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Abstract
The relaxation time and the polarizability of molecules with dipole moment parallel to axis in a liquid crystal are considered by 
a model the Brown model. The solution of this system is obtained by numerical method. Modest analytic equations relaxation 
is proposed, agreeing one to appreciate the behavior of the system and expecting the polarizability for different value of the 
barrier and anisotropy parameters, are proposed. 
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Introduction 
Uniaxial nematic liquid crystals have the feature that the long axes 
of the molecules tend to be aligned on the average during a par-
ticular direction in order that during this phase we've axial sym-
metry that's the optical properties etc [1]. are cylindrically sym-
metric about this direction called the director. However, neither 
the mass centers nor the short axes are ordered [2]. Thus while the 
long axes of the molecules are aligned parallel to every other, the 
orientational distribution function is independent of the rotation-
al angle of the molecules about their long axes. The documented 
Maier-Saupe mean theory of the nematic liquid state with a mean 
field potential given by the second order Legendre polynomial of 
the angle between two long molecular axes then predicts a pri-
mary order phase change as a function of temperature from the 
isotropic to the uniaxial nematic state [3-5]. for all circumstances, 
old theoretical studies based on a generalization of Maier-Saupe 
theory to particles without an axis of symmetry [2,3,6] and nu-
merous experiments propose that a second phase (with an order 
one phase transition from the isotropic state to the uniaxial state 
followed at lower temperatures by a second degree phase transi-
tion to a completely different state which is called the biaxial state) 
exists [7-9]. In this phase, the axes of the short molecules also tend 
to be directed over long measures (although the centers of gravi-
ty remain in any direction unlike in the smectic phase, where the 
molecules are fixed [10] distributed with the centers of gravity po-
sitioned in layers) causing a phase with three directions on which 
three axes of molecules tend to align [1]. This physical state, can 
be described by organic molecules [9] extensible, and completely 
flat, is called [1,6] the biaxial nematic state. Such a biaxial phase 
has been reported in molecules in the shape of a very elongated 
bone and in the shape of an elongated bone [11,12]. They are also 
expected to appear in boomerang class molecules. In addition, a 

biaxial description has been observed in organic molecules which 
present in the form of platelets [9]. we know that the existence 
of the biaxial nematic phase was first theoretically predicted by 
Freiser from a generalization of Maier-Saupe theory to introduce 
molecular asymmetry, he did not introduce the famous order pa-
rameter to study the transition from uniaxial to biaxial [2]. This 
was done by Straley for the first time, he introduced no less than 
four order quantities to describe the global phenomenon of the sys-
tem by a mean field method where the molecular behavior is in a 
field potential describing l influence of the anisotropic solvent on 
such a special molecule [6]. 

In connection with this article, there is a significant number of 
theory related to this theme to find a solution of this same prob-
lem of the magnetic relaxation of fine ferromagnetic nanoparticles 
with a lot of potentials, even the biaxial [20, 24]. This solution was 
studied by Brown using Brownian motion because the underly-
ing dynamic (gyromagnetic) equation for the magnetization inside 
the particle (Gilbert-Landau-Lifshitz equation augmented by field 
of shape guaussian) can be translated as Langevin's equation, this 
equation is very similar to that used to study the relaxation of mol-
ecules in liquid crystals [24]. By calculating the mean and solving 
the gyromagnetic equation on its by solving the Fokker-Planck 
equation which translates it for the density function of the orien-
tations of the moment of the sphere, we can extract the statistical 
recurrence equations.

Langevin and Fokker-Planck equations
The orientation of a molecule in liquid crystals is translated by the 
non-inertial Debye model of a macromolecule in a field potential 
V (eg, [14-20]). The movement of the molecule is studied by the 
Euler angles [27], which give the position of the coordinate system 
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of the molecule (fixed body) xyz with respect to the benchmark 
of the laboratory XYZ. In relaxation problems, the quantities of 
interest are the means of the Wigner D functions defined as [27]

where dJ
MM (β)  is a function with different form, in Ref. [27].

