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Abstract
In this article, we shall take it serious what has come out from recent theoretical studies on the plasma conditions in 
the heliosheath, namely downstream of the solar wind termination shock the total plasma pressure is dominated by 
the pressure of the electrons. We shall respect these results and try to develop the corresponding theoretical basis for 
an authentic multi-fluid description of the plasma flow downstream of the shock, starting with the dominant pressure 
action of the local electrons on the mass- and momentum flow of the multi-fluid plasma. It turns out that the usual claim 
made by Voyager-1 and-2 experimentalists that the bulk velocity of the upwind plasma flow is decreasing with distance 
from shock, would require that, in reaction to that bulkplasma momentum loss, the electron pressure even increases 
downstream of the shock. The alternative possibility would be that Voyager-1/-2 data up to now are misinterpreted, 
and that in fact solar wind bulk velocities in the upwind heliosheath downstream of the shock are increasing opposite 
to present understandings.
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Introduction
With the Voyager-probes Voy-1 and Voy-2, the scientific commu-
nity was hoping to get ideal observations in form of in-situ data on 
the real plasma scenario near the region of the solar wind termi-
nation shock and further downstream into the heliosheath region.
This hope meanwhile has been cooled down a bit, since it became 
evident that the plasma near this shock region is of an unexpect-
edly complicated nature for which the Voyager detector packages 
were not well enough designed. This has mainly to do with the 
multifluid nature of the local plasma out there, where not only so-
lar wind ions, but also even more pick-up ions and, surprisingly 
electrons do dictate the actual physics. Especially questions con-
cerning the post-shock solar wind bulk velocity U and its direction 
have created big debates until now. In addition, the temperatures 
of the post-shock solar wind ions are under strong debates [1-4]. 

The latter points are due to the fact that bulk velocities and tem-
peratures are velocity moments of the distribution function, and 
for their determination based on solar wind ion flux data one needs 
an assumption what kind of distribution function (e.g. Maxwell-, 
power-law-, or Kappa- distributions) needs to be imputed [5]. 
Things are even worse, since only Voyager-2 has low-energy pro-
ton data, while Voyager-1 has lost its low-energy proton detector 
and bulk velocities of post-shock protons have to be indirectly de-

rived via use of the Compton-Getting anisotropy effects from GCR 
high-energy proton data [6].

Generally, electrons in plasma physics are the underestimated spe-
cies. In most cases, they only have to guarantee electric quasi-neu-
trality, i.e. n=ni=ne, but they don´t count in terms of mass-, mo-
mentum-, and energy- flows. However, in many space plasmas,e.g. 
like the heliospheric plasma, especially downstream of the solar 
wind termination shock, the actual physical conditions there look 
different. More theories that are recent have shown that electrons 
in fact even dominate the plasma pressure and the plasma energy 
flow of the plasma bulk flow downstream of the termination shock 
[1,7-9]. Such conditions do require a genuine, authentic multi-fluid 
plasma theory for an adequate description of fields and flows, and 
we shall study here further down what this new theory will predict.

We first develop a pure two-fluid thermodynamics of such two-flu-
id plasmas and then study the actual situation for the given case 
that the total heliospheric plasma pressure downstream of the ter-
mination shock is dominated by the electron pressure, with the 
proton pressure being an inferior contribution near the shock. Un-
der such auspices, the electron pressure determines the changes 
in the mass- and momentum- flows of the total plasma and in fact 
should increase with a decrease of the common bulk velocity U of 
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the flow - or just vice versa.

The Multi-Fluid Aspect of the HeliosheathPlasma
Let us imagine a plasma consisting of heavy protons and light 
electrons, however, the protons are dominating the mass- and mo-
mentum- flows, while the electrons dominate the energy- flow, 
i.e. a "pressurized, hot- electron-fluid" in a massive background 
of cold protons! Under such auspices, it is evident that the change 
of the electron energy flow at the actual plasma motion will 
cause the changes both of the mass- and of the momentum- flows 
of the protons. Exactly such a twin-fluid dynamical situation in 
fact arises just downstream of the solar wind termination shock 
where electrons become shock-accelerated due to the action of 
the shock-electric field and there after are injected as a thermally 
randomized population into the shocked proton flow in form of a 
hot , strongly pressurized electron fluid [1,7-9]. The influence of 
this termination shock on electrons for instance is not taken into 
account in available multifluid approaches like those presented by 
Goedbloed and Usmanov, et al [10,11]. For instance, the situation 
downstream of the shock which we in this article feel confronted 
with is substantially different from what has been described with a 
four-fluid approach by Usmanov, Goldstein and Matthaeus, since 
in their approach the proton pressures downstream of the termina-
tion shock, different from present expectations, are two orders of 
magnitude higher than the corresponding electron pressures [11].

In a first view, and under standard plasma conditions, it may be 
self-suggestive that in the solar rest frame the change of the ion 
pressure Pi is responsible for the change of the plasma momentum 
flow, evidently connected with the bulk motion U⃗of the ion mass-
density ρi=Mni=Mn. Consequently, this physical context should be 
formulated in the following form:

Where  		    denotes the line elementa long the streamline of 
the plasma flow.

In the unusual case studied here, however, that the electron pres-
sure Pe would dominate over the ion pressure, this pressure Pe-
would do an analogue job in influencing the momentum flow of 
the plasma, i.e. of the ions, according to:

This for example would then evidently mean that a corresponding, 
additional term on the right side of Equ. (3) of Fahr and Dutta-Roy 
would be needed that takes into account the action of the electron 
pressure at influencing the momentum flow of the plasma [12]. In 
view of the upper equation and the expected decrease of the bulk 
velocity U along streamlines downstream from the termination 
shock (see dynamic models used by Nerney, et al, Fahr and Ficht-
ner, Fahr, et al. or by Voyager observations presented by Decker or 
Boschini) would have the counter-intuitive effect of even increas-

ing the dominant electron pressure as cause of a corresponding 
decrease of the plasma bulk velocity U with dU/ds≤0 [6,8,13-15]. 
Consequently, the question seems justified: What in fact does one 
know safely of the plasma bulk speed behavior downstream of the 
shock?

