs a result, the maximum in Fig.9 turned out to be  located almost at the zero of the  

    - axis.         Аs already mentioned, the sum of last two terms in the spectral estimate (36) determines the 

speckle noise pedestal. It is desirable to have an idea of its shape in order to understand what 

distortions the pedestal introduces into the spectrum of the image of sea waves.  

                           
Fig.8. Sections of the spectra drawn parallel to   -axis: the solid curve  corresponds to the initial 
spectrum, the dotted curve   corresponds to the "cleaned" one (each curve is normalized by its own 
maximum).      

                                     
Fig.9 Same as in Fig.1, but for sections drawn parallel to   -axis. 

 

        In Figs.10 a,b,c the singled out pedestal is presented at three different ocean states near the 

Drake Strait (the pictures are smoothed and normalized to unity). The wind speed data were 

collected from a research ship located at distances of no more than 100 km from the scenes.  

       First of all, one can see that the pedestal is cut off. The fact is that the FFT program gives a 

coordinate grid according to pixel spacing, but not the SAR nominal resolution (at given images 

                       whereas the pixel spacing is     ∆y             

[RADARSAT-2 Product Description 2016]).  Since the pixel spacing and the dimensions of 

nominal resolution cell  not coincide, the pedestal is not completely fit into the area allocated to 

it by the FFT program. That's why it turned out to be cut off.  

      Аs already mentioned, the sum of last two terms in the spectral estimate (36) determines the 

speckle noise pedestal. It is desirable to have an idea of its shape in order to understand what 

distortions the pedestal introduces into the spectrum of the image of sea waves.  
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Drake Strait (the pictures are smoothed and normalized to unity). The wind speed data were 

collected from a research ship located at distances of no more than 100 km from the scenes.  

       First of all, one can see that the pedestal is cut off. The fact is that the FFT program gives a 

coordinate grid according to pixel spacing, but not the SAR nominal resolution (at given images 

                       whereas the pixel spacing is     ∆y             

[RADARSAT-2 Product Description 2016]).  Since the pixel spacing and the dimensions of 

nominal resolution cell  not coincide, the pedestal is not completely fit into the area allocated to 

it by the FFT program. That's why it turned out to be cut off.  

                    
Fig.10  The speckle noise pedestals normalized to unity at wind speed equal to 7.8 m/s (a), 10 m/s (b), 
and 21m/s (c).  
 
        One can see that the pedestal is asymmetrical and in average its shape is close to an 

elliptical cone  with smoothed apex. If we continue the cut off surface to the zero plane, then, as 

is easy to see, the dimensions of the semi-axes of the ellipse lying at the base of the cone will be 

about       and          along the ground range and azimuthal wave-number axes, 

respectively. 

        It should be noted that three normalized pictures of speckle noise pedestal obtained at 

different ocean states  turned out to be identical except for not completely smoothed small parts. 

It means that  the pedestal width doesn't depend (or, may be, depends quite a little) on the ocean 

surface state and  is determined by the nominal dimensions of SAR resolution cell.   

        In Fig. 11, the speckle noise pedestal is shown at level intervals indicated by different 

colors. Here you can clearly see the ellipse at the base of the pedestal with semi-axes determined 
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2). Figure.7 shows the cross sections of the image spectrum before 
and after removal of the speckle noise pedestal [1].

Figure 7: Section of the initial image spectrum (curve 1) and of 
the cleaned one (curve 2).

As one can see, the processing allowed us to obtain a more pro-
nounced spectral maximum and to reveal the details of the image 
spectrum hidden by speckle noise. More examples of the applica-
tion of the method, this time when processing images of the area 
near the Drake Strait in the Southern Atlantic  are given below 
[10].

In Figure.8 and Figure.9 one such example of the complete remov-
al of a speckle noise pedestal is shown. These pictures demon-
strate the sections drawn through the spectral maximum of one 
of the images in two mutually perpendicular directions parallel to 
wave-number axes kx (Figure.8) and ky (Figure.9). Note that given 
image shows ocean waves running almost along the ground range 
direction. Аs a result, the maximum in Figure.9 turned out to be 
located almost at the zero of the ky- axis.

Аs already mentioned, the sum of last two terms in the spectral es-
timate (36) determines the speckle noise pedestal. It is desirable to 
have an idea of its shape in order to understand what distortions the 
pedestal introduces into the spectrum of the image of sea waves.

