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Abstract
The review paper focuses on the developments that have taken place in the field of theoretical chemistry ranging all the way 
from different software’s, methodologies, equations, theories, basis sets and conceptual reactivity descriptors. We have also 
discussed their advantages and limitations that made them stand out in the field of study. Theoretical chemistry has gained 
pace, as it proves highly efficient in the field of hydrogen storage, solar energy storage, non-linear optics and in metal ion 
toxicity. The said research field has proven beneficial, as now we can easily compare the accuracy of our experimental data 
with the theoretical one. Theoretical chemistry has revolutionized the world of chemistry, as it has paved the way for a new 
pathway that’s not only time saving but also accurate when it comes to data calculation and interpretation.

Citations: Saba Niaz, Altaf Hussain Pandith. (2022). The World of Theoretical Chemistry: Unboxed. J Chem Edu Res Prac, 6(2), 
332-345.

Introduction
Theoretical chemistry is based on the fundamentals of quantum 
mechanics, classical mechanics and statistical thermodynamics 
that assist in providing an in-depth understanding of the structure 
and dynamics of various chemical systems and help in correlating 
and predicting the thermodynamic and kinetic properties of such 
systems. The study of chemical structure includes studies of elec-
tronic structure, potential energy surfaces, force fields, vibration-
al-rotational motion, equilibrium properties of condensed-phase 
systems and macromolecules. Studies on chemical dynamics in-
clude molecular dynamics, statistical thermodynamics, kinetics, 
energy transfer, metastable states, condensed-phase and macro-
molecular aspects of dynamics. The fundamental basis for under-
standing materials and phenomena ultimately rests upon under-
standing of the electronic structure. The electronic structure gives 
an insight about the chemical structure of the material, as well 
as the dynamic properties of the structure. The basic reason for 
introducing theoretical chemistry was to inculcate such concepts 
and systems that will provide the detailed qualitative information 
about the electronic structure that assists in understanding both the 
ground state and excited state of many-body interacting systems. 
Theoretical chemistry has an advantage as it allows the study of 
those novel systems that are not possible to investigate at an ex-
perimental level and that too in an elaborated manner. Historically, 
the year 1927 marked the dawn of theoretical study, as in the same 
year Walter Heitler and Fritz London successfully performed the 
first theoretical calculations in chemistry.

Computational chemistry employs the principles of theoretical 
chemistry, such as quantum chemistry etc., incorporated in appro-
priate computer-based programs to solve the chemical problems 
related to the structure, properties and reactivity of molecules and 
condensed matter. The study includes a variety of methods such 
as ab initio methods, empirical and semi empirical methods which 
differ from one another in terms of accuracy and computational 
cost. Computational chemistry proves quite beneficial, when it 
comes to experiments, as we can not only double check our results 
but also can study a variety of novel complexes which can prove 
helpful in designing new molecules for the future.

Theoretical chemistry brings chemists, physicists, and mathema-
ticians together in designing computer algorithms and programs 
while the computational chemistry simply uses these programs to 
study or predict the structure, stability and various thermodynamic 
and kinetic properties of molecules. This field of study came into 
limelight when in 1998 John pople and 2013 to Walter Kohn, were 
awarded nobel prize in Density-Functional Theory for designing 
computational methods that find their applications in quantum 
chemistry.

Computational Chemistry: An Introduction
1. To check the feasibility of a chemical reaction.
2. To interpret various spectroscopic data (NMR, IR, UV).
3. To study those molecules which are difficult to synthesize.
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4. They are widely used in drug designing and to monitor catalytic 
reactions.
5. It also assists chemists to check the accuracy of a chemical reac-
tion by comparing it with theoretical data.	
6. Calculates and predicts the charge distribution, potential energy 
surfaces, rate constants and the optimized geometries of the mole-
cules both in the ground as well as in the excited states. 
7. In addition to this we can also get the polarizabilities, electron 
density maps and population analyses which provide us an in 
depth information about the chemical species.

Software Packages
Various computational software packages have been developed 
over the last several decades which provide the chemists the nec-
essary tools to study various aspects of varied types of chemical 
systems, ranging from atoms and molecules to condensed systems. 
These packages get upgraded time and again to include additional 
computational methods. So, in order to choose a best package we 
need to look at its computational cost, accuracy, ease of installa-
tion and finally the one which can calculate various desired param-
eters, using optimal computational resources and time (figure 1).

