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Research Article

1Argelander Institut für Astronomie, Universität Bonn, 
Auf dem Huegel 71, 53121 Bonn (Germany): 

2Deutsches Zentrum für Luft- und Raumfahrt (DLR), 
Königswinterer Strasse 522-524, 53227 Bonn (Germany)

Hans J. Fahr1* and M. Heyl2

*Corresponding author
Hans J.Fahr, Argelander Institute for Astronomy, University of Bonn, Auf dem 
Huegel 71, 53121 Bonn Germany. 

Submitted: 09 Sep 2022; Accepted: 14 Sep 2022; Published:  20 Sep 2022

Adv Theo Comp Phy, 2022

Citation:Fahr, H. J., Heyl, M. (2022). Variable gravity in an expanding universe: Kepler‘s problem with cosmic relevance! Adv 
Theo Comp Phy, 5(3), 597-600.

Advances in Theoretical & Computational Physics
ISSN: 2639-0108

Abstract
Most recent observations from the James Webb space telescope (JWST) do obviously show by highly resolved infrared obser-
vations of highest sensitivity that structure formation in the universe into forms of early galaxies, star forming regions and 
planetary systems has already taken place at cosmic times less than half a Gigayear after the Big-Bang. This is taken as a big 
surprise by the whole astronomic community, though it nevertheless might have been predictable from some basic theoretical 
considerations concerning the basic structure of the universe and its forminvariant laws. A little bit an ironic question could 
perhaps be asked: Would Isaac Newton when being knocked by an apple falling down on him from his nearby apple tree have 
invented the same gravitational law, when this would have happened one Megayear before, or one Megayear after, Newton‘s 
real historic time? In other words, the Keplerian laws, derivable with the help of Newton‘s law, would they reflect the changes 
in the cosmic times? And if yes, - how would they do it? In this article we conclude that in fact Newton‘s pendulum would 
represent a cosmic clock, unless Newton‘s gravitational constant varies with the scale of the universe.

Why at all should collapses of cosmic masses happen in ex-
panding universes?
In principle it is a problem hardly understandable that cosmic 
matter with, - as generally assumed -, an initially perfectly uni-
form distribution in space may at all have undergone structure 
formation by means of local, gravitationally induced collapses 
into large local mass units? In an expanding universe the ini-
tially widely and uniformly distributed cosmic matter must only 
be subject to the expansion into a permanently growing cosmic 
space connected with permanently decreasing cosmic mass den-
sities. The opposite can only be possible, if the velocity of a 
gravitationally induced local structuring process is larger than 
the general expansion velocity. The problem thus evidently is 
and must be connected with the specific form of the actual ex-
pansion dynamics of the whole universe. To say it in simple 
words: If the universe is expanding too fast, then this should not 
allow for any structure formation (see Fahr and Heyl, 2022)!

Therefore a serious study of this problem certainly is and must 
be based on a well founded theory of the cosmic expansion. In 
a static universe structure formation runs along the lines that as-
tronomers have developed since long ago for the static space 
(e.g. Jeans, 1909, 1929, or later see e.g. Fahr and Willerding, 
1998). Processes of structure formation of course are very much 
different in the expanding universe, because then structure for-

mation definitely will depend on the specific form of the prevail-
ing cosmic expansion (e.g. decelerated, accelerated or coasting 
expansion etc.).

To best explain the SN 1a luminosities Perlmutter et al. (1998), 
Schmidt et al.(1998), or Riess et al. (1998) have prefered an ac-
celerated expansion of the universe connected with the action of 
a constant vacuum energy density (Einstein, 1917, Peebles and 
Ratra, 2003, Fahr, 2004, Kragh and Overduin, 2014, Fahr and 
Heyl, 2014), however, there are more recent attempts by Casa-
do (2011) and Casado and Jou (2013) showing that a "coasting, 
non-accelerated universe" can equally well explain these super-
novae luminosities. In our following considerations we shall 
consider first here - mainly for the simplifying mathematical 
reasons - the case of a "coasting expansion" (see e.g. Kolb, 1989, 
Gehlaut et al., 2003, Dev et al., 2001, Fahr and Heyl, 2020). This 
case in fact must be expected to prevail, if the universe expands 
under the form of thermodynamic and gravodynamic action of 
vacuum pressure, as shown by Fahr (2022).

