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Introduction
Using the principles of the analysis of a linear function of a linear 
variable [1], constuctive algebras developed using the weighted 
matrix product [2] leads to the d’Alembertian operator and it’s 
factorization [3], and a space with all smooth functions satisfying 
Maxwell’s equations [4] [5] [6] [7]. This leads to the Helmholtzian 
operator and factorization[8], and a space in which all smooth 
functions satisfy the Maxwell-Cassano equations[9] (which 
generalizes both Maxwell’s equations and the Dirac equation [10]
[11] [12]) - a linearization of the Klein-Gordon equations [13] 
[14] [12]. These insights lead to a fermion architecture providing 
a firm mathematical foundation of the hadrons (mesons [15] and 
baryons[16])

Analysis Details and Results
Merely a cursory look demonstrates that the Helmholtzian operator 
and factorization is a generalization of the d’Alembertian operator
and it’s factorization [17].

Recalling the Helmholtzian operator matrix product from [8]:

                                                                                      
                                                                                             
                                                                                                 (1)

where:
                                                                                                            (2)     

                                                                                                     (3)
                                                        
Similarly, mass-generalized electric and magnetic potentials for the 
Helmholtzian operator factorization :

                                                                                                   (4)

                Where:
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Abstract
The Helmholtzian operator and factorization, via the Maxwell-Cassano equations yields a fermion architecture table equivalent to 
that of the standard model and lead to linear transformation groups of the mesons and baryons, respectively; plus a straightforward 
elementary description of quark colour based on integral indices: 1,0,1, rather than the subjective, correlative explanation using: 
{R,G,B;Y} indexes.
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                                                                                                 (5a)

      
                                                                                                 (5b) 

These mass-generalized Maxwell’s equations may be simpy written:

as the Maxwell-Cassano equations of an electromagnetic-nuclear 
field[9].

It is easy to demonstrate that in free space, the thus defined E and 
B (generalizations of the electric and magnetic field strengths) also
satisfy the Klein-Gordon equations, so have a particle-nature. (Also, 
the potential of the time-independent Klein-Gordon equations is the
Yukawa potential[18].)

Identifying a particle-nature member R as either an E or a B , 
and R�+ as either an E�+ or a B+� , then a notation consistent with 
common usage would denote it’s particle-nature anti-member R+� 
as the corresponding E+� or a B+� (and correspondingly for R_, E, & 
B_). And, of course, the particle-nature anti-member components 
correspond in the same way. Each of these members satisfies the 
Klein-Gordon equation, but only really do so as three-vectors with 
three components or triplets. And, each bag of triplets must be 
triplets or triplets of triplets or triplets of triplets of triplets, and so 
on (i.e.: 3n of triplets).

The simplest , and thus, most fundamental members are triplets. 
The next most fundamental is triplets of triplets.
These will be considered, here.

Denoting a triplet of triplets by: SR ≡ �R1,R2,R3 )  �R1�+,R2+�,R3+�) + � 
�(R1

_,R2
_,R3

_), is a 3 X 3 matrix.

Then we can write: SE ≡ �E1,E2,E3 , and SB ≡ (�B1,B2,B3)  .

The components of each vector written vertically:

                                                                                              (6)

Define the first fundamental objects as follows:

Li ≡ SEi , Λi ≡ SBi

[where: SR1 ≡ ( �R1,0,0) , SR2 ≡ �(0,R2,0) , SR3 ≡ �(0,0,R3) ]

and define in-line notation: SRi ≡ �(R1, R2, R3 ) 

So, there are 3 pair of L, Λ :

Corresponding to these fundamental objects, define these second 
order objects as 3 pair of triples, as follows:

                                                                                                 (11)
                                                                                                 (11a)

                                                                                                (12.1a)
                                                                                               (12.1b)
                                                                                              (12.1c)