Figure 1: Various Software Packages Used in Computational Chemistry

Jaguar
This software is based on ab initio method and finds its application 
for the calculations that are performed in gas and solution phase 
[1]. It was designed by Richard Friesner and William Goddard but 
is being marketed by Schrödinger. The most recent in this series 
is Jaguar 9.7 which can perform calculations that involve Hartree–
Fock, Density Functional Theory and Møller–Plesset perturbation 
theory. The package performs the geometry optimizations, confor-
mational analysis, calculation of solvation free energies and spec-
tral analysis.

GAMESS
The package stands for General Atomic and Molecular Electronic 
Structure System and originated in 1977 but was divided into two 
groups GAMESS (US) and GAMESS (UK) [2]. Calculations that 
involve Hartree–Fock, Møller–Plesset perturbation theory (MP2 
& MP3), coupled cluster (CCSD & CCSD(T), Density Functional 
Theory (DFT) and configuration interaction (CI) can be done us-
ing this software. The results are accurate but the only issue with 
gamess is that the procedure for creating an input file is a bit tire-
some [1, 3].

Gaussian
The package got its name from Gaussian orbitals that were used 

in computational chemistry and was designed by John Pople and 
his group in 1970 [1, 4, 5]. This package gained popularity as it 
revolutionized the field of quantum chemistry by offering variety 
when it comes to performing calculations related to Semi empiri-
cal, Moller Plesset perturbation theory (MP2 & MP3) and Density 
functional theory (DFT). The major advantage of this package is 
that it is user friendly.

Columbus
It is based on ab initio method and is used to study atomic and 
molecular ground and excited states. This package was designed 
by Isaiah Shavitt, Hans Lischka and Ron Shepard in 1980 at Ohio 
State University. The programs are based on Fortran where perl-
sript is used to make the input files which can be used for various 
calculations. The program is highly flexible but its use gets limited 
because of difficulty which arises in preparing the input files.

Spartan
Its user friendly and can be used to perform calculations which 
involve Semi-empirical methods, ab initio methods, Density Func-
tional Theory, post-Hartree–Fock models [6-8]. It is easy to use, 
determines the structure, molecular properties, conformational 
analysis, spectra’s and reactivity of molecules under study [1, 2, 
8].
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Siesta
It stands for Spanish Initiative for Electronic Simulations with 
Thousands of Atoms and is used for performing ab initio calcula-
tions on solids. Its computationally efficient not only as per time 
but also predicts accurate results.

Turbomole
Prof. Reinhart Ahlrichs designed the package which uses the ab 
initio method for performing calculations and mostly deals with 
study related to heterogeneous and homogeneous catalysis. It can 
be used to study based spectroscopy and biochemistry of various 
molecules.

Plato
It stands for Package for Linear-combination of Atomic Orbitals 
which is written in C language. It is mostly used to study point 
defects and electronic structure of transition metals but can also 
be used to study the behaviour of various clusters and molecules.

Dalton 
This is an ab initio-based program which has been named after 
famous chemist John Dalton [9]. The previous version of Dalton 
can perform calculations that are based on Hartree–Fock, MP2 and 
coupled cluster theory but the recent Version DALTON 2.0 can 
also perform density functional theory calculations. 

Molden
The word molden comes from molecular density and is an ab ini-
tio-based package. The advantage of molden is that it can use the 
data of either GAMESS / GAUSSIAN output file and can also be 
used to make contour plots, and 3-d grid plots.

Amsterdam Density Functional (ADF)
The calculations employ the usage of Density Functional Theo-
ry (DFT) [1]. The successful efforts of by E. J. Baerends and T. 
Ziegler group paved the way for ADF. The applications of ADF 
cover both the industrial and academic sector as it provides an 
upper edge in spectroscopy. It is mostly recommended to study 
heavier elements and transition metals. Band is also equivalent to 
ADF that provides in depth analysis of crystals but can also be 
used to study the IR, Raman, VCD, UV, NMR and EPR spectros-
copy of the molecules.

Mopac
It stands for Molecular Orbital PACkage and was designed by Mi-
chael Dewar’s research lab. It is based on Windows, Mac, and Li-
nux based operating systems and performs calculations based on 
Semi-empirical method [1].

Gromacs
It stands for GROningen Machine for Chemical Simulations and 
was developed at University of Groningen [5]. This is mostly used 
for study organic compounds such as proteins, lipids and nucleic 
acids. 

Born–Oppenheimer Approximation
The concept of Born-Oppenheimer Approximation (1927) deals 
with idea that the electronic and nuclear motions of molecules 
can be considered separately, as the latter motions to be slower 
as compared to former ones such that it is to be assumed that the 
electronic motions are independent of nuclear motions (figure 2).

