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Abstract
In this study, radiative micropolar nanofluid passed through a porous channel was analyzed. Because of the considerable 
amount of difference, a Finite element technique with the approval of the AGM method was used. Different parameter 
and dimensionless numbers like Reynolds number Re, Hartman number M, the Thermophoretic number N_t with a 
variety of velocity, temperature, and concentration profile are shown graphically. There was no change in velocity or 
microrotation profile while there was a change in Reynolds number. Although the concentration profile decreased with 
increasing Reynolds number. 
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1. Introduction 
Boundary layer flow of micropolar nanofluid towards a 
permeable stretching sheet in the presence of porous medium 
with thermal radiation and viscous dissipation was discussed by 
Kausar, Muhammad Salman, et al. By similarity solution they 
transfer their basic equations to ordinary equations and used the 
Runge–Kutta fourth–order to solve those equations [1].

Priya Mathur and Satyaranjan Mishra analyzed the Radiative 
Micropolar Nanofluid past through a Porous Channel with the 
use of an approximate analytical technique (ADM), the Adomian 
Decomposition Method, to solve ODEs which provided from 
similarity solution to change PDEs to ODEs [2].

Investigating a micropolar fluid flow in a channel that was sub-
jected to a  chemical reaction using the Differential Transfor-
mation Method (DTM) was done by M Sheikholeslami, HR 
Ashorynejad, DD Ganji. They have determined the effect of 
various parameters such as the Reynolds number, the coupling 
parameter, and the spin gradient viscosity parameter on the fluid 
properties [3].

Mohyud-Din, Syed Tauseef, et al. studied a flow of a radiative 
and electrically conducting micropolar nanofluid inside a porous 
channel. By performing the similarity solution, PDEs changed 
to ODEs. Equations solved via the HAM and Runge–Kutta 
methods [4].

Axisymmetric flow and heat transfer in an incompressible 

micropolar fluid between two porous discs have been studied by 
Takhar, Harmindar S., et al. who solved the system of nonlinear 
coupled differential equations by a finite element method. The 
results were shown graphically [5]. Analyzing the micro-polar 
nanofluid in a rotating system between two parallel plates with 
electric and magnetic fields has been done by Jalili, P., Narimisa, 
H., Jalili, B., Shateri, A., & Ganji, D. D. (2022). The governing 
equation is solved via numerical and semi-analytical methods 
[6].
 
Examination of a rotating system with a micro-polar nanofluid 
between two parallel plates in the presence of magnetic and 
electric fields has been done by Jalili, P., Narimisa, H., Jalili, B., 
& Ganji, D. D. (2023). The impacts of dimensionless parameters 
were discussed graphically [7]. Shah, Zahir, et al. investigated 
the MHD nanofluid flows between two rotating disks that have 
the same rotation speed, but in different directions. With the use 
of a similarity solution, they changed PDEs to ODEs, and the 
semi-analytical HAM method was used to solve the system of 
nonlinear equations [8].
  
2. Problem Description
According to fig 1 and previous work micropolar nanofluid 
passed through a porous channel [2-4]. Assuming 2h was the 
width of the channel so y = +h, was for the upper origin and vice 
versa y = -h. With a velocity equal to ν0 fluid is continuously 
injected or sucked.  T1,C1  Are respectively derived as the 
temperature and T2,C2  solute concentration, and had the same 
role on the opposite side.   
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   is the coupling parameter while     showing the spin gradient viscosity parameter,    
presents the micropolar fluid constant,     demonstrates the Reynolds number,   displays the 
Hartman number,    is for the Radiation,    stands for the Prandtl number,    represents the 
Brownian motion parameter,    indicates the thermophoresis parameter,     detects the Schmidt 
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Results and discussion 
This part illustrates the result of flowing radiative micropolar nanofluid passed through a porous 
channel. In this study, the Prandtl number is set to 6.2, which is one of the water properties. 
Fig. 2 shows that the velocity of the fluid decreased with enhancement of the Hatman number M. 
This could be due to the fact that variations in velocity near the walls of the channel are 
approximately zero. And from the inside, by increasing the Hatman number, the magnetic field 
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3. Results and Discussion
This part illustrates the result of flowing radiative micropolar 
nanofluid passed through a porous channel. In this study, the 
Prandtl number is set to 6.2, which is one of the water properties.
Fig. 2 shows that the velocity of the fluid decreased with en-
hancement of the Hatman number M. This could be due to the 
fact that variations in velocity near the walls of the channel are 
approximately zero. And from the inside, by increasing the Hat-
man number, the magnetic field will increase, and then it has a 
counter effect on the velocity of the flow. Fig 3 shows the en-
hancement in coupling parameters N1 that causes the increase in 
velocity. Due to the formula, if N1 is going to increase it means 
there is a diminishment in viscosity, so velocity will increase. 
According to the result of fig 4, there was no absolute change 
in velocity while the Reynolds number was increased. It may 
be as a result of different parameters having counter effects on 
each other and, nullifies, or in this case, the variation in veloc-
ity is independent of a change in the Reynolds number. Fig.5 
indicated that there was a slight amount of accretion in velocity 
when parameter R was growth, but changes were very few and it 
seems that there is no change in velocity when the R parameter  
changes. In fig 6, with the increase in the Hartman number, the 
microrotation profile is raised. Interaction of nanoparticles en-
hances the heat and causes a reduction in dynamic viscosity so 
that velocity will rise.  Fig 7 showed that with an increase in pa-
rameter N1 microrotation profile decreased. According to the for-
mula, this is because of an increase in the vertex viscosity.  Fig 
8 demonstrated that there was an enhancement in microrotation 
profile when spin gradient viscosity N2 increased. Reduction in 
viscosity and increase in velocity causes the enhancement in ve-
locity,  N2   so micro rotation will increase. There is a reduction 
in velocity by increasing the micropolar fluid constant N3(Fig. 
9).  Enhancement of micro inertial density causes N3  to grow, 

