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Abstract
PARP-1 (Poly ADP Ribose polymerase) functions to repair damage to DNA and is implicated in a variety of diseases 
including Diabetic Cardiomyopathy (DCM). Unfortunately, there are few treatments for this disease, and the expenses 
associated with these drugs present barriers to many. With this project, we developed a neural network that was able to 
distinguish between inhibitors and non-inhibitors of PARP-1 in order to uncover more accessible treatments of DCM. 
We collected confirmed inhibitors of PARP-1 from PubChem, clustered these compounds, and performed attribute selec-
tion. This data was used to develop the neural network which was able to predict inhibitors of PARP-1 with an accuracy 
of 97% and an AUROC of 0.98. The model was then run on all FDA drugs, and the top 37 predictions were taken. In 
protein ligand docking simulations, the predicted inhibitors had a significantly better binding affinity for PARP-1 than 
the control group.
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1. Introduction
1.1 Type 2 Diabetes and Diabetic Cardiomyopathy
Diabetes Mellitus is a chronic disorder characterized by de-
creased serum insulin, decreased insulin sensitivity, hypergly-
cemia, and a reduction in pancreatic beta cells, and is wide-
spread having affected 422 million individuals in 2014 (2) [1,2]. 
According to the CDC, in 2019, 28.7 million people in the US 
(8.7% of the population) had diagnosed diabetes, with about 95 
percent of these cases being type 2 diabetes.

Among those with Type 2 Diabetes, Heart Failure is one the most 
common resulting cardiovascular complications, as patients with 
T2D have up to a 74% higher chance of developing Heart failure 
[3]. Additionally, mortality is quadrupled in T2D patients with 
heart failure vs patients without [3]. This ventricular dysfunction 
is referred to by Diabetic Cardiomyopathy (DCM), which is de-
fined by abnormal myocardial structure and diminished cardiac 
performance in individuals with diabetes mellitus that lack other 
risk factors, such as hypertension and coronary artery disease 
[4].

PARP-1
Poly ADP-ribose polymerase 1 (PARP-1) is an NAD+ depen-
dent ADP-ribosylation enzyme and its primary function lies in 
DNA repair. It can also control the accessibility of DNA or RNA 
polymerase by regulating chromatin structure, and can function 
as a transcription factor by binding on to motifs in promoter re-
gions [5]. This protein has been implicated in a variety of malig-
nant and inflammatory diseases, including ovarian cancer, breast 
cancer, cardiovascular disease, asthma, arthritis, and diabetes 
[6]. In malignant diseases, PARP-1 enables cells lacking meth-

ods of homologous recombination, such as those with BRCA1/2 
mutations, to have a method of DNA repair, and thus to avoid 
cytotoxicity [7]. In inflammatory processes, PARP-1 is known to 
activate NF-kB in response to lipopolysaccharides or TNF-a [8].

1.2. Dcm Pathogenesis
A significant portion of DCM’s pathogenesis is rooted in the 
over-production of proinflammatory cytokines such as tumor 
necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), which 
induce apoptosis in cardiomyocytes, leading to a reduction in 
contractility and cardiac dysfunction [9, 10]. Additionally, the 
hyperglycemia found in individuals with DCM can trigger the 
formation of reactive oxygen and nitrogen species, which cause 
DNA strand breaks and abnormal cell signaling, ultimately re-
sulting in apoptosis.

The oxidative stress and subsequent DNA damage also results 
in the overactivation of PARP-1, which utilizes NAD+ in order 
to mend single strand breaks. This excessive activation leads to 
the rapid depletion of intracellular NAD+ and ATP, resulting in 
a cellular energy shortage and subsequent apoptosis [11]. In a 
study conducted to investigate the role of PARP-1 in type-2 di-
abetes induced cardiac complications, diabetic rats showed in-
creased PARP-1 activity compared to control animals, and rats 
that were treated with 4-aminobenzamide (4-AB), a PARP-1 
inhibitor, displayed reduced cardiac and vascular inflammation, 
reduced hypertension, and alleviated cardiac ischemia [12].