If then as our working basis such a "coasting universe" may be 
assumed, like given in the case when ρΛ~R-2 (ϱΛ denoting the 
mass density equivalent of the vacuum energy, R denoting the 
scale of the universe , see e.g. Fahr, 2022) and when vacuum 
energy in the later phases of cosmic expansion has become the 
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dominant ingredient to the cosmic mass density ρΛ ≫ ρb, ρd, ρv 
(indices b, d, v standing for baryons, dark matter, and photons, 
respectively) and to the relativistic energy-momentum tensor, 
then one unavoidably finds:

which in fact because of R = 0 means and necessarily implies: a 
"coasting expansion" of the universe! Then consequently a Hub-
ble parameter must be expected that falls off with the cosmic 
scale R like:

The interesting point thus is that the Hubble parameter in course 
of the coasting cosmic expansion permanently decreases like 
H~R-1, and consequently the inverse of it, the expansion time 
period τex = 1/H(R), permanently grows proportional to R!

Creation of gravitational collapse centers during the cosmic 
expansion
Let us ask here under which conditions stars like our Sun can 
have formed over the epochs of cosmic expansion, in order to 
clarify whether or not solar systems over the cosmic epochs have 
had different parameters and consequently have looked differ-
ent. And let us start assuming a specific cosmic expansion state 
characterized by the actual cosmic scale R = R0 and the pre-
vailing homogeneous cosmic mass density ϱ = ϱ(R0) = ϱ0 of 
this epoch. Let us further assume that in this cosmic phase by a 
locally induced gravitational collapse process a mass center with 
a central mass M, just equal to the solar mass M0, is formed from 
all the matter originally uniformly distributed inside the origi-
nating vacuole of a linear dimension D = D(R), i.e. we obtain 
the following request:

This makes evident that the actual linear dimension D = D(R) 
forming one solar mass unit M = M0 in the expanding universe 
is given by:

which tells us that the characteristic "solar mass"- collaps di-
mension D0(R) is just proportional to the cosmic scale R, i.e. 
increases linearily with the scale of the universe. Hereby it has 
tacitly been assumed that the universe has a Euclidean geometry 
with a curvature parameter of k = 0.

Now let us further assume for reasons given in detail by Fahr 
and Heyl (2022) but also in the beginning of this article, to have 
a coasting expansion of the universe with the property as ex-
plained that the Hubble constant is given by H(R) = R/R = H0 . 
(R0/R). Then producing a mass unit of one solar mass M0 in the 
center of a sphere with radius D(R) might mean that any piece 
of matter m at the outer surface of this sphere now is attracted in 
Newton‘s sense by the gravitational field of the central mass M0, 
but at the same time is subject to the general coasting expansion 

dynamics leading to its differential Hubble drift of vH = D(R) . 
H(R) with respect to the mass center.

Looking now A) for the kinetic energy Ekin with respect to the 
mass center, and B) for the gravitational binding energy Ebind of 
this mass m to the central mass M0 one finds:

A)

and

B)    

with G denoting Newton‘s gravitational constant. One could 
then conclude that over all the periods of the whole cosmic ex-
pansion, i.e. over all cosmic eons, the same Kepler problem (i.e. 
motion of a planet around the Sun) would be appearing, "if!" 
the ratio ϵ of kinetic over binding energy would have turned out 
from this consideration as a constant, i.e. if one would find ϵ  = 
const!, instead of what one in fact numerically obtains:

As one can see the ratio ϵ obtained above turns out to be a linear 
function of the scale R of the universe meaning that the Kepler 
problem all the time in the universe would change its character 
with the cosmic scale R, making for instance the "Kepler pen-
dulum" (with the specific acceleration g(R) = G . M0/D2(R) at a 
distance D(R) from a solar mass M0) something like "a cosmic 
clock" with a cosmic oscillation period of

i.e. delivering a real "linear" cosmic clock τ(R)~R with G = G(R) 
= G0 . (R/R0).