Figure 8: Sections of the spectra drawn parallel to-axis: the solid 
curve corresponds to the initial spectrum, the dotted curve corre-
sponds to the "cleaned" one (each curve is normalized by its own 
maximum).

Figure 9: Same as in Figure.1, but for sections drawn parallel to 
ky-axis.

In Figures.10 a,b,c the singled out pedestal is presented at three dif-
ferent ocean states near the Drake Strait (the pictures are smoothed 
and normalized to unity). The wind speed data were collected from 
a research ship located at distances of no more than 100 km from 
the scenes. First of all, one can see that the pedestal is cut off. The 
fact is that the FFT program gives a coordinate grid according to 
pixel spacing, but not the SAR nominal resolution at given images 
Δx ×Δ0.SAR=5.2×7.7m2 whereas the pixel spacing is 
Δx× ∆y =4.7×5.1m2 [13]. Since the pixel spacing and the dimen-
sions of nominal resolution cell not coincide, the pedestal is not 
completely fit into the area allocated to it by the FFT program. 
That's why it turned out to be cutoff.

Figure 10: The speckle noise pedestals normalized to unity at 
wind speed equal to 7.8 m/s (a), 10 m/s (b),and 21m/s(c).

      An example of the application of given method is shown in Fig.7.  A fragment of 10 × 10 

    image of a part of the Gulf of Mexico was processed (SAR data of the European satellite 

ERS-2). Fig.7 shows the cross sections of the image spectrum before and after removal of the 

speckle noise pedestal [Kanevsky 2008]. 

 
              Fig.7 Section of the initial image spectrum (curve 1) and of the cleaned one (curve 2).  
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and to reveal the details of the image spectrum hidden by speckle noise. 
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area near the Drake Strait in the Southern Atlantic (Canadian satellite RADARSAT-2) are given 
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direction. Аs a result, the maximum in Fig.9 turned out to be  located almost at the zero of the  

    - axis.         Аs already mentioned, the sum of last two terms in the spectral estimate (36) determines the 
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Drake Strait (the pictures are smoothed and normalized to unity). The wind speed data were 

collected from a research ship located at distances of no more than 100 km from the scenes.  

       First of all, one can see that the pedestal is cut off. The fact is that the FFT program gives a 

coordinate grid according to pixel spacing, but not the SAR nominal resolution (at given images 
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[RADARSAT-2 Product Description 2016]).  Since the pixel spacing and the dimensions of 

nominal resolution cell  not coincide, the pedestal is not completely fit into the area allocated to 

it by the FFT program. That's why it turned out to be cut off.  

      Аs already mentioned, the sum of last two terms in the spectral estimate (36) determines the 

speckle noise pedestal. It is desirable to have an idea of its shape in order to understand what 
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        In Figs.10 a,b,c the singled out pedestal is presented at three different ocean states near the 

Drake Strait (the pictures are smoothed and normalized to unity). The wind speed data were 

collected from a research ship located at distances of no more than 100 km from the scenes.  

       First of all, one can see that the pedestal is cut off. The fact is that the FFT program gives a 
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[RADARSAT-2 Product Description 2016]).  Since the pixel spacing and the dimensions of 

nominal resolution cell  not coincide, the pedestal is not completely fit into the area allocated to 

it by the FFT program. That's why it turned out to be cut off.  

                    
Fig.10  The speckle noise pedestals normalized to unity at wind speed equal to 7.8 m/s (a), 10 m/s (b), 
and 21m/s (c).  
 
        One can see that the pedestal is asymmetrical and in average its shape is close to an 

elliptical cone  with smoothed apex. If we continue the cut off surface to the zero plane, then, as 

is easy to see, the dimensions of the semi-axes of the ellipse lying at the base of the cone will be 

about       and          along the ground range and azimuthal wave-number axes, 

respectively. 

        It should be noted that three normalized pictures of speckle noise pedestal obtained at 

different ocean states  turned out to be identical except for not completely smoothed small parts. 

It means that  the pedestal width doesn't depend (or, may be, depends quite a little) on the ocean 

surface state and  is determined by the nominal dimensions of SAR resolution cell.   

        In Fig. 11, the speckle noise pedestal is shown at level intervals indicated by different 

colors. Here you can clearly see the ellipse at the base of the pedestal with semi-axes determined 
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2). Figure.7 shows the cross sections of the image spectrum before 
and after removal of the speckle noise pedestal [1].