Figure 2: Representation of Born - Oppenheimer Approximation

It is seen that both the electrons and nuclei experience the same 
force because of same electric charge prevalent over them giving 
rise to same momentum. But the nuclei possess higher mass which 
results in lower velocities as compared to the electrons giving the 
electrons an advantage to easily get relaxed to their ground state 
configuration. Born-Oppenheimer Approximation implies that en-
ergies of molecules arising by virtue of rotational, vibrational and 
electronic excitations that exists independent of each other. Hence, 
we can separately deal with electronic and nuclear motions pres-
ent in the molecule which pays the way for Born-Oppenheimer 
Approximation. The total energy comprises of various energies as 
given in equation below. 

Ab Initio Methods 
Ab Initio, is derived from the Latin word meaning “ from the be-
ginning ”. The foundation of these methods is based on the Schro-
dinger equation and requires no empirical parameters for perform-
ing the desired calculations. Eg: Hartree-Fock (HF), configuration 
interaction (CI), many-body perturbation theory (MBPT), cou-
pled-cluster (CC) theory. These methods differ in computing elec-
tron exchange and correlation energies: the accounting for full cor-
relation interactions along with the use of infinite basis functions 
leads to Schrodinger limit of accuracy. These methods calculate 
the electronic state energies and physical properties with respect 
to the position of the nuclei without taking support of an experi-
mental data. As these methods involve the use of approximations, 
which can be made more accurate with the further advances in 
the theory. They were found extremely beneficial during the study 
of new molecular geometries, energies, spectra, excited states, di-
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pole moments of smaller atoms, molecules, radicals and ions. The 
method becomes limited as it involves exhaustive, involve large 
number of steps during the calculations, time consuming, occupies 
more disc space and can’t be used in case of concerted reactions, 
electronic transitions and rearrangement reactions.

Hartree-Fock Theory
The Hartree-Fock theory deals in determining ground-state wave 
function and ground-state energy determination of many-body 

system without taking into consideration correlation effect of elec-
trons [10, 11]. It states that the electrons face an average field that 
comes from the nearby electrons and gives no consideration to 
pair-wise correlations. Here the nuclear-nuclear repulsion term has 
been represented as the sum of one electron operator. The insertion 
of (1) in the equation 1.3 represents that the operator is 1-electron 
based.
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Limitations of Hartree-Fock Theory
1.	 Electronic correlations are ignored, accounted for in an aver-

age sense. 
2.	 Dispersion interactions are not accounted.
3.	 Fails to optimize unoccupied orbitals.
4.	 The bond length details calculated are shorter than expected.
5.	 It is computationally expensive.

The MPn Method
The MP2 method was given Møller and Plesset in 1934 and in-
clude MP2, MP4 etc [12]. This method gains advantage in com-
puting more accurately the electrostatic interactions and London 
dispersion interactions where nonlocal electronic correlations are 
present. These methods only become restricted for application, as 
they are computationally expensive.

Basis Sets
Basis sets are set of mathematical functions that represent the 
electronic wave function combined in a linear manner. It was J.C. 
Slater who laid the foundation of basis sets. These sets represent 
the molecular orbitals that are located on the centre of the atom. 
They are mainly divided into two categories, one being minimal 
basis set and the other being extended basis sets. The ideal basis 
set should be accurate, flexible, less time consuming and should 
provide the complete information about the molecular structure.

Minimal Basis Set
This type of basis set involves single function for each orbital and 
employees’ equal number of basis functions for both the core and 
valence orbital [13-21]. These basis sets utilize minimum basis 
functions for all the electrons that are present on the atom. They 
were first given by John Pople and his group and are represented 
as STO-XG, where STO are Slater Type Orbitals and X represents 
the number of Gaussian functions. Examples are STO-2G,STO-
3G,STO-6G [22-27]. These basis sets involve limited size based 
atomic orbitals. These basis sets fail to give the proper electronic 
distribution and hence were replaced by extended basis sets. Some 
other types of minimum basis sets are MIDIX, MINI and MIDI4 
basis sets [28-30].
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Slater Type Orbitals (STOs), developed by J. C. Slater possess ex-
ponential decay at long range and Kato’s cusp condition at short 
range, but unlike the hydrogen-like Schrödinger orbitals, STOs 
have no radial nodes [31]. They are not preferred for larger mole-
cules as it takes a lot of time to solve their integrals, hence increase 
the computational cost. They are mostly used to calculate charge, 
spin, long range interactions.