Modelling of the Coupled Ion-ElectronFlow
To model the plasma flow downstream of the termination shock 
usually the approximation of a potential flow has been used (see 
early work by Parker, 1963, or later by Fahr and Neutsch, Fahr and 
Scherer, Nerney et al., Fahr and Fichtner) [2,13,14,16]. This theo-
retical approach, namely to derive the flow field as a gradient of a 
flow potential according to                           is possible for a low Mach 
number flow M ≤ 0.1 of a one-fluid plasma, since this kind of flows 
behave as nearly incompressible. Such a potential flow approxi-
mation thus is viable for an incompressible one-fluid plasma, i.e. 
with dn/ds ≃ 0. But when applied to the heliospheric two-fluid 
plasma system with even pressure-dominant electrons would then 
bring up a counter-intuitive result: Namely that in the heliosheath 
regions downstream from the upwind termination shock, where 
the expected bulk velocities according to such standard models 
decrease from about 130km/s at the termination shock to roughly 
0 km/s at the heliopause (e.g. see Nerney et al, or Figure 1), the 
electron pressures should, in reaction to that, continue to increase 
even more in these regions towards the heliopause, since they had 
to reflect the loss of momentum flow [13].

This strange result, however, one may think, is due to the exagger-
ating assumption that exclusively the electron pressure dictates the 
plasma flow. Perhaps in addition one should also face the problem 
here, that under the discussed situation of a plasma determined 
in its dynamics by the pressures of two separate, individual plas-
ma fluids, i.e. the electron and the ion fluid, single fluid solutions 
derived from one streaming potential          may perhaps not be 
applicable anymore. What to do under these conditions?

What concerns the needed assumption of an incompressible fluid, 
the point that we want to face a two-fluid situation further on here 
in fact may not invalidate this. The only important point is that 
the effective multi fluid sound velocity cs,eff still has to be large in 
comparison to the plasma bulk velocity U that means (see Fahr 
and Heyl) [17].

Since this relation appears, however, well fulfilled in the he-
liosheath, one can tacitly make use of the "incompressibility as-
sumption" also for the multifluid case here.

Since we in addition anyway have to treat isodensity conditions, 
i.e. n =ne=ni, and do not allow for electric currents by requiring 
co-convection of electrons and ions requiring, one can start the 
business here with a solution for      taken from a joint flow poten-
tial Ф= Фe,i that only takes care of an acceptable fit of the resulting 
large-scale streaming configuration to the standard heliospheric 
boundary conditions: i.e. radial outflow at small solar distances  
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where Plx are Legendre polynomials of the order "l" , r  r/L is the normalized radial
distance from the Sun and UIS denotes bulk velocity of interstellar plasma relative to the
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plasma, i.e. with dn/ds  0. But when applied to the heliospheric two-fluid plasma system
with even pressure-dominant electrons would then bring up a counter-intuitive result:
Namely that in the heliosheath regions downstream from the upwind termination shock,
where the expected bulk velocities according to such standard models decrease from
about 130km/s at the termination shock to roughly 0 km/s at the heliopause (e.g. see
Nerney et al., 1991, or Figure 3 in Fahr et al., 2016), the electron pressures should, in
reaction to that, continue to increase even more in these regions towards the
heliopause, since they had to reflect the loss of momentum flow.

This strange result, however, one may think, is due to the exaggerating assumption
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r ≤ L and a homogeneous downwind flow at large solar distances 
r≫L (with L denoting the heliopause distance). Thus, one can start 
from the following streaming potential (see e.g. Fahr and Fichtner) 
[14].

where Pl(x) are Legendre polynomials of the order ″l‶, ‶ r̄ =r/L is 
the normalized radial distance from the Sun and UIS denotes bulk 
velocity of interstellar plasma relative to the Sun, i.e. the motion of 
the solar system relative to the local interstellar medium.

From this streaming potential, one derives, when hereby keeping 
only to the first order in l, i.e. l =1, the following streaming config-
uration shown in Figure 1.

Figure 1: Heliospheric Streamline Configuration derived from a 
Joint Streaming PotentialФe,i (r)⃗

Keeping only to the first Legendre polynomial (l=1) one can derive 
from the streaming potential the following simpler solution (i.e. 
Parker‘s solution, Parker, 1963) 

where r2=z2+y2 is the radial distance from the Sun, and the nor-
malizations have been carried out with the heliopause stand-off 
distance L given by Fahr, Fichtner, Neutsch (1990) in the form [2].

where ρi0 and U0 denote mass density and bulk velocity of the so-
lar wind at a reference distance r0=rSH(position of the termination 
shock), ρIS, UIS and PIS are the mass density, the bulk velocity and 
the total pressure of the interstellar medium, and K(MSH) is the so-
called pressure adaptation function which for general solar wind 
Mach numbers MSH is given by the following expression [18].      

Where γ = 5/3 denotes the polytrophic index. This above expres-
sion is more complicated than the one given by Axford, but the 
latter one is only valid for very high Mach numbers MSH ≥10, while 
here we want to apply this function to more realistic cases of the 
actual solar wind termination shock according to Voyager-2 ob-
servations with 3 ≤ MSH ≤ 6 with compression ratios of s ≃ 2.8 
yielding adaptation values of K(3)≃ 1.08 [3,18].

Figure 2: Pressure adaptation function K(MSH)as function of MSH

A Consistent Two-FluidThermodynamics
The counterintuitive phenomenon suggested by equation (??) may 
for sure appear a bit controversial and embarrassing, hence for 
more clarification of this point, we now look at this situation from 
a slightly different view, following the standard thermodynami-
cal procedure which states that the work done by the pressure at 
a change of the co-moving plasma volume ∆V is reflected by an 
associated change of the internal energy densities ϵi,e,w of that vol-
ume. This, when allowing for multi-fluid plasmas, requires that 
in the Solar Rest Frame (SRF) the following equation has to be 
fulfilled

Where ∆V, as explained in Fahr and Dutta-Roy, denotes the 
co-moving plasma volume on the streamline, i.e. a fluid volume 
that locally moves with the plasma bulk velocity     [12].Hereby 
the indices "i,e,w"indicate ion-or electron-, or wawe-related quan-

that exclusively the electron pressure dictates the plasma flow. Perhaps in addition one
should also face the problem here, that under the discussed situation of a plasma
determined in its dynamics by the pressures of two separate, individual plasma fluids,
i.e. the electron and the ion fluid, single fluid solutions derived from one streaming
potential r may perhaps not be applicable anymore. What to do under these
conditions?

What concerns the needed assumption of an incompressible fluid, this in fact may not
be invalidated by the point that we want to face a two-fluid situation furtheron here. The
only important point is that the effective multifluid sound velocity cs,eff still has to be large
in comparison to the plasma bulk velocity U which means (see Fahr and Heyl, 2020):

cs,eff 
eff
i Pe  Pi  U   #   

Since this relation appears, however, well fulfilled in the heliosheath, one can tacitly
make use of the "incompressibility assumption" also for the multifluid case here.

