## **Research Article** # Journal of Robotics and Automation Research ## **Top Popular Python Libraries in Research** ### Samira Gholizadeh Department of Mechanical Engineering, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa ## \*Corresponding author Samira Gholizadeh, Department of Mechanical Engineering, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa Submitted: 04 May 2022; Accepted: 10 May 2022; Published: 25 May 2022 Citation: Samira Gholizadeh. (2022). Top Popular Python Libraries in Research. J Robot Auto Res 3(2), 142-145. #### Abstract Python is one of the most popular programming languages in research. The structure of the language and its object-oriented approach help programmers to write logical and clear code for small and large projects. Python libraries (packages) effectively simplify many important processes such as analysing and visualizing data, retrieving unstructured data from the web, image processing, building machine learning models, and textual information [1-4]. In this article, some of the most important and popular libraries and packages in Python are described. #### **Pandas** Pandas is a fast, powerful, flexible, and easy-to-use open source data analysis and manipulation tool built on the Python programming language. Pandas is being used for data wrangling and analysis and provides simple ways for cleaning, manipulating, and transforming data. If you are dealing with a large amount of data, Pandas make it easier to work with them. Top features in Pandas can be categorized as: - Explore & Analyse data speedily - Read various file formats - · Cleaning the data - Manipulating the data Pandas works with Data Frame objects; A Pandas Data Frame is a 2 Dimensional Data Structure where the data is stored in a tabular manner in the form of rows & columns. Some 2 companies use Pandas as a recommendation system, such as Netflix that uses their large collection of data about their customers' preferences to provide suggestions to their users. Amazon performs extensive data analysis to create powerful recommendation systems. YouTube uses data analysis to recommend videos to their users. Pandas is also used in various domains such as Healthcare to assess the risk of chronic diseases and cancer, Energy Sector to improve performance and reduce maintenance cost by predicting device failures, Ecommerce organisations use Pandas for customer segmentation, nowadays companies analyse customer data to provide personalized Advertisement and Discovery of Services (Ads), Airline operators analyse their customer behaviour for cost cutting, Stock markets are using Pandas to understand market activities[5-9]. #### NumPy NumPy is an open source library that contains multidimensional arrays. The NumPy ndarray can be used to store data in a homoge- neous "n" dimensional array object [10]. NumPy is used in industry to compute arrays, for example, the data of a colored image is stored in a 3D matrix containing 1000 pixels. To manipulate those images, we need to operate on those pixels. NumPy is very useful in this scenario. NumPy is also used by advanced Python libraries like Pandas and SciPy. NumPy is more efficient than Python's List in terms of: - Speed - Memory It provides a lot of built in functions like mathematical functions, linear algebra, random sampling, etc [11]. Indexing and Slicing are used to access a subset of the data. #### Scikit-learn Scikit-learn is a machine learning library for the python programming language. After cleaning and manipulating your data with Panda or NumPy, Scikit-learn is used to build machine learning models, as it has thousands of tools used for modelling and predictive analysis [12]. There are several types of machine learning models that can be built using scikit-learn, namely; supervised and unsupervised learning, cross-validate the accuracy of models, and conduct feature importance. It has various classification, regression and clustering algorithms including support vector machines, random forests, gradient boosting, 3 k-means and DBSCAN and is designed to interact with NumPy and SciPy Python numerical and scientific libraries [13-14]. #### **Matplotlib** Matplotlib is the most popular library to explore and visualize data. You can use it to create basic charts such as line charts, scatter plots, histograms, bar charts and pie charts [15]. Matplotlib is the foundation of any other visual library. It is a plotting library for the Python programming language and NumPy numerical extension. It enables decision makers to see patterns, trends, and correlations that might go undetected in text based data [1]. - A Histogram gives the distribution of data. It is used to visualize continuous data such as sales of a company segregated by month. - A Box Plot gives a summary of one or more numerical variables - A Bar Plot or Bar Chart is a plot that shows the relationship between a numerical variable and a categorical variable. - A Scatter Plot is used to analyse the relationship between two numerical variables graphically. It is also handy in detecting the outliers in the dataset. #### Seaborn Seaborn is built on top of Matplotlib. Used for drawing attractive and informative statistical graphics [16]. Seaborn has a close Integration with the Pandas DataFrame and also it is a specialized support for category variables to show observations. Seaborn has tools for selecting colour palettes that reveal hidden patterns in the data. Top features of why we use Seaborn: • Functionality: