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Abstract
Contemporary cosmology is taking for granted that before the phase of matter recombination matter and radiation were in perfect 
thermodynamic equilibrium. This would mean that protons in this phase of the universe are described by Maxwell distributions and 
photons are described by a Planckian black body law. When looking, however, a bit deeper into the kinetic theory of the physical 
processes close to and just after the recombination phase of electrons and protons, it becomes evident that in a homologously 
expanding universe proton distribution functions will not maintain their Maxwellian profile and connected with it, that their most 
relevant velocity moments, i.e. their density and their temperature, vary in an unexpected nonclassical, non-adiabatic manner. 
As consequence of that, in contrast to the classical view, the entropy of free atoms does change with cosmic time contrary to 
the standard thermodynamically expectation. We shall also demonstrate here that the realistic behaviour of cosmic gases in 
this phase and later depends on the specific form of the Hubble expansion of the universe, especially an accelerated expansion 
phase as is discussed nowadays will strongly influence the thermodynamics of the cosmic gas.
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Introductory remarks on the cosmic matter recombination 
phase
We may start our considerations here with a brief view on the 
phase of cosmic electron - proton recombination’s thought to have 
occured at about 380000 years after the so-called Big-Bang, when 
the temperatures of the cosmic plasma dropped to below 4000 K 
(see e.g. Partridge, 1965, or Fahr and Loch, 1991, Fahr Zoennchen, 
2009). In standard main-stream cosmology it is tacitly assumed 
that at this cosmic recombination phase electrons and protons are 
dynamically and physically tightly bound to each other and un-
dergo strong mutual interactions both by Coulomb collisions and 
by Compton collisions. With these conditions taken for granted, 
a pure thermodynamically equilibrium state would appear to be 
guaranteed. This implies that protons and electrons are kinetical-
ly distributed in velocity-space according to Maxwellian velocity 
distributions, and photons have a Planckian blackbody distribution 
in frequency. Looking a little bit more in detail on this relevant 
point, it is, however, by far not so evident that these assumptions 
really can be expected to be fulfilled during this period of cosmic 
evolution. This is because photons and particles are reacting very 
differently to the cosmological expansion; photons generally are 
considered to be cooling due to permanently being cosmologically 
redshifted (see e.g. Peacock, 1999, Goenner, 1996). Contrary to 
that, particles in first order are not directly feeling the expansion of 
the universe, unless they feel it adiabatically by mediation through 
numerous Coulomb collisions. Over distances D where the cosmic 
gas can be considered as collision-free, i.e. for D ≤ λc (with λc de-

noting the actual mean free path with respect to elastic collisions), 
they will not feel the expansion at all, only beyond, at distances D 
˃ λc, those atoms with velocities larger than v ≥ λc • H are touch-
ing the "collisional wall" of their cosmic environment and will 
start recognizing the cosmic expansion. Hereby the expansion of 
the universe is described by the Hubble parameter with H = Ṙ/R, 
where R denotes the scale of the universe, and Ṙ its derivative with 
respect to cosmic time t. In other words, if one expands the walls 
of a collision-free gas with a supersonic velocity V ˃˃ vs, then 
this gas will not recognize the expansion, only those few particles 
of the gas distribution function with velocities v ˃ vc will interact 
with the wall and thus can react "adiabatically" by returning to the 
system with reduced energy.

In the case of a gas included in a box with subsonic expansion of 
its walls most of the particles would recognize this expansion. To 
say it in brief: The expanding walls with an expansion velocity 
V should keep in touch with the particles of the system, meaning 
that slow particles with particle velocities v ˂ V do not feel the 
expansion since not interacting with the moving walls, while those 
with velocities v ˃ V feel it, because their reflection velocities v´ 
when coming back from the wall is reduced, i.e. v ‘˂ v. There 
is an additional problem occurring, since Coulomb collisions re-
distributing velocities among particles have a specific property 
which makes things highly problematic in this context. This is the 
fact that Coulomb collision cross sections are strongly dependent 
on the relative velocity w of the colliding particles, namely be-
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ing proportional to (1/w4) (see Spitzer, 1956). This evidently has 
the consequence that high-velocity particles are much less colli-
sion-dominated compared to low-velocity ones, they may even 
be considered as collison-free at super critically large velocities 
v ˃ vc. So while the low-velocity branch of the distribution thus 
may still cool adiabatically like a collision-dominated gas and thus 
feels and reacts to the cosmic expansion in an adiabatic form, the 
high-velocity branch in contrast behaves collision-free and hence 
changes in a different form. This violates the concept of a joint 
equilibrium temperature and of a resulting mono-Maxwellian ve-
locity distribution function, and means that there may be a critical 
evolutionary phase of the universe, due to different forms of cool-
ing in the low- and high-velocity branches of the particle veloc-
ity distribution function. This does not permit the persistence of 
a Maxwellian equilibrium distribution to later cosmic times. We 
shall now look into this interesting evolutionary expansion phase 
a bit deeper and try to draw some first conclusions concerning the 
cosmic gas behaviour in the post-recombination era.

