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Abstract
Drilling a new oil or gas well to reach at reservoir involves a set of processes. Optimized drilling plan is critical to reach 
the target in the shortest possible time and at the lowest possible cost .Drilling plan and efficiently drilling a new well 
requires analysis of well data to properly determine bottom hole assembly, drilling bit, drilling fluids, and operational 
parameters such as weight on bit (WOB) and drill-string rotary speed. The purpose of drilling planning is to optimize the 
Rate of Penetration (ROP) by reducing non-productive time (NPT). In this article two different estimating drilling rate of 
penetration (ROP), analytical model and artificial intelligence model were described.  
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1. Introduction
Drilling a new oil or gas well to reach oil and gas reservoirs 
involves a set of processes. Drilling programs are the approved 
instructions for carrying out activities and tasks which are required 
to achieve the objectives of the drilling process. Before a drilling 
program is approved it must contain an estimate of the overall 
costs involved. Time is one of the critical parameters affecting the 
cost of drilling operations. When drilling in a completely new area 
with no previous drilling data available the well cost can only be a 
rough approximation. In most cases however, some previous well 
data is available and a reasonable approximation can be made. 
Some costs are related to time and are therefore called time-related 
costs (e.g. drilling contract, transport, and accommodation). Many 
of the consumable items (e.g. casing, cement) are related to depth 
and are therefore often called depth-related costs. These costs can 
be estimated from the drilling program, which gives the lengths 
or volumes required. Some of the consumable items such as 
the wellhead will be a fixed cost. The specialized services (e.g. 
perforating) will be a charged for on the basis of a service contract 
which will have been agreed before the service is provided.  

In the drilling industry, the rate of penetration (ROP), also known 
as penetration rate or drill rate, is the speed at which the drilling bit 
crushes or cuts formation rocks and hence expands the wellbore. 
It is normally measured in feet per minute or meters per hour, but 
sometimes it is expressed in minutes per foot [1].

  
The rate of penetration (ROP) optimization is one of the most 
important factors in improving drilling efficiency, especially in 
the downturn time of oil prices. This process is crucial in the well 
planning and exploration phases, where the selection of the drilling 
bits and parameters has a significant impact on the total cost and 
time of the drilling operation. Optimization of ROP is difficult due 
to the complexity of the relationship between the drilling variables 
and the ROP [2].
 
1.1 Drilling Factors Which Affecting ROP  
WOB is the amount of force applied on the drill bit and acting 
along the wellbore axis. WOB is provided by thick-walled steel 
made tubular. Hydraulic gauge attached to the dead line measures 
WOB usually in unit of 1000lbf. There are two types of WOB 
measurements, surface measurement, and downhole measurement. 
Surface measurement refers to the total weight of all equipment 
applying tension on the wire rope including TDS, traveling block, 
and drilling string. Downhole measurement is done by measuring 
while drilling (MWD) sensors and is usually more accurate 
compared to surface measurement. 

Threshold WOB is the minimum weight needed to initiate the 
failure of formation rocks. It can take a negative value in soft 
and unconsolidated formations. The negative value of threshold 
WOB shows that the drill bit can cut the rocks without any applied 
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weight. It is a function of hydraulic action on the bottom hole. 

RPM represents the rotational speed of drilling string or rotary 
speed in unit of Revolution per Minute (RPM). Electronic sensors 
attached to the TDS are responsible for accurately measuring the 
rotary speed. 

Pore pressure is the pressure of formation or reservoir fluids 
existing in porous media of a formation or reservoir rocks. Pore 
pressure is considered hydrostatic pressure; it is the pressure 
applied by the column of water from the depth at which pore 
pressure is measured with respect to the sea level. Pore pressure is 
usually expressed in psi (Schlumberger Oilfield Glossary). 

Mud Weight (MW) also known as drilling fluid (mud) density 
is usually measured in lbm/gallon (PPG), lbm/ft3 (PCF), and kg/
cm3 (Specific Gravity or SG). Hydrostatic pressure inside the well 
is controlled by changing mud weight and is usually maintained 
above formation pressure to prevent kick. Mud weight also 
prevents casings and open hole from collapsing. Inordinate Mud 
Weight can cause formation fracture and loss of drilling fluid and 
loss of circulation. (Schlumberger Oilfield Glossary). 