so microrotation will decrease. Fig 10 shows that there are no 
changes in the microrotation profile with enhancement in Reyn-
olds number Re. fig11 demonstrated that there was a reduction in 
the microrotation profile while parameter R increased. In fig 12, 
with accretion in the thermophoretic parameters, the temperature 
profile increased due to the enhancement of the thermodiffusion 
coefficient (DT). Fig 13 showed that there was a diminishing 
in temperature profile while the radiation parameter increased. 
The radiation parameter 𝑅d defines the relative contribution 
of conduction heat transfer to thermal radiation transfer. Since 
the thermal radiation transfer grows faster than conduction heat 
transfer, the temperature profile decreases. According to fig 14, 
the concentration profile decreased with the increase of Brown-
ian motion. It’s obvious that with the increase in a random mo-
tion, concentration will decrease. Fig 15 illustrated that with the 
enhancement of the thermophoretic parameter, the concentration 
profile increased. With an increase in particles thermodiffusion 
concentration will increase. Fig 16 indicates that an increase in 
the Reynolds number causes a   decrease in the concentration 
profile. Because of an increase in velocity, the concentration de-
creased. Fig 17 shows that with the enhancement of the Schmidt 
number, the concentration decreased due to the increase in the 
momentum diffusivity. 

In fig 18, the upper side of the channel showed increases in the 
Nusselt number while Reynolds and radiation parameters were 
increased, but on the lower side, the Nusselt number decreased. 
On the upper side of the channel, certainly convective has higher 
amounts because there have to be two phases of fluids, but on 
the lower side, because of nanofluid properties, conductive have 
higher amounts. The same reason goes for fig 19, which indi-
cates the effect of Reynolds and thermophoretic parameters on 
the Nusselt number.
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Figure 2: Velocity variations with the Hartmann number Figure 3: Velocity variations with N1
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Figure 4: Velocity variations with the Reynolds number Figure 5: Velocity variations with the R parameter

Figure 6: Microrotation profile variations with Hartman 
number M

Figure 7: Microrotation profile variations with N1

Fig. 8 Microrotation profile variations with    Fig. 9 Microrotation profile variations with    
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Figure 9: Microrotation profile variations with N3
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Figure 18: Effect of Reynolds number and radiation parameter on Nusselt number

Figure 19: Effect of Reynolds number and thermophoresis parameter on Nusselt number

Fig. 19 Effect of Reynolds number and thermophoresis parameter on Nusselt number 
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the results. 

As in previous work mentioned before [6], [7] AGM method suggests that answers to the ODEs 
can be shown as polynomial shapes. In this article, the assumption which gave answers suggests 
that: 

 ( )  ∑    
       ,  ( )  ∑    

       ,  ( )  ∑    
       ,  ( )  ∑    

      

(4) 

Now, all it takes is to find the coefficients,    ,    ,    and   . At first, by putting boundary 
conditions (2) into series (4) ten equations will obtain as follow: 

 
(5) 

 (6) 

 (7) 

 (8) 

 (9) 

 (10) 

 (11) 

0.18
0.185

0.19
0.195

0.2
0.205

0.21
0.215

0 0.2 0.4 0.6 0.8

N
u=

-θ
'(1
) 

Re 

Nt=0.1
Nt=0.39
Nt=0.68
Nt=0.97

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8

N
u=

-θ
'(-

1)
 

Re 

Nt=0.1
Nt=0.39
Nt=0.68
Nt=0.97

Fig. 19 Effect of Reynolds number and thermophoresis parameter on Nusselt number 

  
N1=0.1,N3=0.1,Nb=0.1,Sc=0.1,Rd=0.1,N2=0.2,Pr=6.2,M=1,R=1.1 

 

Verification with AGM method  

Due to the fact that there is a huge amount of difference in some results, especially in 
temperature and concentration profile with previous works, the AGM method is used to verify 
the results. 

