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Abstract
A scalable artificial intelligence (AI) framework is the next critical development in harnessing the benefits of connected 
healthcare systems. Event-driven wireless sensor systems for pervasive health monitoring can collect data on a vast 
number of parameters under real-world conditions. The sensor data, when accumulated in large volumes longitudinally, 
can be used to develop more personalized management strategies for patients, as well as better inform and monitor 
public health treatments, care delivery strategies, and research investigations than traditional cross-sectional measures. 
Relatedly, the sensor systems can aid caregivers or practitioners in understanding the effects of medical procedures, 
new drugs, and behavioral modification. Interpretation of sensor data presents a considerable analytical problem. 
Pure numerical approaches by identifying linear mathematical relations with outcomes are not an efficient or effective 
strategy. This is because there is a considerable lag between the acquisition of data and the development of medical 
signals. A more efficient approach is to combine data science methods that take inspiration from how humans perceive 
data. 

In this paper, we exemplify the deployment of a scalable AI cloud platform for the real-time analysis of a wireless sensor 
system that captures human physiological data relevant to a number of therapeutic areas. Moreover, we develop an 
eventdriven cloud platform so investigators and clinicians can monitor their study 'dashboard' for changes and patterns 
when wearable health sensors capture significant events. Participants, who in the context of this paper are patients 
with a chronic disease and cognitive symptoms, will find comfort in monitoring and interpreting their real-time data in 
addition to maintaining patient engagement with the clinical research. 
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1. Introduction 
Connected healthcare is going through a speedy transformation as 
numerous technological advancements are offering major changes 
in the modern world. To date, the evolution of healthcare services 
is based on many standards. Healthcarerelated services are aided 
primarily by the use of IoMT [1]. Wireless sensor systems enable 
continuous monitoring of biological systems. Such systems can be 
effectively used to detect abnormal physical parameters and notify 
the cognitive mind about any changes during unusual events [2]. 
These devices feature a bio-processing module, low-energy Wi-
Fi and other networking enabled modem, and applicationoriented 
cloud server designs. As a developing tool, artificial intelligence 
and scalable intelligence are presently utilized along with signal 

processing to provide real-time alert characteristics for controlling 
patients during critical examinations. 

In today’s scenarios, the main issue faced in passive healthcare 
systems is the data; the regular generation of data is higher 
in current wireless sensor systems, and several practical and 
technological hazards impede monitoring each bit or object of 
every transmitting system at the instant. Based on the data, it 
is relatively complex to directly notify the healthcare services 
whenever an event is required. To handle this passive approach, 
we need a more intelligent methodology, i.e., the inclusion of 
artificial intelligence for personalized healthcare services [3]. The 
anticipation of the onset and tracking of the ending of unusual 
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events in medical data is another important aspect of connected 
healthcare systems. In upcoming connected healthcare systems, 
our study aims to forecast that the occurrence of events is possible, 
leading to the building of an event-driven AI-based surveillance 
scalable framework. This study aims to develop a rigid framework 
that will be established on smart systems and will serve consumers 
with uncompromised healthcare services for upcoming anticipatory 
medical systems. The objective of this study is to provide an event-
driven framework of AI technology for wireless connected sensor 
healthcare systems. 

2. Overview of Connected Healthcare 
2.1. Current Trends in Healthcare
In the developing field of connected healthcare, technology is 
increasingly relied on to integrate disparate medical practices into 
a system that treats the patient as a whole. The future of healthcare 
is expected to include the use of multiple data collection methods 
and artificial intelligence to provide accurate diagnoses and 
treatments. Healthcare itself is constantly changing [4]. Healthcare 
is now seen as an integrated system, where various healthcare 
professionals must communicate instantly to give the patient the 
most accurate diagnosis. In addition, there are shifting paradigms 
regarding the role of the patient in treatment planning. Patients are 
now seen as the most important stakeholders in their care. They are 
increasingly seen as the key stakeholders in their health plan, and 
their caregivers are seen as the most important stakeholders in the 
development of treatment plans. Long-term precision diagnosis is 
now possible, and this system has been used by healthcare systems 
in the United Kingdom over the past two years [5].