1.3. Inhibition of PARP-1
Inhibitors of PARP-1 generally bind the catalytic pocket or to 
the PARP-chromatin complex and trap the enzyme in an ineffec-
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tive state at the chromatin. Both ways interfere with ADP-ribo-
sylation, with the latter being much more potent [13]. Cancerous 
cells often are deficient in one of the six major DNA repair path-
ways (base excision repair, nucleotide excision repair, single 
strand break repair, homologous recombination, non-homolo-
gous end joining, and mismatch repair), and thus the inhibition 
of another pathway leads to a synthetic lethality. PARP-1 plays 
a role in the single strand break repair and base excision repair 
pathways, and therefore its inhibition is key in treating malig-
nancies. In inflammatory and metabolic diseases, however, cells 
are still proficient in homologous recombination, and can thus 
mend the double strand breaks which single strand breaks turn 
into [14]. In these types of cells, the inhibition of PARP-1 pre-
vents the rapid depletion of NAD+ and ATP, avoiding a cellular 
energy crisis and preventing cytotoxicity. There are currently no 
PARP-1 inhibitors that have been approved by the FDA for use 
in patients with DCM.

1.4. Drug Repurposing and ML
The benefits associated with drug repurposing as opposed to 
de novo drug development are numerous. Development times 
are decreased significantly, with de novo drug discovery and 
development generally taking 10 - 17 years, while repurposed 
drugs are approved within 3 - 12 years [15, 16]. Development 
costs are brought down as well. The cost of bringing a newly 
developed drug to market is estimated to be 2-3 billion dollars, 
compared to the estimated 300 million for a repurposed drug 
[17]. This drop-in development costs result in improved pric-
es for consumers and patients, who according, to the American 
Diabetes Association, are burdened with medical expenditures 

on average of around $16,000, of which 30% can be attributed 
to the purchasing of prescription medicine [18]. Consumers are 
also presented with a lower risk of adverse events when using 
repurposed drugs, as the safety and pharmacokinetics of the drug 
is already known [19]. Drug repurposing has become even more 
practical with the introduction of machine learning (ML) tech-
niques to the field of drug discovery. ML has been used in a 
variety of stages of drug discovery, including target validation, 
identification of prognostic biomarkers, and the analysis of pa-
thology data in clinical trials and allows for the narrowing down 
of compounds for wet lab testing for a relatively little cost [20]. 
Thus, the goal of our study was to utilize ML, specifically a deep 
neural network, in order to determine which FDA drugs would 
be able to serve as PARP-1 inhibitors.

2. Methods
2.1.   Data Collection
The activity values and canonical SMILES (standardized line 
notation that represents the molecular structure of a chemical 
compound as a unique string of characters) of 4,786 inhibitors 
of PARP-1 were taken from the PubChem Database [21]. To en-
sure the reliability of our analysis, we selected only the top com-
pounds with activity values less than 80 nm. Activity values are 
a measure of a substance's efficacy or potency, and indicate the 
concentration required to produce a specific biological response. 
By focusing on the most active compounds, we aimed to identify 
potential drug candidates with strong biological activity. Addi-
tionally, the SMILES strings of FDA drugs were taken from the 
Drug bank Database, and the SMILES of random compounds 
were taken from PubChem to form a control group.
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Fingerprint clustering is a common technique in cheminformatics for grouping molecules based on their

structural similarity. By using clustering, we can reduce the complexity of the dataset and create more

robust models that are less sensitive to outliers and noise in the data. To cluster the data retrieved from

PubChem, we utilized the Butina method from RDKit, a python library for cheminformatics (23). It

leverages a user-defined similarity as the only input to the clustering program. This similarity measure is

based on the Tanimoto Index, which can be calculated using the below specific formula. In this study, we

chose a Tanimoto Index score of 0.47, which ensured that clusters with high similarity were obtained. 234

Figure 1: These two graphs depict the distribution of the different activity values of the compounds. 4062 compounds had activity 
values less than 1.5 μm, while only 725 compounds had activity values greater than 1.5 μm.

2.2. Fingerprint Clustering
Fingerprint clustering is a common technique in cheminformat-
ics for grouping molecules based on their structural similarity. 
By using clustering, we can reduce the complexity of the dataset 
and create more robust models that are less sensitive to outliers 
and noise in the data. To cluster the data retrieved from Pub-
Chem, we utilized the Butina method from RDKit, a python li-
brary for cheminformatics [22]. It leverages a user-defined simi-
larity as the only input to the clustering program. This similarity 
measure is based on the Tan moto Index, which can be calculat-
ed using the below specific formula. In this study, we chose a 
Tan moto Index score of 0.47, which ensured that clusters with 

high similarity were obtained. 234

clusters were formed, with the largest cluster identified contain-
ing 318 compounds, and we focused our modeling efforts on 
this cluster.