Figure 7: Section of the initial image spectrum (curve 1) and of 
the cleaned one (curve 2).

As one can see, the processing allowed us to obtain a more pro-
nounced spectral maximum and to reveal the details of the image 
spectrum hidden by speckle noise. More examples of the applica-
tion of the method, this time when processing images of the area 
near the Drake Strait in the Southern Atlantic  are given below 
[10].

In Figure.8 and Figure.9 one such example of the complete remov-
al of a speckle noise pedestal is shown. These pictures demon-
strate the sections drawn through the spectral maximum of one 
of the images in two mutually perpendicular directions parallel to 
wave-number axes kx (Figure.8) and ky (Figure.9). Note that given 
image shows ocean waves running almost along the ground range 
direction. Аs a result, the maximum in Figure.9 turned out to be 
located almost at the zero of the ky- axis.

Аs already mentioned, the sum of last two terms in the spectral es-
timate (36) determines the speckle noise pedestal. It is desirable to 
have an idea of its shape in order to understand what distortions the 
pedestal introduces into the spectrum of the image of sea waves.

Figure 8: Sections of the spectra drawn parallel to-axis: the solid 
curve corresponds to the initial spectrum, the dotted curve corre-
sponds to the "cleaned" one (each curve is normalized by its own 
maximum).

Figure 9: Same as in Figure.1, but for sections drawn parallel to 
ky-axis.

In Figures.10 a,b,c the singled out pedestal is presented at three dif-
ferent ocean states near the Drake Strait (the pictures are smoothed 
and normalized to unity). The wind speed data were collected from 
a research ship located at distances of no more than 100 km from 
the scenes. First of all, one can see that the pedestal is cut off. The 
fact is that the FFT program gives a coordinate grid according to 
pixel spacing, but not the SAR nominal resolution at given images 
Δx ×Δ0.SAR=5.2×7.7m2 whereas the pixel spacing is 
Δx× ∆y =4.7×5.1m2 [13]. Since the pixel spacing and the dimen-
sions of nominal resolution cell not coincide, the pedestal is not 
completely fit into the area allocated to it by the FFT program. 
That's why it turned out to be cutoff.

Figure 10: The speckle noise pedestals normalized to unity at 
wind speed equal to 7.8 m/s (a), 10 m/s (b),and 21m/s(c).

      An example of the application of given method is shown in Fig.7.  A fragment of 10 × 10 

    image of a part of the Gulf of Mexico was processed (SAR data of the European satellite 

ERS-2). Fig.7 shows the cross sections of the image spectrum before and after removal of the 

speckle noise pedestal [Kanevsky 2008]. 

 
              Fig.7 Section of the initial image spectrum (curve 1) and of the cleaned one (curve 2).  

 

       As one can see, the processing allowed us to obtain a more pronounced spectral maximum 

and to reveal the details of the image spectrum hidden by speckle noise. 

       More examples of the application of the method, this time when processing images of the 

area near the Drake Strait in the Southern Atlantic (Canadian satellite RADARSAT-2) are given 

below [Kanevsky and Panfilova 2019].  
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speckle noise pedestal. It is desirable to have an idea of its shape in order to understand what 

distortions the pedestal introduces into the spectrum of the image of sea waves.  
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collected from a research ship located at distances of no more than 100 km from the scenes.  

       First of all, one can see that the pedestal is cut off. The fact is that the FFT program gives a 
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[RADARSAT-2 Product Description 2016]).  Since the pixel spacing and the dimensions of 
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nominal resolution cell  not coincide, the pedestal is not completely fit into the area allocated to 

it by the FFT program. That's why it turned out to be cut off.  
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and 21m/s (c).  
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        It should be noted that three normalized pictures of speckle noise pedestal obtained at 

different ocean states  turned out to be identical except for not completely smoothed small parts. 

It means that  the pedestal width doesn't depend (or, may be, depends quite a little) on the ocean 

surface state and  is determined by the nominal dimensions of SAR resolution cell.   

        In Fig. 11, the speckle noise pedestal is shown at level intervals indicated by different 

colors. Here you can clearly see the ellipse at the base of the pedestal with semi-axes determined 
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2). Figure.7 shows the cross sections of the image spectrum before 
and after removal of the speckle noise pedestal [1].

