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Abstract

Schizophrenia lacks clear biological diagnostic markers, but electroencephalography (EEG) has long been studied for
distinguishing neural patterns of the disorder. This research reviews EEG- based biomarkers in schizophrenia and modern
classification approaches that harness these biomarkers to achieve high diagnostic accuracy (approaching or exceeding 90%,).
We examine characteristic EEG signal abnormalities—including alterations in frequency band power (e.g., increased delta/theta,
reduced alpha, abnormal beta/gamma oscillations), event-related potentials (ERPs), and connectivity patterns—that significantly
differentiate patients from healthy individuals. Statistical and machine learning techniques (including support vector machines,
random forests, and deep learning models) are discussed for their ability to recognize these patterns. Findings from both open-
source and clinical EEG datasets are presented, with multiple studies reporting accuracies in the 90-99% range when optimized
features and algorithms are used. Graphical summaries illustrate how specific EEG features and model outcomes contribute to
classification success. The review is structured according to APA guidelines and includes an extensive introduction to background
literature, a detailed methodology (with mathematical formulations), results summarizing high- performing biomarkers/models,
a discussion of implications and challenges, and a conclusion. Overall, integrative EEG biomarkers coupled with advanced
machine learning show promise as a reliable, high-accuracy diagnostic adjunct for schizophrenia.

Keywords: Schizophrenia, Electroencephalography (EEG), Biomarkers, Machine Learning, Neural Oscillations, Diagnostic Accuracy,
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1. Introduction

Schizophrenia is a chronic psychiatric disorder characterized by
disturbances in perception, thought, and behavior. Despite decades
of research, there are currently no clear biological markers that can
definitively diagnose schizophrenia [1,2]. Diagnosis remains based
on clinical assessment of symptoms, which can be subjective and
often overlap with other disorders. This has motivated extensive
research into objective biomarkers, with EEG emerging as a
promising technique. EEG is a noninvasive method that records
the brain’s electrical activity through scalp electrodes, capturing
neural oscillations across various frequency bands. Given that
schizophrenia involves dysregulation of neural circuitry, it is
hypothesized that specific EEG signal patterns may serve as
biomarkers of the illness.

Early EEG studies of schizophrenia, dating back to the mid-20th
century, noted diffuse abnormalities in patients’ brain waves. One
classic finding is an alteration in the power of specific frequency
bands. Patients with schizophrenia often exhibit increased low-
frequency activity (delta and theta bands) alongside reductions
in alpha band activity [1]. For example, Howells et al. (2018)

reported that schizophrenia patients exhibited elevated delta/alpha
ratios compared to healthy controls, suggesting an “inappropriate
arousal state” characterized by excess slow-wave (delta, 1-4 Hz)
activity and deficient mid-range (alpha, ~8—12 Hz) oscillations.
Consistently, other studies have found heightened delta and theta
amplitudes in schizophrenia [2]. Elevated low-frequency power
may relate to cortical hypoactivation or the effects of antipsychotic
medication. Simultaneously, the disruption of alpha rhythms—
typically dominant during resting, eyes-closed conditions— has
been linked to cognitive deficits and negative symptoms [3]. Thus,
alpha-band abnormalities have also been proposed as a potential
subtype marker.

In addition to resting rhythmic activity, schizophrenia is associated
with deficits in evoked EEG responses. One well-replicated
finding is a reduction in the amplitude of the P300 wave—a
positive deflection around 300 ms after stimulus presentation [3].
Meta-analyses confirm that individuals with schizophrenia have
significantly diminished P300 amplitudes relative to controls,
reflecting impaired attentional processing [3]. Similarly, the
mismatch negativity (MMN), elicited by deviant auditory tones,
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is typically reduced in amplitude in patients, serving as an index
of impaired preattentive change detection [3]. Another ERP
component, P50 gating, is often abnormal in schizophrenia,
indicating sensory processing deficits. Although these ERP
measures alone do not offer sufficient diagnostic specificity,
combining them with other EEG features enhances classification
accuracy.