Mud viscosity is the drilling fluid’s resistance to flow. Mud 
Viscosity defines as shear stress/shear rate and is reported in Poise 
(dyne.sec/cm2). One Poise refers to a high viscosity fluid therefore, 
in-field measurements Mud Viscosity is reported in centipoise 
(poise/100 or cp) (Schlumberger Oilfield Glossary). 

ECD or Circulating Density is the influential density applied 
by circulating drilling fluid at any depth. ECD is always greater 
than the static Mud Weight when mud circulation is stopped. It is 
the sum of static Mud Density and circulating pressure losses at 
any depth which are converted to density. ECD is generally one 
of the most important factors in ensuring that kicks and losses 
are prevented. This is particularly the case where the formation 
fracture gradient and pore pressure gradient are found to be close 
(Schlumberger Oilfield Glossary). 

Down hole motors or Mud Motors are usually used in directional 
drilling. Mud motors are positive displacement drilling motors and 
part of BHA. Mud motors utilize hydraulic horsepower of drilling 
mud to rotate drilling bits (Schlumberger Oilfield Glossary). 

Wellbore inclination is the angle of the wellbore from the 
vertical trajectory and is measured in degrees. True vertical is in 
the inclination of 0 degree and horizontal is the inclination of 90 
degrees (Schlumberger Oilfield Glossary). 

Drilling fluid annular velocity is the speed at which drilling mud 
travels in the annulus. Drilling mud annular velocity is key in 
hole-cleaning and cuttings transportation. The Velocity is usually 
measured in ft/min (Schlumberger Oilfield Glossary).
 
Cutting bed is the thickness of deposited cuttings on the lower side 

of the wellbore. Cuttings bed has a tendency to slide downward 
because of wellbore inclination and gravity component; hence it is 
referred to as an unstable bed in deviated sections. Drilling string 
is at risk in case of unstable cuttings bed especially when drilling 
fluid circulation is halted. 

Drilling bit is located at the bottom of BHA and used to cut the 
formation rocks. The drilling bit must be pulled out of the hole 
when drilling cannot proceed due to the presence of a dull bit. 

Setting up a drilling plan and efficiently drilling a new well 
requires analysis of offset well data to properly determine bottom 
hole assemblies, drill bit for a given section, drilling fluids, and the 
operational parameters such as weight on bit (WOB) and drilling 
string RPM.  

There are various models for estimating rate of penetration (ROP) 
such as empirical and principal models. Principle models are 
constructed using physics-based principal knowledge of a system 
or physical laws (e.g. second law of Newton). Engineering design 
models are also considered to be the principal models. Empirical 
models or data-driven models are developed based on training 
data or historical data of a system. These models were originally 
referred to as regression models [2].
 
In recent decades, models developed using computer-based 
techniques (e.g. Artificial Neural Networks) have also been 
considered as empirical models since they have been constructed 
based on iterations using training data. Empirical models can only 
be used within the range of training data. In contrast, principal 
models can be used beyond the system under modeling. 

Optimizing the drilling parameters such as the rate of penetration 
(ROP) will lead to saving an extra cost. Optimizing the drilling 
operations could be achieved by maximizing the ROP which will 
reduce the drilling time and consequently the drilling cost per feet 
will be reduced [3]. Several models have been developed to predict 
the ROP for drilling optimization, the accuracy of such ROP 
prediction models is so important [4]. Understanding the drilling 
data behavior is considered to be a key factor for generating a 
good ROP prediction model. Several parameters affect the ROP 
and can be categorized into controllable and uncontrollable factors 
[5]. The controllable drilling parameters such as the weight on bit 
(WOB), RPM, Q, torque (T), and standpipe pressure (SPP), while 
the uncontrollable drilling parameters such as the bit size, drilling 
mud type, density, and rheological properties. The controllable 
parameters do not affect each other, while the uncontrollable 
parameters affect each other, and it is not easy to determine the 
effect of one parameter separately [6]. The bit penetrates the 
formation during the drilling operation by the action of three 
forces which are the WOB, the string rotation speed measured by 
the RPM, and mud pumping rate in gallons per minute (GPM) 
[7]. The torque (T) is caused by the action of the WOB and the 
RPM. The SPP is the pressure generated by the mud pumping and 
measured at the standpipe. 
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2. Rate of Penetration (ROP) Models 
ROP modeling has been always the primary concern in Drilling oil 
& gas wells, since it is directly related to the drilling cost; over the 
past few decades, many authors have studied the effect of different 
parameters on the ROP [5].
 