Since we in addition anyway have to treat isodensity conditions, i.e. n  ne  ni, and
do not allow for electric currents by requiring co-convection of electrons and ions
requiring U  U e  U i , one can start the business here with a solution for U taken from
a joint flow potential   e,i that only takes care of an acceptable fit of the resulting
large-scale streaming configuration to the standard heliospheric boundary conditions: i.e.
radial outflow at small solar distances r  L and a homogeneous downwind flow at large
solar distances r  L (with L denoting the heliopause distance). Thus one can start from
the following streaming potential (see e.g. Fahr and Fichtner, 1991):

e,ir    i UISL  rPlcos 
l1


Al
r Pl1cos   #   

where Plx are Legendre polynomials of the order "l" , r  r/L is the normalized radial
distance from the Sun and UIS denotes bulk velocity of interstellar plasma relative to the
Sun, i.e. the motion of the solar system relative to the local interstellar medium.

From this streaming potential one derives, when hereby keeping only to the first order
in l, i.e. l  1, the following streaming configuration shown in Figure 1.
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Figure 1: Heliospheric streamline configuration derived from a joint streaming
potential e,ir

Keeping only to the first Legendre polynomial l  1 one can derive from the
streaming potential the following simpler solution (i.e. Parker‘s solution, Parker, 1963):

U2r  
IS
i UIS2 1  2 z

r3  1
r4 

where r2  z2  y2 is the radial distance from the Sun, and the normalizations have
been carried out with the heliopause stand-off distance L given by Fahr, Fichtner,
Neutsch (1990) in the form:

L2  1
2

i0U0
ISUIS

i0U0
2

KMSHPIS
r0

2

where i0 and U0 denote mass density and bulk velocity of the solar wind at a
reference distance r0  rSH (position of the termination shock), IS , UIS and PIS are the
mass density, the bulk velocity and the total pressure of the interstellar medium, and
KMSH is the so-called pressure adaptation function which for general solar wind Mach
numbers MSH is given by the following expression (Fahr, Petelski, Ripken, 1981):

KMSH 
  1MSH

2

2MSH
2    1

 
4MSH

2  2  1

  12MSH
2 /1

where   5/3 denotes the polytropic index. This above expression is more
complicated than the one given by Axford (1971) , but the latter one is only valid for very
high Mach numbers MSH  10, while here we want to apply this function to more realistic
cases of the actual solar wind termination shock according to Voyager-2 observations
with 3  MSH  6 (Richardson et al., 2008) with compression ratios of s  2.8 yielding
adaptation values of K3  1.08.
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where i0 and U0 denote mass density and bulk velocity of the solar wind at a
reference distance r0  rSH (position of the termination shock), IS , UIS and PIS are the
mass density, the bulk velocity and the total pressure of the interstellar medium, and
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where   5/3 denotes the polytropic index. This above expression is more
complicated than the one given by Axford (1971) , but the latter one is only valid for very
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where r2  z2  y2 is the radial distance from the Sun, and the normalizations have
been carried out with the heliopause stand-off distance L given by Fahr, Fichtner,
Neutsch (1990) in the form:

L2  1
2

i0U0
ISUIS

i0U0
2

KMSHPIS
r0

2

where i0 and U0 denote mass density and bulk velocity of the solar wind at a
reference distance r0  rSH (position of the termination shock), IS , UIS and PIS are the
mass density, the bulk velocity and the total pressure of the interstellar medium, and
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where   5/3 denotes the polytropic index. This above expression is more
complicated than the one given by Axford (1971) , but the latter one is only valid for very
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4. A consistent two-fluid thermodynamics

The counterintuitive phenomenon suggested by equation (??) may for sure appear a
bit controversial and embarassing, hence for more clarification of this point, we now look
at this situation from a slightly different view, following the standard thermodynamical
procedure which states that the work done by the pressure at a change of the co-moving
plasma volume V is reflected by an associated change of the internal energy densities
i,e,w of that volume. This, when allowing for multi-fluid plasmas, requires that in the Solar
Rest Frame (SRF) the following equation has to be fulfilled

PePi dVds 
d
ds iewV   #   

where V , as explained in Fahr and Dutta-Roy (2019), denotes the co-moving plasma
volume on the streamline, i.e. a fluid volume that locally moves with the plasma bulk
velocity U . Hereby the indices "i,e,w" indicate ion- or electron-, or wawe- related
quantities, e.g. as pressures Pi,e or internal energy densities i,e of ions or electrons, or
energy densities of a self-sustained, co-convected turbulent wave field, respectively, like
compressive or Alfvén turbulences with Alfvén velocities vA small compared to bulk
velocities U.
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The counterintuitive phenomenon suggested by equation (??) may for sure appear a
bit controversial and embarassing, hence for more clarification of this point, we now look
at this situation from a slightly different view, following the standard thermodynamical
procedure which states that the work done by the pressure at a change of the co-moving
plasma volume V is reflected by an associated change of the internal energy densities
i,e,w of that volume. This, when allowing for multi-fluid plasmas, requires that in the Solar
Rest Frame (SRF) the following equation has to be fulfilled

PePi dVds 
d
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where V , as explained in Fahr and Dutta-Roy (2019), denotes the co-moving plasma
volume on the streamline, i.e. a fluid volume that locally moves with the plasma bulk
velocity U . Hereby the indices "i,e,w" indicate ion- or electron-, or wawe- related
quantities, e.g. as pressures Pi,e or internal energy densities i,e of ions or electrons, or
energy densities of a self-sustained, co-convected turbulent wave field, respectively, like
compressive or Alfvén turbulences with Alfvén velocities vA small compared to bulk
velocities U.

In a first view, and under standard plasma conditions, it may be selfsuggestive that in
the solar rest frame the change of the ion pressure Pi is responsible for the change of
the plasma momentum flow, evidently connected with the bulk motion U of the ion mass
density  i  Mni  Mn. Consequently this physical context should be formulated in the
following form:

dPi
ds   dds n M2 U

2   #   

where ds  Usdt denotes the line element along the streamline of the plasma flow.
In the unusual case studied here, however, that the electron pressure Pe would

dominate over the ion pressure, this pressure Pe would do an analogue job in influencing
the momentum flow of the plasma, i.e. of the ions, according to:

dPe
ds   dds n M2 U

2   #   

This for example would then evidently mean that a corresponding, additional term on
the right side of Equ. (3) of Fahr and Dutta-Roy (2019) would be needed that takes into
account the action of the electron pressure at influencing the momentum flow of the
plasma. In view of the upper equation and the expected decrease of the bulk velocity U
along streamlines downstream from the termination shock (see dynamic models used by
Nerney et al., 1995, Fahr and Fichtner, 1991, Fahr et al., 2016, or by Voyager
observations presented by Decker et al., 2012, or Boschini et al., 2019) would have the
counter-intuitive effect of even increasing the dominant electron pressure as cause of a
corresponding decrease of the plasma bulk velocity U with dU/ds  0. Consequently the
question seems justified: What in fact does one know safely of the plasma bulk speed
behaviour downstream of the shock?