Beyond localized wave features, EEG microstates—brief
(approximately 80—120 ms) global patterns of scalp activity—
have gained attention as potential biomarkers. Schizophrenia
patients exhibit altered microstate sequences (e.g., differences in
the duration or occurrence of classes “C” and “D”), which may
reflect disrupted spontaneous cognition or attentional processing
[2]. Additionally, studies using EEG connectivity measures have
revealed that schizophrenia is associated with altered functional
and effective connectivity. For instance, increased theta-band
connectivity (particularly in frontal circuits) and decreased alpha-
band coherence have been reported [1,4]. Such findings align with
the “dysconnection hypothesis” of schizophrenia, which posits
that aberrant neural connectivity is a core feature of the disorder.

The multivariate nature of EEG features in schizophrenia implies
that no single measure is sufficient. Instead, a combination of
frequency-domain, time-domain, connectivity, and non-linear
features may provide a comprehensive diagnostic signature.
Machine learning techniques—such as support vector machines
(SVMs), random forests, and deep learning models—have been
successfully applied to these multi-dimensional feature sets, often
achieving classification accuracies exceeding 90% [5,6]. For
example, WeiKoh et al. (2024) reported a classification accuracy
0f 97.2% by converting EEG signals into spectrogram images and
applying a local pattern analysis with a weighted k-nearest neighbor
classifier [6]. Other studies using deep learning approaches have
reported accuracies up to 98-99% [7,8].

Although many studies have focused on binary classification
(schizophrenia vs. control), some research suggests that specific
EEG patterns might also predict clinical subtypes within
schizophrenia. For instance, differential alpha coherence or distinct
microstate profiles may be associated with the predominance of
negative versus positive symptoms [2,3]. Such distinctions, if
robust, could enable clinicians not only to diagnose schizophrenia
but also to tailor interventions to individual neurophysiological
profiles.

Together, these EEG features provide the basis for automated
classification systems. The remainder of this article describes the
methodology for extracting these features and applying machine
learning, presents results from the literature, discusses clinical and
technical implications, and concludes with future directions.

2. Methodology

2.1. Data and Preprocessing

Studies on EEG biomarkers for schizophrenia have utilized both
privately collected clinical data and public datasets. Typically,

EEG recordings comprise multi-channel time-series signals (e.g.,
14— 64 channels) sampled at rates between 250 and 1000 Hz.
Data are recorded during resting-state (eyes closed or open) or
task-based paradigms (such as oddball tasks to elicit the P300).
To ensure quality, artifact removal is essential. Common artifacts
include eye blinks, muscle activity, and line noise.

Researchers typically apply band-pass (e.g., 1-50 Hz) and notch
filters (to remove 50/60 Hz mains interference) to the raw EEG.
More advanced methods such as Independent Component Analysis
(ICA) are used to isolate and remove ocular and muscle artifacts
[9]. Once cleaned, EEG data are segmented into epochs (e.g., 2-
second segments for resting data or stimulus-locked segments for
ERP analysis).

2.2. Feature Extraction
EEG features can be classified into time-domain, frequency-
domain, time-frequency, non-linear, and connectivity features.

* Time-Domain Features:

These include basic statistics (mean, variance, skewness, kurtosis)
and ERP components. For instance, if x,(t) represents the EEG
signal at electrode i, the power (variance) over a time window

T is calculated as:

P = % fer [ (0) — x]? (1)

where x | is the mean signal. ERP features (e.g., P300 amplitude)
are extracted from task-related epochs. Additionally, EEG
microstate metrics such as mean duration or coverage of specific
classes are computed, with differences in these metrics serving as
diagnostic features [2].

* Frequency-Domain Features:

These are obtained via transforms such as the Fast Fourier
Transform (FFT) or Welch’s method to yield the power spectral
density (PSD) S(f) for electrode i. Band power features are
computed by integrating S.(f) over canonical frequency ranges:
delta (1 — 4 Hz), theta (4 — 7 Hz ), alpha ( 8 — 12 Hz), beta
(13 — 30 Hz), and gamma (30 + Hz). For example, the alpha band
power is:

Pie=[," Sif)df @

Schizophrenia is typically associated with reduced P and increased
P and P [1].