A Liouville-theoretical approach to the thermodynamics 
of cosmic gases
We start out from the generally accepted assumption in modern 
cosmology, that during the collision-dominated phase of the cos-
mic evolution, just before the time of matter recombination, mat-
ter and radiation, due to frequent energy exchange processes, are 
in a complete thermodynamic equilibrium state. In the following 
cosmic evolution this equilibrium, however, will experience per-
turbations as had already been emphasized in the section above 
and earlier by Fahr and Loch (1991). The upcoming part of the 
paper shall demonstrate now that, even if a Maxwellian distribu-
tion would actually prevail at the beginning of the collision-free 
cosmic expansion phase, it would not persist thereafter. Just after 
the recombination phase when electrons and protons recombine 
to H-atoms, and photons start propagating through cosmic space 
practically without further interaction with matter, the thermody-
namic contact between matter and radiation further on is abolished 
or switched off. This is one reason why the initial Maxwellian 
atom distribution function would not persist in the universe during 
the ongoing collision-free expansion.

To enlucidate this point let us first consider a collision-free particle 
population in an expanding, spatially symmetric Robertson-Walk-
er universe. Hereby it is clear that due to the cosmological princi-
ple and, connected with it, the spatial homogeneity requirement, 
also the velocity distribution function of the particles must be iso-
tropic in v and independent on the local cosmic place x. Thus it 
must be of the following general form

f (v, t) = n(t) • f (v, t)                 #

where n(t) denotes the cosmic, time-variable density, only depend-
ing on the world time t, and f (v, t) is the normalized, time-depen-
dent, isotropic velocity distribution function with the property: ∫f 
(v, t)d³v = 1. If we now do take into account that particles, moving 
freely with their velocity v into their v-associated direction over 
a distance l, at their new place have to restitute the actual cosmic 
distribution there, despite the differential Hubble flow and the ex-
plicit time-dependence of f, then a locally prevailing co-variant, 
but perhaps form-invariant distribution function f(v‘, t´) must exist 
such that the two associated functions f(v‘ , t´) and f(v, t) are related 

to each other in a very specific, namely Liouville-conform way 
(see e.g. Cercigniani, 1988, Landau-Lifshitz, 1990).

To quantify this required relation needs some special care, since 
particles that are freely moving in a homologously expanding 
Hubble universe, do in this specific case at their motions not con-
serve their associated phasespace volumes d6Φ = d³vd³x, since in 
a homologously expanding cosmic space no particle Lagrangian 
L(v, x) does exist, as usually does in gas dynamics, and thus no 
Hamiltonian canonical relations of their dynamical coordinates v 
and x are valid. Hence Liouville‘s theorem (see e.g Chapman and 
Cowling, 1952) then does not require that the differential 6D-phase 
space volumes d6Φ are identical, but that the conjugated differen-
tial phase space densities are identical to guarantee that no particle 
losses occur. This is expressed by the following relation:

f‘(v‘, t´)d3v‘ d³x‘ = f(v, t)d³vd³x              #

When arriving at the place x´ these particles, after passage over a 
distance l are incorporated into a particle population which has a 
relative Hubble drift with respect to the origin of the particle given 
by vH = l • H co-aligned with v, where H = Ṙ /R means the actual 
Hubble parameter, R denoting the scale of the universe. Thus the 
original particle velocity v‘ registered at the new place x´ is locally 
tuned down to v‘= v - l • H, since at the present place x´, deplaced 
from the original place x by the increment l, all velocities have to 
be judged with respect to the new local reference frame (standard 
of rest) with a differential Hubble drift of l • H.