3. Modelling of the coupled ion-electron flow

To model the plasma flow downstream of the termination shock usually the
approximation of a potential flow has been used (see early work by Parker, 1963, or later
by Fahr and Neutsch,1983, Fahr and Scherer, 1983, Nerney et al.,1991, Fahr and
Fichtner, 1991). This theoretical approach, namely to derive the flow field as a gradient
of a flow potential according to U  r is possible for a low Mach number flow
M  0.1 of a one-fluid plasma, since this kind of flows behave as nearly incompressible.
Such a potential flow approximation thus is viable for an incompressible one-fluid
plasma, i.e. with dn/ds  0. But when applied to the heliospheric two-fluid plasma system
with even pressure-dominant electrons would then bring up a counter-intuitive result:
Namely that in the heliosheath regions downstream from the upwind termination shock,
where the expected bulk velocities according to such standard models decrease from
about 130km/s at the termination shock to roughly 0 km/s at the heliopause (e.g. see
Nerney et al., 1991, or Figure 3 in Fahr et al., 2016), the electron pressures should, in
reaction to that, continue to increase even more in these regions towards the
heliopause, since they had to reflect the loss of momentum flow.

This strange result, however, one may think, is due to the exaggerating assumption
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tities, e.g. as pressures Pi,e or internal energy densities ϵi,e of ions 
or electrons, or energy densities of a self-sustained, co-convected 
turbulent wave field, respectively, like compressive or Alfvén tur-
bulences with Alfvén velocities vAsmall compared to bulk veloc-
ities U.

Hereby the Alfvénic turbulence spectrum W(k) as function of the 
wave number k is normalized such that ϵw = ∫-∞

+∞ W(k)dk represents 
the local energy density of the turbulence. In this respect we un-
derstand the thermodynamic action in its more completed form, 
namely also as that work done at a change of the fluid volume ∆V 
which partly reappears as equilibrium turbulence energy density 
dϵw.The latter as such also drives the energy diffusion of ions and 
electrons, i.e. the redistribution of energies between ions and elec-
trons.

Somehow here with we follow a little bit the idea proposed by 
Fisk and Gloeckler for the inner heliosphere that energetic ions 
under resonant interaction with ambient compressive turbulences 
can enter into a quasi-equilibrium state with saturated power-law 
distributions (i.e. (-5) -power law tails!) and Kolmogorov-like 
turbulence spectra [20,21]. That means the thermodynamics of 
this wave-particle system also includes a consistent form of "fro-
zen-in" wave fields. This means we take into account not only the 
facts that in the SRF (Solar Reference Frame) the ion energy den-
sity is given by ϵi = nMU2/2+(3+2π)Pi while the electron energy 
density only is given by ϵe = (3+2π)Pe (n.b.: energy of the bulk mo-
tion of the electrons is negligible with respect to that of the protons 
according to the factor (me/M)), but also that an equilibrium energy 
density ϵw of turbulences is co-convected with the plasma bulk.

What concerns the change of turbulence energies ϵw  per streamline 
element ds due to the action of velocity space diffusion of elec-
trons and protons, assuming that the change in respective particle 
energies is due to a corresponding negative change in the wave 
energies, one can find from Equ. (3) in Fahr and Dutta-Roy [12].

Where Di,vv and De,vv denote velocity-space diffusion coefficients 
of ion and electrons, respectively. Assuming now that both these 
diffusion coefficients have the form                                                                
one obtains from the upper equation after solving the necessary 
integrals (see Equ. (11) of Fahr and Dutta-Roy) the following final 
result [12].

Taking these things together with the earlier relations (i.e. Equ. 
(??)) one finally then obtains the following net equation:

When furthermore being prepared for the situation that the elec-
tron pressure competes with the ion pressure, i.e. Pe≃Pi, will bring 
us to the following equation:

When additionally recognizing here that for an incompressible 
flow, as given here in the case of a strongly subsonic flow, the 
comoving plasma volume then is represented by the following re-
lation ΔV = ΔV0. (U0/U)and consequently the above equation dis-
plays into the form [12].

which further develops into:

and furthermore yielding:

Which finally for U >0 (i.e. excluding the stagnation point) leads 
to:

and after replacing ϵi and ϵe one finds:

Boundary conditions at the termination shock
When looking at the upper differential equation it may naturally be 
asked: What are the boundary conditions at the termination shock 
from which the integration of the upper differential equation must 
be started? Denoting the relevant quantities with suffixes "0", one 
would thus have to determine: Pe,0, Pi,0, ϵwi,0,  and U0. Amongst 
those the easiest to define perhaps is the downstream bulk velocity 
U0 which according toVoyager-2 data is found with U0=130km/s 
or a dynamic pressure of ϵdyn =1/2ρiU0

2= 28fPa[6,15,22].

The total proton pressure, including pick-up ions, is given by these 
latter authors with a value of Pi,0=160fPa. Following Fahr, Siew-
ert, Fahr and Verscharen the electron pressure Pe,0 compared to  
should be higher by about a factor of 2. 5, and according to the 
electron relaxation process by the Bunemann instability with a 
branching ratio of 1-to-1 on the downstream side should be about 

Hereby the Alfvénic turbulence spectrum Wk as function of the wave number k is
normalized such that w  

Wkdk represents the local energy density of the
turbulence. In this respect we understand the thermodynamic action in its more
completed form, namely also as that work done at a change of the fluid volume V which
partly reappears as equilibrium turbulence energy density dw. The latter as such also
drives the energy diffusion of ions and electrons, i.e. the redistribution of energies
between ions and electrons.

Somehow herewith we follow a little bit the idea proposed by Fisk and Gloeckler
(2006, 2007) for the inner heliosphere that energetic ions under resonant interaction with
ambient compressive turbulences can enter into a quasi-equilibrium state with saturated
power-law distributions (i.e. (-5) - power law tails!) and Kolmogorov-like turbulence
spectra.That means the thermodynamics of this wave-particle system also includes a
consistent form of "frozen-in" wave fields. This means we take into account not only the
facts that in the SRF (Solar Reference Frame) the ion energy density is given by
i  nMU2/2  3/2Pi while the electron energy density only is given by e  3/2Pe
(n.b. : energy of the bulk motion of the electrons is negligible with respect to that of the
protons according to the factor me/M ), but also that an equilibrium energy density w
of turbulences is co-convected with the plasma bulk.