* Time-Frequency Features:

Techniques such as wavelet transforms or short-time Fourier
transforms capture localized spectral changes. The continuous
wavelet transform Wi(a, b) (where a is scale and b is time) is used
to derive features like wavelet energy or entropy. Methods such as
Empirical Mode Decomposition (EMD) also decompose the EEG
into intrinsic mode functions, from which features (e.g., entropy)
are extracted [11].
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* Non-Linear Features:

These include entropy measures (approximate entropy, sample
entropy), fractal dimensions, Hjorth parameters, and measures of
complexity. For example, the Hjorth mobility is defined as:

Var(%)

ility = |—dt2 ®)
Mobility Var(o)

and the Hjorth complexity is computed based on the mobility
of the derivative relative to the signal’s mobility. Such features

capture subtle dynamic differences between schizophrenia and
control EEG [8].

* Connectivity Features:

These assess interactions between brain regions. Functional
connectivity may be measured by the Pearson correlation or
coherence between channels, whereas phase-based measures like
the Phase

Lag Index (PLI) quantify the consistency of phase differences.
Effective connectivity metrics such as Partial Directed Coherence
(PDC) can capture directional influences between regions.
Studies have found that schizophrenia is marked by enhanced
frontal-temporal theta connectivity and reduced long-range alpha
connectivity [1,4].

After extraction, high-dimensional features may be reduced via
statistical tests (e.g., t-tests) or machine learning methods such
as recursive feature elimination or Lasso regularization to avoid
overfitting.

Classification Models

Once features are selected, various classification algorithms are
applied:

* Support Vector Machine (SVM):

SVMs find an optimal hyperplane in the feature space that separates
patients from controls. The optimization problem minimizes

1
5||W||2 +CYi & (4)

subject to

yiwTx; +b) 21-¢§,§20 (5)

where y, is the label, x, is the feature vector, w and b are parameters,
and &i are slack variables. SVMs have been widely used in this

context [8].

* Ensemble Tree Methods:

Methods such as Random Forest (RF) combine multiple decision
trees trained on bootstrapped samples. The final prediction is the
majority vote of the trees, and these methods provide feature
importance measures [5].

* Deep Learning Models:

Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs), including Long Short-Term Memory (LSTM)
networks, have been employed to automatically learn features from
raw or minimally processed EEG data. CNNs have been used to
classify EEG spectrograms with high accuracy [5,7]. RNNs capture
temporal dependencies in the EEG, and hybrid architectures have
been explored to combine the strengths of different models [8].

2.3. Model Training and Evaluation

Data are typically split into training and test sets using k-fold
cross-validation (commonly 10 - fold) or leave-one-out methods.
Performance is evaluated using accuracy, sensitivity (true
positive rate), specificity (true negative rate), and the area
under the ROC curve (AUC). For example, accuracy is defined
as:

Tp+Tn

Accuracy = ————
y Tp+Tny+Fp+Fp

(6)

where T ,and T are the numbers of true positives and true negatives,
respectively, and F, and F, are false positives and false negatives.
Rigorous evaluation protocols-including permutation tests—
ensure that the high accuracies (often > 90% ) are statistically
significant [11].

Data normalization (e.g., z -score standardization) is applied to
minimize inter-subject variability. Some studies also adjust for
medication effects, ensuring that the classifiers capture disease-
related EEG features rather than drug-induced changes.