(which are, of course, merely a swapping of one component between 
the pair)
(Note: any number of swappings between the pair results in a 
member of these 9 matrices)
( - i.e. it is a group transformation, so it is sufficient to consider a 
single swapping)
(Note also that including the originals, there are 8 members)
The other two pair of triples are:
    
                                                                                         (12.2a)
                                                                                         (12.2b)

                                                                                         (12.2c)

                                                                                         (12.3a)
                                                                                         (12.3b)
                                                                                         (12.3c)
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The following assignments/definitions:

                                                                                         (14.1a)
                                                                                         �(14.1b)
                                                                                         �

(14.1c)
    
correspond to the leptons.
And the following:

                                                                                         (14.2a)
                                                                                         (14.2b)
                                                                                         (14.2c)

                                                                                         (14.3a)
                                                                                         (14.3b)
                                                                                         (14.3c)

                                                                                         (14.4a)
                                                                                         (14.4b)

                                                                                         (14.4c)

correspond to all colors and flavors and generations of the quarks.
From this point on, represent the generations of the most fundamental 
objects by:

                                                                                         (14.5a)
                                            
                                                                                         

(14.5b)

( i denoting column/generation, j denoting row/color)
So, in particular:

e = e (�1) = �(E1, E2, E3) 1 μ=  e(�2) = (�E1, E2, E3)2 τ = e(�3) = �(E1, E2, E3)3

v�e = v (��1) = (�B1, B2, B3) 1 � vμ = v (��2) �(B1,B2,B3) 2 vt = v(3) = ��(�B1, B2, B3)3

uR = u1�(1) = �B1, E2, E3) 1 cR  u1�(2) = �(B1,E2,E3) 2 tR = u1 (�3) = (�B1, E2, E3)3

uG  u2� (1) = �(E1, B2, E3) 1 cG = u2�(2) = (�E1, B2, E3) 2 tG = u2 (�3) = (�E1, B2, E3)3

uB = u3� (1) = �(E1,E2,B3) 1 cB = u3 (�2) = (�E1, E2, B3)2 tB = u3(�3) = �(E1,E2,B3) 3

dR = d1 (�1) = �(E1,B2,B3) 1 sR = d1�(2) = �E1, B2, B3) 2 bR = d1�(3) = �(E1,B2,B3)3

dG = d2 (�1)= �B1,E2,B3) 1 sG = d2� (2) = �(B1, E2, B3)2 bG = d2(�3) = �B1, E2, B3)3

dB = d3� (1) = �(B1, B2,E3) 1 sB = d3� (2) = �B1, B2, E3)2 bB = d3 (�3) = (�B1,B2,E3) 3

                                                                                                   (15)  
Examples of hadrons (second order compositions):
mesons:

baryons:
a baryon is a quark triplet each quark of a different color.

As an SR matrix, the proton and neutron incarnations are all the 
same. except for one swapped pair of elements.

Just as coordinates may be used to describe phenomena, chosen 
to facilitate analysis (whether rectangular cartesian, spherical, 
cylindrical, paraboloidal, ellipsoidal, etc.); so, too may a vector basis 
be chosen to consider generators of the vector space as a group and
it’s structure.

U(1) is the multiplicative group of all complex numbers with 
absolute value 1; that is, the unit circle in the complex plane [19].
The unitary group U(n) is a real Lie group of dimension n2. (complex 
n2 , real 2n2) [20].

The unitary group U(n) is endowed with the relative topology as a 
subset of M(n, C), the set of all n x n complex matrices, which is
itself homeomorphic to a 2n2-dimensional Euclidean space [20].

The dimension of the group SU(n) is n2 -1 [21].

The orthogonal group in dimension n, denoted O(n), is the group 
of distance-preserving transformations of a Euclidean space of 
dimension n that preserve a fixed point, where the group operation is 
given by composing transformations. Equivalently, it is the group of
n x n orthogonal matrices, where the group operation is given by 
matrix multiplication [22].

