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Abstract
This article introduces a new model for the non-Euclidean spaces’ representation, in which the coordinates and distances are 
considered as digital nature. This model, called the Ulianov Sphere Network (USN), presents a new way for visualizing the 
curved spaces, such as those defined in the context of the General Relativity Theory (GRT).
 
The USN model has the potential to facilitate the calculation procedures concerning the problems handled by the GRT, since 
it relies on a very simple mathematical formulation, which can be easily implemented in numerical computing systems.

The proposed model is a mathematical tool that facilitates the manipulation of non-Euclidean spaces, for the simple expedient 
of constructing over a continuous plain space, a network of hyperspheres that behaves as a non-Euclidean digital space.

Initially, the USN model has no real connection with the observed physics in our universe, being basically a theoretical 
abstraction. However, as will be shown in this article, the application of the UNS model allows inferring some formulas 
related to the GRT and also with Newton’s Law of Gravitation. Thus, the hypothesis that the USN model is actually somehow 
related to the physical basis of operation in our universe is not discarded.

Citations: Ulianov, P. Y. (2023). The Ulianov Sphere Network - A Digital Model for Representation of Non-Euclidean Spaces. 
Curr Res Stat Math, 2(1), 42-55.

1.  Introduction
About 300 years before Christ, the Greek philosopher Euclid or-
ganized geometric knowledge in a formal system, called Euclid-
ean geometry, by defining a series of entities (point, line, plane, 
etc...) within a set of postulates, for example, that the sum of 
internal angles of a triangle is always equal to 180 degrees [1].

The universal validity of Euclidean geometry began to be ques-
tioned in the 18th century by the Italian mathematician Sacchieri 
but it was only in the 19th century that some mathematicians, 
like the German Gauss the Russian Lobachevsky and the Hun-
garian Bolyai who envisioned the possibility that alternative 
(non-Euclidean) geometries could also be valid [2-5].

In the twentieth century, several works such as Riemann's and 
Poincare´s formalized postulates applicable to non-flat spaces, 
thereby generating a series of non-Euclidean geometry.

These geometries are no longer mere mathematical curiosity 
with Einstein’s publication of the General Relativity Theory, of 
which the mathematical basis was given by the Italian mathema-
tician Tullio Levi-Civita, who defined the Tensor calculus which 
is based on manipulation of non-Euclidean geometries [6-9].

In the GRT, Einstein unified space and time in a four-dimen-
sional continuum, which is modeled as a Minkowski space and 

which curvature will depend on the content of matter-energy in 
the considered space [10].

Therefore, in the context of the GRT, phenomena related to mat-
ter, such as the planet’s orbits, are no longer explained by inter-
actions among the gravitational forces and begin to be interpret-
ed as geodesic paths (the shortest trajectory between two points) 
within the Minkowski space [11].

The main equation of the GRT is based on two tensors: The Ein-
stein Tensor       which is related to the curvature of space-time 
and the Energy-momentum Tensor       which depends on the 
distribution of matter and energy. This equation is defined as:

Where G  is the gravitational constant and c is the speed of the 
light. In a space without matter-energy, the space time coordi-
nates (ct,x,y,z) are related to a flat space where the Einstein Ten-
sor is:
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Where G  is the gravitational constant and c  is the 
speed of the light. 
In a space without matter-energy, the space time 
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In this case, a metric of a flat Minkowski space is: 
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In the presence of matter-energy, the Einstein Tensor 
can be defined as: 
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In this case, a metric of a flat Minkowski space is:

In the presence of matter-energy, the Einstein Tensor can be de-
fined as:

Where Rμv is the Ricci tensor and   is a scalar of curvature.

From equation (4) the GRT field equations can be assembled, 
resulting in a series of partial differential nonlinear equations of 
second order and with hyperbolic elliptical coupling.

These equations are usually not very easy to be solved, even 
for the simplest cases, and for more complex cases the solution 
involves the use of numerical simulations.

In the basic case, where there is a single spherical body of mass 
M  in an empty space, the resolution of the equation (4) gener-
ates a solution called the Schwarzschild metric [12].

This metric can be defined in spherical coordinates by the fol-
lowing equation:

Where         is defined by:

Where (          ) indicates the considered point from a spherical 
coordinate system, whose center is positioned at thegravity cen-
ter of the considered spherical body.
For M equal to zero, the equation (5) relapses into the Minkow-
skian metric for a flat space generating the equation (3), which 
can also be written in spherical coordinates, as follows:

For M values greater than zero, there will be an r value (the 
Schwarzschild radius) for which the value that multiplies dr2  
tends to the infinite, while the value that multiplies dt2 tends to 
zero:

Since equation (5) is valid only for the space outside the con-
sidered spherical body, if the radius of the body is greater than 
the Schwarzschild radius a division by zero in equation (5) 
will be avoided. In cases where the body radius is less than the 
Schwarzschild radius, there will be a situation in which the space 
curvature is so pronounced that not even the light can overcome 
it, creating an object called a black hole [13].

If the body has neither electric charge nor spin, the value of the 
Schwarzschild radius will define the events horizon of the black 
hole.

It is interesting to notice that the solution of equation (4) is quite 
complex and even Einstein only published the solution to the 
simplest case (space without matter and energy).The solution to 
the case of a single spherical body, presented in equations (5) 
and (6), was only obtained by the physicist Karl Schwarzschild 
about a year after Einstein had published the equation (4) in the 
context of the GRT.

2. Traditional view of the space-time curvature 
The contraction of space-time caused by the presence of mat-
ter-energy is somewhat difficult to visualize, particularly consid-
ering that time is also curved. Therefore, even the simplest case 
represented by equation (5), where a single body distorts the 
space, can hardly be viewed in its full four-dimensional form.

A simple analogy, which facilitates the understanding of space 
contraction is to consider only two dimensions of space. Figure 
1 shows the case of an elastic network (represented by black 
lines) that is distorted by the presence of mass in a spherical 
body (represented in blue).

Figure 1: Spherical body bending an elastic network.

In Figure 1, the two red circles represent geodesic trajectories 
followed by bodies of negligible mass (represented in red). 
If these bodies are moved with no friction on a flat space in a 
uniform rectilinear motion, its geodesic trajectory will be by a 
straight line. As for the case of the curved space shown in Figure 
1, the geodesic trajectory will take the shape of a circle or more 
generally the shape of an ellipse.

Despite the elastic network’s analogy being somewhat grossly 
simplified, it shows how planets orbiting around a star can as-
sume circular paths, based solely on the space-time curvature 
without adding any gravitational force which acts at distance. 
One of the failures in the analogy shown in Figure 1 is  that some 
of the "houses" in the elastic network, if near to the central mass, 
become larger. This is because these homes "sink" into a third 
dimension that does not actually exist (because the model used 
is a two-dimensional space).

In a more realistic representation, shown in Figure 2, it is ob-
served that all "homes" defined in a two-dimensional curved 
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be a situation in which the space curvature is so 
pronounced that not even the light can overcome it, 
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value of the Schwarzschild radius will define the events 
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It is interesting to notice that the solution of equat ion (4) 
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2 – Traditional view of the space-time curvature  
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A simple analogy, which facilitates the understanding of 
space contraction is to consider only two dimensions of 
space. Figure 1 shows the case of an elastic network 
(represented by black lines) that is distorted by the 
presence of mass in a spherical body (represented in 
blue). 
 

 
Figure 1 - Spherical body bending an elastic network. 

 
In Figure 1, the two red circles represent geodesic 
trajectories followed by bodies of negligible mass 
(represented in red). 
If these bodies are moved with no friction on a flat space 
in a uniform rectilinear motion, its geodesic trajectory will 
be by a straight line. As for the case of the curved space 
shown in Figure 1, the geodesic trajectory will take the 
shape of a circle or more generally the shape of an 
ellipse. 
Despite the elastic network’s analogy being  somewhat 
grossly simplified, it shows how  planets orbiting around 
a star can assume circular paths, based solely on the 



Volume 2 | Issue 1 | 44Curr Res Stat Math, 2023

space, in fact shrink and approach to the point occupied by the 
mass.

Figure 2: Curvature in a two-dimensional space.

3. Digital representation of an Euclidean space
In this section we will start presetting the USN model, approach-
ing at first a simple representation of a flat space, in which both 
space and time are defined in a digital form. This means there 
will be a minimum distance in time and space, which cannot be 
subdivided. Thus, any considered displacement will always be 
set as a integer value that multiplies a minimum distance of time 
or space.

In practice, these minimum distance values can be associated 
with a unitary scale based on the Planck distance (1.616 x 10-

35m) and in the Planck time (5.391 x 10-44s) [14]. As the value of 
Planck distance is extremely small, the representation in meters 
of an integer number of Planck distances generates a value with 
precision of up to 35 digits after point, which in practice can be 
considered as a real number.

A simple two-dimensional digital space can be defined based on 
a chess board with squares set on a real plan (x,y), as shown in 
Figure 3.

Figure 3: Board forming a digital space

Considering that each house of this board has a unitary size (l 
μ), a digital space composed of two integers coordinates (Nx,Ny) 
can be defined, which relate to the real plan (x,y)  by the follow-
ing equations:

Where the term ± 0.5 l μ indicates a positioning uncertainty in-
herent to any considered digital space. The representation of 
Figure 3, however, is flawed in the sense it generates two pref-
erential directions given by the rectangular shape of the squares 
sets and imposing a fixed direction for the axes (x,y) . 

Circular units should be used in a more realistic representation, 
as shown in Figure 4, where the axes defining the coordinate 
system may take any position.

Figure 4: Board with circular units.

For the digital space shown in Figure 4, a digital time can be 
defined by using a series of overlapped boards, as shown in Fig-
ure 5.

Figure 5: Time definition through boards overlapping.

In this model, it can be defined a point-like particle that occupies 
a certain position on  the board and moves by “jumping” one 
house at a time, similar to a “king” moving on a chessboard.

In Figure 6, in order to facilitate viewing, the three-dimensional 
board which has been shown in Figure 5 is divided into "time 
frames", shown in sequence. This is an analogous representa-
tion to a movie pellicle where individual “slides” sequences will 
compose the film.

Two particles represented by blue and red circles can be seen in 
Figure 6. Although the particles are always at rest in each frame, 
in the frames sequence it can be observed that the red particle 
moves at unitary speed while the blue particle always occupies 
the same position.

This aspect is also seen in a movie pellicle, where each frame 
itself contains only static objects and the sense of movement and 
speed comes only when the frames are observed in sequence.
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that some of the "houses" in the elastic network, if near 
to the central mass, become larger. This is because 
these homes "sink" into a third dimension that does not 
actually exist (because the model used is a two-
dimensional space). 
In a more realistic representation, shown in Figure 2, it is 
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Where the term u 5.0 indicates a positioning 
uncertainty inherent to any considered digital space. 
The representation of Figure 3, however, is flawed in the 
sense it generates two preferential directions given by 
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Figure 6: Point-like particles in a digital space-time.

In a more realistic representation,, the circular houses in Figure 
6 can be conceived as spheres, defined over a three-dimensional 
space, like ping pong balls piled up in a rectangular box. 

In this case a balls layer at the bottom of the box will define a 
two-dimensional board for a given time. Inclusion of new balls 
will grow the pile generating overlapped boards in a similar way 
to what was presented in Figure 5. But in this case an "inclined" 
plan inside the box can be defined, where the dimensions of 
space and time cease to be clearly distinct, creating a unique 
space-time entity.

In the models presented in Figures 4 and 5, two-dimensional 
spaces were considered in order to facilitate viewing. 

A more complete model should consider a three-dimension-
al space and also time. In this case, for a complete space-time 
representation, it must be considered a set (a network) of hy-
perspheres (spheres of four dimensions) Any house within this 
network can be defined by counting the hyperspheres in relation 
to a system of four orthogonal axes. This representation implies 
in a set of four integers coordinates (Nt,Nx,Ny,Nz). 

By multiplying each one of these coordinated by the Planck dis-
tance, we can define a space-time as a function of four coordi-
nates (ct,x,y,z) that in practice can be treated as real numbers.

By using a scale where the speed of light and the Planck distance 
and Planck time assume unitary values, we can define a network 
of hyperspheres whose diameters are also unitary. Thus, the 
center of each hypersphere will be positioned in a uniform grid 
defined over a continuous space, as shown in Figure 7. In this 
figure it is displayed once more a two-dimensional case, which 
can also be seen as a cut in four-dimensional network, where the 
values of other coordinates are fixed.

Figure7: Positioning of a uniform network of spheres over a 
two-dimensional space.

The network of spheres shown in Figure 7, seems to be defined 
in terms of a certain orientation of axes. However, in a digital 
representation, there will be an uncertainty in the positioning, 
which results in some overlap of adjacent hyperspheres. 

Considering this uncertainty, we obtain a representation as 
shown in Figure 8, where a preferential spatial orientation ceas-
es to exist.

Figure 8: Uncertainty of positioning of a two-dimensional 
spheres network.

4.  Digital representation of a non-Euclidean space
In order to define a digital representation of a non-Euclidean 
space in the USN model, should be introduced a special type of 
hypersphere, called Ulianov Sphere (usphere). An usphere can 
be defined accordingly to the following properties:
•	 An usphere consists of a spherical surface of null thickness 

(spherical shell) defined over a continuous four-dimension-
al Euclidean space;

•	 An usphere is completely defined by a center point and by a 
given radius (or diameter);

•	 The diameter of an usphere always takes a real value greater 
or equal to one unit (defined in the Planck unitary system);

•	 Undergoing an usphere to a positive radial force field, as 
shown in Figure 9, its radius tends to increase in proportion 
to the intensity of the applied field;

•	 Undergoing an usphere of unitary diameter to an unitary 
radial negative force field, as shown in Figure 10, it is col-
lapsed (the diameter becomes null). In this condition the 
usphere becomes an Ulianov Hole (uhole). If the force field 
is removed, the uhole expands generating again an usphere 
of unitary diameter.