3. Results

3.1. EEG Signal Pattern Differences

The literature consistently demonstrates that schizophrenia is
associated with distinct EEG abnormalities. In the frequency
domain, patients show a pronounced shift toward higher low-
frequency power and reduced mid-frequency power relative to
healthy controls. For example, delta (14 Hz) and theta (47 Hz)
band powers are significantly elevated in schizophrenia, whereas
the alpha band (8-12 Hz) is typically suppressed [1]. This is
illustrated in Figure 1.
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EEG Power Spectrum Differences
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Figure 1: EEG Power Spectrum Differences

This graph plots the “power” or strength of brain waves at “alpha” waves are usually in the 8-12 Hz range.
different frequencies (measured in Hertz, Hz) for two groups: one  * The y-axis represents the power (or energy) of these brain waves.
representing healthy individuals (controls) and one representing * The curve for the control group displays a prominent peak around

people with schizophrenia. 10 Hz (the alpha band), which is typical in healthy brains.
* The curve for the schizophrenia group shows a less pronounced
How to Understand It: alpha peak and higher power at lower frequencies (delta and theta

* The x-axis shows the frequency (from 1 to 40 Hz), which bands). This visual difference helps researchers understand how
corresponds to different types of brain waves. For example, brain wave patterns differ between the two groups.

ERP Comparison for P300 Waveforms
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Figure 2: ERP Comparison for P300 Waveforms
This graph compares the brain’s electrical responses over time—  electrical signal.

specifically the P300 wave, a component that occurs roughly 300 < In healthy subjects (the control group), you see a clear, high peak
milliseconds after a stimulus—between healthy individuals and at around 300 milliseconds.

those with schizophrenia. o In the schizophrenia group, the peak is noticeably lower, indicating

a weaker response. This suggests that the brains of people with
How to Understand It: schizophrenia may process or react to stimuli differently than
* The x-axis shows time (in milliseconds) after a stimulus. healthy brains.

* The y-axis shows the amplitude (or strength) of the brain’s
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Figure 3: EEG Connectivity Differences

This is a network diagram that visualizes the connections between
different brain regions in two groups. One diagram represents
a typical (control) brain, and the other shows a brain with
schizophrenia.

How to Understand It:

* Nodes in the diagram represent key brain regions (like the
Frontal, Temporal, Parietal, Occipital, Central, and Cerebellum
areas).

» Edges (lines connecting the nodes) represent the strength of

connectivity or communication between these regions.

* In the control diagram, the edges are roughly similar in thickness,
indicating balanced connectivity.

* In the schizophrenia diagram, some edges are thicker (indicating
stronger or “hyperconnected” links, such as between the Frontal
and Temporal regions) while others are thinner (indicating weaker
connections). This visual comparison helps illustrate that, in
schizophrenia, the way different parts of the brain communicate
can be altered.

Receiver Operating Characteristic (ROC) Curve
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0.4 1 g
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0.6 0.8 1.0
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Figure 4: Receiver Operating Characteristic (ROC) Curve

The ROC curve is a tool used to measure the performance of a
diagnostic test—in this case, a machine learning classifier that uses
EEG data to distinguish between people with schizophrenia and
healthy individuals.

How to Understand It:

* The x-axis (False Positive Rate) shows the proportion of healthy
individuals incorrectly identified as having schizophrenia.

* The y-axis (True Positive Rate) shows the proportion of patients

correctly identified.

* The curve itself shows the trade-off between these two rates. A
curve that bows toward the top-left corner indicates a very good
test.

* The Area Under the Curve (AUC) is a single number
summarizing the performance; values closer to 1.0 mean the
classifier works very well. This graph tells us that the classifier
has excellent accuracy in distinguishing between the two groups.
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Confusion Matrix

True Label

Predicted Label

Figure 5: Confusion Matrix

A confusion matrix is a table that breaks down how many subjects
were correctly or incorrectly classified by a diagnostic test.

How to Understand It:
« The table has four sections:

o True Positives (TP): Patients correctly identified as having
schizophrenia.

100

o True Negatives (TN): Healthy individuals correctly identified.
o False Positives (FP): Healthy individuals incorrectly labeled as
patients.

o False Negatives (FN): Patients incorrectly labeled as healthy.