(an orthogonal matrix is a real matrix whose inverse equals its 
transpose) [23]

Over the field ℝ of real numbers, the orthogonal group O(n, ℝ) and 
the special orthogonal group SO(n, ℝ) are often simply denoted by
O(n) and SO(n) if no confusion is possible. SO(n) forms the real 
compact Lie groups of dimension n�(n - 1)/2 [22].

⇒�SO(2) is of dimension 1 , SO(3) is of dimension 3 , SO(4) is of 
dimension 6 , ...

All the possible quark doublets are given by:
uR�(h) : uR(�j) uG (�h) : uG�(j) uB (�h) : uB�(j)
dR�(h) : dR (�j) dG�(h) : dG� (j) dB� (h) : dB (�j)

                                                                                                      (16)
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(Notice that casual appearance suggests a 6-dimensional double-
cover)

A qXj : (�R1, R2, R3)j is an n-tuple; but consider a transformation/
mapping:

In other words, the n-tuple �(R1, R2, R3) j : qXj represent the coordinates 
of a fermion complex four-vector space. 

Hadrons, mesons & baryons are the major objects in this fermion 
complex four-vector space, the mathematics of which
follows.

Let:            

then each member of this meson vector space

may be written as a 2 x 1 column vector:

So:

is a operation transforming one meson into another meson.
If it is linear, T is a 2 x 2 matrix.
So, if the field of the vector space and transformation is ℂ then:

And, if the meson vectors may be represented by complex variables:
(with the property that the anti-object is the complex conjugate of 
the corresponding object)

..............?

is isomorphic to SO(2,1) and SL(2,ℝ). [24]
(The Lie algebra su(2) may be constructed from this group similarly 
to the above.)
(which is just a convenient representation system like a convenient 
coordinate system)
Now, instead of writing the meson as a vector, if it is written as a 
2x 2 -square matrix, as:

(17)

(18)
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then under ordinary matrix multilication:

spans; is even commutative; and for such non-singular matrices 
forms a group, and:

So, for unit vecors u1 �+ iv1,w1 - iz1 :

                                                                       is unitary.

Using equation (), quark and meson characteristics, such as mass, 
may be determined.
For example, if the mass constituents of a meson are

A quark mass: 

(In the Helmholtzian: u2
1 = |m1|

2 �+ |m2|
2 � |m3|

2 , v 21 = |m0 |
2 ; similarly 

for w1, z1).

Noting how the meson color indices cancel, and looking forward 
to the baryons an appropriate RGB notation

transformation would be: (�RGB) → (-� �1,0,1).

Note that the sum of the indices is 0 (as is the meson’s X +� X )
(Just as particle-anti-particle pairs color indices add up to color 
indices of light = the color indices of empty space = 0 ,
the color indices of all composite-fermion particles must always 
sum to empty space = 0 ).
The following scheme has been conjectured for meson transformations 
without violating empty space, via ’virtual’ particles.
i.e.: at every point there exists two "virual" particle (particle-anti-
particle) pairs equivalent to empty space except for
total-energy (like pushing onto he stack and poping it off).

Since the color force is much stronger than the electromagnetic at 
short range, the color/anti-color pairs dominate & requires another 
color force to uncouple.

Note how meson color pairs tend to couple together:

     where:

This pairing is clearly the stronger bonding, since it is both color 
and electromagnetic attraction.

Meson

where:

(the terms in brackets are the virtual, (appear & disappear))

However, it is an open question as to whether or not the above 
transformations are consistent with these processes.
All the possible quark triplets are given by:

                                                                                                    (19)

(Notice that casual appearance suggests a 8-dimensional double-
cover)

Because u’s have 2 Eh’s & 1 Bh & d’s have 1 Eh & 2 Bh’s the 2 x 3 
& 2 x 4 symmetries are not perfect.