The more interesting point, however, finally is that this above 
ratio ϵ would in fact be! A cosmologic constant

if the Newton gravitational coupling coefficient G seen over the 
cosmic eons would not be a constant, but instead would scale 
with R according to the formula G = G(R) = G0 . (R/R0)! Then 
Newton‘s dream induced by the falling apple hitting him could 
simply not be seen as a casual event that happened just at New-
ton‘s epoch (~1660nC.), but as an event with a deep, fundamen-
tal cosmologic truth of enduring validity, - and, all the more, 
Kepler‘s laws would attain the rank of "cosmologically relevant 
laws”!!! 

evidently is and must be connected with the specific form of the actual expansion
dynamics of the whole universe. To say it in simple words: If the universe is expanding
too fast, then this should not allow for any structure formation (see Fahr and Heyl, 2022)!

Therefore a serious study of this problem certainly is and must be based on a well
founded theory of the cosmic expansion. In a static universe structure formation runs
along the lines that astronomers have developed since long ago for the static space (
e.g. Jeans, 1909, 1929, or later see e.g. Fahr and Willerding, 1998). Processes of
structure formation of course are very much different in the expanding universe,
because then structure formation definitely will depend on the specific form of the
prevailing cosmic expansion (e.g. decelerated, accelerated or coasting expansion etc.).

To best explain the SN 1a luminosities Perlmutter et al. (1998), Schmidt et al.(1998),
or Riess et al. (1998) have prefered an accelerated expansion of the universe connected
with the action of a constant vacuum energy density (Einstein, 1917, Peebles and Ratra,
2003, Fahr, 2004, Kragh and Overduin, 2014, Fahr and Heyl, 2014), however, there are
more recent attempts by Casado (2011) and Casado and Jou (2013) showing that a
"coasting, non-accelerated universe" can equally well explain these supernovae
luminosities. In our following considerations we shall consider first here - mainly for the
simplifying mathematical reasons - the case of a "coasting expansion" (see e.g. Kolb,
1989, Gehlaut et al., 2003, Dev et al., 2001, Fahr and Heyl, 2020). This case in fact
must be expected to prevail, if the universe expands under the form of thermodynamic
and gravodynamic action of vacuum pressure, as shown by Fahr (2022).

If then as our working basis such a "coasting universe" may be assumed, like given in
the case when ~R2 ( denoting the mass density equivalent of the vacuum energy,
R denoting the scale of the universe , see e.g. Fahr, 2022) and when vacuum energy in
the later phases of cosmic expansion has become the dominant ingredient to the cosmic
mass density   b,d,, (indices b,d, standing for baryons, dark matter, and
photons, respectively) and to the relativistic energy-momentum tensor, then one
unavoidably finds:

R  dR
dt  const   #   

which in fact because of R  0 means and necessarily implies: a "coasting expansion"
of the universe! Then consequently a Hubble parameter must be expected that falls off
with the cosmic scale R like :

HR  R
R  H0   R0

R    #   

The interesting point thus is that the Hubble parameter in course of the coasting
cosmic expansion permanently decreases like H~R1, and consequently the inverse of it,
the expansion time period ex  1/HR, permanently grows proportional to R!
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Let us ask here under which conditions stars like our Sun can have formed over the
epochs of cosmic expansion, in order to clarify whether or not solar systems over the
cosmic epochs have had different parameters and consequently have looked different.
And let us start assuming a specific cosmic expansion state characterized by the actual
cosmic scale R  R0 and the prevailing homogeneous cosmic mass density
  R0  0 of this epoch. Let us further assume that in this cosmic phase by a locally
induced gravitational collapse process a mass center with a central mass M , just equal
to the solar mass M, is formed from all the matter originally uniformly distributed inside
the originating vacuole of a linear dimension D  DR , i.e. we obtain the following
request:

4
3 DR3R  4

3 DR3R0
R0
R 3  M

This makes evident that the actual linear dimension D  DR forming one solar mass
unit M  M in the expanding universe is given by:

DR  R   M
4
3 R0

30
1/3

which tells us that the characteristic "solar mass"- collaps dimension DR is just
proportional to the cosmic scale R, i.e. increases linearily with the scale of the universe.
Hereby it has tacitly been assumed that the universe has a Euclidean geometry with a
curvature parameter of k  0.