If f (Ω) is function of Euler , the equation of Langevin f [Ω(t)] in 
the approximation of Debye is [20]

here λ(t)  is a torque the white noise forced by the warmth bath,   is 
the direction space, = δ/ δφ is an miniscule rotation vector, ω(t) is 
the angular rate, T is the temperature, k is Boltzmann’s constant, 
and D is the rotational dispersion tensor. We assume, for easiness, 
that the diffusion tensor D has only two different mechanisms Dxx 
=Dyy =D┴ and Dzz = Dǁ. This estimate is judicious for molecules, 
where Dxx≈ Dyy. Thus Dǁ and D┴ are the rotating diffusion con-
stants about the long and little axes of the molecule, individually. 
Equation (1) is a stochastic equation for which one must use the 
Stratonovich explanation [28] (see also [20], Section 2.3) of the 
average of the multiplicative noise term, as that reading constantly 
constitutes the mathematical idealism of the physical stochastic 
process of orientational relaxation in the noninertial limit. The 
complementary Fokker-Planck equation (in this instance named 
the Smoluchowski equation) for the function W (Ω,t)   is [20-23].

We comment that the Debye (i.e., noninertial rotational diffusion) 
model undertakes that the molecular dipole reorientation is a Mar-
kov process evolving in time as a sequence of small angular steps 
produced by crashes with the close molecules as well as under 
the result of torques inventing from the long range order of the 
liquid crystal. Since the Smoluchowski equation applies to robust 
dissipative coupling to the heat bath- the Debye theory continually 
delicately accepts that the dipolar molecule is stuck so strongly to 
the neighboring molecules (bath) that large jumps of the dipole 
direction are enormously unlikely. This giving to Fröhlich may be 
true in a number of cases but others may exist in which the oppo-
site (large jumps) is much more possible [29]. A dipolar molecule 
resolve then make many fences due to thermal anxiety over the po-
tential barriers unravelling it from another dipole direction through 
the time obligatory for a significant transformation in direction by 
sticky flow. Obviously this grips for solids where flow may be 
measured as totally absent; though it may also be predictable in 
liquids (such as liquid crystals) where the viscosity is so tall that 
flow is almost insignificant. Furthermore, together large and small 
jump transitions may be concurrently charitable rise to occasional 
large angle reorientations (with corresponding exponential relax-
ation times) of the dipole over many potential barriers. The large 
hedges and the longest lived relaxation mode which is associated 
with them may essentially be labelled by the over damped Kram-
ers leakage rate. We also comment that the mean field estimate has 
a limited area of applicability, as it ignores native order properties. 
In malice of this disadvantage, the mean field model is however 
easily imagined. Besides, it allows quantitative assessment of the 
dielectric parameters of a liquid crystal.

The classical model of Debye was used in [14-20] for the modest 
uniaxial anisotropy potential establishing the simplification of the 
Maier-Saupe theory to comprise dynamical belongings, namely,

where A is the anisotropy constant. Here, the dielectric reply, in-
cluding an infinity of relaxation modes, may be precisely repre-
sented by two styles, one of low frequency ascending from the 
occasional slow crossing of dipoles over the potential barrier gen-
erated by Equation (3) and one of high frequency on behalf of the 
infinity of fast near-degenerate decay processes associated with 
the small Markovian steps in each of the two potential wells ap-
proached as a single high frequency mode [19].

Though the supposition of an axially symmetric potential (3) rad-
ically abridges the analysis, the fallouts so obtained cannot, be 
practical to non-axially symmetric anisotropy, such as biaxial an-
isotropy. In command to attain the simplest possible description 
of the dynamical behavior of uniaxial probes in a biaxial liquid 
crystal phase, we consider the effective potential [23]

where                                      is the barrier height parameter,

                      , and λ  (or ∆) describes the biaxiality limit ( λ= 0 cor-
responds to a uniaxial nematic). The potential V is now considered 
by the two angles β and α, and not γ. We comment that the energy 
scape in uniaxial anisotropy Equation (3) is axially symmetric and 
is a unchanging equatorial ridge (zone) separating two polar mini-
ma and has no saddle points, on the other hand, biaxial anisotropy 
(4) produces azimuthally nonuniform energy deliveries with two 
saddle points (see Figure 1). A detailed discussion of the coeffi-
cients occurring in the biaxial potential and their picture in terms 
of order limits included of the nasty principles of matrix elements 
of the Wigner matrices is given in [21,23]. Similar problems such 
as biaxial molecules in a uniaxial phase [21, 30], where V is also 
given by Equation (4) with α replaced by γ , viz., [21]