What concerns the change of turbulence energies w per streamline element ds due to
the action of velocity space diffusion of electrons and protons, assuming that the change
in respective particle energies is due to a corresponding negative change in the wave
energies, one can find from Equ. (3) in Fahr and Dutta-Roy (2019) that:

d
ds wi  we  4

3U M  v2dv 1
v2


v v2Di,vv v fi

 m  v2dv 1
v2


v v2De,vv v fe   #   

where Di,vv and De,vv denote velocity-space diffusion coefficients of ion and electrons,
respectively. Assuming now that both these diffusion coefficients (see Kallenbach et al.,
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differential equation must be started? Denoting the relevant quantities with suffixes "0" ,
one would thus have to determine: Pe,0 , Pi,0, wi,0, we,0 and U0. Amongst those the
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equal to the energy density of the whistler wave power ϵwe,0 [7,8].
Based on a similar branching ratio at the relaxation of the ener-
getic protons (PUI‘s) we could most likely assume the Alfvenic 
wave energy density ϵwi,0 as being about equal to the total proton 
pressure, i.e. Pi,0≃ϵwi,0. Therefore, since not equipped with any bet-
terknowledge, we start with the following list of boundary values:

Not knowing anything better, we may also assume here that the 
velocity space diffusion coefficients De,0 and Di,0 are related to each 
other, just as the energy densities of the responsible wave fields 
are. Hence, we assume:

ϵwe,0/ϵwi,0=400/160 ≃ De, 0/Di,0

With these boundary values we now would have to start the inte-
gration of the above system of coupled differential equations.

The Total Pressure of the Turbulence-Free Plasma
When neglecting the involved turbulent wave energy densities, i.e. 
setting  ϵwi= ϵwe = 0, one would remain instead with Equ. (??) , with 
the following equation:

which, introducing the total plasma pressure by Π =Pe+Pi, would 
lead to a differential equation like:

If one now keeps in mind, the assumption of incompressibility 
made for this derivation (See Equ. (AA), then this elucidates that 
the above equation with                      simply states that the stream-
line derivative of the total pressure is given in the form:

leading to:

and finally yielding as the "turbulence-free" solution for the total 
pressure:

where the constant C has to be evaluated at the line element s =s0 
at the termination shock and is given by the following expression:

Hence the final solution of the total plasma pressure is given in 
the form:

So far, for the turbulence-free case, one finds the solution for the 
total pressure  as the above function of the space coordinate s in 
the form Π = Π(U(s)).

If this equation would formulate the only physical requirement, 
then it would clearly state that a decrease of the bulk velocity U(s) 
with increase of the shock distance s ≥ s0 should necessarily invoke 
an increase of the total pressure Π(s), while not expressing clearly 
which of the pressures, Pi or Pe, does increase by how much. But 
to take this conclusion as the full truth, one should be sure that 
besides this upper condition for the total pressure Π there do not 
exist other independent conditions that have to be fulfilled for the 
two pressures Pe and Pi separately.

Conditions for the Single-Fluid Pressures
However, looking into the work published by Fahr and Dutta-Roy 
[12]. one may notice that there a pressure transport equation has 
been developed which separately describes how the electron pres-
sure develops under multiple, energetically relevant physical pro-
cesses, like magnetic moment conservation, whistler-wave driven 
velocity diffusion, and convection. The above considerations now 
have to be combined with their other terms in the pressure trans-
port equation (see Equ. (14) in Fahr and Dutta-Roy) [12]. For the 
electron pressure as function of the streamline coordinate s one 
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ions the ion-Alfvén wave-driven velocity diffusion is taken into 
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Voyager-2 data is found with U0  130km/s (see Boschini et al., 2019, or Decker et al.,
2012) or a dynamic pressure of dyn  1

2 iU0
2  28fPa (see Rankin et al., 2019).

The total proton pressure, including pick-up ions, is given by these latter authors with a
value of Pi,0  160fPa. Following Fahr and Siewert (2015) and Fahr and Verscharen
(2016) the electron pressure Pe,0 compared to Pi,0 should be higher by about a factor of
2.5 , and according to the electron relaxation process by the Bunemann instability with a
branching ratio of 1-to-1 on the downstream side should be about equal to the energy
density of the whistler wave power we,0. Based on a similar branching ratio at the
relaxation of the energetic protons (PUI‘s) we could most likely assume the Alfvenic
wave energy density wi,0 as being about equal to the total proton pressure, i.e. Pi,0
 wi,0. Therefore, since not equipped with any better knowledge, we start with the
following list of boundary values:

dyn  1
2 iU0

2  28fPa
Pi,0  160fPa
wi,0  160fPa
Pe,0  400fPa
we,0  400fPa

Not knowing anything better, we may also assume here that the velocity space
diffusion coefficients De,0 and Di,0 are related to each other, just as the energy densities
of the responsible wave fields are. Hence we assume:

we,0/wi,0  400/160  De,0/Di,0

With these boundary values we now would have to start the integration of the above

system of coupled differential equations.
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which, introducing the total plasma pressure by   Pe  Pi, would lead to a
differential equation like:
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If one now keeps in mind the assumption of incompressibility made for this derivation

(see Equ. (AA), then this elucidates that the above equation with 23
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 simply
states that the streamline derivative of the total pressure is given in the form:
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and finally yielding as the "turbulence-free" solution for the total pressure:

s  C/Us
46
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where the constant C has to be evaluated at the line element s  s0 at the termination
shock and is given by the following expression:
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Hence the final solution of the total plasma pressure is given in the form:
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So far, for the turbulence-free case, one finds the solution for the total pressure  as
the above function of the space coordinate s in the form   Us.

If this equation would formulate the only physical requirement, then it would clearly
state that a decrease of the bulk velocity Us with increase of the shock distance s  s0
should necessarily invoke an increase of the total pressure s, while not expressing
clearly which of the pressures, Pi or Pe, does increase by how much. But to take this
conclusion as the full truth, one should be sure that besides this upper condition for the
total pressure  there do not exist other independent conditions that have to be fulfilled
for the two pressures Pe and Pi separately.

7. Conditions for the single-fluid pressures

However, looking into the work published by Fahr and Dutta-Roy (2019) one may
notice that there a pressure transport equation has been developed which separately
describes how the electron pressure develops under multiple, energetically relevant
physical processes, like magnetic moment conservation, whistler-wave driven velocity
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state that a decrease of the bulk velocity Us with increase of the shock distance s  s0
should necessarily invoke an increase of the total pressure s, while not expressing
clearly which of the pressures, Pi or Pe, does increase by how much. But to take this
conclusion as the full truth, one should be sure that besides this upper condition for the
total pressure  there do not exist other independent conditions that have to be fulfilled
for the two pressures Pe and Pi separately.