Furthermore all dimensions of the space volume within a time in-
tervall ∆t = t´ - t are cosmologically expanded, so that dx‘= dx(1+ 
H • ∆t) holds. The velocity increments at the passage of the particle 
from x to x´are only changed in the two dimensions perpendic-
ular to v while in this latter dimension on the inertial trajectory 
no change of the velocity increment occurs. Hence a complete 
re-incorporation into the locally valid distribution function then 
implies, taking into account here the linearizability of small quan-
tities ∆t/t = l/tv and ∆v/v = -l • H/v, that one can express the above 
Liouville requirement in the following form:

This then means for terms of first order

and consequently

and finally after some simplifying rearrangements leading to the 
following requirement

                 (∂f/∂t) = vH • (∂f/∂v) - Hf               (1)

Starting at a time t = t0 from a Maxwell distribution with f0(v, t0) 
= Max (v, t0), one could try to solve the upper partial differential 
equation numerically using

→

→

─

─

─
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and find the solution for the distribution function for all later times 
t ≥ t0.

Evolution of Velocity Moments
However, instead of doing this, we prefer to make use of a much 
simpler procedure: Namely looking now first for the most inter-
esting velocity moments, like density n(t) and pressure P(t), of the 
function f(v, t) fulfilling the above partial differential equation of 
kinetic transport, i.e. Equ. (1), - then by multiplying this upper 
equation with a) 4πv²dv and b) (4π/3) mv4dv and integrating over 
the whole velocity space leads to the following relations:

Density

      (∂n/∂t) = 4πH • ∫ v3 (∂f/∂t)dv - Hn                  #

which can by partial integration be developed further to:

and yields

and further

               ∂n/∂t = -3H • n – Hn                                # 

finally leading to:

with the solution:

                n = n0 exp [-4H(t-t0)]         (2)             #

Pressure 
Multiplication of the kinetic transport equation by (4π/3) mv4dv 
and integration over velocity space leads to:

and along the same practise already applied before then leads to:

yielding:

with the solution:

            P(t) = P0exp [-6H(t-t0)]               (3)         #

The Entropy of the Cosmic Gas in the Expanding Universe
Taking the above results from Equations (2) and (3), this then im-
mediately makes evident that one for instance finds that the cosmic 
particle entropy S = cv(P/nγ) (see e.g. Lifshitz and Pitaevskii, 1995, 
Serrin, 1959, Erkaev et al., 2000) with cv and γ = (f + 2)/f = 5/3 
denoting the heat capacity at constant volume and the polytropic 
gas index, is given by

          S(t) = P(t)/n(t)γ = (P0/n0
γ) exp [-(6-4γ)H(t-t0)]               #

                 = (P0/n0
γ) exp [+(2/3)H(t-t0)]                                  #

surprisingly enough now turns out to not be constant, but increas-
ing with time t, which means that in fact no adiabatic behaviour of 
the expanding particle gas occurs, and that as a consequence the 
gas entropy S(t) is not constant, but inreases with cosmic time as

S = S(t) = S0 exp[=(2/3)H(t-t0)]                              #

The Hamiltonian case
At this point of our study it is perhaps historically interesting to see 
that, when assuming the commonly used Hamilton canonical rela-
tions to be valid, i.e. dL/dpi = dxi/dt; - dL/dxi = dpi/dt, the Liouville 
theorem would then, instead of the kinetic transport requirement 
formulated in Equ. (1), simply require f‘(v‘, t´) = f(v, t) and hence 
would thus lead to the following more simple form of a Vlasow 
equation

In that latter case, the first velocity moment now is found from the 
following relation

which for the time period of a constant Hubble parameter H(t) _                  

H0 can easily be identified with the solution n(t) ~ R(t)-³, i.e. a bary-
on density falling off inversely proportional to the cosmic volume 
V(t) = (4π/3)R3(t).

Also in this Hamiltonian case we would obtain the pressure mo-
ment P(t) in the form:

dP/dt = -5HP                                      # 
which now in this case based on γ = 5/3 leads to an entropy of

S(t)=P(t)/n(t)γ–(Po/n0
γ)exp[-(5 – 3(5/3))H(t- t0)] =const                      #

which interestingly enough means that in this “classic Hamilto-
nian” case both an adiabatic and isentropic expansion is retained.

The "Hamiltonian case", however, is not given under the condi-
tions of a cosmic Hubble-like expansion and thus here is not a 
valid assumption! - This is due to the fact that the classical Hamil-
ton canonical relations in the cosmic case are not valid due to the 
non-conservative cosmic Hubble-forces that are acting connected 
with a homologous Robertson-Walker expansion and lead to the 
cosmic relation dp/dt = -pH.