Now let us further assume for reasons given in detail by Fahr and Heyl (2022) but also
in the beginning of this article, to have a coasting expansion of the universe with the
property as explained that the Hubble constant is given by HR  R /R  H0  R0/R.
Then producing a mass unit of one solar mass M in the center of a sphere with radius
DR might mean that any piece of matter m at the outer surface of this sphere now is
attracted in Newton‘s sense by the gravitational field of the central mass M, but at the
same time is subject to the general coasting expansion dynamics leading to its
differential Hubble drift of vH  DR  HR with respect to the mass center.

Looking now A) for the kinetic energy Ekin with respect to the mass center, and B) for
the gravitational binding energy Ebind of this mass m to the central mass M one finds:

A)

Ekin  1
2 m  DR  HR2

and:

B)

Ebind  GmM
DR

Let us ask here under which conditions stars like our Sun can have formed over the
epochs of cosmic expansion, in order to clarify whether or not solar systems over the
cosmic epochs have had different parameters and consequently have looked different.
And let us start assuming a specific cosmic expansion state characterized by the actual
cosmic scale R  R0 and the prevailing homogeneous cosmic mass density
  R0  0 of this epoch. Let us further assume that in this cosmic phase by a locally
induced gravitational collapse process a mass center with a central mass M , just equal
to the solar mass M, is formed from all the matter originally uniformly distributed inside
the originating vacuole of a linear dimension D  DR , i.e. we obtain the following
request:

4
3 DR3R  4

3 DR3R0
R0
R 3  M

This makes evident that the actual linear dimension D  DR forming one solar mass
unit M  M in the expanding universe is given by:

DR  R   M
4
3 R0

30
1/3

which tells us that the characteristic "solar mass"- collaps dimension DR is just
proportional to the cosmic scale R, i.e. increases linearily with the scale of the universe.
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same time is subject to the general coasting expansion dynamics leading to its
differential Hubble drift of vH  DR  HR with respect to the mass center.
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the gravitational binding energy Ebind of this mass m to the central mass M one finds:

A)

Ekin  1
2 m  DR  HR2

and:

B)

Ebind  GmM
DR

with G denoting Newton‘s gravitational constant. One could then conclude that over all
the periods of the whole cosmic expansion, i.e. over all cosmic eons, the same Kepler
problem (i.e. motion of a planet around the Sun) would be appearing, "if!" the ratio  of
kinetic over binding energy would have turned out from this consideration as a constant,
i.e. if one would find   const!, instead of what one in fact numerically obtains:

 
1
2 m  DR  HR2

GmM
DR


1
2 DR2  HR2

GM
DR

 DR3HR2
2GM



R3   M
4
3 R0

30
H0

2  R0/R2

2GM

R  

H0
2

4
3 R00



2G
As one can see the ratio  obtained above turns out to be a linear function of the scale

R of the universe meaning that the Kepler problem all the time in the universe would
change its character with the cosmic scale R , making for instance the "Kepler
pendulum" (with the specific acceleration gR  G M/D2R at a distance DR from a
solar mass M something like "a cosmic clock" with a cosmic oscillation period of

R  2 LR/gR  2 DR/gR  2 D3R/GM 

2 R3 M
4
3 R0

30
/GM  2R R

GM

i.e. delivering a real "linear" cosmic clock R~R with G  GR  G0  R/R0 .

The more interesting point, however, finally is that this above ratio  would in fact be! a
cosmologic constant

0 
R0  

H0
2

4
3 R00



2G0

, if the Newton gravitational coupling coefficient G seen over the cosmic eons would
not be a constant, but instead would scale with R according to the formula
G  GR  G0  R/R0! Then Newton‘s dream induced by the falling apple hitting him
could simply not be seen as a casual event that happened just at Newton‘s epoch
(~1660nC.), but as an event with a deep, fundamental cosmologic truth of enduring
validity, - and, all the more, Kepler‘s laws would attain the rank of "cosmologically
relevant laws" !!!