Similarly to how the mesons were analyzed, a baryon vector 
transformation would look like:

For a point in the complex plane: x+� iy at an angle θ from the origin, 
it’s complex conjugte x - iy is at an angle -θ from the origin.

On the unit circle: x+�iy  cosθ +� i sin θ and: x - iy = cos θ - i sin θ

If there are 2n such angles dividing the circle:

So, for

https://www.opastonline.com/
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This figure shows how u, v,w would be situated with respect to each 
other, everything being equal:

points on an arc of a circle equidistant in thirds may be formulated 
as follows:

So, for any angle  any triple-thirds may be expressed:

Normal vectors parallel to these are:

Assuming a 3-type quark triple with magnitudes u, v, w, ϵ ℝ oriented 
by these normal vectors, they may be identified by:

Each quark may be considered a triplet; but, generally, the angles 
need not all be equal; but even so there may always be an orientation
where one "anchor" vector may be real-only, and the other two 
fully complex (with non-zero imaginary parts, and not necessarily 
complex conjugates - only so, when the angles are both 2 π 
                                                                                          3

If the quarks are symmetric (conjugate) with respect to the ’anchor’, 
then they may be represented as v & v :

As with the mesons, above, instead of writing a baryon as a column 
vector; if it is written as a 3  3 square matrix, as:

spans; is even commutative; and for such non-singular matrices 
forms a group, and:

https://www.opastonline.com/
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For the symmetric-conjugate ’anchor’-type case, each quark may 
be expressed as a column vector:

for arbitrary uR, uI, γ:

(since Γ is an unknown/undetermined function of uR, uI, γ:

for arbitrary uR,uI, γ :

(since Γ is an unknown/undetermined function of uR,uI, γ )

These are both 9 dimensional.

And, for the general, ’anchor’-type case, each quark may be 
expressed as a column vector:

And, these transformations are:

https://www.opastonline.com/
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for arbitrary uR, uI, zR, zI :

These are 10-dimensional.
Thus, the two anchors w & z may not be considered indpendent.
Thus, the picture of the above equivalent symmetric-anchor types 
is sufficient.
So, using transformation matrix:

                                                                                                   (21)

8-dimensional basis.
With: d = b* & eR = - 2aR :

                                                                                                  (21a)

makes this traceless equivalent to the Gell-Mann matrices

https://www.opastonline.com/
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The non-singular linear transformation of the quarks to one another 
establishes a group[25].
Though it may be a subgroup including quark-quark-anti-quark and 
quark-anti-quark-anti-quark, there is not
evience supporting this[16].

Using the fermion triple table, above, mesons & baryons may be 
noted as:

For the mesons, the transformation is:

(this is equivalent to:

For the baryons, the transformation is:

(where any pair of α, β, γ are 0 and the third is NOT,

(because it is an ordinary fermion interaction netween two 
ingredients)
(a chain of any single transformation is sufficient for any 
transformation)
For example:

As noted above, all the possible quark triplets are given by:

(Notice that casual appearance suggests a 8-dimensional double-
cover)

All baryon quark-triples seem to be of the form quark-quark-quark 
(or anti-quark-anti-quark-anti-quark); and not including quark-
quark-ant-quark or quark-anti-quark-anti-quark[].

There are six elements in the RGB color triplet set (baryon):
�{(R,G,B, (�G,R,B), �(G,B,R), (�R,B,G), (�B,R,G), (�B,G,R)}

As with the mesons, the following scheme has been conjectured for 
baryon transformations without violating empty space, via ’virtual’ 
particles.

i.e.: at every point there exists two "virual" particle (particle-anti-
particle) pairs equivalent to empty space except for total-energy 
(like pushing onto he stack and poping it off).

The color triplet permutation operation on the three quarks enables 
continued ’existence’.

where:

These transformations are sufficient to describe all permutations
(simply change designations as necessary).

where: 

https://www.opastonline.com/
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Again, these transformations are sufficient to describe all 
permutations
(simply change designations as necessary).