Figure 9:  
a) Usphere subjected to a positive radial force field. 
b) Usphere with increased radius.
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Two particles represented by blue and red circles can be 
seen in Figure 6. Although the particles are always at 
rest in each frame, in the frames sequence it can be 
observed that the red particle moves at unitary speed 
while the blue particle always occupies the same 
position. 
This aspect is also seen in a movie pellicle, where each 
frame itself contains only static objects and the sense of 
movement and speed comes only when the frames are 
observed in sequence. 
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Figure 7 - Positioning of a uniform network of 
 spheres over a two-dimensional space. 
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dimensional spaces were considered in order to 
facilitate viewing.  
A more complete model should consider a three-
dimensional space and also time. In this case, for a 
complete space-time representation, it must be 
considered a set (a network) of hyperspheres (spheres 
of four dimensions) 
Any house within this network can be defined by 
counting the hyperspheres in relation to a system of four 
orthogonal axes. This representation implies in a set of 
four integers coordinates ),,,( NzNyNxNt .  
By multiplying each one of these coordinated by the 
Planck distance, we can define a space-time as a 
function of four coordinates ),,,( zyxct  that in practice 
can be treated as real numbers. 
 
By using a scale where the speed of light and the Planck 
distance and Planck time assume unitary values, we can 
define a network of hyperspheres whose diameters are 
also unitary. Thus, the center of each hypersphere will 
be positioned in a uniform grid defined over a 
continuous space, as shown in Figure 7. In this figure it 

is displayed once more a two-dimensional case, which 
can also be seen as a cut in four-dimensional network, 
where the values of other coordinates are fixed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 - Positioning of a uniform network of 
 spheres over a two-dimensional space. 

 
The network of spheres shown in Figure 7, seems to be 
defined in terms of a certain orientation of axes. 
However, in a digital representation, there will be an 
uncertainty in the positioning, which results in some 
overlap of adjacent hyperspheres.  
Considering this uncertainty, we obtain a representation 
as shown in Figure 8, where a preferential spatial 
orientation ceases to exist. 
      
 
 
 
 
 
   
 
 
 
  
 
 
 

Figure 8 - Uncertainty of positioning of a two-dimensional spheres 
network . 

 
 

 
4 – Digital representation of a non-Euclidean space 

In order to define a digital representation of a non-
Euclidean space in the USN model, should be 
introduced a special type of hypersphere, called Ulianov 
Sphere (usphere). An usphere can be defined 
accordingly to the following properties: 
 An usphere consists of a spherical surface of null 

thickness (spherical shell) defined over a continuous 
four-dimensional Euclidean space; 
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Two particles represented by blue and red circles can be 
seen in Figure 6. Although the particles are always at 
rest in each frame, in the frames sequence it can be 
observed that the red particle moves at unitary speed 
while the blue particle always occupies the same 
position. 
This aspect is also seen in a movie pellicle, where each 
frame itself contains only static objects and the sense of 
movement and speed comes only when the frames are 
observed in sequence. 
 
 

 

 
Figure 6 – Point-like particles in a digital space-time. 
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In order to define a digital representation of a non-
Euclidean space in the USN model, should be 
introduced a special type of hypersphere, called Ulianov 
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accordingly to the following properties: 
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 An usphere is completely defined by a center point 
and by a given radius (or diameter); 

 The diameter of an usphere always takes a real 
value greater or equal to one unit (defined in the 
Planck unitary system); 

 Undergoing an usphere to a positive radial force 
field, as shown in Figure 9, its radius tends to 
increase in proportion to the intensity of the applied 
field; 

 Undergoing an usphere of unitary diameter to an 
unitary radial negative force field, as shown in 
Figure 10, it is collapsed (the diameter becomes 
null). In this condition the usphere becomes an 
Ulianov Hole (uhole). If the force field is removed, 
the uhole expands generating again an usphere of 
unitary diameter. 

 

 

 

 

 

 

Figure 9 - a) Usphere subjected to a positive radial force field. b) 
Usphere with increased radius. 

 

 

 

 

 

 

Figure 10 - a) Usphere subjected to a negative radial force field b) 
Usphere collapsed becomes uhole. 

By observing Figures 9 and 10 we can affirm that in an 
equilibrium condition, with no  force being applied, the 
diameter of an usphere will always be unitary. 
An uhole exists only while a force field is compressing it. 
At the time when this field is eliminated, the uhole 
expands and becomes an usphere. 

Another important property of an usphere is its surface 
formed by the aligning of a large number of uholes, 
tending to the infinite. Thus if an usphere is placed in an 
empty space, then some uholes that form it will tend to 
expand until they occupy all available spaces.   
 

 
 
 
  

 

 

Figure 11 - Generation of an usphere Network. 

This process is shown in Figure 11,  initially there is a 
single uhole being compressed by a force field. When 
this field is removed, there is initially a single usphere. 
Then, some uholes forming the surface of the original 
usphere also expand, generating new uspheres and so 
on.  
The final formed structure takes the form of a 
hyperspheres network, which was called Ulianov Sphere 
Network (USN). 
An USN is originated from a single compressed uhole, 
as shown in Figure 11 and it expands until filling all the 
available spaces. 
When an USN ceases expanding, each one of the 
infinite uholes composing it will be submitted to an 
unitary radial negative force field, because otherwise the 
USN would still be expanding. This generates an infinite 
tension on the USN, which will cause each usphere to 
touch its neighbors forming a compact network with no 
empty areas. 
It is important to notice in Figure 11 that the USN own 
evolution in time is shown within red circles that 
represent sequences of uspheres expanding in time. 
Thus, a complete USN will have four dimensions, three 
related to space and one related to time.  
Usually, an USN will expand occupying the entire 
available volume in the spatial dimensions and will tend 
to grow continuously in the time dimension. 
In a uniform USN, there will be a similar organization to 
that shown in Figure 7, in which all the uspheres have 
unitary diameter. 
Starting from a uniform USN, if we apply a force field 
inside an usphere, this usphere will be compressed, 
generating an uhole.  
However, this new uhole is different from all other 
uholes (which form the walls of the existing uspheres) 
because the force field that created it, generates a 
reaction field that acts on the USN tending to expand all 
existing uspheres inside it. 
This special type of uhole was called Ulianov Dynamic 
Hole (udyhole). 
The neighboring uspheres to the formed udyhole will 
tend to expand further, as shown in Figure 12, in which 
a red dot indicates the location where three uspheres 
were compressed at one same point generating three 
overlapping udyholes. We can also consider that the 
overlapping of several udyholes on the same point 
generates a single udyhole, which is "bigger" only in the 
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Figure 10:
a) Usphere subjected to a negative radial force field 
b) Usphere collapsed becomes uhole.

By observing Figures 9 and 10 we can affirm that in an equilib-
rium condition, with no  force being applied, the diameter of an 
usphere will always be unitary.

An uhole exists only while a force field is compressing it. At 
the time when this field is eliminated, the uhole expands and 
becomes an usphere.

Another important property of an usphere is its surface formed 
by the aligning of a large number of uholes, tending to the in-
finite. Thus if an usphere is placed in an empty space, then some 
uholes that form it will tend to expand until they occupy all 
available spaces.  

Figure 11: Generation of an usphere Network.

This process is shown in Figure 11,  initially there is a single 
uhole being compressed by a force field. When this field is re-
moved, there is initially a single usphere. Then, some uholes 
forming the surface of the original usphere also expand, generat-
ing new uspheres and so on. 

The final formed structure takes the form of a hyperspheres net-
work, which was called Ulianov Sphere Network (USN).

An USN is originated from a single compressed uhole, as shown 
in Figure 11 and it expands until filling all the available spaces.
When an USN ceases expanding, each one of the infinite uholes 
composing it will be submitted to an unitary radial negative 
force field, because otherwise the USN would still be expanding. 
This generates an infinite tension on the USN, which will cause 
each usphere to touch its neighbors forming a compact network 
with no empty areas.

It is important to notice in Figure 11 that the USN own evolution 
in time is shown within red circles that represent sequences of 
uspheres expanding in time. Thus, a complete USN will have 
four dimensions, three related to space and one related to time. 
Usually, an USN will expand occupying the entire available vol-

ume in the spatial dimensions and will tend to grow continuous-
ly in the time dimension.

In a uniform USN, there will be a similar organization to that 
shown in Figure 7, in which all the uspheres have unitary diam-
eter.

Starting from a uniform USN, if we apply a force field inside an 
usphere, this usphere will be compressed, generating an uhole. 
However, this new uhole is different from all other uholes (which 
form the walls of the existing uspheres) because the force field 
that created it, generates a reaction field that acts on the USN 
tending to expand all existing uspheres inside it.

This special type of uhole was called Ulianov Dynamic Hole 
(udyhole).

The neighboring uspheres to the formed udyhole will tend to ex-
pand further, as shown in Figure 12, in which a red dot indicates 
the location where three uspheres were compressed at one same 
point generating three overlapping udyholes. We can also con-
sider that the overlapping of several udyholes on the same point 
generates a single udyhole, which is "bigger" only in the direc-
tion where it distorts more the uspheres which are its neighbors.

Figure 12: Ulianov Sphere Network distortion caused by the 
compression of some uspheres.

A udyhole has characteristics of a point-like particle and can 
move around on the network, "jumping" from one to another 
usphere. Thus, an udyhole moves in digital space-time defined 
by the USN, always jumping a house at a time. 

On this way, for each new unitary time (Planck time) a giv-
en udyhole can stand still or move a unitary distance (Planck 
distance). Therefore, the udyhole speed will always be zero or 
equal to the speed of light.

The Udyhole movement can also be associated to the movement 
of the force field that defines it. Thus, we can consider the udy-
hole not actually moving, but the force field passing from an 
usphere to another, and so the abandoned house “inflates" while 
the new house occupied by the field gets "empty".

An important observation is that an udyhole always moves a 
"house" at a time, regardless of the effective usphere diameter 
that will be occupied next. Thus, from the point of view of an 
udyhole, an USR will be uniform with all network uspheres al-
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 An usphere is completely defined by a center point 
and by a given radius (or diameter); 

 The diameter of an usphere always takes a real 
value greater or equal to one unit (defined in the 
Planck unitary system); 

 Undergoing an usphere to a positive radial force 
field, as shown in Figure 9, its radius tends to 
increase in proportion to the intensity of the applied 
field; 

 Undergoing an usphere of unitary diameter to an 
unitary radial negative force field, as shown in 
Figure 10, it is collapsed (the diameter becomes 
null). In this condition the usphere becomes an 
Ulianov Hole (uhole). If the force field is removed, 
the uhole expands generating again an usphere of 
unitary diameter. 
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Usphere with increased radius. 

 

 

 

 

 

 

Figure 10 - a) Usphere subjected to a negative radial force field b) 
Usphere collapsed becomes uhole. 

By observing Figures 9 and 10 we can affirm that in an 
equilibrium condition, with no  force being applied, the 
diameter of an usphere will always be unitary. 
An uhole exists only while a force field is compressing it. 
At the time when this field is eliminated, the uhole 
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Another important property of an usphere is its surface 
formed by the aligning of a large number of uholes, 
tending to the infinite. Thus if an usphere is placed in an 
empty space, then some uholes that form it will tend to 
expand until they occupy all available spaces.   
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This process is shown in Figure 11,  initially there is a 
single uhole being compressed by a force field. When 
this field is removed, there is initially a single usphere. 
Then, some uholes forming the surface of the original 
usphere also expand, generating new uspheres and so 
on.  
The final formed structure takes the form of a 
hyperspheres network, which was called Ulianov Sphere 
Network (USN). 
An USN is originated from a single compressed uhole, 
as shown in Figure 11 and it expands until filling all the 
available spaces. 
When an USN ceases expanding, each one of the 
infinite uholes composing it will be submitted to an 
unitary radial negative force field, because otherwise the 
USN would still be expanding. This generates an infinite 
tension on the USN, which will cause each usphere to 
touch its neighbors forming a compact network with no 
empty areas. 
It is important to notice in Figure 11 that the USN own 
evolution in time is shown within red circles that 
represent sequences of uspheres expanding in time. 
Thus, a complete USN will have four dimensions, three 
related to space and one related to time.  
Usually, an USN will expand occupying the entire 
available volume in the spatial dimensions and will tend 
to grow continuously in the time dimension. 
In a uniform USN, there will be a similar organization to 
that shown in Figure 7, in which all the uspheres have 
unitary diameter. 
Starting from a uniform USN, if we apply a force field 
inside an usphere, this usphere will be compressed, 
generating an uhole.  
However, this new uhole is different from all other 
uholes (which form the walls of the existing uspheres) 
because the force field that created it, generates a 
reaction field that acts on the USN tending to expand all 
existing uspheres inside it. 
This special type of uhole was called Ulianov Dynamic 
Hole (udyhole). 
The neighboring uspheres to the formed udyhole will 
tend to expand further, as shown in Figure 12, in which 
a red dot indicates the location where three uspheres 
were compressed at one same point generating three 
overlapping udyholes. We can also consider that the 
overlapping of several udyholes on the same point 
generates a single udyhole, which is "bigger" only in the 
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 An usphere is completely defined by a center point 
and by a given radius (or diameter); 

 The diameter of an usphere always takes a real 
value greater or equal to one unit (defined in the 
Planck unitary system); 

 Undergoing an usphere to a positive radial force 
field, as shown in Figure 9, its radius tends to 
increase in proportion to the intensity of the applied 
field; 

 Undergoing an usphere of unitary diameter to an 
unitary radial negative force field, as shown in 
Figure 10, it is collapsed (the diameter becomes 
null). In this condition the usphere becomes an 
Ulianov Hole (uhole). If the force field is removed, 
the uhole expands generating again an usphere of 
unitary diameter. 

 

 

 

 

 

 

Figure 9 - a) Usphere subjected to a positive radial force field. b) 
Usphere with increased radius. 

 

 

 

 

 

 

Figure 10 - a) Usphere subjected to a negative radial force field b) 
Usphere collapsed becomes uhole. 

By observing Figures 9 and 10 we can affirm that in an 
equilibrium condition, with no  force being applied, the 
diameter of an usphere will always be unitary. 
An uhole exists only while a force field is compressing it. 
At the time when this field is eliminated, the uhole 
expands and becomes an usphere. 

Another important property of an usphere is its surface 
formed by the aligning of a large number of uholes, 
tending to the infinite. Thus if an usphere is placed in an 
empty space, then some uholes that form it will tend to 
expand until they occupy all available spaces.   
 

 
 
 
  

 

 

Figure 11 - Generation of an usphere Network. 