Conclusions
On the other hand at the end of this article it must perhaps appear as a highly

provocative assumption that Newton‘s gravitational constant depends on the scale
R  Rt of the universe and thereby on the cosmic time t . Actually this statement
reminds one to similar Mach´ ian requests that inertial masses m of all massive
elementary particles are not genuinely fixed as "nature‘s preselected constants", but also
vary with the constellation of cosmic space hosting them, and thus with the scale
R  Rt of the universe (for this idea see: Mach, 1883, Thirring, 1918, Sciama, 1953,
Barbour and Pfister, 1995, Fahr, 2012).

A surprisingly nice support for Mach‘s idea was published by Thirring (1918) who
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As one can see the ratio  obtained above turns out to be a linear function of the scale

R of the universe meaning that the Kepler problem all the time in the universe would
change its character with the cosmic scale R , making for instance the "Kepler
pendulum" (with the specific acceleration gR  G M/D2R at a distance DR from a
solar mass M something like "a cosmic clock" with a cosmic oscillation period of

R  2 LR/gR  2 DR/gR  2 D3R/GM 

2 R3 M
4
3 R0

30
/GM  2R R

GM

i.e. delivering a real "linear" cosmic clock R~R with G  GR  G0  R/R0 .

The more interesting point, however, finally is that this above ratio  would in fact be! a
cosmologic constant

0 
R0  

H0
2

4
3 R00



2G0

, if the Newton gravitational coupling coefficient G seen over the cosmic eons would
not be a constant, but instead would scale with R according to the formula
G  GR  G0  R/R0! Then Newton‘s dream induced by the falling apple hitting him
could simply not be seen as a casual event that happened just at Newton‘s epoch
(~1660nC.), but as an event with a deep, fundamental cosmologic truth of enduring
validity, - and, all the more, Kepler‘s laws would attain the rank of "cosmologically
relevant laws" !!!

Conclusions
On the other hand at the end of this article it must perhaps appear as a highly

provocative assumption that Newton‘s gravitational constant depends on the scale
R  Rt of the universe and thereby on the cosmic time t . Actually this statement
reminds one to similar Mach´ ian requests that inertial masses m of all massive
elementary particles are not genuinely fixed as "nature‘s preselected constants", but also
vary with the constellation of cosmic space hosting them, and thus with the scale
R  Rt of the universe (for this idea see: Mach, 1883, Thirring, 1918, Sciama, 1953,
Barbour and Pfister, 1995, Fahr, 2012).

A surprisingly nice support for Mach‘s idea was published by Thirring (1918) who

with G denoting Newton‘s gravitational constant. One could then conclude that over all
the periods of the whole cosmic expansion, i.e. over all cosmic eons, the same Kepler
problem (i.e. motion of a planet around the Sun) would be appearing, "if!" the ratio  of
kinetic over binding energy would have turned out from this consideration as a constant,
i.e. if one would find   const!, instead of what one in fact numerically obtains:

 
1
2 m  DR  HR2

GmM
DR


1
2 DR2  HR2

GM
DR

 DR3HR2
2GM



R3   M
4
3 R0

30
H0

2  R0/R2

2GM

R  

H0
2

4
3 R00



2G
As one can see the ratio  obtained above turns out to be a linear function of the scale

R of the universe meaning that the Kepler problem all the time in the universe would
change its character with the cosmic scale R , making for instance the "Kepler
pendulum" (with the specific acceleration gR  G M/D2R at a distance DR from a
solar mass M something like "a cosmic clock" with a cosmic oscillation period of

R  2 LR/gR  2 DR/gR  2 D3R/GM 

2 R3 M
4
3 R0

30
/GM  2R R

GM

i.e. delivering a real "linear" cosmic clock R~R with G  GR  G0  R/R0 .

The more interesting point, however, finally is that this above ratio  would in fact be! a
cosmologic constant

0 
R0  

H0
2

4
3 R00



2G0

, if the Newton gravitational coupling coefficient G seen over the cosmic eons would
not be a constant, but instead would scale with R according to the formula
G  GR  G0  R/R0! Then Newton‘s dream induced by the falling apple hitting him
could simply not be seen as a casual event that happened just at Newton‘s epoch
(~1660nC.), but as an event with a deep, fundamental cosmologic truth of enduring
validity, - and, all the more, Kepler‘s laws would attain the rank of "cosmologically
relevant laws" !!!