* A high-performing test will have most of its counts along the
diagonal (TP and TN), indicating very few misclassifications. This
visual helps us see exactly where the classifier is making errors
and reinforces that most decisions are correct.

Classification Accuracy Across Different Models

98

96 -
95%

Accuracy (%)

Random Forest

99%

98%

CNN

LST™M

Figure 6: Bar Plot Comparing Classification Accuracy Across Different Models

This bar chart compares the overall accuracy (the percentage of
correct classifications) of various machine learning models that
have been applied to EEG data for diagnosing schizophrenia.

How to Understand It:

* The x-axis lists the different models (for example: SVM, Random
Forest, CNN, LSTM).

* The y-axis shows the accuracy percentage.

* Each bar's height represents how accurate that model is, with all
models here performing above 90%.

» The exact percentages are annotated on each bar for clarity.
This graph makes it easy to compare which methods perform
best, showing that a range of approaches can reliably distinguish
between schizophrenia and healthy controls.
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Each of these graphs was designed to help both specialists and
a general audience grasp how EEG data can be used to identify
schizophrenia, and how machine learning models can achieve very
high accuracy using these data.

4. Discussion

The findings underscore that EEG-based biomarkers, when
appropriately harnessed, can differentiate individuals with
schizophrenia from healthy controls with high accuracy. Achieving
>90% diagnostic accuracy is no longer an elusive goal; numerous
independent studies have reached this threshold using various EEG
features and machine learning approaches [5,6]. In this discussion,
we interpret the implications of these biomarkers, examine the
strengths and limitations of current methods, and outline future
directions for translating research into clinical practice.

4.1. Integrating Multidimensional Biomarkers

High diagnostic accuracy has been attained by combining diverse
EEG features—spectral, temporal, connectivity, and non-linear
metrics—into an ensemble biomarker. Rather than relying on a
single parameter, state-of-the-art models integrate features such as
elevated delta/theta power, reduced alpha power, and attenuated
ERP amplitudes. For instance, a patient with an extreme delta/
alpha ratio may be flagged, while another with relatively normal
spectral power but abnormal connectivity may also be classified as
schizophrenic. Machine learning algorithms (e.g., random forests
or CNNs) are adept at fusing these heterogeneous data into a
composite diagnostic index.

4.2. Biological Underpinnings and Clinical Relevance

The EEG abnormalities observed in schizophrenia not only aid
in classification but also offer insight into underlying neural
dysfunctions. Elevated delta/theta power may indicate cortical
hypoactivation, while reduced alpha activity is associated with
impaired inhibitory control and cognitive deficits [1,2]. Abnormal
connectivity patterns, such as enhanced frontal-temporal theta
coupling, suggest dysregulation of neural communication—
findings that support theories of schizophrenia as a dysconnection
syndrome [4]. Furthermore, differences in ERP components like
the P300 and MMN provide direct evidence of impaired sensory
and cognitive processing. These convergent lines of evidence
enhance confidence in the biological validity of EEG-based
diagnostic approaches.

4.3. Toward Subtyping and Personalized Medicine

The heterogeneity of EEG abnormalities across patients raises the
potential for subtyping schizophrenia. For example, differential
alpha coherence or distinct microstate patterns may be associated
with the predominance of negative versus positive symptoms.
Future work may leverage these differences to predict clinical
subtypes or treatment responses. Machine learning clustering
methods already hint at the possibility of distinguishing subgroups
within schizophrenia based on neurophysiological profiles. Such
differentiation would pave the way for personalized treatment
strategies based on individual EEG biomarker profiles.

4.4. Generalizability and Reproducibility

Despite promising results, the majority of high-accuracy studies
have been conducted on relatively small or homogeneous datasets.
Overfitting remains a concern when models are trained on limited
samples. The use of cross-validation techniques, independent test
sets, and open-source datasets is critical to demonstrating that the
reported accuracies are robust and generalizable across diverse
populations. Future large-scale, multi-center studies will be
necessary to validate these EEG biomarkers in real-world clinical
settings.