This process is shown in Figure 11,  initially there is a 
single uhole being compressed by a force field. When 
this field is removed, there is initially a single usphere. 
Then, some uholes forming the surface of the original 
usphere also expand, generating new uspheres and so 
on.  
The final formed structure takes the form of a 
hyperspheres network, which was called Ulianov Sphere 
Network (USN). 
An USN is originated from a single compressed uhole, 
as shown in Figure 11 and it expands until filling all the 
available spaces. 
When an USN ceases expanding, each one of the 
infinite uholes composing it will be submitted to an 
unitary radial negative force field, because otherwise the 
USN would still be expanding. This generates an infinite 
tension on the USN, which will cause each usphere to 
touch its neighbors forming a compact network with no 
empty areas. 
It is important to notice in Figure 11 that the USN own 
evolution in time is shown within red circles that 
represent sequences of uspheres expanding in time. 
Thus, a complete USN will have four dimensions, three 
related to space and one related to time.  
Usually, an USN will expand occupying the entire 
available volume in the spatial dimensions and will tend 
to grow continuously in the time dimension. 
In a uniform USN, there will be a similar organization to 
that shown in Figure 7, in which all the uspheres have 
unitary diameter. 
Starting from a uniform USN, if we apply a force field 
inside an usphere, this usphere will be compressed, 
generating an uhole.  
However, this new uhole is different from all other 
uholes (which form the walls of the existing uspheres) 
because the force field that created it, generates a 
reaction field that acts on the USN tending to expand all 
existing uspheres inside it. 
This special type of uhole was called Ulianov Dynamic 
Hole (udyhole). 
The neighboring uspheres to the formed udyhole will 
tend to expand further, as shown in Figure 12, in which 
a red dot indicates the location where three uspheres 
were compressed at one same point generating three 
overlapping udyholes. We can also consider that the 
overlapping of several udyholes on the same point 
generates a single udyhole, which is "bigger" only in the 
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direction where it distorts more the uspheres which are 
its neighbors. 
 

 
 Figure 12 – Ulianov Sphere Network distortion caused by the 

compression of some uspheres. 

A udyhole has characteristics of a point-like particle and 
can move around on the network, "jumping" from one to 
another usphere. Thus, an udyhole moves in digital 
space-time defined by the USN, always jumping a house 
at a time.  
On this way, for each new unitary time (Planck time) a 
given udyhole can stand still or move a unitary distance 
(Planck distance). Therefore, the udyhole speed will 
always be zero or equal to the speed of light. 
The Udyhole movement can also be associated to the 
movement of the force field that defines it. Thus, we can 
consider the udyhole not actually moving, but the force 
field passing from an usphere to another, and so the 
abandoned house ―inflates" while the new house 
occupied by the field gets "empty". 
An important observation is that an udyhole always 
moves a "house" at a time, regardless of the effective 
usphere diameter that will be occupied next. Thus, from 
the point of view of an udyhole, an USR will be uniform 
with all network uspheres always having unitary size. 
 
 
 
 
 
 
 
 
 

   Figure 13 - Analogy of a river crossed by rows of stones. In (a) the 
actual width is observed and (b) the number of leaps. 

This aspect is illustrated at the analogy shown in Figure 
13, in which a uniform width river is crossed by a series 
of stones of different sizes. Suppose now that a frog will 
cross the river, passing from one stone to another with 
only one jump (regardless of the stone size). For this 
frog, the river has no longer a constant width being 
narrower on the central point and becoming wider at the 
edges. Thus, for the frog, it seems like all the stones of 
the river had the same size, as shown in Figure 13-b. 

Therefore, we can use the motion of a udyholes to 
define a digital metric, in which the distance between 
two given points can be measured by counting the 
number of spheres that the udyhole should "jump" to go 
from one point to another, considering a path defined by 
a straight line in real space that contains the network. 
Thus, in the USN model there will always exist two 
representations of distance, a "real metric" given as a 
function of space containing the network and other 
"digital metric" given by the counting of the number of 
spheres, regardless of the size of each one of them. For 
a uniform network, these two metrics will be identical, 
but in the presence of udyholes distorting the network, 
the two metrics become quite distinct. 
 

        
Figure 14 - a) Usphere network seen by a real metric. b) Usphere 

network seen by a digital metric. 

Figure 14 illustrates a simple case of application of 
these two metrics over a distorted network. We observe 
in Figure 14-a, the network from the point of view of real 
metric, in which the square in blue represents the 
displacement of an udyhole accordingly to a rectangular 
trajectory. Figure 14-b, in turn, displays the same 
network accordingly to the digital metric. In this case, the 
displacement of the udyhole is represented by a red 
trapezoid, whose internal angles are equal to 90 
degrees. Thus although the real metric is always 
Euclidean, the digital metric, for a distorted network, will 
typically be associated with a non-Euclidean space. 
 
Figure 15 illustrates a case where an USN is strongly 
distorted due to the presence of a large number of 
udyholes placed at its center. The grid drawn in this 
figure illustrates the observed distance accordingly to 
the digital metric, and the real metric is shown in two 
points with the aid of the red circles observed in the 
figure. Notice that there is a similar grid between the 
lines represented in Figure 15 and the river margin 
represented in Figure 13. In terms of a real metric, these 
lines are parallel and form a uniform grid, while in the 
digital metric, the lines bend towards the figure center. 
Therefore, in both representations the angles among all 
the lines that intersect to form the grid are always equal 
to 90 degrees. Moreover, in digital metric, despite the 
grid lines are curved they still represent the shortest 
distance between two points on its edges, which 

(a)                                                                    (b) 

(a) (b)
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ways having unitary size.

Figure 13: Analogy of a river crossed by rows of stones. In (a) 
the actual width is observed and (b) the number of leaps.

This aspect is illustrated at the analogy shown in Figure 13, in 
which a uniform width river is crossed by a series of stones of 
different sizes. Suppose now that a frog will cross the river, pass-
ing from one stone to another with only one jump (regardless of 
the stone size). For this frog, the river has no longer a constant 
width being narrower on the central point and becoming wider 
at the edges. Thus, for the frog, it seems like all the stones of the 
river had the same size, as shown in Figure 13-b.

Therefore, we can use the motion of a udyholes to define a dig-
ital metric, in which the distance between two given points can 
be measured by counting the number of spheres that the udyhole 
should "jump" to go from one point to another, considering a 
path defined by a straight line in real space that contains the net-
work.

Thus, in the USN model there will always exist two represen-
tations of distance, a "real metric" given as a function of space 
containing the network and other "digital metric" given by the 
counting of the number of spheres, regardless of the size of each 
one of them. For a uniform network, these two metrics will be 
identical, but in the presence of udyholes distorting the network, 
the two metrics become quite distinct.

Figure 14:
a) Usphere network seen by a real metric. 
b) Usphere network seen by a digital metric.

Figure 14 illustrates a simple case of application of these two 
metrics over a distorted network. We observe in Figure 14-a, 
the network from the point of view of real metric, in which the 
square in blue represents the displacement of an udyhole ac-
cordingly to a rectangular trajectory. Figure 14-b, in turn, dis-
plays the same network accordingly to the digital metric. In this 
case, the displacement of the udyhole is represented by a red 
trapezoid, whose internal angles are equal to 90 degrees. Thus 
although the real metric is always Euclidean, the digital met-
ric, for a distorted network, will typically be associated with a 

non-Euclidean space.

Figure 15 illustrates a case where an USN is strongly distort-
ed due to the presence of a large number of udyholes placed at 
its center. The grid drawn in this figure illustrates the observed 
distance accordingly to the digital metric, and the real metric is 
shown in two points with the aid of the red circles observed in 
the figure. Notice that there is a similar grid between the lines 
represented in Figure 15 and the river margin represented in Fig-
ure 13. In terms of a real metric, these lines are parallel and form 
a uniform grid, while in the digital metric, the lines bend towards 
the figure center. Therefore, in both representations the angles 
among all the lines that intersect to form the grid are always 
equal to 90 degrees. Moreover, in digital metric, despite the grid 
lines are curved they still represent the shortest distance between 
two points on its edges, which indicates that these curved lines 
represent geodesic trajectories.

Figure 15: USN with a big distortion in its central point on 
which was drawn a uniform grid.

If we compare Figure 2 as defined in the context of GRT with 
Figure 15 defined in the USN model, we can observe the ef-
fect of an accumulation of udyholes at the center of a uniform 
usphere network is similar to that obtained by the accumulation 
of mass at the center of an empty space. Thus, we can associate 
udyholes to a unitary value of mass (Kmu), and so the association 
of N unitary udyholes at one point generates a new udaynahole 
with mass  M that is equal to NKmu. 

On this way, if a certain amount of mass is associated to udy-
holes, the results obtained in the USN model will be very similar 
to those obtained by the GRT, but using a much more trivial 
mathematics.

However, it is important to note that the USN model and the 
GRT operate accordingly to opposite premises. It occurs because 
the GRT considers the presence of mass that "shrinks" the space 
while the USN model considers that the presence of mass (udy-
holes) actually "expands" the space.

5. Calculation of the Schwarzschild Metric
In order to validate the USN model, it will be used in this section 
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direction where it distorts more the uspheres which are 
its neighbors. 
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always be zero or equal to the speed of light. 
The Udyhole movement can also be associated to the 
movement of the force field that defines it. Thus, we can 
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occupied by the field gets "empty". 
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moves a "house" at a time, regardless of the effective 
usphere diameter that will be occupied next. Thus, from 
the point of view of an udyhole, an USR will be uniform 
with all network uspheres always having unitary size. 
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actual width is observed and (b) the number of leaps. 

This aspect is illustrated at the analogy shown in Figure 
13, in which a uniform width river is crossed by a series 
of stones of different sizes. Suppose now that a frog will 
cross the river, passing from one stone to another with 
only one jump (regardless of the stone size). For this 
frog, the river has no longer a constant width being 
narrower on the central point and becoming wider at the 
edges. Thus, for the frog, it seems like all the stones of 
the river had the same size, as shown in Figure 13-b. 

Therefore, we can use the motion of a udyholes to 
define a digital metric, in which the distance between 
two given points can be measured by counting the 
number of spheres that the udyhole should "jump" to go 
from one point to another, considering a path defined by 
a straight line in real space that contains the network. 
Thus, in the USN model there will always exist two 
representations of distance, a "real metric" given as a 
function of space containing the network and other 
"digital metric" given by the counting of the number of 
spheres, regardless of the size of each one of them. For 
a uniform network, these two metrics will be identical, 
but in the presence of udyholes distorting the network, 
the two metrics become quite distinct. 
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Figure 14 illustrates a simple case of application of 
these two metrics over a distorted network. We observe 
in Figure 14-a, the network from the point of view of real 
metric, in which the square in blue represents the 
displacement of an udyhole accordingly to a rectangular 
trajectory. Figure 14-b, in turn, displays the same 
network accordingly to the digital metric. In this case, the 
displacement of the udyhole is represented by a red 
trapezoid, whose internal angles are equal to 90 
degrees. Thus although the real metric is always 
Euclidean, the digital metric, for a distorted network, will 
typically be associated with a non-Euclidean space. 
 
Figure 15 illustrates a case where an USN is strongly 
distorted due to the presence of a large number of 
udyholes placed at its center. The grid drawn in this 
figure illustrates the observed distance accordingly to 
the digital metric, and the real metric is shown in two 
points with the aid of the red circles observed in the 
figure. Notice that there is a similar grid between the 
lines represented in Figure 15 and the river margin 
represented in Figure 13. In terms of a real metric, these 
lines are parallel and form a uniform grid, while in the 
digital metric, the lines bend towards the figure center. 
Therefore, in both representations the angles among all 
the lines that intersect to form the grid are always equal 
to 90 degrees. Moreover, in digital metric, despite the 
grid lines are curved they still represent the shortest 
distance between two points on its edges, which 

(a)                                                                    (b) 

(a) (b)

6 
 

direction where it distorts more the uspheres which are 
its neighbors. 
 

 
 Figure 12 – Ulianov Sphere Network distortion caused by the 

compression of some uspheres. 

A udyhole has characteristics of a point-like particle and 
can move around on the network, "jumping" from one to 
another usphere. Thus, an udyhole moves in digital 
space-time defined by the USN, always jumping a house 
at a time.  
On this way, for each new unitary time (Planck time) a 
given udyhole can stand still or move a unitary distance 
(Planck distance). Therefore, the udyhole speed will 
always be zero or equal to the speed of light. 
The Udyhole movement can also be associated to the 
movement of the force field that defines it. Thus, we can 
consider the udyhole not actually moving, but the force 
field passing from an usphere to another, and so the 
abandoned house ―inflates" while the new house 
occupied by the field gets "empty". 
An important observation is that an udyhole always 
moves a "house" at a time, regardless of the effective 
usphere diameter that will be occupied next. Thus, from 
the point of view of an udyhole, an USR will be uniform 
with all network uspheres always having unitary size. 
 
 
 
 
 
 
 
 
 

   Figure 13 - Analogy of a river crossed by rows of stones. In (a) the 
actual width is observed and (b) the number of leaps. 

This aspect is illustrated at the analogy shown in Figure 
13, in which a uniform width river is crossed by a series 
of stones of different sizes. Suppose now that a frog will 
cross the river, passing from one stone to another with 
only one jump (regardless of the stone size). For this 
frog, the river has no longer a constant width being 
narrower on the central point and becoming wider at the 
edges. Thus, for the frog, it seems like all the stones of 
the river had the same size, as shown in Figure 13-b. 

Therefore, we can use the motion of a udyholes to 
define a digital metric, in which the distance between 
two given points can be measured by counting the 
number of spheres that the udyhole should "jump" to go 
from one point to another, considering a path defined by 
a straight line in real space that contains the network. 
Thus, in the USN model there will always exist two 
representations of distance, a "real metric" given as a 
function of space containing the network and other 
"digital metric" given by the counting of the number of 
spheres, regardless of the size of each one of them. For 
a uniform network, these two metrics will be identical, 
but in the presence of udyholes distorting the network, 
the two metrics become quite distinct. 
 

        
Figure 14 - a) Usphere network seen by a real metric. b) Usphere 

network seen by a digital metric. 