Figure 2: Tan Moto Coefficient Used for Finding the Tan Moto 
Index

clusters were formed, with the largest cluster identified containing 318 compounds, and we focused our

modeling efforts on this cluster.

Figure 2 - Tanimoto Coefficient used for finding the Tanimoto Index

2.3 | Descriptors

PaDEL-Descriptor is a software tool that generates a wide range of chemical descriptors for a set of

compounds (24). It uses the Chemistry Development Kit and some additional descriptor categories.

PaDEL was utilized to calculate the molecular descriptors of the clustered compounds. The descriptors

are calculated based on the molecular structure encoded in the SMILES notation and can provide 1,875

features that describe the molecular properties of a compound. Some of the features include molecular

weight, lipophilicity, hydrogen bonding, and topological parameters such as connectivity and branching.

PADEL descriptors were employed to calculate the descriptors for canonical smiles of our largest cluster

of known inhibitors.

2.4 | Feature Selection

Infogain is a popular feature selection algorithm that ranks features based on their ability to discriminate

between classes in a classification problem (25). The algorithm computes the mutual information between

each feature and the class variable, which measures how much information about the class can be inferred

from the feature. Features that have a high mutual information score are deemed to be more informative

and are ranked higher. After the InfoGain attribute evaluator was used on the training set of inhibitors,

FDA drugs, and the control compounds, the number of attributes was decreased from 1,875 to 300.
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of chemical descriptors for a set of compounds [23]. It uses the 
Chemistry Development Kit and some additional descriptor cat-
egories. PaDEL was utilized to calculate the molecular descrip-
tors of the clustered compounds. The descriptors are calculated 
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parameters such as connectivity and branching. PADEL descrip-
tors were employed to calculate the descriptors for canonical 
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2.4. Feature Selection
Info gain is a popular feature selection algorithm that ranks fea-
tures based on their ability to discriminate between classes in a 
classification problem [24]. The algorithm computes the mutual 
information between each feature and the class variable, which 
measures how much information about the class can be inferred 
from the feature. Features that have a high mutual information 
score are deemed to be more informative and are ranked higher. 
After the Info Gain attribute evaluator was used on the training 
set of inhibitors, FDA drugs, and the control compounds, the 
number of attributes was decreased from 1,875 to 300.

Figure 3 - Highest ranked descriptors by the infogain algorithm from WEKA
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order to perform machine learning predictions, we used a multilayer perceptron (aka neural network)

made with Keras, a python library for the development of neural networks (26). The model’s

hyperparameters, namely the number of layers, the number of nodes in each layer, dropout, learning rate,

and batch size, were turned with the Keras-Tuner. The process was conducted with Keras-Tuner’s
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discarding ones that perform poorly. Then, the remaining configurations are trained for a larger number of

epochs, again discarding ones that perform poorly. This process is repeated until the best performing

configuration can be selected. In order to prevent overtraining in the model, we employed an epoch stop

early callback, in which if loss did not decrease for 5 epochs, training would end prematurely.
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2.5. Neural Network Construction
The Neural Network was created in python and works by split-
ting the data with an 80-20 train validation split. The 80-20 split 
is a commonly used method in machine learning to split the 
dataset into training and validation sets. The training set, which 
contains 80% of the data, was used to train the model, while 
the validation set, which contains 20% of the data, was used 
to evaluate the performance of the model. In order to perform 
machine learning predictions, we used a multilayer perceptron 
(aka neural network) made with Kera’s, a python library for the 
development of neural networks [25]. The model’s hyperparam-
eters, namely the number of layers, the number of nodes in each 

layer, dropout, learning rate, and batch size, were turned with the 
Kera’s-Tuner. The process was conducted with Kera’s-Tuner’s 
Hyperband method, which uses a technique known as successive 
halving. The Hyperband search method starts by randomly sam-
pling sets of hyperparameter configurations, training and testing 
them, and then discarding ones that perform poorly. Then, the 
remaining configurations are trained for a larger number of ep-
ochs, again discarding ones that perform poorly. This process is 
repeated until the best performing configuration can be selected. 
In order to prevent overtraining in the model, we employed an 
epoch stop early callback, in which if loss did not decrease for 5 
epochs, training would end prematurely
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Figure 4 - Visual representation of the hyperparameters used in the tuning process. This representation is

produced by TensorBoard (27).