ROP prediction models can be classified into two categories, which 
are traditional models and data-driven models (empirical models). 
Data-driven models can only be used within the range of training 
data. In contrast, the traditional ROP models can be used beyond 
the system under modeling. In the real world, however, it is not 
possible to develop a traditional ROP models for most systems and 
processes due to complexity [8]. 

2.1 Traditional ROP Models 
The traditional ROP models use the physics-based relationship 
between the ROP and the drilling parameters. Engineering design 
models are also considered to be the traditional models. Optimized 
drilling involves pre-selecting the magnitude of controllable 
drilling variables to maximize ROP or minimize drilling 
operational cost [9].
 
Graham and Muench (1959) introduced the first attempts 
optimizing drilling parameters; the authors have established an 
empirical mathematical expression for the bit life and ROP as a 
function of WOB, depth, and RPM.  

In 1962, Maurer stated that ROP can be calculated as a function of 
WOB, RPM, drill-ability strength of the rock (UCS), bit diameter 
(Db), and the drill-ability constant (K), the equation is based on 
‘perfect cleaning’ condition where all of the rock debris has been 
removed, and Maurer’s model is described by Eq. 1 as follows: 

	 ROP=K×RPM×WOB2Db2×UCS2.		  (1)                                        

Maurer (1962) modeled ROP with the consideration that hole 
cleaning is completed and there are no cuttings between drill bit 
teeth due to hydraulic impact force. It was noted that the proposed 
model is a function of depth. Maurer (1962) ROP model is defined 
by:  

	 𝑑𝐹/𝑑𝑡 = (4/𝜋𝑑𝑏2) (𝑑𝑉/𝑑𝑡)		 (2)                                                                                       

Where F is drilled interval in ft, t is time in hr, V is the volume 
removed by drill bit in cubic inch and 𝑑𝑏 is bit diameter in inch. 

Galle and Woods (1963) conducted research that resulted in an 
important development in drilling technology and optimizing 
the drilling process. They focused on the influence of only two 
drilling variables; WOB and rotary speed on ROP and assumed 
that other drilling variables such as drilling fluid, bit hydraulic and 
bit selection were well selected. They modelled ROP as a function 
of WOB, rotary speed, bit tooth, and formation type  

Where 𝑑𝐹/𝑑𝑡 is ROP in ft/hr, CF is formation drill ability Reflect 
factor, W is weight on bit (WOB) (1000 Ib), K is power constant 
of weight on bit, N is rotational Speed (RPM), r is power constant 
of rotational speed, a and p are bit constants.  

Bingham (1964) developed a mathematical equation representing 
a simple relationship between ROP, WOB, rotary speed, and bit 
diameter. He added a formation-related 𝑊𝑂𝐵/exponent in the 
ROP model. Bingham (1964) ROP model is defined by:
  
	 ROP = a(WOB/db)

b RPM		  (4) 
                                                                           
Where (a) is drill-ability constant and dimensionless, (b) is 
formation-related dimensionless constant, (WOB) is the weight on 
bit in (klbf), (db) is bit diameter in inch and (RPM) is rotary speed 
in (revolution/minute). (a) and (b) are constant and are determined 
individually for formations, thus they cannot be used if any change 
in formation characteristics happens during drilling. 