Figure 7: Section of the initial image spectrum (curve 1) and of 
the cleaned one (curve 2).

As one can see, the processing allowed us to obtain a more pro-
nounced spectral maximum and to reveal the details of the image 
spectrum hidden by speckle noise. More examples of the applica-
tion of the method, this time when processing images of the area 
near the Drake Strait in the Southern Atlantic  are given below 
[10].

In Figure.8 and Figure.9 one such example of the complete remov-
al of a speckle noise pedestal is shown. These pictures demon-
strate the sections drawn through the spectral maximum of one 
of the images in two mutually perpendicular directions parallel to 
wave-number axes kx (Figure.8) and ky (Figure.9). Note that given 
image shows ocean waves running almost along the ground range 
direction. Аs a result, the maximum in Figure.9 turned out to be 
located almost at the zero of the ky- axis.

Аs already mentioned, the sum of last two terms in the spectral es-
timate (36) determines the speckle noise pedestal. It is desirable to 
have an idea of its shape in order to understand what distortions the 
pedestal introduces into the spectrum of the image of sea waves.

Figure 8: Sections of the spectra drawn parallel to-axis: the solid 
curve corresponds to the initial spectrum, the dotted curve corre-
sponds to the "cleaned" one (each curve is normalized by its own 
maximum).

Figure 9: Same as in Figure.1, but for sections drawn parallel to 
ky-axis.

In Figures.10 a,b,c the singled out pedestal is presented at three dif-
ferent ocean states near the Drake Strait (the pictures are smoothed 
and normalized to unity). The wind speed data were collected from 
a research ship located at distances of no more than 100 km from 
the scenes. First of all, one can see that the pedestal is cut off. The 
fact is that the FFT program gives a coordinate grid according to 
pixel spacing, but not the SAR nominal resolution at given images 
Δx ×Δ0.SAR=5.2×7.7m2 whereas the pixel spacing is 
Δx× ∆y =4.7×5.1m2 [13]. Since the pixel spacing and the dimen-
sions of nominal resolution cell not coincide, the pedestal is not 
completely fit into the area allocated to it by the FFT program. 
That's why it turned out to be cutoff.

Figure 10: The speckle noise pedestals normalized to unity at 
wind speed equal to 7.8 m/s (a), 10 m/s (b),and 21m/s(c).

      An example of the application of given method is shown in Fig.7.  A fragment of 10 × 10 

    image of a part of the Gulf of Mexico was processed (SAR data of the European satellite 

ERS-2). Fig.7 shows the cross sections of the image spectrum before and after removal of the 

speckle noise pedestal [Kanevsky 2008]. 

 
              Fig.7 Section of the initial image spectrum (curve 1) and of the cleaned one (curve 2).  

 

       As one can see, the processing allowed us to obtain a more pronounced spectral maximum 

and to reveal the details of the image spectrum hidden by speckle noise. 

       More examples of the application of the method, this time when processing images of the 

area near the Drake Strait in the Southern Atlantic (Canadian satellite RADARSAT-2) are given 

below [Kanevsky and Panfilova 2019].  

       In Fig.8  and Fig.9 one such example of the complete removal of a speckle noise pedestal is 

shown. These pictures demonstrate the sections drawn through the spectral maximum of one of 
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speckle noise pedestal. It is desirable to have an idea of its shape in order to understand what 

distortions the pedestal introduces into the spectrum of the image of sea waves.  
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        One can see that the pedestal is asymmetrical and in average its shape is close to an 

elliptical cone  with smoothed apex. If we continue the cut off surface to the zero plane, then, as 

is easy to see, the dimensions of the semi-axes of the ellipse lying at the base of the cone will be 

about       and          along the ground range and azimuthal wave-number axes, 

respectively. 

        It should be noted that three normalized pictures of speckle noise pedestal obtained at 

different ocean states  turned out to be identical except for not completely smoothed small parts. 

It means that  the pedestal width doesn't depend (or, may be, depends quite a little) on the ocean 

surface state and  is determined by the nominal dimensions of SAR resolution cell.   

        In Fig. 11, the speckle noise pedestal is shown at level intervals indicated by different 

colors. Here you can clearly see the ellipse at the base of the pedestal with semi-axes determined 
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Figure.7 shows the cross sections of the image spectrum before 
and after removal of the speckle noise pedestal [1].