The equation that can represent the basis function is given below:

Here N is the normalization constant, ξ being the orbital exponent 
and r⃗ is the radius vector. 
Slater Type Orbital (STO) are represented by the following equa-
tion [31]:

The above equation can also be represented in spherical coordi-
nates (r, θ and ϕ) as:

Yl,m = angular momentum and n,l and m = quantum numbers.

Gaussian Type Orbitals (GTOs) were introduced by S.F. Boys 
in 1950 [32]. Here, four-center integrals can be reduced to finite 
sums of two-center integrals, and in a next step to finite sums of 
one-center integrals. This take less time in calculating the inte-
grals as compared to calculations based on STOs, hence have low 
computational cost. As compared to STO’s, GTOs have no cusp 
condition at short range. They are represented as:

Extended Basis Sets
They provide much more freedom as compared to minimal basis 
sets and can readjust themselves as per different molecular envi-
ronment which involves either contraction or expansion of orbit-
als. The orbital’s get further divided into a compact inner orbital 
while the outer orbitals remains diffused. These sets use higher or-
bitals of the molecule and are responsible for size and shape of mo-
lecular orbitals. They are broadly divided into four types [13-21]:

Double-Zeta Basis Sets
The double zeta sets use two orbitals and are represented as DZ- or 
2ζ-basis sets [33]. We have a single atomic orbital that comprises 
of two Slater-type orbitals. The zeta value-based function is a di-
rect indication of charge distribution. This leads to the idea that if 
the charge is distributed mainly at the nucleus we will get higher 
zeta value while the lower zeta value is an indication of charge 

distribution being away from the nucleus. The higher zeta value 
indicates the larger size of the orbital. The value of 'd' present in 
the equation (1.10) helps us to know about the contribution of the 
second STO towards the final orbital. Hence, we can say that the 
value of two STOs will be responsible for determining the size of 
the atomic orbital. The type of the atom whether its positive or 
negative is related to the density, which makes it either to expand 
or contract. The double -Zeta basis sets can be written as:

We can similarly have triple and quadruple-zeta basis sets if we 
use three and four STOs.

Split-Valence Basis Sets
The use of double-zeta basis set for each orbital is a tedious task. 
In addition to that, most of the reactions are mainly focused on 
the valence orbitals instead of the core orbitals. So, in order to 
solve this issue, it suffices to use only single basis function for 
core atomic orbitals (AOs) while double-zeta basis set is used only 
for the valence AOs. This concept lead to the generation of split 
valence basis sets. They are represented by X-YZ where X is the 
core Gaussian while Y and Z are the two basis functions of the 
valence orbital (figure 4) [34]. Some of the split valence basis sets 
are 3-21G, 6-31G and 6-311G [22, 34-40]. The addition of split 
valence basis set offers better description of the valence orbitals. 
For example, in case of 3-21G basis set we have core orbital that 
uses three GTOs and a valence orbital that uses two GTOs for 
contracted valence orbitals with one function and one GTO with 
extended valence orbitals that has one function. This basis set finds 
its application in all basis sets till xenon atom. We can similar-
ly have the 6-31G basis set. In case of 6-311G, which is a triple 
split valence basis sets, the inner orbital possesses three Gaussians, 
while middle and outer orbital has one Gaussian each. To simplify 
the calculations, the priority is given to the double zeta of the va-
lence orbital as it improves the flexibility while the core orbital is 
considered insignificant.

Figure 4: 3-21G Split-Valence Basis Sets

Polarized Basis Sets
The basis sets need to attain some polarization effects to prove 
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for size and shape of molecular orbitals. They are broadly divided into four types [13-21]: 
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         ……………………………(1.10) 

 

We can similarly have triple and quadruple-zeta basis sets if we use three and four STOs. 
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The basis sets need to attain some polarization effects to prove efficient when it comes to 

performing calculations, as the shape of the orbital gets modified by the effect of polarization 

which causes "s" orbitals to attain "p" orbital effect and "p" orbitals in turn attain a little of the 

"d" orbital effect. These Polarized basis sets are denoted by asterisk (*), single asterisk (*) for 

heavier elements while two asterisks (**) are for lighter elements like hydrogen and helium. In 
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311G **(d, p) basis set that not only adds set of "d" functions to the atoms but also and a set of 