Eckel and Nolly (1949) concluded that ROP is related to a term 
multiplying bit nozzle velocity and pump flow rate. Eckel (1967) 
later developed an empirical correlation for ROP prediction. He 
concluded ROP is proportionally related to (WOB), rotary speed, 
and Reynolds number: 

	 ROP = K×WOBa×RPMb×(Kqƿ/dnµ)c	 (5)                                                                                 

where (ROP) is in (ft/hr), (a), (b) and (c) are dimensionless 
formation-dependent constants, (K) is dimensionless constant, 
(WOB) is in (klbf), (RPM) is in (Revolution/minute), (q) is pump 
flow rate in (GPM), (ƿ) is mud density in specific gravity (SG), 
(µ) is mud viscosity (CP), (dn) is nozzle diameter in inch and (c) 
connects ROP to Reynolds number and is approximately 0.5.  

Apple and Rowley’s (1968) model was one of the first attempts in 
developing ROP prediction model for drilling sections that were 
drilled by diamond bits. Later, Peterson (1976) also performed 
a laboratory test for ROP prediction using diamond bits. The 
developed equations for ROP prediction and Bit selection were 
based on a flat-bottom bit with round, surface-set diamonds. The 
ROP model is defined by: 

	 Rp/N=8.2S0.17/db2X0.5×(Wn/r)1.5	 (6)                                                                                         

Where (Rp) is ROP in (ft/hr), (N) is rotary speed in (revelation/
minute), (S) is diamond size in (carats/stone), (db) is bit diameter 
in inch, (X) is average density of the face stone in (carats/squared 
inch), (Wn) is net weight on bit in (lbf) and (r) is formation resistance 
in (lbf/squared inch). The term (Wn/r) is the maximum square 
inches of diamonds that can be in contact with the formation and 
still exert sufficient stress to overcome the formation resistance. 
He also developed bit selection-related equations and resulted in a 
25% improvement in ROP while lowering bit cost.  

A pioneering study in regards to obtaining optimum controllable 
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drilling parameters was carried out by Bourgoyne and Young (1974). 
They proposed a methodology based on multiple linear regression 
analysis to develop a mathematical model for predicting ROP. 
They considered the effect of eight drilling functions (including 
formation strength function, normal compaction function, under 
compaction function, differential pressure function, and weight 
on bit Function, rotary speed function, bit teeth wear function, 
and bit hydraulic function) as independent variables, on ROP. 
The proposed model was able to predict ROP in vertically drilled 
wells that were drilled by roller-cone bits. They suggested that 
drilling data must be obtained from more than one well before 
all regression coefficients can be evaluated. They concluded that 
the use of relatively simple drilling optimization equations can 
reduce drilling operation cost by about 10%. Although Bourgoyne 
and Young’s model was originally developed for drilling sections 
which were drilled by roller-cone bit, it has also been used for ROP 
prediction in deviated sections drilled by PDC bits. 

Bourgoyne and Young (1974) model is widely used in the oil 
industry and is considered the best approach to optimize drilling 
parameters in real time (Eren and Ozbayoglu 2011). The model 
describes the effect of different drilling parameters on ROP, and 
they have proposed the multiple regression analysis to extract 
eight unknown parameters using well drilling datasets. 

The equation proposed by Bourgoyne and young is expressed as: 

Where ROP is the rate of penetration (ft./h), aj are the model 
coefficients, and xj are the eight drilling parameters. 

Warren (1987) presented a perfect cleaning ROP model for soft 
formation, and this model relates ROP to the WOB, RPM, UCS, 
and bit size. To offer comprehensive information regarding the 
interaction between rock and the bit, he employed experimental 
response curves and dimensional experiments. Later, Warren has 
adjusted his model by adding a wear function (Wf) to reflect the 
impact of bit wear. 

Al-Betairi et al. (1988) have proposed a new ROP model using 
controllable and uncontrollable drilling variables toward predicting 
the optimum penetration rate and examined the correlational 
coefficients determined by multiple regression and evaluated the 
sensitivity of each drilling parameter on ROP. 

Maidla and Ohara (1991) developed optimization software for 
roller-cone bits toward the best selection of WOB, RPM, bit type, 
and bit wearing to minimize the drilling costs. They concluded that 
the drilling model performances depend on the quality of the data 
used to calculate the model’s coefficient. 