Figure 14 illustrates a simple case of application of 
these two metrics over a distorted network. We observe 
in Figure 14-a, the network from the point of view of real 
metric, in which the square in blue represents the 
displacement of an udyhole accordingly to a rectangular 
trajectory. Figure 14-b, in turn, displays the same 
network accordingly to the digital metric. In this case, the 
displacement of the udyhole is represented by a red 
trapezoid, whose internal angles are equal to 90 
degrees. Thus although the real metric is always 
Euclidean, the digital metric, for a distorted network, will 
typically be associated with a non-Euclidean space. 
 
Figure 15 illustrates a case where an USN is strongly 
distorted due to the presence of a large number of 
udyholes placed at its center. The grid drawn in this 
figure illustrates the observed distance accordingly to 
the digital metric, and the real metric is shown in two 
points with the aid of the red circles observed in the 
figure. Notice that there is a similar grid between the 
lines represented in Figure 15 and the river margin 
represented in Figure 13. In terms of a real metric, these 
lines are parallel and form a uniform grid, while in the 
digital metric, the lines bend towards the figure center. 
Therefore, in both representations the angles among all 
the lines that intersect to form the grid are always equal 
to 90 degrees. Moreover, in digital metric, despite the 
grid lines are curved they still represent the shortest 
distance between two points on its edges, which 

(a)                                                                    (b) 

(a) (b)

7 
 

indicates that these curved lines represent geodesic 
trajectories. 
 
 
 
 
 

 

 

 

 

 

Figure 15 - USN with a big distortion in its central point on which was 
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center of a uniform usphere network is similar to that 
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an empty space. Thus, we can associate udyholes to a 
unitary value of mass ( muK ), and so the association of 
N unitary udyholes at one point generates a new 
udaynahole with mass M  that is equal to muKN .  
On this way, if a certain amount of mass is associated to 
udyholes, the results obtained in the USN model will be 
very similar to those obtained by the GRT, but using a 
much more trivial mathematics. 
However, it is important to note that the USN model and 
the GRT operate accordingly to opposite premises. It 
occurs because the GRT considers the presence of 
mass that "shrinks" the space while the USN model 
considers that the presence of mass (udyholes) actually 
"expands" the space. 
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In order to validate the USN model, it will be used in this 
section for a simple case in which a spherical body of 
mass M is positioned in an empty space and a solution 
similar to the equation for the Schwarzschild metric 
(presented in equation 5) must be obtained.    
Initially we can define a flat continuum space-time, in 
which a point is represented by four real coordinates: 
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for a simple case in which a spherical body of mass M is posi-
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for the Schwarzschild metric (presented in equation 5) must be 
obtained.   
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point is represented by four real coordinates:
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can be located as follows:

Now consider a line of Uspheres leaving the origin towards any 
direction of the space. On this line an axis will be defined in 
which a distance d, in relation to the origin (real metric), is as-
sociated to a count of spheres Nd  (digital metric).Applying a 
unitary radial force field in a single usphere in the center of the 
considered space, it will be compressed, becoming an udyhole, 
as shown in Figure 16.

Figure 16: Usphere network with an udyhole being formed.

We can see in Figure 16, the collapse of the black sphere moves 
the nearby spheres and slightly increases their sizes. The farther 
from the udyhole is the considered sphere, smaller its radius in-
crease will be.

Considering only values greater than zero for Nd, we can show 
the considered radius in the line, after compression of the central 
usphere will assume the following value:

Since for the equation (14) the sum of value added to the radius 
of each sphere is given by:

Thus, equation (14) generates an increase in the uspheres radius 
whose sum is exactly equal to the space generated by the com-
pression of the central usphere. On this way, the total volume oc-
cupied by the USR remains constant.Despite the above premise 
being fairly obvious, there are actually two basic possible con-
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an udyhole:
• The total USN volume does not change - In this case the vol-
ume generated by compression is equal to the volume increase 
in the other uspheres and the equations (14) and (15) are valid. 
Within this consideration we can deduce the formula of New-
ton's gravitation law, which will be more detailed in the next 
section;
• The total USN volume increases - In this case the volume in-
crease in all uspheres is greater than the usphere volume that was 
compressed and so the equations (14) and (15) become invalid. 
Within this consideration we can deduce compatible formulas 
with the GRT, which will be seen next.
    
In order to define a new equation modeling the increase in radius 
of each usphere, we initially must calculate the increase in the 
final volume in the distorted USN. However, this increase will 
vary in function of space’s characteristics in which the USN is 
defined. 

Thus, we will build on a specific case (considering only the USN 
spatial dimensions) in which a three-dimensional USN is con-
tained on the surface of a hypersphere of four dimensions. 
Under these conditions, the USN will occupy all available vol-
ume on the surface of the hypersphere. In this case, the USN 
volume can also be associated to the volume contained within a 
three-dimensional sphere defined in a flat space. 

Figure 17: Two-dimensional usphere network defined on the 
surface of a sphere (in red) and flattened on a circular area (in 
blue) equivalent to the spherical surface area.

In order to facilitate the visualization of this model, we initial-
ly consider an analogous case shown in Figure 17 in which a 
two-dimensional usphere network (represented in red) is defined 
on a sphere surface. This two-dimensional network can also be 
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indicates that these curved lines represent geodesic 
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indicates that these curved lines represent geodesic 
trajectories. 
 
 
 
 
 

 

 

 

 

 

Figure 15 - USN with a big distortion in its central point on which was 
drawn a uniform grid. 

If we compare Figure 2 as defined in the context of GRT 
with Figure 15 defined in the USN model, we can 
observe the effect of an accumulation of udyholes at the 
center of a uniform usphere network is similar to that 
obtained by the accumulation of mass at the center of 
an empty space. Thus, we can associate udyholes to a 
unitary value of mass ( muK ), and so the association of 
N unitary udyholes at one point generates a new 
udaynahole with mass M  that is equal to muKN .  
On this way, if a certain amount of mass is associated to 
udyholes, the results obtained in the USN model will be 
very similar to those obtained by the GRT, but using a 
much more trivial mathematics. 
However, it is important to note that the USN model and 
the GRT operate accordingly to opposite premises. It 
occurs because the GRT considers the presence of 
mass that "shrinks" the space while the USN model 
considers that the presence of mass (udyholes) actually 
"expands" the space. 
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In order to validate the USN model, it will be used in this 
section for a simple case in which a spherical body of 
mass M is positioned in an empty space and a solution 
similar to the equation for the Schwarzschild metric 
(presented in equation 5) must be obtained.    
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Since for the equation (14) the sum of value added to 
the radius of each sphere is given by: 
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Thus, equation (14) generates an increase in the 
uspheres radius whose sum is exactly equal to the 
space generated by the compression of the central 
usphere. On this way, the total volume occupied by the 
USR remains constant. 
Despite the above premise being fairly obvious, there 
are actually two basic possible considerations when a 
usphere in a USR is compressed, generating an 
udyhole: 

 The total USN volume does not change - In this 
case the volume generated by compression is 
equal to the volume increase in the other 
uspheres and the equations (14) and (15) are 
valid. Within this consideration we can deduce 
the formula of Newton's gravitation law, which 
will be more detailed in the next section; 

 The total USN volume increases - In this case 
the volume increase in all uspheres is greater 
than the usphere volume that was compressed 
and so the equations (14) and (15) become 
invalid. Within this consideration we can 
deduce compatible formulas with the GRT, 
which will be seen next. 

     
In order to define a new equation modeling the increase 
in radius of each usphere, we initially must calculate the 
increase in the final volume in the distorted USN. 
However, this increase will vary in function of space’s 
characteristics in which the USN is defined.  
Thus, we will build on a specific case (considering only 
the USN spatial dimensions) in which a three-
dimensional USN is contained on the surface of a 
hypersphere of four dimensions.  
Under these conditions, the USN will occupy all 
available volume on the surface of the hypersphere. In 
this case, the USN volume can also be associated to the 
volume contained within a three-dimensional sphere 
defined in a flat space.  
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 17 - Two-dimensional usphere network defined on the surface 

of a sphere (in red) and flattened on a circular area (in blue) equivalent 
to the spherical surface area. 

In order to facilitate the visualization of this model, we 
initially consider an analogous case shown in Figure 17 
in which a two-dimensional usphere network 
(represented in red) is defined on a sphere surface. This 
two-dimensional network can also be defined on a flat 
surface, creating an equivalent circular area, shown in 
blue in Figure 17. 
Notice both representations, shown in Figure 17, are 
quite equivalent for the uspheres in the network center, 
but at the flattened network there will be an "edge" that 
does not really exist in the original spherical surface. 
Now, consider the case of the three-dimensional USN, 
analogous to two-dimensional case shown in Figure 17 . 
This three-dimensional USN will then be defined inside a 
sphere (related to blue circle in Figure 17) of radius 

equal to LN . This sphere was called "general sphere" 
(GS) and will contain the entire network. 
We can define a subnet contained in a spherical shell 
concentric whit GS and whit radius equal to dN . The 
area on the surface of this spherical shell, for the case of 
one uniform USN will be defined by: 
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defined on a flat surface, creating an equivalent circular area, 
shown in blue in Figure 17.
Notice both representations, shown in Figure 17, are quite equiv-
alent for the uspheres in the network center, but at the flattened 
network there will be an "edge" that does not really exist in the 
original spherical surface.

Now, consider the case of the three-dimensional USN, analo-
gous to two-dimensional case shown in Figure 17 .This three-di-
mensional USN will then be defined inside a sphere (related to 
blue circle in Figure 17 of radius equal to NL. This sphere was 
called "general sphere" (GS) and will contain the entire network.
We can define a subnet contained in a spherical shell concentric 
whit GS and whit radius equal to Nd . The area on the surface 
of this spherical shell, for the case of one uniform USN will be 
defined by:

This spherical shell will cut a certain number (Nc) of uspheres.If 
we consider that these uspheres will be divided in half, creating 
a circular section, we can make the following approximation:

Where α is an adjustment factor whose value is slightly larger 
than the unit. Considering now the distorted network, we will 
compress a single usphere which is found in the center of the 
network. We can then assume the radius of the neighboring 
uspheres will increase, causing an increase in volume and sur-
face area of each network usphere. Generically it is possible to 
consider that the area of each usphere in the distorted network 
will increase accordingly to the function K(Nd), where Nd is the 
distance between the point considered, and the distortion point, 
in network center.

In this context, the following generic equation, relating the ra-
dius of the distorted usphere  rx(Nd) with the original radius can 
be defined as:

We now need to consider the increasing of the USN total volume 
due to compression of an usphere in its interior. Figure 18 shows 
the case of the flattened USN network, presented in blue in Fig-
ure 17, with one inside usphere being compressed. The uspheres 
in Figure 18-b increase in size due to two factors: occupation of 
the space left by the compressed usphere and occupation of the 

Figure 18: 
a) Uniform two-dimensional usphere network, 
b) Distorted network The collapse in central usphere (represent-
ed in black) generates an increase in the network total area.

For the case of a three-dimensional USN, defined within the GS, 
we will calculate a surface area (AD) defined in the distorted net-
work. Considering that the number (Nc) of uspheres that inter-
sects the defined spherical shell will not vary, it can be applied 
the equation (18) in equation (17), obtaining:

Equation 19 indicates that for the distorted USR, the radius 
increasing leads to an increase on the individual areas of each 
usphere which is equivalent to the increment observed on the 
spherical shell distorted area AD.

If we now take the spherical shell defined by the GS (Nd = NL) 
applying equation (16) we obtain the value of the total area un-
distorted in GS (AUGS):

Within the analogy shown in Figure 18, suppose that at the dis-
torted three-dimensional USR, the radius of the GS increases by 
one unit. In this case it is like the collapse of the central usphere 
generates a new uspheres shell on the three-dimensional net-
work edge.
Thus, applying equation (20), with the NL value increasing by 
one unit, the total area of the distorted GS (AUGS) is then given 
by:

Applying the equations (20) and (21) in equation (19) the results 
are the following:
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Thus, equation (14) generates an increase in the 
uspheres radius whose sum is exactly equal to the 
space generated by the compression of the central 
usphere. On this way, the total volume occupied by the 
USR remains constant. 
Despite the above premise being fairly obvious, there 
are actually two basic possible considerations when a 
usphere in a USR is compressed, generating an 
udyhole: 

 The total USN volume does not change - In this 
case the volume generated by compression is 
equal to the volume increase in the other 
uspheres and the equations (14) and (15) are 
valid. Within this consideration we can deduce 
the formula of Newton's gravitation law, which 
will be more detailed in the next section; 

 The total USN volume increases - In this case 
the volume increase in all uspheres is greater 
than the usphere volume that was compressed 
and so the equations (14) and (15) become 
invalid. Within this consideration we can 
deduce compatible formulas with the GRT, 
which will be seen next. 

     
In order to define a new equation modeling the increase 
in radius of each usphere, we initially must calculate the 
increase in the final volume in the distorted USN. 
However, this increase will vary in function of space’s 
characteristics in which the USN is defined.  
Thus, we will build on a specific case (considering only 
the USN spatial dimensions) in which a three-
dimensional USN is contained on the surface of a 
hypersphere of four dimensions.  
Under these conditions, the USN will occupy all 
available volume on the surface of the hypersphere. In 
this case, the USN volume can also be associated to the 
volume contained within a three-dimensional sphere 
defined in a flat space.  
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Where  is an adjustment factor whose value is slightly 
larger than the unit. 
Considering now the distorted network, we will 
compress a single usphere which is found in the center 
of the network. We can then assume the radius of the 
neighboring uspheres will increase, causing an increase 
in volume and surface area of each network usphere. 
Generically it is possible to consider that the area of 
each usphere in the distorted network will increase 

accordingly to the function )( dNK , where dN is the 

distance between the point considered, and the 
distortion point, in network center. 
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Where  is an adjustment factor whose value is slightly 
larger than the unit. 
Considering now the distorted network, we will 
compress a single usphere which is found in the center 
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In this context, the following generic equation, relating 
the radius of the distorted usphere )( dx Nr  with the 

original radius 0r can be defined as: 
 

  ))(1( )( 2
0

2
ddx NKrNr   

(18) 

 
We now need to consider the increasing of the USN 
total volume due to compression of an usphere in its 
interior. Figure 18 shows the case of the flattened USN 
network, presented in blue in Figure 17, with one inside 
usphere being compressed. The uspheres in Figure 18-
b increase in size due to two factors: occupation of the 
space left by the compressed usphere and occupation of 
the space created in function of the network expansion. 
 