"p" functions which are added only on hydrogen atom. We can similarly have Double-zeta basis 
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efficient when it comes to performing calculations, as the shape of 
the orbital gets modified by the effect of polarization which causes 
"s" orbitals to attain "p" orbital effect and "p" orbitals in turn attain 
a little of the "d" orbital effect. These Polarized basis sets are de-
noted by asterisk (*), single asterisk (*) for heavier elements while 
two asterisks (**) are for lighter elements like hydrogen and heli-
um. In this way, we can add p-functions, d-functions to valence p 
orbital’s, and f-functions to valence d-type orbital’s (figure 5). The 
neighbouring nuclei affect the electronic distribution of an atom, 
as it now faces an asymmetric environment which causes change 
in the shape of an orbital. To accommodate this change, we need 
to add polarization functions which can provide them the orbital 
flexibility. Examples are 6-31G*(d) basis set, which adds a set of 
"d" functions and 6-311G **(d, p) basis set that not only adds set 
of "d" functions to the atoms but also and a set of "p" functions 
which are added only on hydrogen atom. We can similarly have 
Double-zeta basis sets (DZP) which possess one d-function and 
one set of p-functions, while Triple-zeta basis sets (TZVP) con-
tains one set of d-functions with one set of p-function.

Figure 5: Split-Valence Polarization 6-31G** Basis Set

Diffuse Basis Set
These sets are denoted by a plus sign + (p function for atoms with 
Z >2 ), and two plus signs ++ (p and s functions, with an additional 
larger s function for H atoms), indicating addition on lighter at-
oms. E.g.: 6-31+G and 6-31++ G. The electrons that are located far 
away from the nucleus such as anions, lone pairs, excited states, 
strong electronegative atoms and transition states also effect the 
electronic density of an atom and in such cases, we use diffuse 
functions which takes these effects into consideration. These func-
tions are mostly located in distant tail portion of an atomic orbital. 
It is mostly used to calculate polarizabilities, dipole moment and 
binding energies of complexes where complexes involve disper-
sion forces. In addition to that we can also have spin valence basis 
sets with polarized (3-21G*), or diffused functions (3-21+G), and 
basis sets that are both polarized and diffused (3-21+G*,6-31+G*, 
6-311++G**) are termed as balanced basis sets.

Dunning’s Correlation-Consistent Basis Sets
These basis sets were developed by Dunning and co-workers 

which are represented generally as cc-pVNZ where N=D,T,Q,5,6... 
(D=double, T=triples, etc.) here cc-p = correlation-consistent 
polarized' and V = valence only basis sets [41]. In order to cal-
culate geometry and nuclear property, we add augmented func-
tions and for calculations which involve excited state and Van der 
Waals forces, we prefer diffuse functions to be incorporated in 
these basis sets (cc-pVTZ+). Examples - cc-pVDZ (Double-zeta), 
cc-pVTZ(Triple-zeta), cc-pVQZ (Quadruple-zeta) and aug-cc-
pVDZ (Augmented) basis set [42-45]. The combined table includ-
ing different types of basis sets has been given below (figure 6).

Figure 6: Various Types of Basis Sets Used in Computational 
Chemistry

Semi-Empirical Methods
Pople and his co-workers gave the concept of semi-empirical meth-
od [46]. These methods use the concept of Hartree–Fock formal-
ism, in addition to the experimentally obtained data or the data that 
has been obtained using from the ab initio methods, for performing 
the theoretical calculations. They are preferred when dealing with 
molecules that are of larger in size, as the calculations are per-
formed at faster pace in comparison to ab-initio calculations. Semi 
empirical methods save time as they don’t consider core electrons 
and prefers minimal basis set for describing the valence orbital’s 
during calculations. They are used for performing geometry opti-
mization, studying intermediates or transition states, calculating 
heats of formation and for knowing the charge distribution of the 
molecule. When it comes simpler units like C-C, C-H, C-O, stable 
conformers, macromolecules, steric interactions and even biopoly-
mers, empirical methods prove quite useful. These methods give 
accurate results in quantitative and qualitative study and provides 
better of description of molecular orbitals. In some cases, it also 
includes electron correlation effects to be taken into consideration. 
The data related to molecules is already present in database, so 
when we perform a calculation on a certain molecule and that 
molecule matches the data set we get accurate results while the 
ones that fail to match generate inaccurate results. This method 
doesn’t use the variational principle, fails in hydrogen bonding, 
transition structures and can only be used on certain elements. Po-
ple’s NDDO (Neglect of Diatomic Differential Overlap) has been 
broadly divides into three classes, which include modified neglect 
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of differential overlap (MNDO), Austin Model 1 (AM1) and Para-
metric Method 3 (PM3).