 "Connected healthcare" is the term that is being used today to 
describe this new healthcare model. This model is based on the 
concept of collecting real-world data from the patient and the 
clinician immediately following a patientdoctor interaction. This 
data will be used to evaluate the clinician's response to the patient's 
symptoms. The aim of this new healthcare model is to collect real-
world data about patients' symptoms by using electronic health 
records to obtain a clinician-reported patient health status. The 
data will also be used to monitor patients' health throughout their 
treatment plan and monitor patients' adherence to their treatment 
plan. This data may be used to generate patient-level outcomes, 
for example, using electronic health records to generate data to 
assess management adherence rates. The process is ongoing, 
and the initial results will have four analytics periods: baseline, 
pre-intervention, post-intervention, and long-term outcome [6]. 
During mixed-media sessions, stakeholders could raise queries 
and comment on the ongoing process. 

3. Wireless Sensor Systems in Healthcare 
Wireless sensor systems have already been introduced in 
healthcare, demonstrating the effective monitoring of physiological 
values, localization, and body area data collection. Ingestible and 
implantable biomedical sensors monitor vital parameters of the 
patient user’s body; mobile health applications track walking 
and lifestyle activity. Vital sign monitors continue to see rapid 
advances as data can be collected in real time [7]. Wireless sensor 

systems are also being used to monitor movements in a patient’s 
surgical opening, to imply how a surgeon’s physical performance 
slows during a long surgery. Most promising is the preventive use 
of wireless physiologic sensors, which can provide instant patient 
monitoring during states of health as well as illness. To do this, 
several types of biosensors can be introduced to sense temperature 
and perspiration during physical activity. These sensors can either 
be integrated into the body area network and can measure the 
active body temperature of a patient over an extended period, or 
can be attached to a mattress in the form of unobtrusive sensors 
that track the movement and position of the patient over time, and 
hence are easily scalable to a ward or hospital scenario [8]. 

Wireless is the key enabling technology of the future; it can provide 
flexible and scalable telemetry data collection infrastructure capable 
of seamlessly integrating with data storage, navigation, search 
and analysis backend infrastructure, or data management cloud 
services of hospitals, either directly or via enterprise integration 
middleware infrastructure. Key patient safety features inherent 
within industry standard technologies include patient identification 
and authentication, logic controls, audit trails, etc., protecting 
patient data through secure authentication mechanisms and virtual 
private networks [9]. The capability to collect and collectively 
analyze many event-driven wireless sensor data trends in pseudo 
realtime would seem to provide enormous value in a healthcare 
environment, not only for assessing the health and welfare of the 
patients in that environment but also in the e-health development 
arena in developing and quantifying future models of healthy 
behavior, especially self-management and emotional health. 
Several recent case studies demonstrate the efficacy of wireless 
sensors, especially applied to three main spaces: the hospital or 
clinic, the assisted living space, and the home/residential space. 

4. Artificial Intelligence in Healthcare 
Artificial intelligence (AI) has recently been increasingly 
developed in almost all areas of modern life, including healthcare. 
In healthcare, AI has an invaluable effect on the domains of 
diagnostics, treatment planning, and patient management. In 
more detail, AI tools enable health professionals and specially 
assigned computers to consolidate and analyze various data 
sets, including patient and disease information, healthcare 
dynamics, as well as medical literature and trial results [10]. AI's 
contribution to healthcare in recent years is the establishment of 
some technologies and tools, such as: a) Machine Learning, which 
provides electronic health data analysis to reveal patterns between 
people's genes, health habits, stress levels, and disease risks over 
time; b) Natural Language Processing (NLP), which enables the 
processing of human language intelligently and its integration with 
other technologies and analytical tools that can read and analyze 
medical and nonmedical records, as well as predictive analysis 
tools. 