Figure 5 - A schematic of our Neural Network, with an input layer, eight hidden layers, a dropout layer,

and then an output layer with a single node.

Figure 4 - Visual representation of the hyperparameters used in the tuning process. This representation is

produced by TensorBoard (27).

Figure 5 - A schematic of our Neural Network, with an input layer, eight hidden layers, a dropout layer,

and then an output layer with a single node.

Figure 4: visual representation of the hyperparameters used in the tuning process. This representation is produced by tensor board 
[26].

Figure 5: A schematic of our Neural Network, with an input layer, eight hidden layers, a dropout layer, and then an output layer 
with a single node.

2.6. Protein-Ligand Preparation
Before docking could be performed, structural files of PARP-1 
and the ligands to be docked would need to be obtained and 
prepped. For PARP-1, a PDB (Protein Data Bank) file of its 
binding site was downloaded from the Protein Data Bank Data-
base [27]. It was then imported into Auto Dock Tools, a software 
program used for preparing and setting up molecules for dock-
ing simulations in the Auto Dock suite of programs [28]. The 

software was then used to delete the ligand already present in the 
binding site (it was olaparib), delete water molecules, add polar 
hydrogens, add Kollman Charges, and finally convert the file to 
the PDBQT format. For the ligands, the first step was obtaining 
the canonical SMILES for each of the predicted inhibitors, con-
firmed inhibitors, and control compounds from the data we had 
collected in the first step. Then, using the aforementioned RDKit 
module, these SMILES were used to get the PDB files of all the 
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ligands. These ligands were then imported into Auto dock Tools, 
where aromatic carbons and rotatable bonds were detected, 
Gasteiger Charges were added, and non-polar hydrogens were 
merged. Again, these were all converted to the PDBQT format.

2.7. Protein-Ligand Docking
Auto Dock Vina is a widely-used software program for molec-
ular docking, which is the computational process of predicting 
how two molecules will interact with each other in three-dimen-
sional space [29 TO 31]. Auto Dock Vina works by using a com-
bination of empirical scoring functions and advanced algorithms 
to generate a large number of possible binding poses (i.e. the dif-

ferent ways that two molecules could interact with each other). 
It then evaluates each pose based on a variety of factors, such 
as the stability of the complex, and selects the most promising 
candidates for further analysis. We employed Auto Dock Vina 
to perform molecular docking of Ligands to the target protein, 
PARP-1. This was achieved by inputting the grid box dimen-
sions and the prepared ligand into the target protein, allowing for 
the exploration of possible binding conformations between the 
Ligands and the active site of the PARP-1 protein. The default 
dimensions predicted by Auto Dock Tools were used to obtain 
the grid box dimensions.

Figure 6 - Overview of the methods utilized in this study

3 | RESULTS

3.1 | Multilayer Perceptron Model

Once the model was tuned, it was trained for 5 times independently on the training data that had been split

earlier. The Accuracy vs Epoch graph for all trials can be seen Figure 7. The graph starts at around 0.5

(random guessing) and shows a steady increase in accuracy, indicating that the model is rapidly learning

to distinguish between the inhibitor class and the non-inhibitor class.
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Figure 6: Overview of the methods utilized in this study1

3. RESULTS
3.1. Multilayer Perceptron Model
Once the model was tuned, it was trained for 5 times inde-
pendently on the training data that had been split earlier. The 
Accuracy vs Epoch graph for all trials can be seen Figure 7. The 

graph starts at around 0.5 (random guessing) and shows a steady 
increase in accuracy, indicating that the model is rapidly learn-
ing to distinguish between the inhibitor class and the non-inhib-
itor class.

Figure 7: The Training Accuracy vs Epoch Graph for all 5 trials
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After the training period, the model was tested using the vali-
dation data. Testing on validation data rather than training data 
ensures that the model is not benefitting from overfitting. Table 1 
depicts the testing metrics for the model from each trial, namely 
the Validation Accuracy, the Matthews Correlation Coefficient, 
and the Area Under the ROC (Receiver Operating Character-
istic) curve. Accuracy measures the percentage of correct pre-
dictions out of the total predictions. The average accuracy over 
the 5 trials was 0.976, indicating a high percentage of correct 
predictions. Matthews Correlation Coefficient is a slightly bet-

ter metric for binary classification methods, as it considers false 
positives, false negatives, true positives, and true negatives, thus 
being effective when the classes are imbalanced. The average 
MCC was 0.952, indicating a strong correlation between the pre-
dicted and observed classifications. Lastly, the AUC is the area 
under a plot of the true positive rate against the false positive 
rate at various threshold settings. The average AUC over the 5 
trials was 0.989, indicating that 98.9% percent of the time, the 
model was able to correctly rank the probabilities of the inhibitor 
samples higher than the non-inhibitor samples.