Conclusions
On the other hand at the end of this article it must perhaps appear as a highly

provocative assumption that Newton‘s gravitational constant depends on the scale
R  Rt of the universe and thereby on the cosmic time t . Actually this statement
reminds one to similar Mach´ ian requests that inertial masses m of all massive
elementary particles are not genuinely fixed as "nature‘s preselected constants", but also
vary with the constellation of cosmic space hosting them, and thus with the scale
R  Rt of the universe (for this idea see: Mach, 1883, Thirring, 1918, Sciama, 1953,
Barbour and Pfister, 1995, Fahr, 2012).

A surprisingly nice support for Mach‘s idea was published by Thirring (1918) who

      Volume 5 | Issue 3 | 598

..

.



Adv Theo Comp Phy, 2022

Conclusions
On the other hand at the end of this article it must perhaps appear 
as a highly provocative assumption that Newton‘s gravitational 
constant depends on the scale R = R(t) of the universe and there-
by on the cosmic time t. Actually this statement reminds one to 
similar Mach´ ian requests that inertial masses m of all massive 
elementary particles are not genuinely fixed as "nature‘s prese-
lected constants", but also vary with the constellation of cosmic 
space hosting them, and thus with the scale R = R(t) of the uni-
verse (for this idea see: Mach, 1883, Thirring, 1918, Sciama, 
1953, Barbour and Pfister, 1995, Fahr, 2012). 

A surprisingly nice support for Mach‘s idea was published by 
Thirring (1918) who compared the effects of centrifugal forc-
es of the rotating Earth on the ocean water level treated in two 
physically identical views - A) the Earth rotating with respect to 
the universe at rest, and B) the Earth at rest with a solidly count-
er-rotating universe around. As he could demonstrate with gen-
eral relativistic approaches the centrifugal forces in these two 
cases are related by the following equation:

where the factor X is calculated to be equal to:

with Mu and R denoting the total mass and the scale of the uni-
verse. Requiring now physical identity between the two cases 
A) and B) would enforce the value X to be equal to 1, with the 
important implication:

This request, however, seems really to require a Machìan kind 
of behaviour of the total mass of the universe Mu with the scale 
R, since only when  Mu would be proportional to R, the above 
relation could be numerically fulfilled.

On the other hand it is interesting to recognize that we would 
not need a Machìan behaviour of the mass of the universe, if the 
already above discussed requirement of G~R would be fulfilled. 
The question therefore is, do we prefer to rely on Mach‘s prin-
ciple, or do we prefer to accept the linear increase of Newton‘s 
coupling constant G?

In fact, to mention the truth, the concept behind the quantity " 
Mu" , i.e. the mass of the universe" , is controversial and must 
be precisely defined as "the simultaneous mass of the universe" 
according to a definition already worked out by Tolman (1934), 
but never recognizable by any physical detector. Not including 
the mass equivalents of the thermal motions it has been shown 
by Fahr and Heyl (2006) that Tolman‘s expression can be evalu-
ated into the following form:

where the function exp[λ(r)] is given by;

In the present, prefered view of a coasting universe with H = H0 
0 (R0/R) and (HR/c)2 ≪ c2 one thus can evaluate the upper expres-
sion by (see Fahr and Heyl, 2006):

which looks as if a Machìan universe would be requested with 
Mu ~ Ru, but with the already above discussed scale-depen-
dence of the gravitational constant by G = G0 0 (R/R0) this would 
in fact bring back a universe with a constant total mass Mu as 
always expected by most cosmologists. This may perhaps give 
some support for the, in a first view - provocative assumption - 
of a scale-variable G.
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compared the effects of centrifugal forces of the rotating Earth on the ocean water level
treated in two physically identical views - A) the Earth rotating with respect to the
universe at rest, and B) the Earth at rest with a solidly counter-rotating universe around.
As he could demonstrate with general relativistic approaches the centrifugal forces in
these two cases are related by the following equation:

KA  X  KB
where the factor X is calculated to be equal to:

X  4GMU
3c2R

with MU and R denoting the total mass and the scale of the universe. Requiring now
physical identity between the two cases A) and B) would enforce the value X to be equal
to 1, with the important implication:

1  4GMU
3c2R

This request, however, seems really to require a Machìan kind of behaviour of the total
mass of the universe MU with the scale R, since only when MU would be proportional to
R, the above relation could be numerically fulfilled.