Hareland and Rampersad (1994) introduced a model for drag bits 
that relates UCS, WOB, RPM, bit geometry, and (Wf).  

Motahari et al. (2010) developed a PDC model that considers the 
wear function and confined compressive strength (CCS) instead 
of UCS besides RPM, WOB, and bit size. The physics-based 
models mentioned above use empirical coefficients, which are 
highly dependent on the lithology and continuously varied due to 
calibration, such that constraining their functional forms. 

Motahari et al. (2010) conducted a case study on a drilling 
well located in Alberta, Canada, and developed an ROP model 
for PDC bits. The study was aimed to investigate the effect of 
different Positive Displacement Motors (PDM) with different 
lobe configurations on ROP considering a set of fixed drilling 
parameters. The ROP model is defined by: 

	 ROP = Wf (G.RPMt
y.WOBa / Db.S)		  (8)                                             

Where ROP is in (ft/hr), (Wf) is dimensionless wear function, (G) 
is the model constant  and 	dimensionless, (RPM)  is 	 the surface 
rotary  speed  in (revolution/minute), WOB is in (lbf), (y) and (a) 
are ROP model exponents, (Db) is bit diameter in inch and (S) is 
confined rock strength in psi. 

Hareland et al. (2010) has created a new simple model for roller 
cone bits and used laboratory data to estimate the UCS.  

Alum and Egbon (2011) used the original model of Bourgoyne 
and Young in series of studies, and the results have shown that 
the equivalent circulation density has a great influence on ROP 
because of the annular pressure losses; as a result, they proposed 
an analytical model to estimate ROP. 

Bataee et al. (2012) conducted a comparative study on various ROP 
prediction models using field data of oilfield located in Iran. They 
predicted ROP for a drilling section drilled by roller-cone bits and 
PDC bits. Their comparison was done in three separate drilling 
sections, 17 1/2”, 12 1/4” and 8 1/2”, therefore bit diameter was 
considered as a constant value. Results showed that Bourgoyne and  
Young’s model has the best prediction performance as compared 
to the other two models. 

2.2 Data-Driven ROP Models 
The Data-Driven ROP models are developed based on training 
data or historical data of a system. These models were originally 
referred to as regression models. In recent decades, models 
developed using computer-based techniques (e.g. Artificial Neural 
Networks) have also been considered as data-driven models 
(empirical models) since they have been constructed based on 
iterations using training data [9]. 
 
2.2.1 Artificial Intelligence (AI) 
There have been several attempts to predict ROP in drilling using 
artificial intelligent (AI) and hybrids approaches, which give a 
good result in ROP prediction. 

Artificial intelligence (AI) refers to the simulation of human 
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intelligence in machines that are programmed to think like humans 
and mimic their actions. The term may also be applied to any 
machine that exhibits traits associated with a human mind such as 
learning and problem-solving [10].
 
The ideal characteristic of artificial intelligence is its ability to 
rationalize and take actions that have the best chance of achieving 
a specific goal. A subset of artificial intelligence is machine 
learning, which refers to the concept that computer programs  
can automatically learn from and adapt to new data without 
being assisted by humans. Deep learning techniques enable this 
automatic learning through the absorption of huge amounts of 
unstructured data such as text, images, or video 
[11]. 

2.2.2 Artificial Intelligence Algorithm 
Developing and construction of models to calculate and predict 
important parameters of the oil and gas industry are very essential. 
Therefore, recently AI approaches have been implemented in 
various area of oil and gas industry, such as reservoirs, petroleum 
well blowouts, formation damage, wellbore stability, rheology and 
filtration, production, and drilling fluid. 

Important factors in selecting and predicting the ANN model 
include feature selection, network architecture and transfer of 
functions between layers, and selection of the training algorithm.   
The neural network creates. an output pattern based on the input 
pattern provided to the network. Input data can be raw data or 
output of other neurons. Output can be the final product or input for 
other neurons. An artificial neural network is a network of artificial 
neurons that are actually processing elements. Each neuron has a 
number of inputs, and each input is weighted. The median output 
of each neuron is obtained from the sum of all inputs multiplied 
by the weights. The final output is done by applying a conversion 
function [12].
 