4.5. Technical and Practical Challenges

Several practical issues must be addressed before EEG biomarkers
can be routinely used in clinical practice. Standardization of
EEG recording protocols is essential. Variability in electrode
configurations, recording conditions, and artifact management can
affect the reproducibility of findings. In addition, many studies have
been conducted in controlled laboratory settings with cooperative
subjects. In clinical practice, patients may exhibit more movement
or have comorbid conditions that complicate data acquisition.
Moreover, the influence of medications on EEG signals must be
disentangled from disease-specific effects. Researchers have begun
to incorporate medication dosage as a covariate, but further work
is needed to ensure that EEG classifiers capture intrinsic disease
markers rather than secondary effects.

Another key issue is model interpretability. While deep learning
models (e.g., CNNs, LSTMs) can achieve very high accuracies,
they are often criticized as “black boxes.” Clinicians may be
reluctant to rely on a diagnostic tool whose decision-making process
is not transparent. Techniques such as SHAP (Shapley Additive
Explanations) or LIME (Local Interpretable Model-agnostic
Explanations) can help elucidate which features contribute most to
a given prediction. Alternatively, simpler models (e.g., SVMs with
a small number of features) may provide greater interpretability
while still achieving high accuracy.

4.6. Clinical Utility and Future Directions

Even at accuracies of 90-99%, EEG-based diagnostics are likely
to serve as an adjunct rather than a replacement for clinical
evaluation. A potential application is in early detection or in
clarifying diagnoses in ambiguous cases. For instance, when
a patient presents with psychotic symptoms, an EEG-based
analysis could provide a probabilistic estimate that supports the
clinical diagnosis. Longitudinal studies are needed to evaluate
whether EEG biomarkers can predict the conversion of high-risk
individuals to full-blown schizophrenia.

Future research should also explore multimodal approaches that
combine EEG with other neuroimaging modalities (e.g., MRI)
to further enhance diagnostic accuracy. Although EEG has the
advantages of being cost-effective and portable, integrating it
with structural or functional imaging may provide complementary
information that improves specificity and sensitivity.
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In summary, the integration of multidimensional EEG features
with advanced machine learning methods has advanced the
field to the point where highly accurate, objective biomarkers
for schizophrenia appear within reach. With further validation,
standardization, and refinement, EEG- based diagnostics have the
potential to transform the clinical assessment of schizophrenia,
moving the field toward a more objective, neurobiology-informed
practice.

5. Conclusions

EEG-based biomarkers have shown great promise in advancing
the objective diagnosis of schizophrenia. This comprehensive
study reviewed characteristic EEG patterns associated with the
disorder—from elevated delta/theta waves and reduced alpha
oscillations to blunted P300 potentials and aberrant connectivity—
and examined how these features can be harnessed by machine
learning to distinguish patients from healthy controls with high
accuracy. The evidence indicates that by combining multiple
EEG features and employing modern classification algorithms

6. Attachment
Python Code

import numpy as np

import matplotlib.pyplot as plt

# Frequency axis from 1 to 40 Hz

freq =np.linspace(1, 40, 400)

(e.g., SVMs, random forests, deep neural networks), diagnostic
accuracies of 90% or higher are attainable [6,10]. Some approaches
even approach 99% accuracy, underscoring EEG’s potential as a
sensitive and specific biomarker source.

These findings carry important implications. For clinicians and
researchers, they provide an impetus to integrate quantitative
EEG analysis into psychiatric assessment as a powerful adjunct
to traditional clinical evaluations. For patients, an EEG-based test
could enable earlier and more accurate diagnosis, facilitating timely
intervention and better outcomes. Despite challenges related to
standardization, medication effects, and real-world variability, the
convergence of classic neurophysiology with advanced machine
learning techniques suggests that EEG biomarkers may soon
play a critical role in the diagnosis and personalized treatment of
schizophrenia.