As in previous work mentioned before [6], [7] AGM method suggests that answers to the ODEs 
can be shown as polynomial shapes. In this article, the assumption which gave answers suggests 
that: 

 ( )  ∑    
       ,  ( )  ∑    

       ,  ( )  ∑    
       ,  ( )  ∑    

      

(4) 

Now, all it takes is to find the coefficients,    ,    ,    and   . At first, by putting boundary 
conditions (2) into series (4) ten equations will obtain as follow: 

 
(5) 

 (6) 

 (7) 

 (8) 

 (9) 

 (10) 

 (11) 

0.18
0.185

0.19
0.195

0.2
0.205

0.21
0.215

0 0.2 0.4 0.6 0.8

N
u=

-θ
'(1
) 

Re 

Nt=0.1
Nt=0.39
Nt=0.68
Nt=0.97

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8

N
u=

-θ
'(-

1)
 

Re 

Nt=0.1
Nt=0.39
Nt=0.68
Nt=0.97

Fig. 19 Effect of Reynolds number and thermophoresis parameter on Nusselt number 

  
N1=0.1,N3=0.1,Nb=0.1,Sc=0.1,Rd=0.1,N2=0.2,Pr=6.2,M=1,R=1.1 

 

Verification with AGM method  

Due to the fact that there is a huge amount of difference in some results, especially in 
temperature and concentration profile with previous works, the AGM method is used to verify 
the results. 

As in previous work mentioned before [6], [7] AGM method suggests that answers to the ODEs 
can be shown as polynomial shapes. In this article, the assumption which gave answers suggests 
that: 

 ( )  ∑    
       ,  ( )  ∑    

       ,  ( )  ∑    
       ,  ( )  ∑    

      

(4) 

Now, all it takes is to find the coefficients,    ,    ,    and   . At first, by putting boundary 
conditions (2) into series (4) ten equations will obtain as follow: 

 
(5) 

 (6) 

 (7) 

 (8) 

 (9) 

 (10) 

 (11) 

0.18
0.185

0.19
0.195

0.2
0.205

0.21
0.215

0 0.2 0.4 0.6 0.8

N
u=

-θ
'(1
) 

Re 

Nt=0.1
Nt=0.39
Nt=0.68
Nt=0.97

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8

N
u=

-θ
'(-

1)
 

Re 

Nt=0.1
Nt=0.39
Nt=0.68
Nt=0.97

4. Verification with AGM Method 
Due to the fact that there is a huge amount of difference in some 
results, especially in temperature and concentration profile with 
previous works, the AGM method is used to verify the results.

As in previous work mentioned before [6], [7] AGM method 
suggests that answers to the ODEs can be shown as polynomial 
shapes. In this article, the assumption which gave answers 
suggests that:

Now, all it takes is to find the coefficients, ai , bi , ci and di. At first, by putting boundary conditions (2) into series (4) ten equations 
will obtain as follow:
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(14) 

Other 18th equation which is needed for solving the system of polynomials will be achieved by 
applying series (4) to equations (1) and by use of boundary conditions (2) and by derivation from 
them all required equations will be produced.  
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Figure 20: comparer between AGM and finite element method for M=1,N1=0.1,N2=0.2,N3=0.1,Sc=0.2,Pr=6.2,Nb=0.2,R=0.1,Rd
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5. Conclusion
Radiative micropolar nanofluid passed through a porous chan-
nel has been studied with finite element and AGM methods. The 
effect of the coupling parameter N1and the parameter  R was to 
increase the variation of velocity while Hartman number M de-
creased it. Hartman number M and spin gradient viscosity N2 
enhanced the microrotation profile although the coupling param-
eter N1, micropolar fluid constant N3 and parameter R reduced 

the microrotation profile. Thermophoretic parameter Nt raised 
the temperature profile but the radiation parameter Rd dropped it.  
Thermophoretic parameter Nt magnified the concentration pro-
file, unlike Brownian motion Nb and Schmidt number Sc which 
declined the concentration profile. Reynolds number Re had no 
change in the variation of velocity and microrotation profile, 
while it decreased the concentration profile.

 

 
Nomenclature    

a,b,c,d AGM coefficient    Schmidt number 

      B Magnetic field T Fluid temperature 

      C Concentration of the fluid    Temperature at the lower 
plate of the channel 

   Concentration at the lower 
plate of the channel    Temperature at the upper 

plate of the channel 

   Concentration at the upper 
plate of the channel   

   Brownian diffusion 
coefficient  ̂ Vertex viscosity 

   Thermophoretic diffusion 
coefficient   Dynamic viscosity 

j Microinertiai density   Kinamatic cofficent 

k Thermal conductivity   Density 

M Hartman number f Dimensionless stream 
function 

   Coupling parameter g Dimensionless form of the 
microrotation profile 

   Spin gradient viscosity 
parameter   Dimensionless 

temperature profile 

   Micropolar fluid constant   Dimensionless 
concentration profile 

   Brownian motion    Prandtl number 

   
Thermophoretic 

parameter.   Dimsensionless similarity 
variable 

   Nusselt number   Electric conductivity 

Re Reynolds number   Thermal diffusivity 

   Redation parameter   
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