7. Conditions for the single-fluid pressures

However, looking into the work published by Fahr and Dutta-Roy (2019) one may
notice that there a pressure transport equation has been developed which separately
describes how the electron pressure develops under multiple, energetically relevant
physical processes, like magnetic moment conservation, whistler-wave driven velocity
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physical processes, like magnetic moment conservation, whistler-wave driven velocitydiffusion, and convection. The above considerations now have to be combined with their

other terms in the pressure transport equation (see Equ. (14) in Fahr and Dutta-Roy,
2019). For the electron pressure as function of the streamline coordinate s one thus finds
the following completed pressure transport equation for electrons:
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where in the upper form of the pressure transport equation it has also now newly been
taken into account that the change of the electron pressure is also influenced by the bulk
velocity change due to the action of the partial pressure via the ratio e  Pe/.

As evident, a similar transport equation one has to expect for the protons in the
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where, instead of electron-whistler wave diffusion, in case of ions the ion-Alfvén
wave-driven velocity diffusion is taken into account.

In case of the actual heliosphere (see e.g. Rankin et al., 2019), when comparing
heliospheric sound velocities cS with Alfven velocities cA yielding a ratio of cs/cA  330/39,
one can tacitly get rid of the first terms on the right-hand side of the above differential
equations (:::) and (:::), and thus the effects of the frozen-in magnetic fields connected
with the conservation of magnetic particle moments can safely be neglected. If also the
diffusion coefficients De0 and Di0 could be assumed to vanish (i.e. a turbulence free
plasma!), then the upper two differential equations can be simply added and lead to the
solution of the total pressure  which was already found earlier in the form
s  s0  Us0/Us 46

3 . If, however, turbulent wave-fields are becoming
thermodynamically relevant, then this solution can not be used, but the relevant
consistent solution in that case must be found from the more complicated differential
equation (???).

8. The solution for the bulk plasma flow

Taking Parker‘s solution for the postshock solar wind bulk velocity Us (i.e. l  1 see
Equ.(??)) we have:
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where the positive z  axis, according to our convention here, is oriented into the tail
direction. Evaluating, however, here U on the axial upwind streamline (i.e. anti-tailword)
with z  r  s , we thus obtain:
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where now the streamline element s  s/L is normalized by the stand-off distance L .
One can see, that exactly on the upwind axis at s  L (i.e. s  1; at the heliopause!) from
Parker‘s solution one finds Us  L  0 which in view of the relation found above
s  s0  Us0/Us 46

3 would imply s  L  .
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In case of the actual heliosphere, when comparing heliospheric 
sound velocities cS with Alfven velocities cA yielding a ratio of cs/
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fects of the frozen-in magnetic fields connected with the conserva-
tion of magnetic particle moments can safely be neglected. If also the 
diffusion coefficients De0 and Di0 could be assumed to vanish (i.e. a 
turbulence free plasma!), then the upper two differential equations can 
be simply added and lead to the solution of the total pressure Π which 
was already found earlier in the form 
If,however,turbulent wave-fields are becoming thermodynamically 
relevant, then this solution cannot be used, but the relevant consistent 
solution in that case must be found from the more complicated differ-
ential equation (???).

The Solution for the Bulk Plasma Flow
Taking Parker‘s solution for the postshock solar wind bulk veloci-
ty U(s) (i.e. l = 1see Equ.(??)) we have:

where the positive z-axis, according to our convention here, is ori-
ented into the tail direction. Evaluating, however, here U on the 
axial upwind streamline (i.e. anti-tail word) with -z = r = s, we 
thus obtain:
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standoff distance L. 

One can see,that exactly on the upwind axis at s = L (i.e. s̅ = 1; at 
the heliopause!)from Parker‘s solution one finds U(s = L)=0 which 
inview of the relation found above                                        
wouldimply 

At the stagnation point, however, the pressure of the heliospheric 
plasma should just compensate exactly the finite outer, interstellar 
pressure Π(s = L) = ΠIS. This would allow for an effective bulk 
velocity U(s = L) near the stagnation point (i.e. triple point of a 3-d 
flow! see Baranov et al) [23]. according to,      

or to state it in Parker-conformal mathematics by a minimum dis-
tance  given through [23].

For the bulk velocity derivative with respect to s we find:

and the term needed in the pressure transport equations:

Figure 3: Plasma bulk velocity (blue) and its deceleration (yellow) 
along the stagnation line as function of the normalized distance s/L

Figure 4: Total pressure Π(s)as function of distance s/L on the 
stagnation streamline for the turbulence-free plasma
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where, instead of electron-whistler wave diffusion, in case of ions the ion-Alfvén
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Figure 3: Plasma bulk velocity (blue) and its deceleration (yellow) along the
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Numerical Integration of the Completed Set of Differen-
tial Equations for the Turbulent Plasma Flow
Allowing for turbulences and the associated wave energy densities 
ϵwi and ϵwe of the turbulence fields the completed thermodynamics 
of the two-fluid plasma flow does require (see Equ. (???)):

Hereby now the change of the wave energy densities with the 
streamline element s is described by the following relation:

Furthermore, one has to respect and fulfill the two transport equa-
tions for the electron and the ion pressures separately given in the 
following forms:

and

where in the upper forms of the pressure transport equations it has 
been taken into account that the change of the electron/ion pres-
sure is also influenced by the bulk velocity change according to the 
action of the partial pressures by means of the ratiosΨe,i = Pe,i/
(Pe+Pi).

Neglecting further on the effect of the magnetic field change as 
already argued before (n.b.: cs≫cA), we can arrange the two upper 
analogous equations for Pe and Pi in the following forms yielding 
the change of the partial pressures per step ds along the streamline 
in the form:

Hereby the functions U and dU/ds are given along the upwind 
streamline as known functions of s in the form:

Hence one obtains for the numerical integration the following four 
differential equations:

I:

with the following additional relations to be simultaneously re-
spected:
II:

III:

and
IV:

Solutions of this system of coupled interdependent differential 
equations and the discussion of these solutions shall be presented 
in a forthcoming paper.