Uses less syntax and has easy and interesting default themes. - Flexibility: Provides most used default themes - Handling Multiple Figures: Automates the creation of Multiple figures that may lead to Out of Memory Issues. ## **Plotly** The Python Plotly package is an open source library built on Plotly Javascript (plotly.js). Plotly is definitely an essential tool for creating visualization because it is a powerful and easy-to-use library that is able to interact with visualizations. There are basically two ways to create figures with plotly.py: - Figures as dictionaries - Figures as graph objects The plotly.express module has functions that can create whole figures at once and is called PX. Plotly Express is an internal part of the graph library and is the recommended starting point for creating most figures. Each Plotly Express function uses graph objects internally and returns the plotly.graph\_objects.Figure instance. Along with Plotly is Dash. Plotly develops Dash and also provides a platform for writing and deploying Dash applications in an enterprise environment [17]. Dash is a tool that allows you to create dynamic dashboards using Plotly visualizations. iii plotly matpl tlib Features Specializes in Statistical Data Mainly used for Basic Plotting using Used to create beautiful Functionality Bar Plots, Scatter Plots, etc. Visualizations Interactive Plots Well-integrated with the NumPy and More integrated for working with High-Level API for Data Visualization Pandas library of Python Pandas Data frames Visualization Provides default themes which are Provides simple syntax for Flexibility Highly Customizable and Powerful most used complex visualizations Richly interactive plots Animation Not Available Not Available including animation in a single function call Table 1: Matplotlib vs Seaborn vs Plotly ## **Tensor Flow** TensorFlow is a free, open source library for machine learning in Python. It can be used in a wide range of tasks, but has a special focus on training and inferring deep neural networks [18]. It uses multidimensional arrays, also known as tensors, which allow it to perform multiple operations on a particular input. TensorBoard is also a feature which comes with Tensorflow that helps you to visualize graphs and learn of the model [19-20]. This helps in un- derstanding nodes of the model and debugs it to make it better. Graph Dashboard, is a powerful tool to examine the tensorflow model as well as gives, quick view of the model's structure and design. TensorFlow APIs are hierarchically arranged, and high-level APIs are built on low-level APIs. Machine learning researchers use low-level APIs to create and 5 discover new machine learning algorithms. tf.keras is a TensorFlow variant of the Keras open source API. Figure 1 shows the TensorFlow toolk it: Figure 1: TensorFlow toolkit hierarchy [21] #### Keras Keras is a deep learning API written in Python and runs on top of the TensorFlow machine learning platform. It was developed with a focus on the possibility of rapid experiments. Keras are mainly used to create deep learning models, especially neural networks. Keras can be used to ship reliable and performant applied machine learning solutions, as well as in Natural Language Processing (NLP) and Computer Vision (CV) [22-24]. #### **Streamlit** Streamlit is an Open source Python library that makes it easy to build beautiful custom Web Apps for Data Science & Machine Learning. Streamlit's officially supported environment manager on Windows is Anaconda Navigator. Steamlit is an interactive graphical display of data used to understand analytical results and extract useful insights. It is the fastest way to build data apps (Interactive Dashboards). It supports many visualization libraries such as Matplotlib, Seaborn, PlotlyExpress, Bokeh, and many others. Top features of Streamlit are: Improves Decision Making Better Customer Experience Faster Analysis Increased organizational efficiency ## Bokeh Bokeh is a simple, interactive and powerful open source library in Python. Bokeh presents its basic grid and row / column layouts that make it quick to get started. When you need soft and responsive dashboards, you can embed bokeh designs and widgets in popular formats [25-26]. Bokeh offers a variety of methods to embed its content in web pages: server\_document for deployed Bokeh server applications, or json\_items and components for standalone Bokeh output [27]. #### **SciPy** SciPy in Python is an open source library used to solve math, science, engineering and technical problems. This allows users to manipulate data and visualize data using a wide range of Python commands. SciPy is based on the Python NumPy extension. SciPy extends NumPy and provides additional tools for array computing and provides specialized data structures such as scatter matrices and subsequent k-dimensional trees. It also provides algorithms for optimization, integration, interpolation, eigenvalue problems, algebraic equations, differential equations, statistics and many other classes of problems. Some of the applications which make SciPy important are: - Multi-dimensional image processing - Ability to solve Fourier transforms, and differential equations - Due to its optimized algorithms, it can do linear algebra computations very robustly and efficiently ## **OpenCv** OpenCV is an open source Python library that focuses primarily on real-time computer vision. OpenCV has a modular structure, meaning that the package consists of several shared or static libraries. The following modules are available: Core functionality (core), Image Processing (imgproc) [2, 3], Video Analysis (video), Camera Calibration and 3D Reconstruction (calib3d), 2D Features Framework (features2d), Object Detection (objdetect) [31], High-level GUI (highgui), and Video I/O (videoio) [28-33]. 