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Abstract 
Melanoma is considered to be the most aggressive form of skin can- cer. Due to the similar shape of malignant and benign 
cancerous lesions, doctors spend considerably more time when diagnosing these findings. At present, the evaluation of malig-
nancy is performed primarily by invasive histological examination of the suspicious lesion. Developing an accurate classifier 
for early and efficient detection can minimize and monitor the harmful effects of skin cancer and increase patient survival 
rates. This paper proposes a multi-class classification task using the CoAtNet architecture, a hybrid model that combines the 
depthwise convolution matrix operation of traditional convolutional neural networks with the strengths of Transformer mod-
els and self-attention mechanics to achieve better gen- eralization and capacity. The proposed multi-class classifier achieves 
an overall precision of 0.901, recall 0.895, and AP 0.923, indicating high per- formance compared to other state-of-the-art 
networks.
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Introduction
Artificial intelligence (AI) is emerging to assist healthcare profes-
sionals with routine tasks such as removing noise, analysing imag-
es or reading medical re- ports [1]. In deep learning, currently the 
most widely adopted AI technique, computer algorithms learn us-
ing backpropagation to predict outcomes based on large data sets 
[2]. The efficiency of these methods has improved dramatically in 
recent years and can now be found in areas ranging from comput-
er-aided diagnostics (CADx) to online shopping to autonomous 
vehicles. However, deep learning tools also raise troubling ques-
tions because they solve problems in ways that humans cannot al-
ways observe [3, 4]. There is a growing call among researchers 
and institutions to clarify the basis on which artificial intelligence 
makes decisions [5-7].

The US Food and Drug Administration (FDA) recently outlined 
ten guiding principles that should be the cornerstone for the de-
velopment of clinically applicable artificial intelligence [8]. These 
guiding principles can help support the introduction of objective, 
safe and effective medical devices to the market. Beyond monitor-
ing or defining the correct use, the core principles include many 
practices that have proven successful in other sectors; however, the 
greatest emphasis is on the so-called explain ability of predictions 
(XAI, explain- able artificial intelligence), which limits the risk of 
clinical bias [9]. 

Background
One of the most common methods used to identify melanoma is 
the ABCD rule, which was introduced in 1985 [10]. The acronym 
stands for Asymmetry, Borderline Irregularity, Changes in Color 
and Diameter. In 2004, the letter E was added to the ABCD acro-
nym to stand for Evolving [11]. Each criterion has certain features 
that are recognized to distinguish between benign and malignant 
melanoma. In addition, the method failed to recognize certain ma-
lignant nevi in their early stages [12, 13].

Melanoma is less common than other types, but it is the most dan-
gerous form of skin cancer because it can spread quickly to oth-
er parts of the body [14]. It results from neoplastic proliferation 
of melanocytes. Malignant melanoma predominantly affects the 
skin, but can also affect eyes, ears, leptomeninges, and the mucous 
membranes of the mouth or genital tract [15]. The incidence of 
melanoma is increasing, affecting mainly the light skin population 
[16, 17]. The pathophysiology of melanoma development is not 
yet clearly understood [18]. Multiple pathogenetic mechanisms of 
melanoma development are hypothesized. Melanoma develops not 
only on sun-exposed skin, where UV radiation is the main patho-
genetic factor, but also in body parts that are relatively protected.
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Figure 1: The delay-adjusted incidence and observed incidence of 
melanoma by age and gender in the United States between 1975 
and 2011.

From radiation [14, 19]. When melanoma is suspected, it is im-
portant to biopsy the suspicious lesion on the skin or mucosa (ex-
cision with a 1-3 mm margin of tissue) and subsequent histological 
examination [15].

Computational Approach
CADx approaches based on deep learning and computer vision 
may represent an effective and, above all, affordable alternative 
to invasive histological examination [20]. Applications based on 
convolutional neural networks (CNN) show promising results in 
medical image detection, classification and segmentation [21, 22]. 
High accuracy is now achieved in interstitial lung disease classi-
fication or in the detection of colorectal adenomas and neoplastic 
lesions [23, 24]. Many attempts have been made in the literature 
to improve the performance of CNN, either by using optimization 
methods to select significant features or by using image-prepro-
cessing techniques before the classification step [25]. 

Proposed Model Architecture
CoAtNet offers a unique combination of depth wise convolutions 
(1) and self-attention (2) to allow fast and accurate advancement 
for large-scale image recognition and classification. The proposed 
architecture is based on the observation that CNNs tend to exhibit 
improved generalization (i.e., the difference in performance be-
tween training and testing) due to their inductive bias, whereas 
self-attention models tend to show greater capacity (i.e., the ability 
to fit large-scale training data) [26].

Figure 2: Overview of the used CoAtNet model.

(1) Is a type of convolution operation where we use one convolu-
tion filter for each input channel [27]. Unlike spatially separable 
convolutions, depth wise convolutions work with kernels that can-
not be split [28]. In a conventional 2D convolution performed over 
multiple input channels, the filter is as deep as the input and allows 
us to arbitrarily mix channels to generate individual features in the 
output [29]. In contrast, depth wise convolutions maintain each 
channel separately. We can express this with the formula below:

(2) has become widespread technique adopted in natural language 
processing (NLP), with the fully-attentional Transformer model 
having largely replaced recurrent neural networks (RNN) and be-
ing used in state-of-the-art language understanding models such 
as GPT, BERT, and XLNet. This technique allows the receptive 
field to be entire spatial locations, and computes weights based 

on renormalized pairwise similarity between pairs: if each pixel 
in the feature map is treated as a random variable and paring co-
variance’s are calculated, the value of each predicted pixel can be 
enhanced or weakened based on its similarity to other pixels in the 
image. The participating target pixels are the weighted sum of the 
values of all pixels, where the weights represent the correlation 
between each pixel and the target pixel. This can be represented by 
the following formula:

Dataset
The development of robust CADx systems for the automated di-
agnosis of skin lesions is hindered by the small size of clinically 
evaluated dermatoscopic image datasets available [30]. We assem-

(1) (2)
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bled dermatoscopic images from various publicly available repos-
itories while maintaining a representation of different populations, 
acquired and stored by different modalities.