Docking Score (kcal/mol) Name of predicted Inhibitor Functions Physiological Interactions
-12.7 Dutasteride Used for the treatment of 

symptomatic benign prostatic 
hyperplasia

Inhibits type II 5a reductase, pre-
venting 5a-dihydrotestosterone 
formation

-12.6 Rimegepant Used to treat migraines in 
adults

Antagonist of Calcitonin 
Gene-Related peptide type 1 
receptor

-12.1 Lonafarnib Used to decrease the mortality 
associated with

Used to decrease the mortality 
associated with

-11.9 Bictegravir Used to treat HIV infections Antagonist of HIV-1 reverse 
transcriptase and integrase

-11.7 Irinotecan Used to treat metastatic carci-
noma of the colon or rectum

Inhibitor of DNA topoisomerase I

-11.6 Trospium Used to treat the symptoms of 
overactive bladder

Antagonizes the effect of acetyl-
choline on muscarinic receptors
muscarinic receptors

-11.4 Flecainide Used to manage atrial fibrilla-
tion and paroxysmal supra-
ventricular tachycardias

Inhibitor of fast sodium channels, 
delayed potassium channels, and 
ryanodine receptors

-11.3 Edoxaban Used for reducing the risk of 
stroke and systemic embolism

Inhibitor of Coagulation Factor X

-11.3 Sitagliptin Used for the management of 
type 2 diabetes mellitus

Inhibitor of Dipeptidyl Peptidase 
4

-11.3 Eravacycline Used to treat complicated 
intra-abdominal infections

Inhibitor of 30S ribosomal pro-
tein S4

-11.2 Adapalene Used to treat acne vulgaris in 
adolescents and adults

Agonist of Retinoic Acid Re-
ceptor beta, gamma, RXR-beta, 
RXR-gamma, RXR-alpha, antag-
onist of Toll-like Receptor 2

-11.2 Trifluoperazine Used to treat depression, anxi-
ety, and agitation

Antagonist of Dopaminergic D1 
and D2 receptors

-11.1 Atogepant Used for the preventative 
therapy of episodic migraine 
headaches

Antagonist of Calcitonin gene-re-
lated peptide type 1 receptor

-11.1 Empagliflozin Used to manage type 2 diabe-
tes mellitus

Inhibitor of Sodium/glucose 
cotransport 2

-11.1 Flupentixol Used to treat schizophrenia 
and depression

Antagonist of Dopamine D1 and 
D2 receptors, and 5-hydroxy-
tryptamine receptor 2A

-10.9 Zuclopenthixol Used for the management of 
schizophrenia

Antagonist of Dopamine D1, D5, 
and D2 receptors
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-10.9 Fluphenazine Used to treat patients requir-
ing long-term neuroleptic 
therapy

Antagonist of Dopamine D1 and 
D2 receptor

-10.9 Periciazine Used with other medica-
tions to treat aggressiveness, 
impulsiveness, and hostility 
associated with psychiatric 
conditions

Antagonist of Dopamine D1 re-
ceptor, and Alpha-2A Adrenergic 
Receptor

-10.8 Ubrogepant Used in the acute treatment of 
migraine with or without aura

Antagonist of calcitonin gene-re-
lated peptide type 1 receptor

-10.8 Dolutegravir Used for the treatment of 
HIV-1 infections

Inhibitor of HIV-1 integrase

-10.8 Cabotegravir Used for treatment and 
pre-exposure prophylaxis of 
HIV-1 infection.