7 All the OpenCV classes and functions are placed into the cv namespace. Therefore, to access this functionality from your code, use the cv:: specifier or using namespace cv; directive. ## References - Pandey, K., & Panchal, R. (2020). A Study of Real World Data Visualization of COVID-19 dataset using Python. International Journal of Management and Humanities (IJMH), 4(8), 1-4. Saurabh Kulshrestha, OpenCV For Image Processing. 2019. - Naveenkumar, M., & Vadivel, A. (2015, March). OpenCV for computer vision applications. In Proceedings of National Conference on Big Data and Cloud Computing (NCBDC'15) (pp. 52-56). - 3. Safara, F. (2020). A computational model to predict consumer behaviour during COVID-19 pandemic. Computational Economics, 1-14. - 4. Meniailov, I., Bazilevych, K., Fedulov, K., & Goranina, S. - (2019). Using the K-means method for diagnosing cancer stage using the Pandas library. development, 14, 15. - 5. Sadrach Pierre. Analyzing Center for Disease Control (CDC) Cancer Data using Pandas, Part 1. 21 Oct 2019. - Suraj Jat, A Project Report on Data Aggregation and analysis with Python in the field of Renewable Energy Systems MAS-TER OF ENGINEERING IN RENEWABLE ENERGY SYS-TEMS. 2020. - Wang, K. K. Y. (2020). A machine learning framework for predictive maintenance of wind turbines (Doctoral dissertation, Massachusetts Institute of Technology). - Rahul Khandelwal. Customer Segmentation in Online Retail. Jan 2021; Available from:https://towardsdatascience.com/customer-segmentation-in-online-retail-1fc707a6f9e6. - 9. Oliphant, T. E. (2006). A guide to NumPy (Vol. 1, p. 85). USA: Trelgol Publishing. - 10. NumPy. Available from: https://numpy.org/. - 11. Fontaine, A. (2018). Mastering Predictive Analytics with scikit-learn and TensorFlow: Implement machine learning techniques to build advanced predictive models using Python. Packt Publishing. - 12. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, E. (2012). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825-2830. - 13. Hao, J., & Ho, T. K. (2019). Machine learning made easy: a review of scikit-learn package in python programming language. Journal of Educational and Behavioral Statistics, 44(3), 348-361. - Barrett, P., Hunter, J., Miller, J. T., Hsu, J. C., & Greenfield, P. (2005, December). matplotlib--A Portable Python Plotting Package. In Astronomical data analysis software and systems XIV (Vol. 347, p. 91). - 15. Waskom, M. L. (2021). Seaborn: statistical data visualization. Journal of Open Source Software, 6(60), 3021. - Batalla, J. M., Krawiec, P., Negru, D., Bruneau-Queyreix, J., Borcoci, E., Bęben, A., & Wiśniewski, P. (2015). On Providing Cloud-awareness to Client's DASH Application by Using DASH over HTTP/2. Journal of Telecommunications and Information Technology. - 17. Pang, B., Nijkamp, E., & Wu, Y. N. (2019). Deep learning with tensorflow: A review. Journal of Educational and Behavioral Statistics, 45(2), 227-248. - 18. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., - ... & Zheng, X. (2016). {TensorFlow}: A System for {Large-Scale} Machine Learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16) (pp. 265-283). - Silaparasetty, N. (2020). The Tensorflow Machine Learning Library. In Machine Learning Concepts with Python and the Jupyter Notebook Environment (pp. 149-171). Apress, Berkeley, CA. - Google's Intro to TensorFlow. Available from: https://developers.google.com/machine-learning/crash-course/first-stepswith-tensorflow/toolkit. - 21. fchollet. Introduction to Keras for Researchers. 2020; Available from: https://keras.io/getting\_started/intro\_to\_keras\_for researchers/. - 22. Goyal, P., Pandey, S., & Jain, K. (2018). Deep learning for natural language processing. New York: Apress. - 23. Charlie Harper, Visualizing Data with Bokeh and Pandas. The Programming Historian, 2018. - 24. Tamsett, M., & C Group. (2015, December). The NOvA software testing framework. In Journal of Physics: Conference Series (Vol. 664, No. 6, p. 062062). IOP Publishing. - 25. Bokeh. Available from: https://bokeh.org/. - 26. Manju, A., & Valarmathie, P. (2021). Video analytics for semantic substance extraction using OpenCV in python. Journal of Ambient Intelligence and Humanized Computing, 12(3), 4057-4066. - 27. Lei, B. J., Hendriks, E. A., & Katsaggelos, A. K. (2004). Camera calibration for 3D reconstruction and view transformation. In 3D Modeling and Animation: Synthesis and Analysis Techniques for the Human Body (pp. 70-129). IGI Global. - 28. Reinoso, L. L. R., López, F. L. G., Gutiérrez, J. C., Bressan, G., & Ruggiero, W. V. REAL-TIME HEAD POSE ESTIMATION WITH SVM MODEL FOR FRONTAL FACE CLASSIFICATION. - Chandan, G., Jain, A., & Jain, H. (2018, July). Real time object detection and tracking using Deep Learning and OpenCV. In 2018 International Conference on inventive research in computing applications (ICIRCA) (pp. 1305-1308). IEEE. - Mohamad, M., Saman, M. Y. M., Hitam, M. S., & Telipot, M. (2015). A Review on OpenCV. Terengganu: Universitas Malaysia Terengganu. - 31. Maj, W. J. (2020). Matrix operations on License Plate Detector and. **Copyright:** ©2022: Samira Gholizadeh. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.