 
 
 
 
 
 
 
 
 
 
Figure 18 - a) Uniform two-dimensional usphere network, b) Distorted 
network .The collapse in central usphere (represented in black) 
generates an increase in the network total area. 

 
For the case of a three-dimensional USN, defined within 
the GS, we will calculate a surface area ( DA ) defined in 

the distorted network. Considering that the number ( CN
) of uspheres that intersects the defined spherical shell 
will not vary, it can be applied the equation (18) in 
equation (17), obtaining: 
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Equation 19 indicates that for the distorted USR, the 
radius increasing leads to an increase on the individual 
areas of each usphere which is equivalent to the 
increment observed on the spherical shell distorted area 

DA . 
 
If we now take the spherical shell defined by the GS (

Ld NN  ) applying equation (16) we obtain the value 

of the total area undistorted in GS ( UGSA ): 

  2 4 LUGS NA   
(20) 

 
Within the analogy shown in Figure 18, suppose that at 
the distorted three-dimensional USR, the radius of the 
GS increases by one unit. In this case it is like the 
collapse of the central usphere generates a new 
uspheres shell on the three-dimensional network edge. 
Thus, applying equation (20), with the LN  value 
increasing by one unit, the total area of the distorted GS 
( DGSA ) is then given by: 
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Applying the equations (20) and (21) in equation (19) the 
results are the following: 
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Thus, the increase in radius defined in equation (18) will 
be given by the following function: 
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Equation (23) describes the radius increase of each 
usphere in a uniform network where a single udyhole is 
being generated for the case in which the final volume of 
the distorted network increases, similarly to that shown 
in Figure 18. 
Figure 19 shows a comparative graph between 
equations (14) and (23) where we can observe, that as 
expected, the increase in radius for the case of equation 
(23) is much larger than the increase described by 
equation (14). 
 

(a)                                                             (b) 
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In this context, the following generic equation, relating 
the radius of the distorted usphere )( dx Nr  with the 

original radius 0r can be defined as: 
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We now need to consider the increasing of the USN 
total volume due to compression of an usphere in its 
interior. Figure 18 shows the case of the flattened USN 
network, presented in blue in Figure 17, with one inside 
usphere being compressed. The uspheres in Figure 18-
b increase in size due to two factors: occupation of the 
space left by the compressed usphere and occupation of 
the space created in function of the network expansion. 
 
 
 
 
 
 
 
 
 
 
 
Figure 18 - a) Uniform two-dimensional usphere network, b) Distorted 
network .The collapse in central usphere (represented in black) 
generates an increase in the network total area. 

 
For the case of a three-dimensional USN, defined within 
the GS, we will calculate a surface area ( DA ) defined in 

the distorted network. Considering that the number ( CN
) of uspheres that intersects the defined spherical shell 
will not vary, it can be applied the equation (18) in 
equation (17), obtaining: 
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Equation 19 indicates that for the distorted USR, the 
radius increasing leads to an increase on the individual 
areas of each usphere which is equivalent to the 
increment observed on the spherical shell distorted area 

DA . 
 
If we now take the spherical shell defined by the GS (

Ld NN  ) applying equation (16) we obtain the value 

of the total area undistorted in GS ( UGSA ): 

  2 4 LUGS NA   
(20) 

 
Within the analogy shown in Figure 18, suppose that at 
the distorted three-dimensional USR, the radius of the 
GS increases by one unit. In this case it is like the 
collapse of the central usphere generates a new 
uspheres shell on the three-dimensional network edge. 
Thus, applying equation (20), with the LN  value 
increasing by one unit, the total area of the distorted GS 
( DGSA ) is then given by: 
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Applying the equations (20) and (21) in equation (19) the 
results are the following: 
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Thus, the increase in radius defined in equation (18) will 
be given by the following function: 
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Equation (23) describes the radius increase of each 
usphere in a uniform network where a single udyhole is 
being generated for the case in which the final volume of 
the distorted network increases, similarly to that shown 
in Figure 18. 
Figure 19 shows a comparative graph between 
equations (14) and (23) where we can observe, that as 
expected, the increase in radius for the case of equation 
(23) is much larger than the increase described by 
equation (14). 
 

(a)                                                             (b) 
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We now need to consider the increasing of the USN 
total volume due to compression of an usphere in its 
interior. Figure 18 shows the case of the flattened USN 
network, presented in blue in Figure 17, with one inside 
usphere being compressed. The uspheres in Figure 18-
b increase in size due to two factors: occupation of the 
space left by the compressed usphere and occupation of 
the space created in function of the network expansion. 
 
 
 
 
 
 
 
 
 
 
 
Figure 18 - a) Uniform two-dimensional usphere network, b) Distorted 
network .The collapse in central usphere (represented in black) 
generates an increase in the network total area. 

 
For the case of a three-dimensional USN, defined within 
the GS, we will calculate a surface area ( DA ) defined in 

the distorted network. Considering that the number ( CN
) of uspheres that intersects the defined spherical shell 
will not vary, it can be applied the equation (18) in 
equation (17), obtaining: 
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Equation 19 indicates that for the distorted USR, the 
radius increasing leads to an increase on the individual 
areas of each usphere which is equivalent to the 
increment observed on the spherical shell distorted area 

DA . 
 
If we now take the spherical shell defined by the GS (

Ld NN  ) applying equation (16) we obtain the value 

of the total area undistorted in GS ( UGSA ): 

  2 4 LUGS NA   
(20) 

 
Within the analogy shown in Figure 18, suppose that at 
the distorted three-dimensional USR, the radius of the 
GS increases by one unit. In this case it is like the 
collapse of the central usphere generates a new 
uspheres shell on the three-dimensional network edge. 
Thus, applying equation (20), with the LN  value 
increasing by one unit, the total area of the distorted GS 
( DGSA ) is then given by: 
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Applying the equations (20) and (21) in equation (19) the 
results are the following: 
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Thus, the increase in radius defined in equation (18) will 
be given by the following function: 
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Equation (23) describes the radius increase of each 
usphere in a uniform network where a single udyhole is 
being generated for the case in which the final volume of 
the distorted network increases, similarly to that shown 
in Figure 18. 
Figure 19 shows a comparative graph between 
equations (14) and (23) where we can observe, that as 
expected, the increase in radius for the case of equation 
(23) is much larger than the increase described by 
equation (14). 
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We now need to consider the increasing of the USN 
total volume due to compression of an usphere in its 
interior. Figure 18 shows the case of the flattened USN 
network, presented in blue in Figure 17, with one inside 
usphere being compressed. The uspheres in Figure 18-
b increase in size due to two factors: occupation of the 
space left by the compressed usphere and occupation of 
the space created in function of the network expansion. 
 
 
 
 
 
 
 
 
 
 
 
Figure 18 - a) Uniform two-dimensional usphere network, b) Distorted 
network .The collapse in central usphere (represented in black) 
generates an increase in the network total area. 

 
For the case of a three-dimensional USN, defined within 
the GS, we will calculate a surface area ( DA ) defined in 

the distorted network. Considering that the number ( CN
) of uspheres that intersects the defined spherical shell 
will not vary, it can be applied the equation (18) in 
equation (17), obtaining: 
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Equation 19 indicates that for the distorted USR, the 
radius increasing leads to an increase on the individual 
areas of each usphere which is equivalent to the 
increment observed on the spherical shell distorted area 

DA . 
 
If we now take the spherical shell defined by the GS (

Ld NN  ) applying equation (16) we obtain the value 

of the total area undistorted in GS ( UGSA ): 

  2 4 LUGS NA   
(20) 

 
Within the analogy shown in Figure 18, suppose that at 
the distorted three-dimensional USR, the radius of the 
GS increases by one unit. In this case it is like the 
collapse of the central usphere generates a new 
uspheres shell on the three-dimensional network edge. 
Thus, applying equation (20), with the LN  value 
increasing by one unit, the total area of the distorted GS 
( DGSA ) is then given by: 
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Applying the equations (20) and (21) in equation (19) the 
results are the following: 
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Thus, the increase in radius defined in equation (18) will 
be given by the following function: 
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Equation (23) describes the radius increase of each 
usphere in a uniform network where a single udyhole is 
being generated for the case in which the final volume of 
the distorted network increases, similarly to that shown 
in Figure 18. 
Figure 19 shows a comparative graph between 
equations (14) and (23) where we can observe, that as 
expected, the increase in radius for the case of equation 
(23) is much larger than the increase described by 
equation (14). 
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We now need to consider the increasing of the USN 
total volume due to compression of an usphere in its 
interior. Figure 18 shows the case of the flattened USN 
network, presented in blue in Figure 17, with one inside 
usphere being compressed. The uspheres in Figure 18-
b increase in size due to two factors: occupation of the 
space left by the compressed usphere and occupation of 
the space created in function of the network expansion. 
 
 
 
 
 
 
 
 
 
 
 
Figure 18 - a) Uniform two-dimensional usphere network, b) Distorted 
network .The collapse in central usphere (represented in black) 
generates an increase in the network total area. 

 
For the case of a three-dimensional USN, defined within 
the GS, we will calculate a surface area ( DA ) defined in 

the distorted network. Considering that the number ( CN
) of uspheres that intersects the defined spherical shell 
will not vary, it can be applied the equation (18) in 
equation (17), obtaining: 
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Equation 19 indicates that for the distorted USR, the 
radius increasing leads to an increase on the individual 
areas of each usphere which is equivalent to the 
increment observed on the spherical shell distorted area 

DA . 
 
If we now take the spherical shell defined by the GS (

Ld NN  ) applying equation (16) we obtain the value 

of the total area undistorted in GS ( UGSA ): 

  2 4 LUGS NA   
(20) 

 
Within the analogy shown in Figure 18, suppose that at 
the distorted three-dimensional USR, the radius of the 
GS increases by one unit. In this case it is like the 
collapse of the central usphere generates a new 
uspheres shell on the three-dimensional network edge. 
Thus, applying equation (20), with the LN  value 
increasing by one unit, the total area of the distorted GS 
( DGSA ) is then given by: 
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Applying the equations (20) and (21) in equation (19) the 
results are the following: 
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Thus, the increase in radius defined in equation (18) will 
be given by the following function: 
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Equation (23) describes the radius increase of each 
usphere in a uniform network where a single udyhole is 
being generated for the case in which the final volume of 
the distorted network increases, similarly to that shown 
in Figure 18. 
Figure 19 shows a comparative graph between 
equations (14) and (23) where we can observe, that as 
expected, the increase in radius for the case of equation 
(23) is much larger than the increase described by 
equation (14). 
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Thus, the increase in radius defined in equation (18) will be giv-
en by the following function:

Equation (23) describes the radius increase of each usphere in 
a uniform network where a single udyhole is being generated 
for the case in which the final volume of the distorted network 
increases, similarly to that shown in Figure 18.

Figure 19 shows a comparative graph between equations (14) 
and (23) where we can observe, that as expected, the increase 
in radius for the case of equation (23) is much larger than the 
increase described by equation (14).

Figure 19: Expansion of the usphere radius in function of its 
distance from the distortion point.

If we consider that instead of a single udyhole in the distortion 
point, there are  udyholes being formed, we can assume that the 
factor K(Nd) will be applied  times. Thus, the increase in radius 
described in equation (23) will be achieved by using a  NK(Nd) 
factor. Considering also that each udyhole has a unitary mass  
(Kmu), the total mass associated to the space distortion is given 
by:

Based on equations (23) and (24) the following equation can be 
defined:

Equation (25) defines how each usphere’s radius of a symmetric 
network varies accordingly to the presence of a mass M at its 
center.In order to translate the equation (25) accordingly to a 
metric of non-Euclidean space, we need to consider two ways 
for calculating the distance in space-time defined in the USN 
model. The real metric should take into account the effective 
radius of each network usphere, given by equation (23), while 
the digital metric is obtained by simply counting of uspheres 
without worrying about the actual size of each one of them.
Considering the treatment of the space-time in a Minkowski 
metric, a distance (real metric) in the space-time is given by:
 

From equation (12), each usphere’s diameter is associated to a 
Planck distance and the measurement of distances in digital met-
ric assumes the following form:

Equations (26) and (27) are defined in a context where the dis-
tance   is related to a real metric, while the distance   is related 
to a digital meter, so that for an undistorted network the two 
distance values are proportional.

Thus, using equations (12) and (13) in (26) and (27), for a uni-
form network, we obtain the following linear relation between 
these two metrics:

Writing equation (26) for the space (a1,a2,a3,a4)  being defined in 
terms of spherical coordinates we obtain:

Where   represents a defined radius in real metric and dΩ2  is 
defined as shown in equation (6).Likewise, equation (27) can be 
written in spherical coordinates:

Where r represents a radius defined in digital metric and (dΩ2) 
is defined as shown in equation (6).For a uniform network, the 
relation between the radius defined by two metrics is given by:
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In this context, the following generic equation, relating 
the radius of the distorted usphere )( dx Nr  with the 

original radius 0r can be defined as: 
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We now need to consider the increasing of the USN 
total volume due to compression of an usphere in its 
interior. Figure 18 shows the case of the flattened USN 
network, presented in blue in Figure 17, with one inside 
usphere being compressed. The uspheres in Figure 18-
b increase in size due to two factors: occupation of the 
space left by the compressed usphere and occupation of 
the space created in function of the network expansion. 
 
 
 
 
 
 
 
 
 
 
 
Figure 18 - a) Uniform two-dimensional usphere network, b) Distorted 
network .The collapse in central usphere (represented in black) 
generates an increase in the network total area. 

 
For the case of a three-dimensional USN, defined within 
the GS, we will calculate a surface area ( DA ) defined in 

the distorted network. Considering that the number ( CN
) of uspheres that intersects the defined spherical shell 
will not vary, it can be applied the equation (18) in 
equation (17), obtaining: 
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Equation 19 indicates that for the distorted USR, the 
radius increasing leads to an increase on the individual 
areas of each usphere which is equivalent to the 
increment observed on the spherical shell distorted area 

DA . 
 