All the permutations are handled by this operation (perhaps randomly, 
not necessarily in any order)
A pair of virtual weak/strong mesons combines in and a pair of 
virtual strong/weak mesons uncombines out.
(with charge & color conservation).

Baryon                                       color transformations:

where:

Just as with the mesons the property that the anti-object is the 
complex conjugate of the corresponding object was the only 
fundamental principle required for the analysis; for the baryons 
two facts are fundamental:
1) the order of the triplet is immaterial to it’s description (also for 
mesons via the anti-meson complex conjugate)
                                                                                         

is an equivalence class
                                                   
2) the set of the colors of the triplet is {R,G,B}; i.e.

3) the transformation is accomplished by swapping the color of 
any two objects

However, as with the mesons, it is an open question as to whether 
or not these baryon processes are consistent with the baryon 
transformations.

However, how is it that p0q0 is not a meson, and p0q0r0 not a 
baryon?
Quarks are fermions, just as electrons are, satisfying Bose–Einstein 
statisticso a collection of non-interacting indistinguishable particles
may not occupy a set of available discrete energy states. i.e. quarks of 
the same color index cannot simultaneously occupy the same place.
So, since there are only quarks in the triplets, and there are no color 
duplications, there must be one-and-only-one of each color type, and
thus, the sum of the color indices: -1+� 0+ 1 = 0.

Conclusion
Thus, the insights provided by the constuctive algebras developable 
from the weighted matrix product leading to the d’Alembertian 
operator and it’s factorization, leading further to the Helmholtzian 
operator and factorization, from which the Maxwell-Cassano 
Equations arise generating the fermion architecture provides firm 
mathematical foundation of the hadrons (masons and baryons) as just 
demonstrated. As shown above, the color notion is better understood 
using integral indices; so, up to this point, the fermion architecture 
is clearly described via table:

e = e (�1) = �(E1, E2, E3) 1 μ=  e(�2) = (�E1, E2, E3)2 τ = e(�3) = �(E1, E2, E3)3

v�e = v (��1) = (�B1, B2, B3) 1 � vμ = v (��2) �(B1,B2,B3) 2 vt = v(3) = ��(�B1, B2, B3)3

uR = u1�(1) = �B1, E2, E3) 1 cR  u1�(2) = �(B1,E2,E3) 2 tR = u1 (�3) = (�B1, E2, E3)3

uG  u2� (1) = �(E1, B2, E3) 1 cG = u0�(2) = (�E1, B2, E3) 2 tG = u0 (�3) = (�E1, B2, E3)3

uB = u3� (1) = �(E1,E2,B3) 1 cB = u-1 (�2) = (�E1, E2, B3)2 tB = u-1(�3) = �(E1,E2,B3) 3

dR = d1 (�1) = �(E1,B2,B3) 1 sR = d1�(2) = �E1, B2, B3) 2 bR = d1�(3) = �(E1,B2,B3)3

dG = d2 (�1)= �B1,E2,B3) 1 sG = d0� (2) = �(B1, E2, B3)2 bG = d0(�3) = �B1, E2, B3)3

dB = d3� (1) = �(B1, B2,E3) 1 sB = d-1� (2) = �B1, B2, E3)2 bB = d-1 (�3) = (�B1,B2,E3) 3

                                                                                                   (22)
(Obviously, the original designer did not go through the RGB 
designations, but began with the numerical indices. )
( -the RGB indexes have been used above to allow quick and easy 
correspondence and transition to this fundamental description)

And, of course, the up/down concept yields to the simple η0 
transformation on each one’s constituents-triplet (the same η0

https://www.opastonline.com/
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transformation generating the fermion interactions).

So, just as the fool on the hill sees the sun going down and the eyes 
in his head see the world spinning ’round, the fermions may be
viewed as constituents-triplets.

I hope I have shined a light to see through the fog.
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