Inhibitor of HIV-1 integrase

-10.7 Lurasidone Used to treat schizophrenia 
and depressive episodes

Antagonist of Dopamine D2 Re-
ceptor and 5-hydroxytryptamine 
receptor 2A

-10.7 Tecovirimat Used to treat smallpox, mon-
keypox, and cowpox

Inhibitor of Envelope Protein F13

-10.6 Cobimetinib Used to treat unresectable or 
metastatic melanoma

Inhibitor of Dual specificity 
mitogen-activated protein kinase 
kinase 1

-10.5 Dolasetron Used in chemotherapy and 
postoperatively to prevent 
nausea and vomiting

Antagonist of 5-hydroxytrypt-
amine receptor 3A

-10.5 Bicalutamide Used to treat Stage D2 
metastatic carcinoma of the 
prostate

Antagonist of Androgen Receptor

-10.4 Ivacaftor Used to treat cystic fibrosis Potentiator of Cystic fibrosis 
transmembrane conductance 
regulator

-10.3 Avatrombopag Used to treat thrombocyto-
penia

Agonist of Thrombopoietin 
Receptor

-10.3 Vorapaxar used to reduce thrombotic 
cardiovascular events

Antagonist of Proteinase-activat-
ed receptor 1

-10.3 Dapagliflozin used in the management of 
type 2 diabetes mellitus

Inhibitor/Antagonist of Sodium/
glucose cotransporter 2

Table 1: Top 30 Performing Fda Drugs in Auto Dock Vina

Trial Test Accuracy MCC AUROC
Trial 1 0,9596773982 0.9204329801 0.9981747066
Trial 2 0,9677419066  0.9357219295 0.9825293351
Trial 3 0,9919354916  0,9839741502  0.9920469361
Trial 4 0,9838709831 0.9681233591  0.9827900913
Trial 5 0,9758064747 0.9515859379 0.9911342894
Average 0,9758064508 0.9519676714 0,9893350717

Table 2: Testing Metrics for each of the 5 trials

After the training and testing, the model was used to output pre-
diction scores for a dataset of 2037 FDA-approved drugs with 
the same 300 descriptors that had been taken previously from 

Info Gain. Out of these 2037 compounds, the model had predict-
ed 82 compounds to be inhibitors of PARP-1, with 38 receiving 
a prediction score greater than 0.9.
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3.2. Protein-Ligand Docking
1.1 The random FDA control group had an average docking score 
of -7.824 kcal/mol, while the predicted inhibitors had an average 
docking score of -10.704 kcal/mol. The t-Test revealed a high 
magnitude and negative T stat (-17.68), indicating a substantial 
difference between the two sets of data, with the predicted in-
hibitors outperforming the control group. The calculated p-value 
(2.96e-32) is very small, indicating evidence against the null hy-
pothesis and supporting the alternative hypothesis that predicted 

inhibitors performed significantly better than the control group. 
Because of the higher binding affinity of the predicted inhibitors, 
they may have greater efficacy as a treatment option. However, it 
is important to acknowledge the limitations of our study, as the 
docking simulations we performed may not perfectly reflect the 
actual binding affinity of the protein-ligand complex in a biolog-
ical system. Future studies could aim to address this limitation 
by performing further experimental validation of the predicted 
inhibitors to confirm their efficacy in vivo or in clinical trials.

3.2 | Protein-Ligand Docking

The random FDA control group had an average docking score of -7.824 kcal/mol, while the predicted

inhibitors had an average docking score of -10.704 kcal/mol. The t-Test revealed a high magnitude and

negative T stat (-17.68), indicating a substantial difference between the two sets of data, with the

predicted inhibitors outperforming the control group. The calculated p-value (2.96e-32) is very small,

indicating evidence against the null hypothesis and supporting the alternative hypothesis that predicted

inhibitors performed significantly better than the control group. Because of the higher binding affinity of

the predicted inhibitors, they may have greater efficacy as a treatment option. However, it is important to

acknowledge the limitations of our study, as the docking simulations we performed may not perfectly

reflect the actual binding affinity of the protein-ligand complex in a biological system. Future studies

could aim to address this limitation by performing further experimental validation of the predicted

inhibitors to confirm their efficacy in vivo or in clinical trials.