If we now take the spherical shell defined by the GS (

Ld NN  ) applying equation (16) we obtain the value 

of the total area undistorted in GS ( UGSA ): 

  2 4 LUGS NA   
(20) 

 
Within the analogy shown in Figure 18, suppose that at 
the distorted three-dimensional USR, the radius of the 
GS increases by one unit. In this case it is like the 
collapse of the central usphere generates a new 
uspheres shell on the three-dimensional network edge. 
Thus, applying equation (20), with the LN  value 
increasing by one unit, the total area of the distorted GS 
( DGSA ) is then given by: 
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Applying the equations (20) and (21) in equation (19) the 
results are the following: 
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Thus, the increase in radius defined in equation (18) will 
be given by the following function: 
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Equation (23) describes the radius increase of each 
usphere in a uniform network where a single udyhole is 
being generated for the case in which the final volume of 
the distorted network increases, similarly to that shown 
in Figure 18. 
Figure 19 shows a comparative graph between 
equations (14) and (23) where we can observe, that as 
expected, the increase in radius for the case of equation 
(23) is much larger than the increase described by 
equation (14). 
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We now need to consider the increasing of the USN 
total volume due to compression of an usphere in its 
interior. Figure 18 shows the case of the flattened USN 
network, presented in blue in Figure 17, with one inside 
usphere being compressed. The uspheres in Figure 18-
b increase in size due to two factors: occupation of the 
space left by the compressed usphere and occupation of 
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Figure 18 - a) Uniform two-dimensional usphere network, b) Distorted 
network .The collapse in central usphere (represented in black) 
generates an increase in the network total area. 

 
For the case of a three-dimensional USN, defined within 
the GS, we will calculate a surface area ( DA ) defined in 

the distorted network. Considering that the number ( CN
) of uspheres that intersects the defined spherical shell 
will not vary, it can be applied the equation (18) in 
equation (17), obtaining: 
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Equation 19 indicates that for the distorted USR, the 
radius increasing leads to an increase on the individual 
areas of each usphere which is equivalent to the 
increment observed on the spherical shell distorted area 

DA . 
 
If we now take the spherical shell defined by the GS (

Ld NN  ) applying equation (16) we obtain the value 

of the total area undistorted in GS ( UGSA ): 

  2 4 LUGS NA   
(20) 

 
Within the analogy shown in Figure 18, suppose that at 
the distorted three-dimensional USR, the radius of the 
GS increases by one unit. In this case it is like the 
collapse of the central usphere generates a new 
uspheres shell on the three-dimensional network edge. 
Thus, applying equation (20), with the LN  value 
increasing by one unit, the total area of the distorted GS 
( DGSA ) is then given by: 
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Applying the equations (20) and (21) in equation (19) the 
results are the following: 
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Thus, the increase in radius defined in equation (18) will 
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Equation (23) describes the radius increase of each 
usphere in a uniform network where a single udyhole is 
being generated for the case in which the final volume of 
the distorted network increases, similarly to that shown 
in Figure 18. 
Figure 19 shows a comparative graph between 
equations (14) and (23) where we can observe, that as 
expected, the increase in radius for the case of equation 
(23) is much larger than the increase described by 
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If we consider that instead of a single udyhole in the 
distortion point, there are N udyholes being formed, we 
can assume that the factor )( dNK  will be applied N  
times.  
Thus, the increase in radius described in equation (23) 
will be achieved by using a )( dNNK  factor. 
Considering also that each udyhole has a unitary mass (

muK ), the total mass associated to the space distortion 
is given by: 
 

muKNM   
(24) 

 
Based on equations (23) and (24) the following equation 
can be defined: 
 

)
K

21()(

)21(  )(

mu

2
0

2

0

d
dx

d
dx

N
MrNr

N
NrNr





 

 
 
 
 
(25) 

 
Equation (25) defines how each usphere’s radius of a 
symmetric network varies accordingly to the presence of 
a mass M at its center. 
In order to translate the equation (25) accordingly to a 
metric of non-Euclidean space, we need to consider two 
ways for calculating the distance in space-time defined 
in the USN model. The real metric should take into 
account the effective radius of each network usphere, 
given by equation (23), while the digital metric is 
obtained by simply counting of uspheres without 
worrying about the actual size of each one of them. 
Considering the treatment of the space-time in a 
Minkowski metric, a distance (real metric) in the space-
time is given by: 
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Where Rr  represents a defined radius in real metric and 
2d  is defined as shown in equation (6). 
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Equation (25) defines how each usphere’s radius of a 
symmetric network varies accordingly to the presence of 
a mass M at its center. 
In order to translate the equation (25) accordingly to a 
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in the USN model. The real metric should take into 
account the effective radius of each network usphere, 
given by equation (23), while the digital metric is 
obtained by simply counting of uspheres without 
worrying about the actual size of each one of them. 
Considering the treatment of the space-time in a 
Minkowski metric, a distance (real metric) in the space-
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Equation (25) defines how each usphere’s radius of a 
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in the USN model. The real metric should take into 
account the effective radius of each network usphere, 
given by equation (23), while the digital metric is 
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worrying about the actual size of each one of them. 
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Equation (25) defines how each usphere’s radius of a 
symmetric network varies accordingly to the presence of 
a mass M at its center. 
In order to translate the equation (25) accordingly to a 
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ways for calculating the distance in space-time defined 
in the USN model. The real metric should take into 
account the effective radius of each network usphere, 
given by equation (23), while the digital metric is 
obtained by simply counting of uspheres without 
worrying about the actual size of each one of them. 
Considering the treatment of the space-time in a 
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Equation (25) defines how each usphere’s radius of a 
symmetric network varies accordingly to the presence of 
a mass M at its center. 
In order to translate the equation (25) accordingly to a 
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in the USN model. The real metric should take into 
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obtained by simply counting of uspheres without 
worrying about the actual size of each one of them. 
Considering the treatment of the space-time in a 
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Equation (25) defines how each usphere’s radius of a 
symmetric network varies accordingly to the presence of 
a mass M at its center. 
In order to translate the equation (25) accordingly to a 
metric of non-Euclidean space, we need to consider two 
ways for calculating the distance in space-time defined 
in the USN model. The real metric should take into 
account the effective radius of each network usphere, 
given by equation (23), while the digital metric is 
obtained by simply counting of uspheres without 
worrying about the actual size of each one of them. 
Considering the treatment of the space-time in a 
Minkowski metric, a distance (real metric) in the space-
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Equation (25) defines how each usphere’s radius of a 
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Equation (25) defines how each usphere’s radius of a 
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between these two metrics: 
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Where Rr  represents a defined radius in real metric and 
2d  is defined as shown in equation (6). 
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Figure 19 - Expansion of the usphere radius in function of its distance 
from the distortion point. 

 
If we consider that instead of a single udyhole in the 
distortion point, there are N udyholes being formed, we 
can assume that the factor )( dNK  will be applied N  
times.  
Thus, the increase in radius described in equation (23) 
will be achieved by using a )( dNNK  factor. 
Considering also that each udyhole has a unitary mass (

muK ), the total mass associated to the space distortion 
is given by: 
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Equation (25) defines how each usphere’s radius of a 
symmetric network varies accordingly to the presence of 
a mass M at its center. 
In order to translate the equation (25) accordingly to a 
metric of non-Euclidean space, we need to consider two 
ways for calculating the distance in space-time defined 
in the USN model. The real metric should take into 
account the effective radius of each network usphere, 
given by equation (23), while the digital metric is 
obtained by simply counting of uspheres without 
worrying about the actual size of each one of them. 
Considering the treatment of the space-time in a 
Minkowski metric, a distance (real metric) in the space-
time is given by: 
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In case of N udyholes (total mass equal to M) that distorts the 
network, we can consider that the value da2  can be calculated by 
equation (25) applied as follows:

Where the term da2 (∞)  indicates the metric for an infinite dis-
tance from the distortion point, which is equal to the original 
uncompressed network metric:

Equation (32) shows that the presence of mass causes a change 
in the digital metric in the center of the network in which the dis-
tances are smaller, because the uspheres radius increase is bigger 
in this point. 

Figure 20 shows again the analogy of a river crossed by rows 
of different sizes of stones. In Figure 20-a, the blue square rep-
resents a river, where in the left margin "stones" are observed, 
represented in red, they have the original size and in the right 
margin they are multiplied by a factor b ( equal to two in this 
example). Figure 20-b shows the digital metric in which all the 
"stones"  have the same size. In Figure 20-a, we also observe 
two green circles that have the same area (X2) and will be used as 
objects of analysis. The green circle, on the right on Figure 20-b, 
will have only ¼ of the original area, because the uspheres of the 
right margin doubled it size in real metric. 

Figure 20: Analogy of a river crossed by rows of stones: a) Real 
metric; b) Digital metric.

We can see from this example that when a factor b2 multiplies 
the value dr2

R (∞) in the real metric, the same factor  b2 will 
divide the value of objects areas (X2) in the digital metric. Thus, 
the expansion of uspheres in the real space generates a "shrink-
ing" of distances and areas in digital space.

Figure 21: Analogy of a pellicle being "stretched" so that each 
frame has twice the size.

However, this consideration of "shrinkage" is not valid for the 
temporal dimension. In order to observe this aspect, let us take 
an analogy of a movie pellicle where the total time can be asso-
ciated to the number of slides multiplied by the width (related to 
the time dimension) of each slide.

In the analogy of Figure 21, suppose that a "time distortion" 
stretches every frame of the film making it last twice its dura-
tion. In this case, for example, a one-hour duration film will be 
displayed in two hours.

More generally this means that if da2
1  (which is related to time 

in the real metric) is multiplied by a certain factor, then the "tem-
poral distance" in digital metric also will be multiplied by the 
same factor.

In terms of equations, this means that for a factor  β that multi-
plies the space-time real metric, in digital metric, the time will 
be multiplied by the same factor β  and the space will be multi-
plied by the inverse of factor β. Therefore, considering the rela-
tion given by equation (28) we can state that:

It is worth to remember that the angular displacement  dΩ2  de-
fined on a sphere does not vary when the radius of this sphere is 
multiplied by any non-null factor.
Thus, considering the expansion of an usphere in the point Nd  
given by a factor β, equation (29) can be written as:  

Applying equation (28) in equation (36) we obtain:

Since applying the equations (34) and (35) in equation (37) we 
obtain:

In order to complete the proposed analysis we must now calcu-
late the factor β  to be used in equation (38).Looking again at 
equation (25) we can consider that this factor is given by:
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Equation (25) defines how each usphere’s radius of a 
symmetric network varies accordingly to the presence of 
a mass M at its center. 
In order to translate the equation (25) accordingly to a 
metric of non-Euclidean space, we need to consider two 
ways for calculating the distance in space-time defined 
in the USN model. The real metric should take into 
account the effective radius of each network usphere, 
given by equation (23), while the digital metric is 
obtained by simply counting of uspheres without 
worrying about the actual size of each one of them. 
Considering the treatment of the space-time in a 
Minkowski metric, a distance (real metric) in the space-
time is given by: 
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Where the term )(2 da  indicates the metric for an 

infinite distance from the distortion point, which is equal 
to the original uncompressed network metric: 
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Equation (32) shows that the presence of mass causes 
a change in the digital metric in the center of the network 
in which the distances are smaller, because the 
uspheres radius increase is bigger in this point.  
 
Figure 20 shows again the analogy of a river crossed by 
rows of different sizes of stones. In Figure 20-a, the blue 
square represents a river, where in the left margin 
"stones" are observed, represented in red, they have the 
original size and in the right margin they are multiplied 
by a factor b ( equal to two in this example). Figure 20-b 
shows the digital metric in which all the "stones"  have 
the same size. In Figure 20-a, we also observe two 
green circles that have the same area ( 2X ) and will be 

used as objects of analysis. The green circle, on the 
right on Figure 20-b, will have only ¼ of the original 
area, because the uspheres of the right margin doubled 
it size in real metric.  
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However, this consideration of "shrinkage" is not valid 
for the temporal dimension. In order to observe this 
aspect, let us take an analogy of a movie pellicle where 
the total time can be associated to the number of slides 
multiplied by the width (related to the time dimension) of 
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In the analogy of Figure 21, suppose that a "time 
distortion" stretches every frame of the film making it last 
twice its duration. In this case, for example, a one hour 
duration film will be displayed in two hours. 

More generally this means that if 2
1da  (which is related 

to time in the real metric) is multiplied by a certain factor, 
then the "temporal distance" in digital metric also will be 
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In terms of equations, this means that for a factor   
that multiplies the space-time real metric, in digital 
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 . Therefore, considering the relation given by 
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Since applying the equations (34) and (35) in equation 
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Where the term )(2 da  indicates the metric for an 

infinite distance from the distortion point, which is equal 
to the original uncompressed network metric: 

2222
1

2 )(  drdrdada  
(33) 

 
Equation (32) shows that the presence of mass causes 
a change in the digital metric in the center of the network 
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It is worth to remember that the angular displacement  

2d  defined on a sphere does not vary when the radius 
of this sphere is multiplied by any non-null factor. 
Thus, considering the expansion of an usphere in the 
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Where the term )(2 da  indicates the metric for an 

infinite distance from the distortion point, which is equal 
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2d  defined on a sphere does not vary when the radius 
of this sphere is multiplied by any non-null factor. 
Thus, considering the expansion of an usphere in the 
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Since applying the equations (34) and (35) in equation 
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Where the term )(2 da  indicates the metric for an 

infinite distance from the distortion point, which is equal 
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Equation (32) shows that the presence of mass causes 
a change in the digital metric in the center of the network 
in which the distances are smaller, because the 
uspheres radius increase is bigger in this point.  
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rows of different sizes of stones. In Figure 20-a, the blue 
square represents a river, where in the left margin 
"stones" are observed, represented in red, they have the 
original size and in the right margin they are multiplied 
by a factor b ( equal to two in this example). Figure 20-b 
shows the digital metric in which all the "stones"  have 
the same size. In Figure 20-a, we also observe two 
green circles that have the same area ( 2X ) and will be 

used as objects of analysis. The green circle, on the 
right on Figure 20-b, will have only ¼ of the original 
area, because the uspheres of the right margin doubled 
it size in real metric.  
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In order to complete the proposed analysis we must now 
calculate the factor   to be used in equation (38). 
Looking again at equation (25) we can consider that this 
factor is given by: 
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However, there is a problem associated with the 
equation (39) application which regards to the parameter

dN . This parameter is related to a distance in the digital 
metric of the undistorted network, which is directly 
connected to the real metric. Thus, we need to obtain 
the factor   based on the observed distances in the 
digital metric with distorted network, which will be 
calculated from the example shown in Figure 22. 
Figure 22 represents a similar scheme to that shown in 
Figure 20, but with uspheres areas being represented in 
a rectangular shape for easy viewing. 
Figure 22-a presents a real metric, where the red 
rectangle represents an undistorted usphere while the 
blue rectangle represents an amplified usphere due to 
the distortion of the network. The ratio of the areas in 
Figure 22-a is obtained based on equation (32). 
 