Figure 1: Biax potential in the polar spherical coordinate [Eq. (4), 
σ = β]. (The azimuthal φ and polar ɡ angles of this system are re-
lated to the Euler angles  α and β as φ = α + π/2 and ɡ=β).
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and biaxial molecules in a biaxial phase [10], where V be contin-
gent on all three angles α, β, and γ, can be preserved in a similar 
manner. For real liquid crystal compounds the biaxiality parameter   
λ is of the order of 0.03÷0.2. For example, λ ~=   0.2 for nemat-
ic 4,4'-dimethoxyazoxybenzene (PAA) was projected from NMR 
data [21]. However, even for small values of λ ≈ 0.1 , the dynamics 
of the probe molecules strikingly depend on λ (see Sect. VI).

For ease, we shall reflect orientational relaxation of a molecule in 
a biaxial liquid crystal phase. We assume that the dipole moment   
is μ fixed along the long axis of the molecule so that spin of the 
molecule about this axis does not donate to the dielectric answer. 
Our object is simply to prove (using the nontrivial which may be 
comprehensive to the additional case of a dipole at an arbitrary an-
gle to the long axis) how precise solutions for the polarizability of 
a molecule affecting in the potential of Equation (4) can be got. In 
order to accomplish this we remark that the Fokker-Planck equa-
tion (2) can be explained by expanding W in Wigner’s D functions 
so springy an infinite hierarchy of differential-recurrence equa-
tions for the statistical moments [20-23]. The hierarchy of moment 
equations can also be got by be an average of the Euler equation 
(1) over its apprehensions without option to the Fokker-Planck 
equation ([20], Chapter 7). The following system of moment equa-
tions can be resolved by direct matrix diagonalization which in-
cludes scheming the eigenvalues and eigenvectors of the system 
matrix (e.g., Ref. 2) or by a computationally efficient matrix con-
tinued fraction method [19,20]. Here we practice the latter method 
to compute the polarizability xǁ (ω)  and relaxation time τǁ of mol-
ecules with dipole moment parallel to the long axis in the mean 
field biaxial potential given by Equation (4). Next we link these 
exact solutions with asymptotic estimations founded on the high 
damping Kramers’ escape rate theory [26] as adapted to rotation 
in nonaxially symmetric potentials by Smith and de Rosario [31], 
Brown [24], and Coffey et al. [32] (comprising a particular case of 
Langer’s general theory [33] of the decay of metastable states in 
multidimensional systems).

Longitudinal dynamic polarizability and relaxation times
Conferring to the theory of linear response (Ref. 20, Chapter 2), 
the change of the component of the dipole moment μ ‹cos β› (t)  
of an assembly of noninteracting polar rodlike molecules, when a 
minor external field E1, (μ• E1)/ kT << 1, practical along the Z axis 
has been swapped off at time t = 0, is specified by

Here

is the regularized equilibrium autocorrelation function of the com-
ponent of the dipol,                              is the polarizability, and the 
brackets       entitle the equilibrium average distinct as

(Z is the partition function). The correlation function Cǁ (t)  con-
trols the dielectric relaxation and permits one to assess the ac re-

sponse of the system to a small ac field because the polarizability
                                   assumed by [20].