The implementation of AI in healthcare has certainly provided 
many benefits, such as helping with more accuracy in making 
decisions based on data analysis and providing personalized 
treatment options for both individual conditions and policies 
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in healthcare organizations [11]. Despite these benefits, under 
certain conditions, AI can also have a negative impact, such as 
insignificant insights that lead to inappropriate treatments or 
marginalize individual patients or groups. Furthermore, AI in 
healthcare may face some important ethical issues that have to 
be addressed, namely the existence of a biased algorithm that 
reinforces unequal decisions and the occurrence of potential 
privacy violations through various forms of individual tracking 
techniques. Additionally, AI cooperates with some enabling tools 
and technologies, such as sensors in wireless systems, to build 
an intelligent healthcare environment using big data analytics for 
devices that are affordable and easy to use [12,13]. 

In summary, AI in healthcare has made an enormous and 
growing contribution to establishing cutting-edge functionality 
and solutions, including those for healthcare data deployment, 
advanced healthcare prediction algorithms based on accurate 
analysis of data and metadata, user incident management, and 
large cloud-based dissemination of services. AI in healthcare 
is also expected to inspire the next generation of personalized 
healthcare. Overall, however, more sophisticated and scalable AI 
frameworks are needed to provide easy accessibility to systems 
based on low-priced wireless sensors for event-driven healthcare 
diagnostics [14]. 

5. Proposed AI Framework for Event-Driven WBANs 
Wireless Body Area Networks (WBANs) have gained significant 
prominence and interest due to their valuable applications in 
healthcare. Sharing sensory data continuously through wireless 
interfaces is one of the ambitious targets of smart healthcare 
systems. The emerging healthcare systems are crowded with data 
and decisions in tough timeframes; hence, the sharing platforms 
should be intelligent [15]. However, WBANs sense the body states 
in an event-driven manner. Fast reconstruction and event detection 
time of the vital events provide timely healthcare to the patients, 
along with the least power consumption and thus network longevity 
in extreme healthcare disruption. The rapid and intelligent analysis 
of this data volume, variety, and velocity are thus essential to make 
timely decisions in healthcare. 

We considered a WBAN of n sensors, which transmits a set of 
vital signs to the centralized server in a concert. The core design 
of the AI framework mainly includes (1) Data Preprocessing and 
Analysis Module, (2) Intelligent Healthcare Analysis and Event 
Detection Module, and (3) Embedded Decision-Making Design for 
WBANs. The sensors employ a lightweight coherence algorithm. 
In addition to that, the proposed AI paradigm is used to make life-
critical decisions to assist healthcare operators or medical devices 
in making timely decisions in the volatile healthcare environment. 
An essential part of the complete cloud, edge, and fog is the 
lightweight analytical solution designed in this work. We provide 
the architectural and algorithmic designs to embed the proposed 
AI architecture in the on-chip environment [16]. We design a 
high-level architecture to show the integration of the lightweight 
analytical units in the streaming environment to analyze the events 
on the fly. We finally discuss designing the scalable and connected 

network system based on ED-WBAN, considering several leading-
edge architectural considerations in the WBAN-to-fog continuum, 
enhanced service, and edge intelligence.
 
The recent trend of employing AI in healthcare services has 
primarily focused on the cloud-based or offline processing 
paradigm. Few researchers have recently developed lightweight 
AI models suitable for running on computationally limited 
WBANs. It is also worth noting that WBAN communication is 
extremely energy constrained. Therefore, the quest to employ a 
computationally heavy AI framework in the WBANs is extremely 
challenging. All in all, the answer is not to employ AI in one aspect 
from the sensor to the cloud; rather, we believe that a progressive 
and scalable edge AI-assisted design is fundamentally essential in 
an event-driven WBAN-forward healthcare ecosystem. Various 
architecture performance metrics will be explained at the end of 
the design to highlight the effectiveness of an edge AIassisted 
event-driven WBAN [17]. The primary aim is to develop an AI-
driven event recognition system suitable for edge AI-assisted 
event-driven WBANs. The umbrella terminology AI encompasses 
various machine learning and deep learning algorithms. The 
proposed framework will entail using the core architectural 
AI design based on LSTM to preserve the temporal events in 
distributed WBANs. This ratification is sufficient to protect the 
edge AI from overfitting, and it is enough for a realistic WBAN 
size of 50–100. Hence, it is sufficiently efficient and lightweight to 
be employed at the WBAN side. 