1.	 MNDO: It is based on the NDDO model which involves 
one-center two-electron integrals in which the two-electron 
integrals are solved using the concept of multipole-multipole 
interactions. Earlier the model involved the basis sets based 
on s and p orbitals but with the passage of time d orbitals have 
also been introduced in order to describe the transition metals. 

2.	 AM1: It is based on the MNDO model which involves 
two-electron integrals but also includes the concept of nu-
clear-nuclear core repulsion that is exactly similar to van der 
Waals interactions. The model proves helpful to explain the 
heat of formation of the molecules. 

3.	 PM3: This model evaluates maximum number of molecular 
properties among which the thermochemistry calculations of 
elements and transition metals have proven to be more accu-
rate. 

Density Functional Theory (DFT)
The Density Functional Theory was developed by Pierre Hohen-
berg and Walter Kohn in 1964, and were awarded the nobel prize 
in 1998 [47, 48]. The basic premise of the Density Functional The-
ory is that any property of a system of many interacting particles 
can be taken as a functional of the ground state density no(r) ; 
that means a scalar function of position no(r) determines all the 
information in the many-body wavefunctions for the ground state 
and all excited states So by calculating the ground state electron 
density, we are able to calculate the total energy of the system, 
which can allow us to determine the ground-state and excited state 
properties of the system. DFT based calculations are mostly used 
in case of organometallic systems as it involves many electrons 
which are accompanied by electronic correlations [49-53]. How-
ever, it fails to account for dispersive forces more accurately [54, 
55]. DFT provides detailed information about the molecular struc-
tures, vibrational frequencies, atomization energies, ionization en-
ergies, electric and magnetic properties, reaction paths, etc. which 
goes in agreement with the experimental study.

The Hohenberg-Kohn Theorems
The Density Functional Theory is broadly based on two theorems; 
(i) The Hohenberg-Kohn Existential Theorem, which takes density 
as a basic variable and (ii) The Variational theorem, which deter-
mines the ground state density no(r); (wavefunction) correspond-
ing to the energy equal to or greater than the ground state energy. 
The Kohn Sham approach involves independent particles but an 
interacting density to account for the exchange and correlation ef-
fects of multiparticle systems.

Theorem 1: The Hohenberg-Kohn Existential Theorem: For any 
system of interacting particles in an external potential Vext(r), the 
potential Vext(r), and hence the Hamiltonian H ̂, is determined 
uniquely by the ground state particle density no(r). This means 
that all properties of the system (including energy) are completely 
determined, provided the ground state density no(r) is known.
The energy functional is given by equation (1.11):

Ĥ = Hamiltonian, F̂= Electronic Hamiltonian, T̂ = Kinetic energy 
operator and V̂ee = Interaction operator.

The electronic operator comes out to be similar in case of n-elec-
tron systems, hence we can define it in terms of number of elec-
trons N and the external potential which is represented by vext (r) as 
can be seen in equation (1.16). On applying the variational meth-
od, we get:
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Kohn - Sham Equation 

The equation has been named after Walter Kohn and Lu Jeu Sham and is based on Schrondinger 

equation [56]. It considers a system of non-interacting particles that possess the density similar to 
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The ground state energy which is represented as the functional of charge density is given in 

equation below: 
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This finally leads to the second Hohenberg-Kohn Theorem.
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   kinetic energy, ∫ ρ (r)v(r)dr = electron-nuclei interaction along with the external potential andE_ee= electron-electron interac-
tion  

 

 
 

⟨  | ̂|  ⟩  ⟨  | ̂   |  ⟩  ⟨ | ̂| ⟩  ⟨  | ̂   | ⟩……………….(1.20) 

 

∫                         ∫                      ….... (1.21) 

 

This finally leads to the second Hohenberg-Kohn Theorem. 

 

                  ………………………..………………(1.22) 

 

Kohn - Sham Equation 

The equation has been named after Walter Kohn and Lu Jeu Sham and is based on Schrondinger 

equation [56]. It considers a system of non-interacting particles that possess the density similar to 

interacting particles. As we are having the non-interacting particles the wave function (kohn-

sham wavefunction) being a single slater determinant generates minimum energy from the Kohn 

sham orbitals (  ) . 
 