Conclusions
In earlier papers we have shown that classical monofluid MHD 
theory delivers straightforward and consistent MHD solutions for 
the magnetic field configuration and the plasma flow in the he-
liosheath, both for the upwind case, i.e. for streamlines approach-
ing the region near the heliopause stagnation point, and for the 
downwind case, i.e. for streamlines leading into the heliospheric 
tail region (see Figure 2, taken from Nickeler, Goedbloed, Fahr) 
[23,24]. Here in this article we, however, do now demonstrate, those 
monofluid solutions infact cannot be accepted as valid solutions of 
the actually given problem in the heliosheath region, because it 
turns out that electrons beyond the solar wind termination shock 
develop their own independent pressures which are comparable 
with or even dominant over the proton pressures. This requires an 
authentic two-fluid representation of the plasma flow system in the 
heliosheath. Under these conditions namely the electron pressures 
become a dynamically relevant quantity which strongly co-influ-
ences the resulting plasma dynamics, i.e. an authentic two-fluid 
treatment of the plasma flow is definitely required here.

In order to be able to describe electrons and protons as independent, 
but dynamically coupled fluids, one, however, has to pay a look on 
the kinetic level of the underlying plasma system and has to derive 
separate kinetic transport equations for electrons and protons de-
scribing the evolution of their kinetic distribution functions along 
streamlines. When converting these equations into pressure trans-
port equations anlogous to the method in Fahr and Dutta-Roy,[12]. 
one can arrive at independent solutions for the pressures of the 
electrons and the protons as functions of the streamline coordinate 

9. Numerical integration of the completed set of differential
equations for the turbulent plasma flow:
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where in the upper forms of the pressure transport equations it has been taken into
account that the change of the electron/ion pressure is also influenced by the bulk
velocity change according to the action of the partial pressures by means of the ratios
e,i  Pe,i/Pe  Pi.

Neglecting furtheron the effect of the magnetic field change as already argued before
(n.b.: cs  cA), we can arrange the two upper analogous equations for Pe and Pi in the
following forms yielding the change of the partial pressures per step ds along the
streamline in the form:
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functions of s in the form:
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s[12]. In this paper here, we give solutions for the MHD plasma 
flow under the special condition that the electron pressure either 
dominates over or competes with the proton pressure. This in 
fact is shown to be the case immediately downstream of the solar 
wind termination shock, but at decreasing plasma bulk velocities 
downstream from the shock the electron pressures fall down and 
finally are comparable or even lower than proton pressures. As we 
can show in this paper, this phenomenon can be controlled with an 
additional differential equation describing the total pressure Π = Pe + 
Pi and the actual and consistent turbulence energy densities  ϵwi and  
ϵwe  [25-49].

References
1.	 Chalov, S. V., & Fahr, H. J. (2013). The role of solar wind elec-

trons at the solar wind termination shock. Monthly Notices of 
the Royal Astronomical Society: Letters, 433(1), L40-L43.

2.	 Fahr, H. J., Fichtner, H., & Neutsch, W. (1990). The interstel-
lar wind as a cause for longitudinal solar wind asymmetries. 
Planetary and space science, 38(3), 383-394. 

3.	 Richardson, J. D., Kasper, J. C., Wang, C., Belcher, J. W., & 
Lazarus, A. J. (2008). Cool heliosheath plasma and decelera-
tion of the upstream solar wind at the termination shock. Na-
ture, 454(7200), 63-66. 

4.	 Scherer, K., Fichtner, H., & Lazar, M. (2018). Regularized 
κ-distributions with non-diverging moments. EPL (Europhys-
ics Letters), 120(5), 50002.

5.	 DeStefano, A. M., & Heerikhuisen, J. (2020). Analytic solu-
tion to charge-exchange source terms between Maxwellian 
and kappa-distributed velocity distributions in the helio-
sphere. Physics of Plasmas, 27(3), 032901.

6.	 Decker, R. B., Krimigis, S. M., Roelof, E. C., & Hill, M. E. 
(2012). No meridional plasma flow in the heliosheath transi-
tion region. Nature, 489(7414), 124-127.

7.	 Fahr, H. J., & Siewert, M. (2015). Entropy generation at 
multi-fluid magnetohydrodynamic shocks with emphasis to 
the solar wind termination shock. Astronomy & Astrophysics, 
576, A100. 

8.	 Fahr, H. J., & Verscharen, D. (2016). Electrons under the 
dominant action of shock-electric fields. Astronomy & Astro-
physics, 587, L1.

9.	 Perri, S., Bykov,A., Fahr, H.J., Fichtner, H., Fisk, L. and Gi-
acalone, J. (2022). Recent developments in particle accelera-
tion models: theory and observations, ISSI-Bern book: "The 
heliosphere in the Interstellar Medium", Space Science Re-
views.

10.	 Goedbloed, J., & Lifschitz, A. (1997). Stationary symmet-
ric magnetohydrodynamic flows. Physics of Plasmas, 4(10), 
3544-3564.

11.	 Usmanov, A. V., Goldstein, M. L., & Matthaeus, W. H. (2016). 
A four-fluid MHD model of the solar wind/interstellar medi-
um interaction with turbulence transport and pickup protons 
as separate fluid. The Astrophysical Journal, 820(1), 17.

12.	 Fahr, H. J., & Dutta-Roy, R. (2019). Concerning pressure and 
entropy of shock-accelerated heliosheath electrons. Monthly 

Notices of the Royal Astronomical Society, 484(3), 3537-
3543.

13.	 Nerney, S., Suess, S. T., & Schmahl, E. J. (1993). Flow down-
stream of the heliospheric terminal shock: the magnetic field 
on the heliopause. Journal of Geophysical Research: Space 
Physics, 98(A9), 15169-15176. 

14.	 Fahr, H. J., & Fichtner, H. (1991). Physical reasons and con-
sequences of a three-dimensionally structured heliosphere. 
Space science reviews, 58(1), 193-258.

15.	 Boschini, M. J., Della Torre, S., Gervasi, M., La Vacca, G., & 
Rancoita, P. G. (2019). The HELMOD model in the works for 
inner and outer heliosphere: From AMS to Voyager probes ob-
servations. Advances in Space Research, 64(12), 2459-2476. 

16.	 Scherer, K., & Fahr, H. J. (2009). Spatial variation of the pick-
up-proton-injection rate into the ACR regime at the 3D-he-
liospheric termination shock. Astronomy & Astrophysics, 
495(2), 631-638.

17.	 Fahr, H. J., & Heyl, M. (2020). Probing the thermodynamic 
conditions of the heliosheath plasma by shock wave propaga-
tion. Astronomy & Astrophysics, 642, A144. 

18.	 Fahr, H. J., Petelski, E. F., & Ripken, H. W. (1981). Weak 
shock termination of the solar wind. Solar Wind 4, 543.

19.	 Holzer, T. E., & Axford, W. I. (1970). The theory of stellar 
winds and related flows. Annual review of Astronomy and As-
trophysics, 8(1), 31-60.

20.	 Fisk, L. A., & Gloeckler, G. (2006). The common spectrum 
for accelerated ions in the quiet-time solar wind. The Astro-
physical Journal, 640(1), L79.