Would Maxwell stay Maxwell under non-Hamiltonian condi-
tions?
Though we are not aiming here at the full solution of the kinetic 
transport equation, Equ. (1), we can nevertheless check, wheth-
er a Maxwellian distribution of the cosmic gas atoms would pre-
vail, if it at least were present before the recombination phase. We 
know that under the cosmic conditions the "cosmically correct" 
Vlasow equation, Eqn. (1), holds and this equation allows to check 
whether or not an initial Maxwellian velocity distribution function 
would persist during the ongoing collision-free expansion at times 

~
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t ≥ t0. In that case one namely finds for f(v, t) = Max(v, t) ~ n(t)
T(t)-3/2exp[-mv²/2KT(t)], with n(t) and T(t) being time-dependent 
moments of the Maxwellian distributed cosmic particles, that one 
obtains the two relevant Vlasow derivatives ∂f/∂t and ∂f/∂v in the 
following form:

and

These two above expressions then lead to the following Vlasow 
requirement (see Eqn. (1))

In order to validify the above equation obviously the two terms 
with v² have to cancel each other, since n(t) and T(t) are velocity 
moments of f, hence independent on v. This is evidently only satis-
fied, if the change of the temperature with cosmic time is given by

T = T0 • exp (-2H(t-t0))                        #

This above dependence in fact is obtained when inspecting the ear-
lier found solutions for the moments n(t) and P(t) (see Eqns. (2) 
and (3), because these solutions exactly give

T(t) = (P(t)/(Kn(t)) = P0/(Kno
γ) • exp(-(4-2)H(t-t0)) = T0 • exp(-2H(t-t0))           #

With that the above requirement then only reduces to the following 
expression

which then finally leads to the requirement

-2H – (3/2)(-2H) = -H                 #

making it mathematically evident that this requirement, i.e. +1 = 
-1, cannot be fulfilled, and thus meaning that consequently a Max-
wellian particle distribution cannot be maintained over the times 
after the recombination, not even at a collision-free cosmic expan-
sion. With this knowledge one could be seduced and encouraged 
to find out more about the kinetic situation of the cosmic gas under 
these conditions just after the recombination era. What kind of dis-
tribution function f(v, t ˃  t0) should be expected for that period? An 
new independent way of looking at this problem is to use the fol-
lowing kinetic transport equation used by Fahr et al. (2016) which 
for the purposes here, i.e. only of importance are the terms for tem-
poral derivative and the Hubble-induced velocity space migration, 
would then attain the following form:

where the term on the right side describes the change of the dis-
tribution function f(t, v) under the Hubble-induced velocity drift 
migration vH analogous to the velocity space drift formulated in 

Fahr (2007). In this case here now this drift is connected with the 
fact that particles which move with a velocity v into the direction v 
within a time increment dt suffer a velocity change vH = -v•H  with 
respect to the new reference place. This consequently then allows 
to write the above kinetic transport equation in the following form:

Introduction of the normalized distribution in the form f(t, v) = n(t) 
• f(v)  (i.e. separation of variables!) then allows to write:

Taking now advantage of the earlier solution for n(t) = n0 exp[-4H(t 
- t0)] then leads us to:

One could perhaps hope that this is the solution of the problem, 
but it is easy to see that this is in fact not the case, since the found 
solution for f (v) is not normalizable to 1! This seems to express 
the fact that the solution of the kinetic transport equation (Equ, (1)) 
does not allow for a separation of variables t and v!

Conclusions
With the above result we are now finally lead to the statement that 
a correctly derived Vlasow equation for the cosmic gas particles 
in a Hubble universe leads to a collision-free expansion behaviour 
that neither runs adiabatic for the cosmic gas, nor does it conserve 
the initially Maxwellian form of the distribution function fo (v, t). 
Under these auspices it can, however, also easily be demonstrated 
(see Fahr and Loch,1991) that under ongoing collisional interac-
tion of cosmic photons with such cosmic particles via Compton 
collisions in case of non-Maxwellian particle distributions do un-
avoidably lead to deviations from the Planckian blackbody spec-
trum. This makes it hard to be convinced by a pure Planck spectrum 
for the CMB photons at the times around or just after the cosmic 
matter recombination, i.e. the conclusion should be that what we 
see in form of the CMB (Cosmic Mikrowave Background) can-
not be from the times of recombination of matter. Our results now 
further raise the question whether or not matter and radiation as 
ingredients in the GRT energy-momentum tensor have to be care-
fully reanalyzed on the basis of their unexpected non-equilibrium 
behaviour. This should perhaps be taken together with most re-

→
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cent results by Fahr and Heyl (2016) and Fahr and Heyl (2017) 
showing that the energy density of cosmic radiation (i.e. the CMB 
photons) does not fall off with the fourth, but only with the third 
power of the scale of the universe.
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