[   
   

          ]                     …….(1.23) 

  = orbital energy  

The ground state density comes out to be equal to: 

 

      ∑      
       ………………………………………..….(1.24) 

 

The ground state energy which is represented as the functional of charge density is given in 

equation below: 

                  ∫                            

 

       = kinetic energy, ∫           = electron-nuclei interaction along with the external 

potential and   = electron-electron interaction   

 

           
 
 ∫

     (  )
          

           ………………………(1.26) 
                                      electron-electron electrostatic interaction,  Exc [ρ(r)]= exchange–correlation energy

Using the equation 1.24, we introduce the wavefunction(ψ_i) and can now be written as: 

 

 
 

 
 ∫

     (  )
           = electron-electron electrostatic interaction,  

         = exchange–correlation energy 

 

Using the equation 1.24, we introduce the wavefunction   ) and can now be written as:  

 

      ∑   
  

           ………………………………………………………….(1.27) 

 

The kinetic energy comes out to be equal to:  

            
  ∑ 〈        〉 

 ……………………………………………….(1.28) 

 

Assuming wavefunctions to be orthonormal we use lagrange multipliers (   ) 
 

∫  
                 …………………………………………………….…(1.29) 

 

The functional of wavefunctions comes out to be equal to: 

 

              ∑∑   
  

∫  
                        

 

The next step leads to the production of kohn sham equation which is only possible, if we 

decrease the functional of wavefunction with respect to the wavefunction  
     . 

 

*   

             +                                   

              ∫      
        

                         

       
    
                                

 

     = effective local potential and       = exchange-correlation potential. 

 

 
 

 
 ∫

     (  )
           = electron-electron electrostatic interaction,  

         = exchange–correlation energy 

 

Using the equation 1.24, we introduce the wavefunction   ) and can now be written as:  

 

      ∑   
  

           ………………………………………………………….(1.27) 

 

The kinetic energy comes out to be equal to:  

            
  ∑ 〈        〉 

 ……………………………………………….(1.28) 

 

Assuming wavefunctions to be orthonormal we use lagrange multipliers (   ) 
 

∫  
                 …………………………………………………….…(1.29) 

 

The functional of wavefunctions comes out to be equal to: 

 

              ∑∑   
  

∫  
                        

 

The next step leads to the production of kohn sham equation which is only possible, if we 

decrease the functional of wavefunction with respect to the wavefunction  
     . 

 

*   

             +                                   

              ∫      
        

                         

       
    
                                

 

     = effective local potential and       = exchange-correlation potential. 



      Volume 6 | Issue 2 | 340J Chem Edu Res Prac, 2022

The kinetic energy comes out to be equal to:

Assuming wavefunctions to be orthonormal we use lagrange multipliers (ϵ_ij)

The functional of wavefunctions comes out to be equal to:

The next step leads to the production of kohn sham equation which is only possible, if we decrease the functional of wavefunction with 
respect to the wavefunctionψi* (r) .

veff = effective local potential and vxc (r)= exchange-correlation potential.

Hence, we can say that the above equation shows a resemblance with the equation given by Schrondinger but with an effective local 
potential. We have in addition also described the Kohn-Sham Self-consistent Field (KS SCF) procedure through a flow chart which has 
been given below (figure 7).

Figure 7: Flow Chart of  Kohn - Sham Self- Consistent Field (KS-SCF) Procedure
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Functional
A functional in simpler words means function of a function. In 
computational chemistry we have broadly two types of functionals 
which are used to perform computational calculations. These in-
clude traditional functionals and hybrid functionals.

Traditional Functionals: These are divided into two types:
a)  Local exchange and correlation functional: They mainly focus 
on local spin densities that are present on the molecule.
b)  Gradient correlation functional: They use both the electron spin 
densities and their gradients during calculations. They are also 
known as non-local gradients.
These functionals include PBE (Perdew, Burke and Ernzerhof, 
Perdew-86 and Perdew-Wang 91(PW91) [57-59].

Hybrid Functionals: These functionals combine the concept of 
exact exchange energy (Hartree Fock theory) and exchange-cor-
relation energy concept (empirical / ab initio method). Hybrid 
functionals are combinations of local and gradient–corrected cor-
relation functional. Examples: B3LYP (Becke-3 Lee, Yang and 
Parr) and B3PW91 (Becke-3 Perdew-Wang 91) [60, 61].