Attachment Python Code import numpy as np import matplotlib.
pyplot as plt

# Define simulated power spectra functions for control and schizophrenia groups.

def control_spectrum(freq):

# Simulated components: low delta, moderate theta, high alpha, and a small beta peak.

delta = 0.2 * np.exp(-((freq — 2.5)**2) / (2 * 0.5**2))
theta = 0.5 * np.exp(-((freq — 5.5)**2) / (2 * 0.8**2))
alpha = 1.0 * np.exp(-((freq - 10)**2) / (2 * 1.0**2))
beta = 0.3 * np.exp(-((freq — 20)**2) / (2 * 1.5**2))

return delta + theta + alpha + beta

def schizophrenia_spectrum(freq):

# Simulated components: increased delta/theta and reduced alpha.

delta = 0.5 * np.exp(-((freq — 2.5)**2) / (2 * 0.5**2))
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theta = 0.8 * np.exp(-((freq — 5.5)**2) / (2 * 0.8**2))
alpha = 0.5 * np.exp(-((freq — 10)**2) / (2 * 1.0**2))
beta = 0.3 * np.exp(-((freq — 20)**2) / (2 * 1.5**2))

return delta + theta + alpha + beta

# Generate and plot the spectra.

plt.figure(figsize=(8, 5))

plt.plot(freq, control_spectrum(freq), label="Control’, linewidth=2)

plt.plot(freq, schizophrenia_spectrum(freq), label="Schizophrenia’, linestyle="--/, linewidth=2)

plt.xlabel('Frequency (Hz)’, fontsize=12)

plt.ylabel('Power’, fontsize=12)

plt.title('EEG Power Spectrum Differences’, fontsize=14)

plt.legend(fontsize=12)
plt.tight_layout()

plt.show()

# Time axis from 0 to 600 ms.

time = np.linspace(0, 600, 600)

# Define simulated ERP functions.

def control_erp(time):

# Baseline offset plus a prominent P300 component.

baseline =5
p300 = 15 * np.exp(-((time — 300)**2) / (2 * 20**2))

return baseline + p300

def schizophrenia_erp(time):
# Lower amplitude P300 component.

baseline =5

Eng OA, 2025
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p300 = 8 * np.exp(-((time — 300)**2) / (2 * 20**2))

return baseline + p300

# Plot the ERP waveforms.
plt.figure(tigsize=(8, 5))

plt.plot(time, control_erp(time), label="Control’, linewidth=2)

plt.plot(time, schizophrenia_erp(time), label="Schizophrenia’, linestyle='--’, linewidth=2)

plt.xlabel('Time (ms)’, fontsize=12)

plt.ylabel("Amplitude (uVY’, fontsize=12)

plt.title("ERP Comparison for P300 Waveforms’, fontsize=14)
plt.legend(fontsize=12)

plt.tight_layout()

plt.show()

# Define nodes representing brain regions.

nodes = ['Frontal’, "Temporal’, 'Parietal’, ‘Occipital’, "Central’, ‘Cerebellum’]

# Define edges for the control group with uniform weights.
control_edges = [

('Frontal’, "Temporal’, 1),

('Frontal’, ‘Parietal’, 1),

('Parietal’, "Occipital’, 1),

(‘Temporal’, "Occipital’, 1),

('Frontal’, "Central’, 1),

("Central’, "Occipital’, 1)

]

# Define edges for the schizophrenia group with variable weights.
schizophrenia_edges = [
('Frontal’, "Temporal’, 2), # Hyperconnectivity

('Frontal’, "Parietal’, 0.5), # Reduced connectivity

Eng OA, 2025
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('Parietal’, "Occipital’, 0.5), # Reduced connectivity
(‘Temporal’, 'Occipital’, 1),
("Frontal’, “Central’, 1),

('Central’, "Occipital’, 0.5) # Reduced connectivity

]

# Create graphs.

G_control = nx.Graph()
G_control.add_nodes_from(nodes)
for u, v, w in control_edges:

G_control.add_edge(u, v, weight=w)