5.1 Framework Design 
In the following, we present the design principles and rationale of 
the scalable AI framework for wireless sensor systems in event-
driven patient monitoring. This section will primarily address 
design choices related to system design and architecture, while the 
following part of our discussion focuses on the detailed explanation 
of the corresponding hardware and software components [18]. 
From a holistic view, the proposed framework will incorporate 
a specified architecture to facilitate interoperability with the 
wireless sensors and other software and hardware utilized for the 
presentation and pre/post-processing of the acquired sensor data. 
While the data is processed within the confines of an integrated 
cloud infrastructure, efforts are taken to reduce or remove any 
latencies that may occur when transferring required data to and 
from the cloud services. This, of course, is desirable within 
patient monitoring applications to ensure timing and performance 
predictability. Scalability is another key principle that guides our 
framework, due to the variety of environments in which patients 
might receive supported medical care, ranging from a single 
home environment to professional health care facilities, such as 
traditional hospitals. Moreover, the number of simultaneously 
supported patients might also vary significantly. 

Therefore, our framework is designed to be adaptable by adjusting 
its network size, processing resources, and other aspects without 
affecting the overall system design or reprogramming any of the 
processing devices from the networks up. This feature is achieved 
by designing our processing and computing infrastructure around 
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the underlying AI models projected for the specific task and 
networking constraints. The proposed framework depends on a 
complex scheduling system to regulate these AI models and the 
induction of corresponding system costs in terms of introduction. 
While the details are provided in the upcoming sections, the system 
caters to three performance crises, including computing resources, 
system fluctuations, and power. Ensure energy retention is essential 
in the context of battery-powered wireless sensor systems. 

The Data Flaw Model describes how the information flows 
through the underlying system, consisting of wireless sensors 

and algorithms [19]. The system receives external inputs, i.e., 
patient-related physiological signals to the wireless sensor system, 
from which point they flow through the corresponding model 
towards the cloud or the graphical user interface. Data processing, 
integrated processing, and wireless sensors or edge intelligence 
are thereby framed by the interconnection of models, which have 
been designed to satisfy scalability requirements. Ultimately, the 
events predefined by the models are then utilized to administrate 
the distribution of system models between the incorporation of 
wireless sensor systems and the cloud. 
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5.2 System Architecture 
The system architecture supporting the proposed AI framework 
for WBANs comprises three main components: data acquisition, 
processing, and communication systems. Data acquisition systems 
of WBANs are in continuous interaction and integration with edge 
data processing systems and the data communication systems. The 
processed and transformed vital signs, behavioral patterns, etc., are 
then provided to the healthcare authorities in the form of electronic 
health records via the healthcare information delivery system. 

Data Acquisition Systems: Data acquisition systems are in the form 
of WBANs, including sensors, a data-logging system contained in 
a worn smart device, and physiological signs' sensing wearables. 

The systems, including sensors and wearable devices, continuously 
monitor human activities and physiological parameters [20]. Each 
sensor/WBAN device continuously transmits physiological signals 
nonstop. The system is designed to collect and manage raw data 
from sensor systems and wearables and offers functionalities such 
as channel quality indicator estimation, synchronization, timing, 
and frequency offsets uncoded data demapping. The architecture 
can be considered building blocks with specific functionalities 
and interdependencies. However, the optimization and operation 
of all the individual components should guarantee the successful 
deployment and operation of the overall system. AI algorithms play 
a significant role within the system that extends the functionality 
of the raw data into protocols for healthcare decision-making. 
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An additional consideration is how the system can be interoperable 
with existing IT healthcare infrastructure. This requires hospitals 
to provide the necessary assets that interface people with these 
systems to provide healthcare services. One of the most significant 
challenges that need to be addressed when implementing this 
scheme is the following needed infrastructure. The full spectrum 
of the system architecture indicated is designed for practical and 
sustainable operation. 

6. Methodology 
We conducted extensive research to develop, verify, and validate the 
framework presented in the last section, aiming at implementation 
in a real-life hospital environment. For this, we performed an 
analysis to compare the performance of different AI frameworks 
using real measurements collected in the hospital environment. To 
ensure robust data collection and efficient analysis, we implemented 
the framework on a range of servers with varying configurations 
and across different IC platforms, including IoT platforms. Using 
a permissioned blockchain with members of the hospital staff as 
nodes, various staff and patients as endorsers, and a collection of 
records to the blockchain ledger, we implemented the predictive 
AI and additional dynamics of wireless sensor event data traffic in 
the form of a system event generator that simulates realistic bursty 
patterns of events, occupation of networks, and data that we see in 
the hospital environment. 