Figure 7: Section of the initial image spectrum (curve 1) and of 
the cleaned one (curve 2).

As one can see, the processing allowed us to obtain a more pro-
nounced spectral maximum and to reveal the details of the image 
spectrum hidden by speckle noise. More examples of the applica-
tion of the method, this time when processing images of the area 
near the Drake Strait in the Southern Atlantic (Canadian satellite 
RADARSAT-2) are given below [10].

In Figure 8 and Figure 9 one such example of the complete remov-
al of a speckle noise pedestal is shown. These pictures demon-
strate the sections drawn through the spectral maximum of one 
of the images in two mutually perpendicular directions parallel to 
wave-number axes kx Figure 8 and ky Figure 9. Note that given 
image shows ocean waves running almost along the ground range 
direction. Аs a result, the maximum in Figure 9 turned out to be 
located almost at the zero of the ky- axis.

Аs already mentioned, the sum of last two terms in the spectral es-
timate (36) determines the speckle noise pedestal. It is desirable to 
have an idea of its shape in order to understand what distortions the 
pedestal introduces into the spectrum of the image of sea waves.

Figure 8: Sections of the spectra drawn parallel to-axis: the solid 
curve corresponds to the initial spectrum, the dotted curve corre-
sponds to the "cleaned" one (each curve is normalized by its own 
maximum).

Figure 9: Same as in Figure.1, but for sections drawn parallel to 
ky-axis.

In Figures 10 a,b,c the singled out pedestal is presented at three dif-
ferent ocean states near the Drake Strait (the pictures are smoothed 
and normalized to unity). The wind speed data were collected from 
a research ship located at distances of no more than 100 km from 
the scenes. First of all, one can see that the pedestal is cut off. The 
fact is that the FFT program gives a coordinate grid according to 
pixel spacing, but not the SAR nominal resolution at given images
Δx ×Δ0.SAR=5.2×7.7m2 whereas the pixel spacing is 
Δx× ∆y =4.7×5.1m2 [13]. Since the pixel spacing and the dimen-
sions of nominal resolution cell not coincide, the pedestal is not 
completely fit into the area allocated to it by the FFT program. 
That's why it turned out to be cutoff.

Figure 10: The speckle noise pedestals normalized to unity at 
wind speed equal to 7.8 m/s (a), 10 m/s (b),and 21m/s(c).

     Volume 4 | Issue 3 | 244J Mari Scie Res Ocean, 2021 www.opastonline.com

2). Figure.7 shows the cross sections of the image spectrum before 
and after removal of the speckle noise pedestal [1].

Figure 7: Section of the initial image spectrum (curve 1) and of 
the cleaned one (curve 2).

As one can see, the processing allowed us to obtain a more pro-
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image shows ocean waves running almost along the ground range 
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pedestal introduces into the spectrum of the image of sea waves.
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sponds to the "cleaned" one (each curve is normalized by its own 
maximum).
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and normalized to unity). The wind speed data were collected from 
a research ship located at distances of no more than 100 km from 
the scenes. First of all, one can see that the pedestal is cut off. The 
fact is that the FFT program gives a coordinate grid according to 
pixel spacing, but not the SAR nominal resolution at given images 
Δx ×Δ0.SAR=5.2×7.7m2 whereas the pixel spacing is 
Δx× ∆y =4.7×5.1m2 [13]. Since the pixel spacing and the dimen-
sions of nominal resolution cell not coincide, the pedestal is not 
completely fit into the area allocated to it by the FFT program. 
That's why it turned out to be cutoff.

Figure 10: The speckle noise pedestals normalized to unity at 
wind speed equal to 7.8 m/s (a), 10 m/s (b),and 21m/s(c).

      An example of the application of given method is shown in Fig.7.  A fragment of 10 × 10 

    image of a part of the Gulf of Mexico was processed (SAR data of the European satellite 

ERS-2). Fig.7 shows the cross sections of the image spectrum before and after removal of the 

speckle noise pedestal [Kanevsky 2008]. 

 
              Fig.7 Section of the initial image spectrum (curve 1) and of the cleaned one (curve 2).  
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        One can see that the pedestal is asymmetrical and in average its shape is close to an 

elliptical cone  with smoothed apex. If we continue the cut off surface to the zero plane, then, as 

is easy to see, the dimensions of the semi-axes of the ellipse lying at the base of the cone will be 

about       and          along the ground range and azimuthal wave-number axes, 

respectively. 