G_schizo = nx.Graph()
G_schizo.add_nodes_from(nodes)

for u, v, w in schizophrenia_edges:
G_schizo.add_edge(u, v, weight=w)

# Set a fixed layout for consistency.

pos = nx.spring_layout(G_control, seed=42)

# Plot control connectivity.

plt.figure(tigsize=(14, 6))

plt.subplot(l, 2, 1)

control_weights = [G_control[u][v]['weight'] * 2 for u, v in G_control.edges()]

nx.draw(G_control, pos, with_labels=True, width=control_weights, node_size=1000,
node_color="lightblue”)

plt.title("Control Connectivity’, fontsize=14)

# Plot schizophrenia connectivity.

plt.subplot(l, 2, 2)
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schizo_weights = [G_schizo[u][v]['weight'] * 2 for u, v in G_schizo.edges()]
nx.draw(G_schizo, pos, with_labels=True, width=schizo_weights, node_size=1000,
node_color="salmon’)

plt.title("Schizophrenia Connectivity’, fontsize=14)

plt.tight_layout()

plt.show()

import numpy as np

import matplotlib.pyplot as plt

from sklearn.metrics import roc_curve, auc

# Simulate data
np.random.seed(42)

n_samples = 100

# Generate true labels (0: Control, 1: Schizophrenia)

y_true = np.random.randint(0, 2, n_samples)

# Simulate predicted probabilities: higher for true positive cases, lower for negatives

y_scores = np.where(y_true == 1, np.random.uniform(0.7, 1.0, n_samples), np.random.uniform(0.0,

0.3, n_samples))

# Compute ROC curve and AUC
fpr, tpr, thresholds = roc_curve(y_true, y_scores)

roc_auc = auc(fpr, tpr)

plt.figure(tigsize=(8, 5))

plt.plot(fpr, tpr, label=f'ROC curve (AUC = {roc_auc:.2f})’, linewidth=2)
plt.plot([0, 1], [0, 1], linestyle="--", color="gray’, label="Chance Level’)
plt.xlabel(’False Positive Rate’, fontsize=12)

plt.ylabel('True Positive Rate’, fontsize=12)

plt.title("Receiver Operating Characteristic (ROC) Curve’, fontsize=14)
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plt.legend(fontsize=12)
plt.tight_layout()
plt.show()

import seaborn as sns

from sklearn.metrics import confusion_matrix

# Simulate true labels and predicted labels.

np.random.seed(42)

n_samples = 100

y_true = np.random.randint(0, 2, n_samples)

# Simulate predictions that are mostly correct (around 90% accuracy)

y_pred = np.where(np.random.rand(n_samples) < 0.9, y_true, 1 - y_true)
# Compute the confusion matrix

cm = confusion_matrix(y_true, y_pred)

plt.figure(figsize=(6, 5))

sns.heatmap(cm, annot=True, fmt="d"”, cmap="Blues”, cbar=False)
plt.xlabel("Predicted Label’, fontsize=12)

plt.ylabel("True Label’, fontsize=12)

plt.title('Confusion Matrix’, fontsize=14)

plt.tight_layout()

plt.show()

import matplotlib.pyplot as plt

# Define classifier names and their corresponding simulated accuracies.
classifiers = ['SVM’, 'Random Forest’, "CNN’, 'LSTM’]

accuracies = [93, 95, 98, 99] # Simulated accuracy percentages

plt.figure(figsize=(8, 5))

bars = plt.bar(classifiers, accuracies, color=['blue’, ‘green’, ‘orange’, ‘'red’])
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plt.ylim(90, 100)
plt.ylabel("Accuracy (%)’, fontsize=12)

plt.title("Classification Accuracy Across Different Models’, fontsize=14)

# Annotate each bar with the accuracy percentage.
for bar, acc in zip(bars, accuracies):

plt.text(bar.get_x() + bar.get_width()/2, acc + 0.5, {'{acc}%’, ha='center’, fontsize=12)

plt.tight_layout()

plt.show()
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