For the event generator, we used parallel analytics and a GPU 
database that allows us to set up the model for a customized 
and easily verifiable hospital environment. The data input to AI 
is presented in a database, and the data output is returned to a 
library that encapsulates our end-to-end predictive AI for analysis. 
Random sampling of the data values is presented as a percentage 
of occupancy of each column in all hospital beds in respective 
hospitals, with a mixing percentage of 70% private patients 
and 30% public patients. Our experimental setup allowed us to 
stream real-time synthetic and actual data feeds into the AI model, 

generating realtime alerts against real-time event data bursts. 

The stream messages are received by the database with the help of 
streaming and can be received by other software for cloud services. 
For production, we used a combination of technologies including 
a database, TensorFlow, Kubernetes with containerization, and 
GPU if required. Throughout our implementation, we ensure data 
integrity using a secure and hardened infrastructure protocol. Its 
major design principle is to create a clean, well-engineered network 
that allows only appropriate access to devices by protecting them 
and the networks from attacks. We are implementing our AI 
framework on a validated server in the form of a VM, with validated 
network connectivity and connectivity into the hospital production 
network, inclusive, however, of the firewall. Communication with 
network analytics from thousands of origins with no message loss 
is expected. 

6.1 Data Collection 
The aim of real-life data collection is to obtain data reflecting 
the wireless sensor readings and patient status, which could 
provide a sufficient amount of raw data to validate and compare 
the performance of AI algorithms. In this study, the data was 
obtained from a wireless sensor system designed for residential 
environments and used within care homes. The following data 
sources contribute to the dataset used in this research: patient data 
comprising basic demographics, medical history, existing medical 
conditions, and prescribed medication and therapy; sensor data, 
which includes wireless sensor readings for temperature, humidity, 
luminosity, passive infrared movement, electrical power usage, and 
door state, as well as the specific location of where the sensors are 
deployed around a property; and environmental data captured by 
external weather applications [21]. The datasets begin the moment 
a wireless sensor is installed, located to be inside or overlooking a 
care home’s bedroom. 

Data collection is event-driven, meaning that in the case of 
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the resident moving away from their bed, the dataset does not 
constantly record the position of the resident across the care 
home but rather only stores the time the resident went to bed, the 
exact time the resident woke up, as well as the sensors’ data that 
exhibited a change from ‘non-activity’ to ‘activity’. Being efficient, 
these data collection techniques require as little human influence 
and capital as possible. Informed consent was obtained from all 
subjects involved in the study, and we conducted all experiments in 
accordance with the institutional and national research committee 
protocol. Our AI algorithms require data cleaning and validation 
procedures to increase data quality. The validation comprises a 
series of statistical and exploratory checks on the raw data. Data 
cleaning is required to ensure that the results are accurate, efficient, 
and practical. 

Our hypothesis is that the dataset underpins and allows us to 
determine the efficacy and diagnostic capabilities of our proposed 
AI framework. The large amount of data collected throughout 
the duration of this study resulted in several hundred thousand 
features minus sample points. Our first issue was to correlate and 
match these readings across our several sources of collected data 
where necessary. Our second issue was to distribute the data into 
independent training sets and testing sets. In doing so, we ensured 
that our training and testing data were not truly unordered, but 
instead stratified such that we distributed the same percentage of 
class labels between the two groups. This distribution was set to 
a 70/30 percent split with all instances randomly ordered before 
being stratified. Each split constitutes a separate feature sample 
point in time. 

6.2 AI Event Correlation and Predictive Analytics 
AI event correlation and predictive analytics. In this subsection, 
we describe the methodologies that have been implemented for 
AI event correlation and predictive analytics capabilities, which 
are part of the four proposed functionalities. We show that AI 
techniques are capable of identifying important events and 
interpreting the importance of an event in sequence [22]. This 
capacity was also leveraged in the development of personalized 
digital twins of patients. 