        It should be noted that three normalized pictures of speckle noise pedestal obtained at 

different ocean states  turned out to be identical except for not completely smoothed small parts. 

It means that  the pedestal width doesn't depend (or, may be, depends quite a little) on the ocean 

surface state and  is determined by the nominal dimensions of SAR resolution cell.   

        In Fig. 11, the speckle noise pedestal is shown at level intervals indicated by different 

colors. Here you can clearly see the ellipse at the base of the pedestal with semi-axes determined 
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2). Figure.7 shows the cross sections of the image spectrum before 
and after removal of the speckle noise pedestal [1].

Figure 7: Section of the initial image spectrum (curve 1) and of 
the cleaned one (curve 2).

As one can see, the processing allowed us to obtain a more pro-
nounced spectral maximum and to reveal the details of the image 
spectrum hidden by speckle noise. More examples of the applica-
tion of the method, this time when processing images of the area 
near the Drake Strait in the Southern Atlantic  are given below 
[10].

In Figure.8 and Figure.9 one such example of the complete remov-
al of a speckle noise pedestal is shown. These pictures demon-
strate the sections drawn through the spectral maximum of one 
of the images in two mutually perpendicular directions parallel to 
wave-number axes kx (Figure.8) and ky (Figure.9). Note that given 
image shows ocean waves running almost along the ground range 
direction. Аs a result, the maximum in Figure.9 turned out to be 
located almost at the zero of the ky- axis.

Аs already mentioned, the sum of last two terms in the spectral es-
timate (36) determines the speckle noise pedestal. It is desirable to 
have an idea of its shape in order to understand what distortions the 
pedestal introduces into the spectrum of the image of sea waves.

Figure 8: Sections of the spectra drawn parallel to-axis: the solid 
curve corresponds to the initial spectrum, the dotted curve corre-
sponds to the "cleaned" one (each curve is normalized by its own 
maximum).

Figure 9: Same as in Figure.1, but for sections drawn parallel to 
ky-axis.

In Figures.10 a,b,c the singled out pedestal is presented at three dif-
ferent ocean states near the Drake Strait (the pictures are smoothed 
and normalized to unity). The wind speed data were collected from 
a research ship located at distances of no more than 100 km from 
the scenes. First of all, one can see that the pedestal is cut off. The 
fact is that the FFT program gives a coordinate grid according to 
pixel spacing, but not the SAR nominal resolution at given images 
Δx ×Δ0.SAR=5.2×7.7m2 whereas the pixel spacing is 
Δx× ∆y =4.7×5.1m2 [13]. Since the pixel spacing and the dimen-
sions of nominal resolution cell not coincide, the pedestal is not 
completely fit into the area allocated to it by the FFT program. 
That's why it turned out to be cutoff.
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It means that  the pedestal width doesn't depend (or, may be, depends quite a little) on the ocean 

surface state and  is determined by the nominal dimensions of SAR resolution cell.   

        In Fig. 11, the speckle noise pedestal is shown at level intervals indicated by different 
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2). Figure.7 shows the cross sections of the image spectrum before 
and after removal of the speckle noise pedestal [1].

Figure 7: Section of the initial image spectrum (curve 1) and of 
the cleaned one (curve 2).

As one can see, the processing allowed us to obtain a more pro-
nounced spectral maximum and to reveal the details of the image 
spectrum hidden by speckle noise. More examples of the applica-
tion of the method, this time when processing images of the area 
near the Drake Strait in the Southern Atlantic  are given below 
[10].

In Figure.8 and Figure.9 one such example of the complete remov-
al of a speckle noise pedestal is shown. These pictures demon-
strate the sections drawn through the spectral maximum of one 
of the images in two mutually perpendicular directions parallel to 
wave-number axes kx (Figure.8) and ky (Figure.9). Note that given 
image shows ocean waves running almost along the ground range 
direction. Аs a result, the maximum in Figure.9 turned out to be 
located almost at the zero of the ky- axis.

Аs already mentioned, the sum of last two terms in the spectral es-
timate (36) determines the speckle noise pedestal. It is desirable to 
have an idea of its shape in order to understand what distortions the 
pedestal introduces into the spectrum of the image of sea waves.