2.2.3 Multi-Layer Perceptron’s Algorithm (MLP) 
Multilayer perceptron or MLP is an artificial neural network 
architecture in which network neurons are divided into several 
layers. In these networks, the first layer, the input and the last layer, 
the output and the middle layer, are called hidden layers. This 
architecture can be called the most widely used neural network 
architecture [11]. 

2.2.4 Firefly Algorithm (FF) 
Fireflies are of insects that emit yellow light, and it is characteristic 
that they move towards the light that has the most radiance. Due to 
the capability of this species, the proposed algorithm has been used 
as an appropriate optimization algorithm for predictions. Firefly 
algorithm is an optimization method that tries to find the optimal 
answer to the problem by simulating the behavior of fireflies [10].
 
2.2.5 Gravitational Search Algorithm (GSA) 
This algorithm is one of the crash-based demographic algorithms 
based on the laws of gravity in which information is exchanged 

between objects through the force of gravity between them, in 
other words, objects force each other due to their mass. The mass 
of each factor is determined according to the objective function. 
Each member has a simple behavior that results in intelligent 
member behavior. When exchanging information between any 
crime or person, it is done through the following 4 ways: position; 
inertial mass; an active component of gravitational mass; and an 
inactive component of gravitational mass [9].
 
2.2.6 Artificial Bee Colony Algorithm (ABC) 
The bee algorithm simulates the behavior of bee groups in search 
of food. Bees are divided into three categories: worker bees, 
progressive bees and search bees. The worker bee is the bee that 
goes to predetermined food sources, the bee is the leading or scout 
bee that conducts a random search, and the bee is the bee seeker 
in the dance area to decide which one to choose. The food source 
remains [9].
 
2.2.7 Independent Component Analysis (ICA) 
The Colonial Competition Algorithm is an optimization algorithm 
inspired by colonial competition. This algorithm starts from 
several countries in the initial state. Countries are, in fact, possible 
answers to the problem. All countries are divided into two 
categories: imperialist and colonial. Colonial countries break the 
colonial countries towards themselves by applying the policy of 
absorption (assimilation) in line with different axes of optimization. 
Imperialist competition, along with the policy of assimilation, is at 
the core of this algorithm and causes countries to move towards the 
absolute minimum of subordination. As the algorithm evolves, the 
population shifts toward one side of the algorithm due to gravity, 
which is the solution to its target function using mean square error 
(MSE), and this algorithm causes it to move in this algorithm and 
causes countries to move towards it and according to the absolute 
minimum of the function [12].
 
Jahanbakhshi et al. (2012) considered several drilling parameters 
to predict ROP, and the study included the use of multilayer 
perceptron in the data-driven model. 

Bataee et al. (2014) used shuffled frog leaping algorithm as a 
function of WOB, RPM, and flow rate. They developed an ANN 
model using about 1810 data-point to train the model and to predict 
ROP. 

Kahraman (2016) found that the use of neural network models 
is more accurate than the use of regression techniques in the 
prediction of ROP. 

Hegde et al. (2017) identified that the data-driven approach model 
for ROP predictions was more precise and accurate compared to 
those based on physical experiments. 

In recent years, researchers have tended to apply hybrid models 
combining several techniques to predict ROP accurately. 
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Two hybrid ANNs were created by Anemangely et al. (2018) 
using PSO and cuckoo optimization algorithm (COA) as training 
functions for providing precise ROP prediction. 

Elkatatny (2019) build a new ROP model using hybrid algorithm 
self-adaptive differential evolution artificial neural network, the 
model considers five drilling parameters (2223 data points) as 
input parameters and ROP as an output of the model, and the result 
was very promising by getting R = 0.98.  

Indeed, using AI and hybrid models effectively increases the ROP 
accuracy prediction; however, the model requires an enormous 
amount of data and time to train and test the model. In addition, the 
use of the model is limited to a local area; moreover, the process 
requires high-performance computer systems and machine learning 
skills. So, the use of conventional models with the application of 
metaheuristics and regression techniques to optimize ROP is more 
appropriate.  
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