21.	 Fisk, L. A., & Gloeckler, G. (2007). Thermodynamic con-
straints on stochastic acceleration in compressional turbu-
lence. Proceedings of the National Academy of Sciences, 
104(14), 5749-5754.

22.	 Rankin, J. S., McComas, D. J., Richardson, J. D., & Schwad-
ron, N. A. (2019). Heliosheath properties measured from a 
Voyager 2 to Voyager 1 transient. The Astrophysical Journal, 
883(1), 101.

23.	 Baranov, V. B., Fahr, H. J., & Ruderman, M. S. (1992). Inves-
tigation of macroscopic instabilities at the heliopause bound-
ary surface. Astronomy and Astrophysics, 261, 341-347.

24.	 Nickeler, D. H., Goedbloed, J. P., & Fahr, H. J. (2006). Sta-
tionary field-aligned MHD flows at astropauses and in as-
trotails-Principles of a counterflow configuration between a 
stellar wind and its interstellar medium wind. Astronomy & 
Astrophysics, 454(3), 797-810. 

25.	 Baumjohann, W., & Treumann, R. A. (1997). Basic space 
plasma physics, Imperial coll. Press, London, 147-149.

26.	 Fahr, H. J. (2007). Revisiting the theory of the evolution of 
pick-up ion distributions: magnetic or adiabatic cooling. In 
Annales Geophysicae 25(12), 2649-2659. 

27.	 Fahr, H. J., Fichtner, H., & Scherer, K. (2007). Theoretical 
aspects of energetic neutral atoms as messengers from distant 
plasma sites with emphasis on the heliosphere. Reviews of 
Geophysics, 45(4). 

28.	 Fahr, H.J. and Siewert, M. (2007). Astrophys.& Space Sci-



     Volume 5 | Issue 2 | 435Adv Theo Comp Phy, 2022 www.opastonline.com

ence Trans., 3, 21.
29.	 Fahr, H. J., Chashei, I. V., & Verscharen, D. (2009). Injection 

to the pick-up ion regime from high energies and induced ion 
power-laws. Astronomy & Astrophysics, 505(1), 329-337. 

30.	 Fahr, H. J., & Fichtner, H. (2011). Pick-up ion transport under 
conservation of particle invariants: how important are veloci-
ty diffusion and cooling processes?. Astronomy & Astrophys-
ics, 533, A92. 

31.	 Fahr, H. J., & Siewert, M. (2013). The multi-fluid pressures 
downstream of the solar wind termination shock. Astronomy 
& Astrophysics, 558, A41.

32.	 Fahr, H. J., Richardson, J. D., & Verscharen, D. (2015). The 
electron distribution function downstream of the solar-wind 
termination shock: Where are the hot electrons?. Astronomy 
& Astrophysics, 579, A18. 

33.	 Fahr, H. J., & Fichtner, H. (2021). On ‘Isobaric and Isen-
tropic’Distribution Functions of Plasma Particles in the He-
liosheath. In Kappa Distributions (pp. 145-162). Springer, 
Cham. 

34.	 Gary, S. P., Feldman, W. C., Forslund, D. W., & Montgomery, 
M. D. (1975). Heat flux instabilities in the solar wind. Journal 
of Geophysical Research, 80(31), 4197-4203.

35.	 Gruntmann, M. (2015). J. Geophys. Res., Space Physics, 120, 
10/1002.

36.	 Hartle, R. E., & Sturrock, A. P. (1968). Two-fluid model of the 
solar wind. The Astrophysical Journal, 151, 1155.

37.	 Heerikhuisen, J., Pogorelov, N. V., Florinski, V., Zank, G. P., 
& Le Roux, J. A. (2008). The effects of a κ-distribution in the 
heliosheath on the global heliosphere and ENA flux at 1 AU. 
The Astrophysical Journal, 682(1), 679.

38.	 Kumar, R., Zirnstein, E. J., & Spitkovsky, A. (2018). Ener-
gy distribution of pickup ions at the solar wind termination 
shock. The Astrophysical Journal, 860(2), 156. 

39.	 Lazar, M., Fichtner, H., & Yoon, P. H. (2016). On the inter-
pretation and applicability of κ-distributions. Astronomy & 
Astrophysics, 589, A39. 

40.	 Leer, E., & Axford, W. I. (1972). A two-fluid solar wind mod-
el with anisotropic proton temperature. Solar Physics, 23(1), 
238-250.

41.	 McComas, D. J., Alexashov, D., Bzowski, M., Fahr, H., Heer-
ikhuisen, J., &et al. (2012). The heliosphere’s interstellar in-
teraction: No bow shock. Science, 336(6086), 1291-1293.

42.	 Olbert, S. (1968). in "Physics of the magnetosphere", Eds. 
D.L.Carovillano and J.F. McClay, Astrophys. Space Sci. Li-
braries, 10, 641.

43.	 Scherer, K., Fahr, H. J., Fichtner, H., Sylla, A., Richardson, J. 
D., &et al. (2018). Uncertainties in the heliosheath ion tem-
peratures. In Annales Geophysicae, 36(1),37-46.

44.	 Scherer, K., Fichtner, H., Fahr, H. J., & Lazar, M. (2019). On 
the Applicability of κ-distributions. The Astrophysical Jour-
nal, 881(2), 93.

45.	 Spitzer Jr, L., & Härm, R. (1953). Transport phenomena in a 
completely ionized gas. Physical Review, 89(5), 977.

46.	 Wu, P., Winske, D., Gary, S.P., Schwadron, N.A. and Lee, 
M.A. (2009). J. Geophys. Res., (Space Phys.), 114, 8103.

47.	 Zank, G. P., Heerikhuisen, J., Pogorelov, N. V., Burrows, R., 
& McComas, D. (2009). Microstructure of the heliospheric 
termination shock: Implications for energetic neutral atom ob-
servations. The Astrophysical Journal, 708(2), 1092.

48.	 Zieger, B., Opher, M., Tóth, G., Decker, R. B., & Richard-
son, J. D. (2015). Constraining the pickup ion abundance and 
temperature through the multifluid reconstruction of the Voy-
ager 2 termination shock crossing. Journal of Geophysical Re-
search: Space Physics, 120(9), 7130-7153.

49.	 Zirnstein, E. J., Heerikhuisen, J., & Dayeh, M. A. (2018). The 
Role of Pickup Ion Dynamics Outside of the Heliopause in 
the Limit of Weak Pitch Angle Scattering: Implications for 
the Source of the IBEX Ribbon. The Astrophysical Journal, 
855(1), 30. 

Copyright: ©2022 Hans J.Fahr. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited.