 
 
 
 
 
 
 

 

 

Figure 22 – Observation of the variation of the metric in two view 
points: a) Real metric; b) Digital metric. 

In the table shown in Figure 22-b we observe the view of 
the digital metric where the blue area decreases after 
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Considering in this case the factor   is defined by: 
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Applying equation (41) in equation (40) the factor  can 
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The parameter dN used in equation (42) was obtained 
in the context of the distorted network digital metric, thus 
being usable by an observer who has access to this 
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We can demonstrate that the Planck distance and 
unitary mass values are defined by the following 
equation: 
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Finally, applying equation (47) in equation (38) we 
obtain: 
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Where equation (48) is equal to the expression (5), quod 
erat  demonstrandum. 
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However, there is a problem associated with the equation (39) 
application which regards to the parameter Nd. This parameter 
is related to a distance in the digital metric of the undistorted 
network, which is directly connected to the real metric. Thus, we 
need to obtain the factor β based on the observed distances in the 
digital metric with distorted network, which will be calculated 
from the example shown in Figure 22.
Figure 22 represents a similar scheme to that shown in Figure 
20, but with uspheres areas being represented in a rectangular 
shape for easy viewing.

Figure 22-a presents a real metric, where the red rectangle rep-
resents an undistorted usphere while the blue rectangle rep-
resents an amplified usphere due to the distortion of the network. 
The ratio of the areas in Figure 22-a is obtained based on equa-
tion (32).

Figure 22: Observation of the variation of the metric in two 
view points: a) Real metric; b) Digital metric.

In the table shown in Figure 22-b we observe the view of the 
digital metric where the blue area decreases after being multi-
plied by a factor 1 / β. Based on Figure 22-b, we can obtain the 
following equation:

Considering in this case the factor β  is defined by:

Applying equation (41) in equation (40) the factor β  can be cal-
culated by:

The parameter Nd used in equation (42) was obtained in the con-
text of the distorted network digital metric, thus being usable by 
an observer who has access to this metric. Also considering that 
in the desired point the r value is given by:

Applying equation (43) in (42):

We can demonstrate that the Planck distance and unitary mass 
values are defined by the following equation:

Applying (45) and (46) in (44) we obtain:

Finally, applying equation (47) in equation (38) we obtain:

Where equation (48) is equal to the expression (5), quod erat  
demonstrandum.

5.1.  New Interpretation of the Schwarzschild Radius
Within the USN model, the Schwarzschild radius has an inter-
esting interpretation when its value is observed in Planck units 
and the mass M is distributed along a straight line, as shown in 
Figure 23.

Figure 23: Division of the original mass M in equal "cubes" 
aligned along a straight line.

In Figure 23 we can observe the number (Ns) of "cubes", in 
which the mass M was distributed, is given by:

Thus the mass (Mx) of each "cube” shown in Figure 23 will be 
given by:
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calculated from the example shown in Figure 22. 
Figure 22 represents a similar scheme to that shown in 
Figure 20, but with uspheres areas being represented in 
a rectangular shape for easy viewing. 
Figure 22-a presents a real metric, where the red 
rectangle represents an undistorted usphere while the 
blue rectangle represents an amplified usphere due to 
the distortion of the network. The ratio of the areas in 
Figure 22-a is obtained based on equation (32). 
 
 
 
 
 
 
 
 

 

 

Figure 22 – Observation of the variation of the metric in two view 
points: a) Real metric; b) Digital metric. 

In the table shown in Figure 22-b we observe the view of 
the digital metric where the blue area decreases after 
being multiplied by a factor 1 /  . Based on Figure 22-b, 
we can obtain the following equation: 
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Considering in this case the factor   is defined by: 
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Applying equation (41) in equation (40) the factor  can 
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The parameter dN used in equation (42) was obtained 
in the context of the distorted network digital metric, thus 
being usable by an observer who has access to this 

metric. Also considering that in the desired point the r
value is given by: 
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We can demonstrate that the Planck distance and 
unitary mass values are defined by the following 
equation: 
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Finally, applying equation (47) in equation (38) we 
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Where equation (48) is equal to the expression (5), quod 
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In order to complete the proposed analysis we must now 
calculate the factor   to be used in equation (38). 
Looking again at equation (25) we can consider that this 
factor is given by: 
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However, there is a problem associated with the 
equation (39) application which regards to the parameter

dN . This parameter is related to a distance in the digital 
metric of the undistorted network, which is directly 
connected to the real metric. Thus, we need to obtain 
the factor   based on the observed distances in the 
digital metric with distorted network, which will be 
calculated from the example shown in Figure 22. 
Figure 22 represents a similar scheme to that shown in 
Figure 20, but with uspheres areas being represented in 
a rectangular shape for easy viewing. 
Figure 22-a presents a real metric, where the red 
rectangle represents an undistorted usphere while the 
blue rectangle represents an amplified usphere due to 
the distortion of the network. The ratio of the areas in 
Figure 22-a is obtained based on equation (32). 
 
 
 
 
 
 
 
 

 

 

Figure 22 – Observation of the variation of the metric in two view 
points: a) Real metric; b) Digital metric. 

In the table shown in Figure 22-b we observe the view of 
the digital metric where the blue area decreases after 
being multiplied by a factor 1 /  . Based on Figure 22-b, 
we can obtain the following equation: 
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Considering in this case the factor   is defined by: 
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The parameter dN used in equation (42) was obtained 
in the context of the distorted network digital metric, thus 
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unitary mass values are defined by the following 
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Finally, applying equation (47) in equation (38) we 
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Where equation (48) is equal to the expression (5), quod 
erat  demonstrandum. 
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In order to complete the proposed analysis we must now 
calculate the factor   to be used in equation (38). 
Looking again at equation (25) we can consider that this 
factor is given by: 
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However, there is a problem associated with the 
equation (39) application which regards to the parameter

dN . This parameter is related to a distance in the digital 
metric of the undistorted network, which is directly 
connected to the real metric. Thus, we need to obtain 
the factor   based on the observed distances in the 
digital metric with distorted network, which will be 
calculated from the example shown in Figure 22. 
Figure 22 represents a similar scheme to that shown in 
Figure 20, but with uspheres areas being represented in 
a rectangular shape for easy viewing. 
Figure 22-a presents a real metric, where the red 
rectangle represents an undistorted usphere while the 
blue rectangle represents an amplified usphere due to 
the distortion of the network. The ratio of the areas in 
Figure 22-a is obtained based on equation (32). 
 
 
 
 
 
 
 
 

 

 

Figure 22 – Observation of the variation of the metric in two view 
points: a) Real metric; b) Digital metric. 

In the table shown in Figure 22-b we observe the view of 
the digital metric where the blue area decreases after 
being multiplied by a factor 1 /  . Based on Figure 22-b, 
we can obtain the following equation: 
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Considering in this case the factor   is defined by: 
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The parameter dN used in equation (42) was obtained 
in the context of the distorted network digital metric, thus 
being usable by an observer who has access to this 
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unitary mass values are defined by the following 
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Applying (45) and (46) in (44) we obtain: 

) 21(       

) 21(

2

3

rc
GM

c
G

c
G

r
M












 

 
 
 
 
 
(47) 

 
Finally, applying equation (47) in equation (38) we 
obtain: 
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Where equation (48) is equal to the expression (5), quod 
erat  demonstrandum. 
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In order to complete the proposed analysis we must now 
calculate the factor   to be used in equation (38). 
Looking again at equation (25) we can consider that this 
factor is given by: 
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However, there is a problem associated with the 
equation (39) application which regards to the parameter

dN . This parameter is related to a distance in the digital 
metric of the undistorted network, which is directly 
connected to the real metric. Thus, we need to obtain 
the factor   based on the observed distances in the 
digital metric with distorted network, which will be 
calculated from the example shown in Figure 22. 
Figure 22 represents a similar scheme to that shown in 
Figure 20, but with uspheres areas being represented in 
a rectangular shape for easy viewing. 
Figure 22-a presents a real metric, where the red 
rectangle represents an undistorted usphere while the 
blue rectangle represents an amplified usphere due to 
the distortion of the network. The ratio of the areas in 
Figure 22-a is obtained based on equation (32). 
 
 
 
 
 
 
 
 

 

 

Figure 22 – Observation of the variation of the metric in two view 
points: a) Real metric; b) Digital metric. 

In the table shown in Figure 22-b we observe the view of 
the digital metric where the blue area decreases after 
being multiplied by a factor 1 /  . Based on Figure 22-b, 
we can obtain the following equation: 
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Considering in this case the factor   is defined by: 
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Applying equation (41) in equation (40) the factor  can 
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The parameter dN used in equation (42) was obtained 
in the context of the distorted network digital metric, thus 
being usable by an observer who has access to this 

metric. Also considering that in the desired point the r
value is given by: 
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We can demonstrate that the Planck distance and 
unitary mass values are defined by the following 
equation: 
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Finally, applying equation (47) in equation (38) we 
obtain: 
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Where equation (48) is equal to the expression (5), quod 
erat  demonstrandum. 
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In order to complete the proposed analysis we must now 
calculate the factor   to be used in equation (38). 
Looking again at equation (25) we can consider that this 
factor is given by: 
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However, there is a problem associated with the 
equation (39) application which regards to the parameter

dN . This parameter is related to a distance in the digital 
metric of the undistorted network, which is directly 
connected to the real metric. Thus, we need to obtain 
the factor   based on the observed distances in the 
digital metric with distorted network, which will be 
calculated from the example shown in Figure 22. 
Figure 22 represents a similar scheme to that shown in 
Figure 20, but with uspheres areas being represented in 
a rectangular shape for easy viewing. 
Figure 22-a presents a real metric, where the red 
rectangle represents an undistorted usphere while the 
blue rectangle represents an amplified usphere due to 
the distortion of the network. The ratio of the areas in 
Figure 22-a is obtained based on equation (32). 
 
 
 
 
 
 
 
 

 

 

Figure 22 – Observation of the variation of the metric in two view 
points: a) Real metric; b) Digital metric. 

In the table shown in Figure 22-b we observe the view of 
the digital metric where the blue area decreases after 
being multiplied by a factor 1 /  . Based on Figure 22-b, 
we can obtain the following equation: 
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Considering in this case the factor   is defined by: 
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Applying equation (41) in equation (40) the factor  can 
be calculated by: 
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The parameter dN used in equation (42) was obtained 
in the context of the distorted network digital metric, thus 
being usable by an observer who has access to this 

metric. Also considering that in the desired point the r
value is given by: 
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)
K

2
1(

mu

p

r
M

  

 
 
(44) 

 
We can demonstrate that the Planck distance and 
unitary mass values are defined by the following 
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Finally, applying equation (47) in equation (38) we 
obtain: 
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Where equation (48) is equal to the expression (5), quod 
erat  demonstrandum. 
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In order to complete the proposed analysis we must now 
calculate the factor   to be used in equation (38). 
Looking again at equation (25) we can consider that this 
factor is given by: 
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However, there is a problem associated with the 
equation (39) application which regards to the parameter

dN . This parameter is related to a distance in the digital 
metric of the undistorted network, which is directly 
connected to the real metric. Thus, we need to obtain 
the factor   based on the observed distances in the 
digital metric with distorted network, which will be 
calculated from the example shown in Figure 22. 
Figure 22 represents a similar scheme to that shown in 
Figure 20, but with uspheres areas being represented in 
a rectangular shape for easy viewing. 
Figure 22-a presents a real metric, where the red 
rectangle represents an undistorted usphere while the 
blue rectangle represents an amplified usphere due to 
the distortion of the network. The ratio of the areas in 
Figure 22-a is obtained based on equation (32). 
 
 
 
 
 
 
 
 

 

 

Figure 22 – Observation of the variation of the metric in two view 
points: a) Real metric; b) Digital metric. 

In the table shown in Figure 22-b we observe the view of 
the digital metric where the blue area decreases after 
being multiplied by a factor 1 /  . Based on Figure 22-b, 
we can obtain the following equation: 
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Considering in this case the factor   is defined by: 
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Applying equation (41) in equation (40) the factor  can 
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The parameter dN used in equation (42) was obtained 
in the context of the distorted network digital metric, thus 
being usable by an observer who has access to this 

metric. Also considering that in the desired point the r
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unitary mass values are defined by the following 
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Finally, applying equation (47) in equation (38) we 
obtain: 
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Where equation (48) is equal to the expression (5), quod 
erat  demonstrandum. 
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In order to complete the proposed analysis we must now 
calculate the factor   to be used in equation (38). 
Looking again at equation (25) we can consider that this 
factor is given by: 
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However, there is a problem associated with the 
equation (39) application which regards to the parameter

dN . This parameter is related to a distance in the digital 
metric of the undistorted network, which is directly 
connected to the real metric. Thus, we need to obtain 
the factor   based on the observed distances in the 
digital metric with distorted network, which will be 
calculated from the example shown in Figure 22. 
Figure 22 represents a similar scheme to that shown in 
Figure 20, but with uspheres areas being represented in 
a rectangular shape for easy viewing. 
Figure 22-a presents a real metric, where the red 
rectangle represents an undistorted usphere while the 
blue rectangle represents an amplified usphere due to 
the distortion of the network. The ratio of the areas in 
Figure 22-a is obtained based on equation (32). 
 
 
 
 
 
 
 
 

 

 

Figure 22 – Observation of the variation of the metric in two view 
points: a) Real metric; b) Digital metric. 