Having this information, the event correlation has the necessary 
background information and data to enhance the capabilities 
for better reactions and decisions when the pre-described or 
unpredicted health event takes place. Major diagnoses are heavily 
related to predictive capabilities, as even simple methodologies 
can show a correlation among signals and patient performance. 
Thus, the expected patient culture accurately enables the medical 
staff and other supporting systems to react adequately and on time 
with a patient repositioning or medical intervention. However, in 
addition to the current health situation of the patient, the future 
patient situation is also significantly important to analyze. Using 
physical wireless sensors, smart ADL sensors, and internal EV 
assignment sensors, VPC applied to wireless sensors are special-
sampled patient data generators over a Wi-Fi indoor local platform. 

6.3 Evaluation Methods 
We evaluate the proposed algorithm against the following main 
criteria: functionality, performance, and reliability. The criteria 
pertaining to the functioning aspects of the AI-implemented 
IoT framework include system adequacy, data accuracy, 
clinical guidelines adherence, real-time behavior, adaptivity, 
and safetycritical aspects. The performance of the proposed 
AI framework is tested using quantitative measures such as the 
accuracy of the predictive analytics, response time, computational 
complexity, cost efficiency, simplicity, and overall satisfaction 
from the user. Our evaluation strategy is also complemented with 
a comparative analysis of the performance and functionalities 
of other related systems, based on the available information and 
specifications. Furthermore, we collected feedback from medical 
staff or healthcare professionals during some verification sessions, 
adopting a mix of semi-structured interviews, surveys, and focus 
group techniques. 

The proposed evaluation strategy provides a systematic validation 
of the AI-based event-driven healthcare service delivery. 
Functionality, known as quality in use criteria, measures if the 
proposed system is truly useful to a healthcare user. It is evaluated 
in both real-world data sets and simulated data using personalized 
models. Performance is the overall performance of the prediction 
algorithm and qualitative feedback on the software completeness 
and robustness of the system when random failures are applied 
to the system. This will grant enhanced software robustness and 
resilience to the system by automatically switching to a resilient 
mode of operation. 

7. Results and Discussion 
Our AI framework demonstrated increased classification accuracy 
and an improved area under the receiver operating characteristic 
curves over RNN and CNN architecture. This offers potential 
benefits in dealing with high-dimensional, nonstationary, and 
noisy data, as experienced by clinicians when monitoring a ward of 
patients. The proposed event-driven systems can therefore provide 
the tools for creating real-time wireless sensors for applications 
such as connected healthcare. The future of healthcare looks to 
be increasingly reliant on connected sensors. For instance, the 
length of time in which physiological data is recorded in anesthetic 
patients suffering severe infection is associated with in-hospital 
mortality. Current methods being developed to enable this involve 
using machine learning in the form of temporal convolutions to 
extract features from windows of physiological timeseries data. 
Here, we demonstrate the use of event-driven systems for robust 
statistics-based feature learning from phasic wireless signals. 
Using a disjunctive normal form, this feature set is combined 
across time to provide a measurement of the patient’s state that 
is invariant to the sensors’ event rates and can be used for ANS 
classification. 

We demonstrate the use of LMUs for feature learning because of 
their logarithmic event-time alignment and superior performance. 
The framework demonstrates an accuracy of 0.91 on 10-fold CV 
and 0.8 using an independent test dataset, faster response times, 
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and can distinguish changes in the ANS. The results suggest that 
in their separate domains, doctors and engineers can synergize to 
carry out excellent research. The combined expertise will provide 
elaborate and rigorous explanations for the results. This work 
focused on the development of a model that was trained and tested 
on data acquired in a lab. Future work will include the inclusion 
of more diverse covariate noise and a larger variety of recording 
environments to improve model validity. Moreover, models 