Reactivity Descriptors
Conceptual Density Functional Theory assists in understanding 
the electronic properties of the molecules by using the reactivity 
descriptors that include electronegativity, electrophilicity, chem-
ical potential and hardness [41, 54, 62-79]. These have a direct 
effect in understanding the chemical reactivity and the reaction 
mechanisms of the molecule [80-84]. The reactivity descriptors 
are broadly divided into global and local reactivity descriptors 
[85-92]. These descriptors help in understanding both the intermo-
lecular and intramolecular reactivity trends that occur inside the 
molecule. Koopmans’ theorem represented ionisation potential (I) 
and electron affinity (A) [41] as:

∈HOMO = Highest occupied molecular orbital energy, ∈LUMO = Low-
est unoccupied molecular orbital energy

Chemical potential (µ) is the escaping tendency of electrons and 
can be represented as:

E = Total energy, N = Number of electrons and v((r)) ⃗ = External 
potential Chemical potential is also related to electronegativity and 
can be represented as:

It was Pauling who defined electronegativity first but the concept 
was later modified by Mulliken [93-95]. Electronegativity in sim-
pler words can be defined as the capability of an atom to attract 
electrons towards itself [74]. 

Hardness (η), is an indication of a molecule to resist charge trans-
fer [7, 47, 70]. It also provides an idea about the polarizable nature 
of the species. Electrophilicity calculates the energy change that 
occurs during the addition or removal of electrons [66, 96, 97]. 

The reactivity descriptors are among the important parameters 
which are used to study and compare the efficiency of different 
hydrogen storing materials [98-100]. Hydrogen technology is seen 
as one of the best options for meeting the growing energy crisis 
demand [100]. It is seen that the increase in hardness and decrease 
in both electronegativity and electrophilicity values is the direct 
indication of stability of the complex upon hydrogen adsorption.

Summary
The field of theoretical chemistry is rapidly emerging as a great al-
ternative when it comes to data calculation and interpretation. The 
said review paper covers all the theoretical aspects that includes 
different software’s, methodologies, theories, basis sets and con-
ceptual reactivity descriptors. Theoretical chemistry combines the 
efforts of chemists, physicists, and mathematicians in designing 
computer algorithms and programs while computational chemis-
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try simply uses these programs to study or predict the structure, 
stability and various thermodynamic and kinetic properties of 
molecules. Computational software packages are also available for 
studying the chemical systems, atoms, molecules and condensed 
systems but they differ with one another with respect to their com-
putational cost, accuracy, ease of installation and time. The study 
includes a variety of methods such as ab initio methods, empiri-
cal and semi empirical methods. Ab initio  methods calculate the 
electronic state energies without taking support of an experimental 
data. The method is highly useful for molecular geometries, en-
ergies, spectra, excited states, dipole moments of smaller atoms, 
molecules, radicals and ions. The method becomes limited as it 
involves large number of steps, time consuming and occupies 
more disc space. Hartree-Fock theory determines the ground-state 
wave function and energy of many-body system without consid-
ering correlation effect of electrons and gives no consideration to 
pair-wise correlations. Basis sets are used to represent the molec-
ular orbitals that are located on the centre of the atom and provide 
the complete information about the molecular structure. Although 
many basis sets are available but the choice of basis set determines 
the accuracy of data. Semi empirical methods are faster and pre-
ferred in case of large molecules for their geometry optimization, 
studying intermediates or transition states, calculating heats of for-
mation and for knowing the charge distribution of the molecule. 
The method fails to study hydrogen bonding, transition structures 
and can only be used on certain elements. DFT based calculations 
find its applications mostly in case of organometallic systems, as 
it involves many electrons which are accompanied by electronic 
correlations. It covers the parameters such as vibrational frequen-
cies, atomization energies, ionization energies, electric and mag-
netic properties, reaction paths, etc. However, it fails to account 
for dispersive forces more accurately. Here is when MPn meth-
od gains advantage as it covers the electrostatic interactions and 
London dispersion interactions but become restricted for being 
computationally expensive. Reactivity descriptors such as electro-
negativity, electrophilicity, chemical potential and hardness assists 
in understanding the electronic properties, chemical reactivity and 
the reaction mechanisms of the molecule. Every method has prov-
en efficient for calculating certain parameters. But the need of the 
hour is to find a method that can provide an in depth analysis of 
the molecule. Finally, we can say that theoretical chemistry proves 
highly advantageous, when it comes to experiments, as we can not 
only double check our results but also can study a variety of novel 
complexes which can prove helpful in designing new molecules 
for the future.

Graphical   Abstract 
The said review paper covers all the theoretical aspects that in-
cludes different software’s, methodologies, theories, basis sets and 
conceptual reactivity descriptors to study or predict the structure, 
stability and various thermodynamic and kinetic properties of mol-
ecules. This field of chemistry can be used to study a variety of 
novel complexes which can prove helpful in designing new mole-
cules for the future.
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