Figure 8: Sections of the spectra drawn parallel to-axis: the solid 
curve corresponds to the initial spectrum, the dotted curve corre-
sponds to the "cleaned" one (each curve is normalized by its own 
maximum).

Figure 9: Same as in Figure.1, but for sections drawn parallel to 
ky-axis.

In Figures.10 a,b,c the singled out pedestal is presented at three dif-
ferent ocean states near the Drake Strait (the pictures are smoothed 
and normalized to unity). The wind speed data were collected from 
a research ship located at distances of no more than 100 km from 
the scenes. First of all, one can see that the pedestal is cut off. The 
fact is that the FFT program gives a coordinate grid according to 
pixel spacing, but not the SAR nominal resolution at given images 
Δx ×Δ0.SAR=5.2×7.7m2 whereas the pixel spacing is 
Δx× ∆y =4.7×5.1m2 [13]. Since the pixel spacing and the dimen-
sions of nominal resolution cell not coincide, the pedestal is not 
completely fit into the area allocated to it by the FFT program. 
That's why it turned out to be cutoff.

Figure 10: The speckle noise pedestals normalized to unity at 
wind speed equal to 7.8 m/s (a), 10 m/s (b),and 21m/s(c).

      An example of the application of given method is shown in Fig.7.  A fragment of 10 × 10 
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2). Figure.7 shows the cross sections of the image spectrum before 
and after removal of the speckle noise pedestal [1].

Figure 7: Section of the initial image spectrum (curve 1) and of 
the cleaned one (curve 2).

As one can see, the processing allowed us to obtain a more pro-
nounced spectral maximum and to reveal the details of the image 
spectrum hidden by speckle noise. More examples of the applica-
tion of the method, this time when processing images of the area 
near the Drake Strait in the Southern Atlantic  are given below 
[10].

In Figure.8 and Figure.9 one such example of the complete remov-
al of a speckle noise pedestal is shown. These pictures demon-
strate the sections drawn through the spectral maximum of one 
of the images in two mutually perpendicular directions parallel to 
wave-number axes kx (Figure.8) and ky (Figure.9). Note that given 
image shows ocean waves running almost along the ground range 
direction. Аs a result, the maximum in Figure.9 turned out to be 
located almost at the zero of the ky- axis.

Аs already mentioned, the sum of last two terms in the spectral es-
timate (36) determines the speckle noise pedestal. It is desirable to 
have an idea of its shape in order to understand what distortions the 
pedestal introduces into the spectrum of the image of sea waves.

Figure 8: Sections of the spectra drawn parallel to-axis: the solid 
curve corresponds to the initial spectrum, the dotted curve corre-
sponds to the "cleaned" one (each curve is normalized by its own 
maximum).

Figure 9: Same as in Figure.1, but for sections drawn parallel to 
ky-axis.

In Figures.10 a,b,c the singled out pedestal is presented at three dif-
ferent ocean states near the Drake Strait (the pictures are smoothed 
and normalized to unity). The wind speed data were collected from 
a research ship located at distances of no more than 100 km from 
the scenes. First of all, one can see that the pedestal is cut off. The 
fact is that the FFT program gives a coordinate grid according to 
pixel spacing, but not the SAR nominal resolution at given images 
Δx ×Δ0.SAR=5.2×7.7m2 whereas the pixel spacing is 
Δx× ∆y =4.7×5.1m2 [13]. Since the pixel spacing and the dimen-
sions of nominal resolution cell not coincide, the pedestal is not 
completely fit into the area allocated to it by the FFT program. 
That's why it turned out to be cutoff.

Figure 10: The speckle noise pedestals normalized to unity at 
wind speed equal to 7.8 m/s (a), 10 m/s (b),and 21m/s(c).
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speckle noise pedestal. It is desirable to have an idea of its shape in order to understand what 

distortions the pedestal introduces into the spectrum of the image of sea waves.  
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One can see that the pedestal is asymmetrical and in average its 
shape is close to an elliptical cone with smoothed apex. If we con-
tinue the cut off surface to the zero plane, then, as is easy to see, 
the dimensions of the semi-axes of the ellipse lying at the base of 
the cone will be about  1/Δx and  1/Δx0.SAR along the ground range 
and azimuthal wave-number axes respectively.