On the other hand it is interesting to recognize that we would not need a Machìan
behaviour of the mass of the universe, if the already above discussed requirement of
G~R would be fulfilled. The question therefore is, do we prefer to rely on Mach‘s
principle, or do we prefer to accept the linear increase of Newton‘s coupling constant G ?

In fact, to mention the truth, the concept behind the quantity "MU" , i.e. the mass of the
universe" , is controversial and must be precisely defined as "the simultaneous mass of
the universe" according to a definition already worked out by Tolman (1934), but never
recognizable by any physical detector. Not including the mass equivalents of the thermal
motions it has been shown by Fahr and Heyl (2006) that Tolman‘s expression can be
evaluated into the following form:

MUtc2  40tc2 
0

RU expr/2r2dr
1   Hrc 2

where the function expr is given by;

expr  1  8G
rc2

0 
0

r x2dx
1  Hr/c2

In the present, prefered view of a coasting universe with H  H0  R0/R and
HR/c2  c2 one thus can evaluate the upper expression by (see Fahr and Heyl, 2006):

MUt  c2
G Ru

which looks as if a Machìan universe would be requested with MU~RU, but with the
already above discussed scale-dependence of the gravitational constant by
G  G0  R/R0 this would in fact bring back a universe with a constant total mass MU as
always expected by most cosmologists. This may perhaps give some support for the, in
a first view - provocative assumption - of a scale-variable G.
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compared the effects of centrifugal forces of the rotating Earth on the ocean water level
treated in two physically identical views - A) the Earth rotating with respect to the
universe at rest, and B) the Earth at rest with a solidly counter-rotating universe around.
As he could demonstrate with general relativistic approaches the centrifugal forces in
these two cases are related by the following equation:

KA  X  KB
where the factor X is calculated to be equal to:

X  4GMU
3c2R

with MU and R denoting the total mass and the scale of the universe. Requiring now
physical identity between the two cases A) and B) would enforce the value X to be equal
to 1, with the important implication:

1  4GMU
3c2R

This request, however, seems really to require a Machìan kind of behaviour of the total
mass of the universe MU with the scale R, since only when MU would be proportional to
R, the above relation could be numerically fulfilled.

On the other hand it is interesting to recognize that we would not need a Machìan
behaviour of the mass of the universe, if the already above discussed requirement of
G~R would be fulfilled. The question therefore is, do we prefer to rely on Mach‘s
principle, or do we prefer to accept the linear increase of Newton‘s coupling constant G ?

In fact, to mention the truth, the concept behind the quantity "MU" , i.e. the mass of the
universe" , is controversial and must be precisely defined as "the simultaneous mass of
the universe" according to a definition already worked out by Tolman (1934), but never
recognizable by any physical detector. Not including the mass equivalents of the thermal
motions it has been shown by Fahr and Heyl (2006) that Tolman‘s expression can be
evaluated into the following form:

MUtc2  40tc2 
0

RU expr/2r2dr
1   Hrc 2

where the function expr is given by;

expr  1  8G
rc2

0 
0

r x2dx
1  Hr/c2

In the present, prefered view of a coasting universe with H  H0  R0/R and
HR/c2  c2 one thus can evaluate the upper expression by (see Fahr and Heyl, 2006):

MUt  c2
G Ru

which looks as if a Machìan universe would be requested with MU~RU, but with the
already above discussed scale-dependence of the gravitational constant by
G  G0  R/R0 this would in fact bring back a universe with a constant total mass MU as
always expected by most cosmologists. This may perhaps give some support for the, in
a first view - provocative assumption - of a scale-variable G.
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