Figure 8 - Docking scores (kcal/mol) for top 35 Predicted Inhibitors, 147 known inhibitors, 147 random
FDA-approved drugs

Figure 8: Docking scores (kcal/mol) for top 35 Predicted Inhibitors, 147 known inhibitors, 147 random FDA-approved drugs

Statistic Predicted Inhibitor Control (Random FDA drugs)

Mean -10.704 -7.824

Variance 0.719584 0.5802

T stat -17.68

p-value 2.96E-32

Table 2 - t-Test & statistical analysis of docking results
Table 3: T-Test & Statistical Analysis of Docking Results
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Figure 7: Docking of The Highest Ranked Drugs by The Model with The Parp-1 Catalytic Pocket: 
(I)  Ubrogepant, (II)  Sultamicillin; (III)  Rimegepant; (IV)  Lurasidone; 
(V)  Lonafarnib; (VI)  Irinotecan;  (VII) Tecovirimat; (VIII) Ertugliflozin; (IX) Dutasteride;  (X) Dolutegravir; (XI) Dolasetron; 
(XII)  Cobimetinib; (XIII)  Cabotegravir; (XIV)  Bictegravir; (XV)    Avatrombopag; (XVI)  Atogepant
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Residue Number of Interactions (%) Average Distance
ASN-767 0.67 3.0625
MET-890 0.50 3.13
ARG-878 0.42 3.2
SER-864 0.416 2.9
GLY-863 0.34 2.95
TYR-907 0.33 3.10
HIS-862 0.083 3.08

Table 4: Residues Most Frequently Contacting Inhibitors.

In Table 5, the deep neural network score ranks the top drug 
candidates. Each compound is scored by the model, outputting a 
number between 0 and 1, with a higher score indicating a higher 
similarity to the known inhibitor, and thus a higher probabili-
ty of being a PARP-1 inhibitor. The model's score serves as a 
probability of PARP-1 inhibition. The drug candidate with the 
highest probability of inhibition, according to the model, is Lon-
afarnib, with a prediction score of (0.999964). However, the 

most reliable approach to identifying the strongest candidate is 
to combine the rankings of the protein-ligand docking with the 
neural network results. Fenoprofen also achieved a high dock-
ing score of -12.1 kcal/mol, indicating its potential as a PARP-1 
inhibitor. Given the high docking score and strong backing from 
the machine learning model, Lonafarnib is a promising candi-
date for PARP-1 inhibition.

Compound Name Model Prediction Score Docking Score (kcal/mol)
Lonafarnib 0.999964 -12.1
Ioflupane 0.999133 -10.1
Bictegravir 0.998813 -11.9
Atogepant 0.997899 -11.1
Cobimetinib 0.997713 -10.6
Sultamicillin 0.996654 -10.2
Lurasidone 0.996568 -10.7
Dolutegravir 0.995013 -10.8
Irinotecan 0.992985 -11.7
Avatrombopag 0.992983 -10.3
Dutasteride 0.992951 -12.7
Rimegepant 0.990847 -12.6
Ubrogepant 0.988249 -10.8
Cabotegravir 0.987173 -10.8
Ertugliflozin 0.986705 -10.2
Dolasetron 0.986392 -10.5
Tecovirimat 0.986151 -10.7
Adapalene 0.984745 -11.2
Empagliflozin 0.983438 -11.1
Bicalutamide 0.975614 -10.5

Table 5: Top 20 Predicted Inhibitors by The Model’s Prediction Score

3. Discussion
In this study, we revealed the potential ability of 82 FDA-ap-
proved to effectively inhibit PARP-1. The model that was de-
veloped achieved an average validation accuracy of 0.976, 
Matthews Correlation Coefficient of 0.952, and AUC of 0.989, 
displaying its ability to accurately distinguish between inhibi-
tors and non-inhibitors of PARP-1, and to predict compounds 
that could potentially inhibit the protein. The efficacy of the 
model was further corroborated by the excellent performance of 

the predicted inhibitors in protein-ligand docking simulations, 
with the predicted inhibitors performing significantly better than
non-inhibitors. With this, we have efficiently and economically 
highlighted 82 FDA drugs that could be implemented in further 
in vitro and in vivo trials, and eventually, clinical trials.

The practicality of repurposing FDA approved drugs is unde-
niable. Development times and costs plummet, making drugs 
available quicker and cheaper for patients who suffer from 



Volume 4 | Issue 1 | 24J Pla Che Pla Pro Res, 2023

PARP-1 related diseases, such as Diabetic Cardiomyopathy. 
Additionally, the drugs have already been through the stringent 
safety tests of clinical tests, thus ensuring a lower risk of adverse 
effects, and allowing for a quick progression of the drug through 
the FDA pipeline.

In silico research can efficiently and cheaply elucidate promising 
drug candidates to expedite the creation of new treatments, and 
as new technologies emerge and accessible drug data continues 
to grow, machine learning and other computational algorithms 
will continue to improve and advance the pharmaceutical field.
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