In the table shown in Figure 22-b we observe the view of 
the digital metric where the blue area decreases after 
being multiplied by a factor 1 /  . Based on Figure 22-b, 
we can obtain the following equation: 
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Considering in this case the factor   is defined by: 
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The parameter dN used in equation (42) was obtained 
in the context of the distorted network digital metric, thus 
being usable by an observer who has access to this 

metric. Also considering that in the desired point the r
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unitary mass values are defined by the following 
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Finally, applying equation (47) in equation (38) we 
obtain: 
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Where equation (48) is equal to the expression (5), quod 
erat  demonstrandum. 
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In order to complete the proposed analysis we must now 
calculate the factor   to be used in equation (38). 
Looking again at equation (25) we can consider that this 
factor is given by: 
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However, there is a problem associated with the 
equation (39) application which regards to the parameter

dN . This parameter is related to a distance in the digital 
metric of the undistorted network, which is directly 
connected to the real metric. Thus, we need to obtain 
the factor   based on the observed distances in the 
digital metric with distorted network, which will be 
calculated from the example shown in Figure 22. 
Figure 22 represents a similar scheme to that shown in 
Figure 20, but with uspheres areas being represented in 
a rectangular shape for easy viewing. 
Figure 22-a presents a real metric, where the red 
rectangle represents an undistorted usphere while the 
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Figure 22 – Observation of the variation of the metric in two view 
points: a) Real metric; b) Digital metric. 

In the table shown in Figure 22-b we observe the view of 
the digital metric where the blue area decreases after 
being multiplied by a factor 1 /  . Based on Figure 22-b, 
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Considering in this case the factor   is defined by: 
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Applying equation (41) in equation (40) the factor  can 
be calculated by: 
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The parameter dN used in equation (42) was obtained 
in the context of the distorted network digital metric, thus 
being usable by an observer who has access to this 

metric. Also considering that in the desired point the r
value is given by: 
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We can demonstrate that the Planck distance and 
unitary mass values are defined by the following 
equation: 
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Finally, applying equation (47) in equation (38) we 
obtain: 
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5.1 – New Interpretation of the Schwarzschild 
Radius 

Within the USN model, the Schwarzschild radius has an 
interesting interpretation when its value is observed in 
Planck units and the mass M  is distributed along a 
straight line, as shown in Figure 23. 
 
 
 
 
 
 
 
 
 

Figure 23 - Division of the original mass M in equal "cubes" aligned 
along a straight line. 

 
 
In Figure 23 we can observe the number ( sN ) of 

"cubes", in which the mass M was distributed, is given 
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Applying equation (8) which defines the Schwarzschild 
radius in equation (51) we obtain: 
 

mux

x

G
cM

c
Gc

GM
MM

K
2
1

2
1

2 3

2









 

 
 
 
(52) 

 
Thus each "cube" will have half of a unitary mass value, 
in other words, half the mass of an udaynahole. 
    
 
 
 
   
 

Figure 24 - Alignment of udyholes in a straight line. 
 

This means that if the original mass M is divided into a 
line of udaynaholes, with the distance between their 
centers equal to twice the Planck distance, its length of 
this line will be equal to the Schwarzschild radius, as 
shown in Figure 24. 
Figure 25 shows an analogy with a two-dimensional 
surface formed by an elastic membrane, in which some 
colored concentric circles were painted. Considering that 
this membrane is fixed on a flat surface with a hole in 
the center, the inclusion of an udyhole would be 
equivalent to pulling a circular area of the membrane 
into the hole. 
We can see in Figure 25 that each added udyhole 
"sucks" one of the colored rings, and thus, the total 
collapsed area will be proportional to the squared 
number of udyholes. 
 
For the three-dimensional case, the accumulation of N
dyholes in the same position will collapse a volume 

proportional to the value of 3N . 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 25 - Udyholes overlapping on an elastic surface. The number in 

each table indicates how many udyholes are overlapped on each 
event. 

 
Thus dividing the mass M  in N  udyholes of unitary 
mass, the distance obtained by aligning them as 
illustrated in Figure 26, will define the total radius of the 
compressed sphere (equal to Np2  ) which is the 

Schwarzschild radius itself. 
 
 
  
 
 
    
 
 
 
   
 

 
Figure 26 - Sphere with Schwarzschild radius in which a set of 

udyholes is aligned on an axis 
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Figure 24 - Alignment of udyholes in a straight line. 
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Applying equations (49) and (45) in the equation (50) we obtain:

Applying equation (8) which defines the Schwarzschild radius in 
equation (51) we obtain:

Thus each "cube" will have half of a unitary mass value, in other 
words, half the mass of an udaynahole.

Figure 24: Alignment of udyholes in a straight line.

This means that if the original mass M is divided into a line of 
udaynaholes, with the distance between their centers equal to 
twice the Planck distance, its length of this line will be equal to 
the Schwarzschild radius, as shown in Figure 24.

Figure 25 shows an analogy with a two-dimensional surface 
formed by an elastic membrane, in which some colored con-
centric circles were painted. Considering that this membrane is 
fixed on a flat surface with a hole in the center, the inclusion of 
an udyhole would be equivalent to pulling a circular area of the 
membrane into the hole.

We can see in Figure 25 that each added udyhole "sucks" one of 
the colored rings, and thus, the total collapsed area will be pro-
portional to the squared number of udyholes. For the three-di-
mensional case, the accumulation of N dyholes in the same posi-
tion will collapse a volume proportional to the value of N3.

Figure 25: Udyholes overlapping on an elastic surface. The 
number in each table indicates how many udyholes are over-

lapped on each event.Thus dividing the mass M in N udyholes 
of unitary mass, the distance obtained by aligning them as illus-
trated in Figure 26, will define the total radius of the compressed 
sphere (equal to           ) which is the Schwarzschild radius itself.

Figure 26: Sphere with Schwarzschild radius in which a set of 
udyholes is aligned on an axis

6. Deduction of the Newton’s law
As mentioned in previous section we consider the USN total 
volume does not change when udyholes are generated in its in-
terior and equations (14) and (15) are valid. In this case, we can 
consider that the collapse of an usphere, as shown in Figure 16 
generates radial force fields that propagate through the network. 
Taking the forces in any radial direction we will notice that the 
force that compresses an usphere in the center of the network 
will propagate from a usphere to another, as shown in Figure 27, 
through a series of pairs of action forces (blue in the figure) and 
reaction (in red) that are decreasing in intensity, tending to null 
in the end of the USN.

Figure 27: Forces that arise in a given direction when the 
usphere is compressed.In this case equation (14) can generate 
the following simplified expression:

Based on equation (53) and considering the force applied on the 
uspheres has an elastic behavior (F = Kx), the module of the 
forces shown in blue in Figure 24 will be modeled by the fol-
lowing equation:

Where FU is a unitary force. If we have now, in the same USN 
two udyholes separated by a distance d given in meters (d = lp 
Nd), each one of them will generate an equivalent force on the 
other, as defined by equation (54), which varies in function of 
the distance d accordingly to the following expression:
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Figure 24 - Alignment of udyholes in a straight line. 
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Thus each "cube" will have half of a unitary mass value, 
in other words, half the mass of an udaynahole. 
    
 
 
 
   
 

Figure 24 - Alignment of udyholes in a straight line. 
 

This means that if the original mass M is divided into a 
line of udaynaholes, with the distance between their 
centers equal to twice the Planck distance, its length of 
this line will be equal to the Schwarzschild radius, as 
shown in Figure 24. 
Figure 25 shows an analogy with a two-dimensional 
surface formed by an elastic membrane, in which some 
colored concentric circles were painted. Considering that 
this membrane is fixed on a flat surface with a hole in 
the center, the inclusion of an udyhole would be 
equivalent to pulling a circular area of the membrane 
into the hole. 
We can see in Figure 25 that each added udyhole 
"sucks" one of the colored rings, and thus, the total 
collapsed area will be proportional to the squared 
number of udyholes. 
 
For the three-dimensional case, the accumulation of N
dyholes in the same position will collapse a volume 

proportional to the value of 3N . 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 25 - Udyholes overlapping on an elastic surface. The number in 

each table indicates how many udyholes are overlapped on each 
event. 

 
Thus dividing the mass M  in N  udyholes of unitary 
mass, the distance obtained by aligning them as 
illustrated in Figure 26, will define the total radius of the 
compressed sphere (equal to Np2  ) which is the 

Schwarzschild radius itself. 
 
 
  
 
 
    
 
 
 
   
 

 
Figure 26 - Sphere with Schwarzschild radius in which a set of 

udyholes is aligned on an axis 
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6 – Deduction of the Newton’s law 

As mentioned in previous section we consider the USN 
total volume does not change when udyholes are 
generated in its interior and equations (14) and (15) are 
valid. In this case, we can consider that the collapse of 
an usphere, as shown in Figure 16 generates radial 
force fields that propagate through the network. Taking 
the forces in any radial direction we will notice that the 
force that compresses an usphere in the center of the 
network will propagate from a usphere to another, as 
shown in Figure 27, through a series of pairs of action 
forces (blue in the figure) and reaction (in red) that are 
decreasing in intensity, tending to null in the end of the 
USN. 
 
 
 
 
 
 
 
 

 

 

Figure 27 - Forces that arise in a given direction when the usphere is 
compressed. 
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Based on equation (53) and considering the force 
applied on the uspheres has an elastic behavior (

KxF  ), the module of the forces shown in blue in 
Figure 24 will be modeled by the following equation: 
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Where UF  is a unitary force. 
 
If we have now, in the same USN two udyholes 
separated by a distance d given in meters ( dp Nd   ), 

each one of them will generate an equivalent force on 
the other, as defined by equation (54), which varies in 
function of the distance d accordingly to the following 
expression: 
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Figure 28 – Two groups of udyholes interacting from a distance d. 

Now considering a more general case, in which the first 
point, we have 1N  udyholes and in the second point 

2N  udyholes, as shown in Figure 28. The force arising 
between the two groups of udyholes is given by: 
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Considering that each udyhole has a unitary mass 
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Applying the equations (45) and (46) in (57) we obtain: 
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We can show that in the units system defined in the 
USN model, the force UF  can be calculated by: 
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Applying equation (59) in (58) we obtain: 
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Therefore, the equation (60) is equal to the gravitation 
law defined by Isaac Newton. 
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Figure 28: Two groups of udyholes interacting from a distance 
d.Now considering a more general case, in which the first point, 
we have N1 udyholes and in the second point N2 udyholes, as 
shown in Figure 28. The force arising between the two groups of 
udyholes is given by:

Considering that each udyhole has a unitary mass defined as in 
the equation (24), the equation (56) can be written as follows:

Applying the equations (45) and (46) in (57) we obtain:

We can show that in the units system defined in the USN model, 
the force   can be calculated by:

Applying equation (59) in (58) we obtain:

Therefore, the equation (60) is equal to the gravitation law de-
fined by Isaac Newton.

7. Conclusion
Besides providing a new way to display to non-Euclidean spac-
es, the Ulianov Sphere Network model presented in this arti-
cle allowed the calculation of the formula which defines the 
Schwarzschild metric and the deduction of Newton's law for 
gravitation.

The key point of the USN model can be seen in Figure 15, where 
the "space squares" expand due to the presence of udyholes gen-
erating an opposite view of the traditional model defined by Ein-
stein in the GRT context where the presence of matter has the 

effect of shrinking the "space squares ".

Although the USN model at first presents the same results al-
ready obtained by GRT, we believe that the complexity of cal-
culation is much smaller, which should make the usage of the 
USN model interesting in terms of both analytical studies and in 
digital simulations.

Please notice that the USN model at first is not directly related 
to the operation of our universe. However, the results obtained 
by applying the USN model point to the possibility that space-
time in our universe may be in fact "sustained" by some kind of 
hyper-dimensional network,  resembling the concept of ether, 
which was virtually eliminated in the GRT context.

Thus, the author believes the USN model can be also a source of 
inspiration for theoretical physicists and represents another step 
towards a more complete model of the universe [15-32].

NOTE: The Ulianov Sphere Network is part of a larger picture 
of theories developed by the author, called Ulianov Theory (UT). 
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6 – Deduction of the Newton’s law 

As mentioned in previous section we consider the USN 
total volume does not change when udyholes are 
generated in its interior and equations (14) and (15) are 
valid. In this case, we can consider that the collapse of 
an usphere, as shown in Figure 16 generates radial 
force fields that propagate through the network. Taking 
the forces in any radial direction we will notice that the 
force that compresses an usphere in the center of the 
network will propagate from a usphere to another, as 
shown in Figure 27, through a series of pairs of action 
forces (blue in the figure) and reaction (in red) that are 
decreasing in intensity, tending to null in the end of the 
USN. 
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Where UF  is a unitary force. 
 
If we have now, in the same USN two udyholes 
separated by a distance d given in meters ( dp Nd   ), 
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the other, as defined by equation (54), which varies in 
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expression: 
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Figure 28 – Two groups of udyholes interacting from a distance d. 

Now considering a more general case, in which the first 
point, we have 1N  udyholes and in the second point 

2N  udyholes, as shown in Figure 28. The force arising 
between the two groups of udyholes is given by: 
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defined as in the equation (24), the equation (56) can be 
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We can show that in the units system defined in the 
USN model, the force UF  can be calculated by: 
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Applying equation (59) in (58) we obtain: 
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Therefore, the equation (60) is equal to the gravitation 
law defined by Isaac Newton. 
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Figure 28 – Two groups of udyholes interacting from a distance d. 

Now considering a more general case, in which the first 
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Figure 28 – Two groups of udyholes interacting from a distance d. 

Now considering a more general case, in which the first 
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Figure 28 – Two groups of udyholes interacting from a distance d. 
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We can show that in the units system defined in the 
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Therefore, the equation (60) is equal to the gravitation 
law defined by Isaac Newton. 
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6 – Deduction of the Newton’s law 

As mentioned in previous section we consider the USN 
total volume does not change when udyholes are 
generated in its interior and equations (14) and (15) are 
valid. In this case, we can consider that the collapse of 
an usphere, as shown in Figure 16 generates radial 
force fields that propagate through the network. Taking 
the forces in any radial direction we will notice that the 
force that compresses an usphere in the center of the 
network will propagate from a usphere to another, as 
shown in Figure 27, through a series of pairs of action 
forces (blue in the figure) and reaction (in red) that are 
decreasing in intensity, tending to null in the end of the 
USN. 
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