developed here will be tested on live recordings from different 
hospitals. In the end, an AI model could be tested in the ward 
environment; however, discerning the performance of the model as 
the nurse’s behavior would be an issue. To cope with these aspects, 
any future large-scale deployment of the model or any research 
involving patient interaction should be done in collaboration with 
healthcare professionals and policymakers to develop a system 
that is acceptable and useful. 
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8. Challenges and Limitations 
The main challenges and limitations are based on technical 
limitations due to the proposed AI framework and its 
implementation. Imagine, for example, spike count models using 
muscle activity sensors downstream for advanced models as 
applied in a closed-control approach. The biggest hurdle in the 
implementation of the AI framework could be data privacy in 
event-driven wireless sensor systems. In addition, people do not 
attend training or baseline measurements or drop out, which needs 
to be accounted for to avoid introducing data bias, which is an 
example of technical barriers. This project may be threatening 
for healthcare professionals if not implemented correctly. It could 
disturb the collaboration with other doctors during referrals or 
with other healthcare professionals involved in patient care. 

There might be limited or old data to use for setting digital twins. 
In an established place of technology, anxiety and the sheer 
resistance to work with novel technologies will limit data in some 
healthcare professionals, and thus putting a digital twin in their 
territory is not the best approach for informing patients' therapies. 
Some data are difficult to obtain or carry artifacts. Data can be 
missing, and missing data can result from interrupting the spikes 
in a recording session with spikes from another one. For instance, 
a patient would generate 5 minutes of data for training but could 
be interrupted after two minutes. In a clinical environment, an 

incomplete test would not qualify for allowing model training, and 
this lesser data is never applied in clinical studies or practice. Even 
when a patient completes an experiment following interruptions 
from another session, shifts in performance may be anticipated or 
considered. 

It might even differ from what was performed before the 
interruption—a variability that is feared for being contaminated. 
Using digital twin technologies in medicine has other limitations, 
including changes in daily care due to the insights provided by 
digital twins and the regulatory environment, which may make 
controlling the algorithms difficult. The introduction of a new 
technology into an existing infrastructure, such as clinics, will 
also change the workflow, which might make the adoption of the 
technology difficult. This is not an exhaustive list of limitations of 
the proposed AI framework and is rather based on the current state 
of the project. Ongoing research should identify more barriers first, 
which would then be addressed in effective collaboration with 
healthcare professionals. A strong focus on this initial step will 
make the later use of appropriate methodologies more restrictive, 
so that constraints can be properly examined. There is also a need 
to work closely with interested clinicians from the beginning. 
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9. Future Work and Conclusion 
9.1. Future Work
The AI algorithms we used in our system can be further advanced 
by making them more real-time friendly and enabling them to work 
with significantly less data. Besides, the sensor can be equipped 
with new peripherals and actuators while some applications 
require cameras and processing the image/video data for diverse 
medical and lifestyle-pattern-oriented analysis. Addressing these 
points are potential future collaborations among biomedical 
and digital healthcare experts, AI researchers, wireless sensor 
designers, and edge computing specialists. This also involves 
healthcare innovators who could offer large-scale and long-lived 
experimental studies and allow real-time performance concerning 
the concept of technology readiness. In the current context, we 
collaborate with a post-cardiacsurgery healthcare team to decide 
the critical actionable decisions for escalation regions that are 
required, as timely as possible. Effectively, large and diverse 
future work should conclude the adaptability of our concept and 
its performance across different venues, patient demographics, 
and lifestyles. It should also investigate safety procedures, data 
privacy, and regulatory terms to assure externalizing it to the 
broader society. 

9.2. Conclusion 
In this essay, we have considered the feasibility of advances in 
the field of AI systems to enable scalable administrations of 
healthcare using event-driven wireless sensor systems. Key strides 
have been made in the techniques of processing and eventing the 
data to the sensor nodes and underlying edge-compute network in 
terms of performance and energy used thereby. This approach has 
underlined that a comprehensive systems approach with sensors, 
edge computing, AI capability, and healthcare orchestration has 
the potential to allow augmented healthcare service in the future. 
We believe that the future of connected healthcare is patient-
centered, efficient, and data-driven, and by definition, it has to 
be personalized to be successful. While promising from an R&D 
perspective, the scalability and potential for utilizing such a system 
with population-wide requirements have yet to be tested in real-
world conditions. This requires public debate and supports further 
studies to better patient outcomes with proven results across many 
venues and different lifestyles. 
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