The final dataset consists of 6,826 dermatoscopic images, repre-
sentative of all important diagnostic categories in the field of var-
ious lesions: actinic keratosis, basal cell carcinoma, benign kera-
tosis-like lesions, dermatofibroma, melanoma, nevus, and vascular 
lesions (angiomas, angiokeratomas, pyogenic granulomas, and 

hemorrhages). For a fraction of the images ( 50%), the ground 
truth was determined by histopathological examination, while in 
the remaining images the finding was decided by expert consensus 
or confirmed by in vivo confocal microscopy. A total of 300 imag-
es were extracted from the dataset as a test set (100 melanoma, 100 
non-melanoma skin cancer, 100 benign skin lesions). The remain-
ing 6,526 dermatology images were split between the training and 
validation set in an 80/20 ratio.

Figure 3: Examples of melanoma at different stages represented in the training set.

Data Augmentation
Data augmentation increases the size of the input training data 
along with the regularization of the model, thus improving the gen-
eralization of the training model [31]. It also helps to create new 
train examples by randomly applying different transformations to 

the available dataset to reflect the noise in the real data [32, 33]. In 
this study, we applied transformations involving random rotations 
(<= 0.25), modifications in contrast (0.9-1.1) and brightness (0.9-
1.1), zoom (<= 0.25), and saturation (0.9-1.1). The extension of 
validation set was not investigated.

Table 1: CoAtNet Classifier Performance on the Used Dataset.

Class No. of images Precision Recall AP
Average model performance 6,826 0.901 0.895 0.923
Actinic keratosis 332 0.786 0.821 0.772
Basal cell carcinoma 514 0.880 0.922 0.919
Benign keratosis-like lesion 1,099 0.894 0.877 0.903
Dermatofibroma 115 0.875 0.913 0.944
Melanoma 1,563 0.870 0.875 0.908
Nevus 3,061 0.935 0.913 0.958
Vascular lesions 142 1.000 0.931 0.995

Classifier Performance
The classification performance of the proposed model for multi-
class problem  was evaluated for each component and the average 
classification performance of the model was calculated. Table 1 
includes the precision (3) and recall (4) calculated based on the 
following equations below:

Precision = TP/ TP+FP

Recall = TP/(TP+FN)

For specific experiments and given that there is a class imbalance 
problem, the most reliable metric is the model average accuracy 

metric, while given that the accuracy is high, the second most im-
portant metric is the recall metric for individual classes [34]. This 
is due to the importance of correctly identifying true cases that are 
malignant. AP (Average Precision) (5) summarizes a precision-re-
call curve as the weighted mean of precisions achieved at each 
threshold, with the increase in recall from the previous threshold 
used as the weight [35]:

AP = ∑n (Rn-Rn-1)Pn 

Visualizing model predictions
Despite the classifier showing impressive results on standard met-
rics, from a clinical perspective, it is important for us to determine 

(3)

(4)
(5)
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whether features relevant to skin lesion detection and analysis 
were extracted during CoAtNet training using backpropagation 
[36]. As mentioned in the chapter 1 Introduction, medical devices 
should not serve as "black boxes" but need to provide additional 
information about how the model arrived at its predictions.

Gradient- weighted Class Activation Mapping (Grad-CAM) is a 

method that uses gradient extraction from the last convolutional 
layer of a neural network to indicate the pixels that contribute most 
to the model output and the predicted probability of an image be-
longing to a predefined class [37, 38, 6, 7]. The resulting activation 
map can be plotted over the original image and can be interpret-
ed as a visual tool to identify the regions that the model predicts 
whether an image belongs to a particular class [38, 39].

Figure 4: Grad-CAM Activation Heat map Visualization from CoAtNet Model on Real-World Test Data.

Model Performance on Test Data
The precision-recall curve shows the trade-off between precision 
and recall for different thresholds [40]. A high area under the curve 
rep- resents both high recall and high precision, with high preci-
sion associated with low False Positive cases and high recall as-

sociated with low False Negative cases [41]. The combination of 
the Figure 4 and Figure 5 for the test set suggests that the model 
learned appropriate features for classification across malignant and 
benign lesions from a limited dataset.

Figure 5: (a) Precision-Recall curve for Melanoma class. (b) Confusion matrix showing the results on the compiled 3-class test set.
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Conclusions
In this study, we classified nine skin lesions with a particular focus 
on melanoma, which, although not as prevalent, is responsible for 
three-quarters of skin cancer related deaths. The classification of 
melanoma was performed using no lesion segmentation or com-
plex image preprocessing. The proposed method is based on the 
state-of-the-art CoAtNet architecture, which incorporates the ad-
vantages of depth wise convolution and self-attention mechanism. 
Considering the necessity of large-scale data for efficient training, 
we applied data augmentation techniques to the existing dataset. 
Evidence from the exploratory analysis shows that the proposed 
approach significantly outperforms state-of-the-art models by 
achieving model average precision of 0.901, recall 0.895 and AP 
0.923.
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