It should be noted that three normalized pictures of speckle noise 
pedestal obtained at different ocean states turned out to be identi-
cal except for not completely smoothed small parts. It means that 
the pedestal width doesn't depend (or, may be, depends quite a 
little) on the ocean surface state and is determined by the nominal 
dimensions of SAR resolution cell.

In Figure 11, the speckle noise pedestal is shown at level intervals 
indicated by different colors. Here you can clearly see the ellipse 
at the base of the pedestal with semi-axes determined by the size 
of the nominal resolution cell SAR of ERS-2 ( single look regime).

Figure 11: The speckle noise pedestal from the SAR image of a 
part of the Gulf of Mexico (SAR data of the European satellite 
ERS-2 [1]).

Recall that given method of speckle noise removal is justified 
within the limits of applicability of the two-scale model of the sea 
surface, i.e. for specific intervals of wind speed (less than or about 
20 m/s) and incidence angles (approximately 150-750). Besides, 
the estimate (36) doesn't work in the case when a weak signal is 
drowned in thermal noise, so that in the image and in its spectrum 
there are no distinct signs of any wave-like structures.

Summary
We have shown that the image of the ocean roughness itself and 

speckle noise, being the results of the same imaging process, can 
be described in the framework of a unified theory. It has been 
shown theoretically and with specific examples that, as a result 
of relatively simple processing, a speckle-noise pedestal can be 
singled out and completely removed from spectrum of SAR image 
of the ocean.
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Summary
We have shown that the image of the ocean roughness itself and 

speckle noise, being the results of the same imaging process, can 
be described in the framework of a unified theory. It has been 
shown theoretically and with specific examples that, as a result 
of relatively simple processing, a speckle-noise pedestal can be 
singled out and completely removed from spectrum of SAR image 
of the ocean.

References
1. Kanevsky MB (2008) Radar imaging of the ocean waves: El-

sevier, Oxford-Amsterdam 2008: 208.
2. Kanevsky MB (2004) Theory of radar imaging of the ocean 

surface (in Russian): IAP RAS Nizhny Novgorod 1993: 123.
3. Alpers W, KHasselmann (1982) Spectral signal to clutter and 

thermal noise properties of ocean wave imaging synthetic ap-
erture radars: Int J Remote Sensing3: 423-446.

4. Alpers WR, CLRufenach (1979) The effect of orbital motions 
on synthetic aperture radar imagery of ocean waves. IEEE 
Trans Antennas Prop27: 685-690.

5. Hasselmann K, SHasselmann (1991) On the nonlinear map-
ping of an ocean wavespectrum into a synthetic aperture radar 
image spectrum and its inversion. J Geophys Res96: 10713-
10729.

6. Passaro M, SDinardo, GDQuartly,  Snaith Helen M, Ben-
veniste Jérôme, et al. (2016) Cross-calibrating ALES Envisat 
and CryoSat-2 Delay–Doppler: A coastal altimetry study in 
the Indonesian Seas. Adv Space Res 58: 289-303.

7. Kanevsky MB (1993) On the theory of SAR ocean wave im-
aging. IEEE Trans on Geosci and Remote Sens31: 1031-1035.

8. Alpers WR, Ross DB, CLRufenach (1981) On the detectabili-
ty of ocean surface waves by real and synthetic aperture radar. 
J Geophys Res86: 6481-6498.

9. KanevskyMBNowdoessyntheticapertureradarseetheoceans-
urface?(DOI:10.13140/RG.2.2.29730.79045)

10. Kanevsky MB, MAPanfilova (2019) Speckle noise pedes-
tal in the spectra of SAR imagery of the ocean. Conference 
OCEANS 17-20 June 2019 Marseille, France.

11. Rytov SM, YuAKravtsov, VITatarskii (1989) Principles of 
Statistical Radio Physics. Wave propagation trough the ran-
dom media. Berlin, Heidelberg: Springer Verlag 1989: 198.

12. Marple SL, Jr (1987) Digital Spectral Analysis with applica-
tions. Prentice-Hall Inc., Englewood Cliffs, NJ07632.

13. Radarsat-2 Product Description, RN-SP-52-1238,isuue 1/3: 
March 21, 2016:1-17.

by the size of the nominal resolution cell SAR of ERS-2 (                   single look 

regime). 

                   
   Fig.11. The speckle noise pedestal from the SAR image of a part of the Gulf of Mexico (SAR data of 
the European satellite ERS-2 [Kanevsky 2008]). 
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