Giving to Eq. (9), the behavior of χǁ (ω) is strong-minded by the 
time conduct of Cǁ (t). In order to describe quantitatively the time 
performance of Cǁ (t), one may officially present two time con-
stants. These are the integral relaxation (or correlation) time τǁ  dis-
tinct as the area under Cǁ (t), viz.,

and the relaxation time τǁ
ef defined by

(detailed info on the initial decay of Cǁ (t) in the time domain). The 
times τǁ and τǁ

ef so defined control the low and high-frequency parts 
of χǁ (ω) which may be exemplified by general properties of Fou-
rier transforms. We have in the exciting cases of very low (ω→0)   
and very high (ω→∞) frequencies:

The times τǁ and τǁ
ef may consistently be defined in terms of the 

eigenvalues (λk) of the Fokker-Planck operator LFP from Eq. (2) 
because Cǁ (t) may properly be printed as the separate set of reduc-
tion modes [20]

where             , so that from Equations. (10), (11), and (13)
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In other words, the inverse of the smallest nonvanishing eigenval-
ue closely approximates the correlation time τǁ in the low tempera-
ture limit. The approximate Eq. (16) is not valid for the effective 
relaxation time τǁ

ef when escape over a potential barrier is involved 
as the terms Ck λk with k ≠ 1 in Eq. (15) may give a significant con-
tribution to τǁ

ef with the result that τǁ
ef differs exponentially from λ1.

Matrix continued fraction solution
We compute numerically τǁ and χǁ (ω) using matrix continued frac-
tions as developed in Refs. 19 and 20. Since only two Euler angles 
β   and α are complicated, we can shorten the solution by noticing 
that                                                        where                  is the 
spherical harmonics distinct as [27].

the P1
m(x) are the linked Legendre functions, and the symbol means 

the conjugate, φ and ɡ are the azimuthal and polar angles of the po-
lar spherical coordinate system. Therefore the solution of the Lan-
gevin Equation (1) for the potential from Eq. (4) can be abridged 
to solving an infinite hierarchy of differential-recurrence equations 
for the statistical moments (equilibrium correlation functions)
                                                         [so that                               ]. By 
general formulae derived in Ref. 20, Eq. (7.6.1.32), one may get 
differential-recurrence equations for C1,m (t), viz.,

where                  is the characteristic (Debye) relaxation time for 
isotropic dispersion, n≥1, -n≤m≤n and the coefficients vnm , v±

nm                    
etc.

Equation (17) can be changed into the three-term vector recurrence 
equation 

where Cn(t)  are the column vectors arranged in an fitting way from
Cn,m(t), viz. 

C0(t)=0, and Q-
n, Qn, Q

+
n  are super-matrices. The exact matrix con-

tinued fraction solution of Eq. (18) for the Laplace transform 
                            is [20].

  

where the infinite matrix continued fraction  ∆n(s) is defined by the 
recurrence equation 

and I are the unit matrices of appropriate dimensions. The initial 
condition vectors Cn(0) in Eq. (19) may be evaluated in terms of   
∆n (0) [20] (see Appendix B). 
Consuming calculated Cn(s), one may estimate the time
 

as well as the spectrum of the correlation function    
and thus the polarizability from Eq. (9). Furthermore, one can also 
appraise the smallest nonvanishing eigenvalue λ1

 (and consequent-
ly the greatest relaxation time) from ([20], Chapter 2)

where the matrix S is given by

i.e., λ1 is the smallest nonvanishing eigenvalue of the matrix S.

The gain of the matrix continued fraction method is that it lets 
us to evaluate  λ1, τǁ, and χǁ (ω) for all values of the thermal and 
anisotropy energies. Thus, that method is an indispensable tool 
in approximating the accuracy of estimated analytic solutions for 
these parameters.

The gain of the matrix continued fraction method is that it lets 
us to evaluate  λ1, τǁ, and χǁ (ω) for all values of the thermal and 
anisotropy energies. Thus, that method is an indispensable tool 
in approximating the accuracy of estimated analytic solutions for 
these parameters.

Asymptotic formulas 
Noting the preceding remarks the behavior of λ1, τǁ and χǁ (ω) can 
willingly be understood in the low temperature limit, where the 
dielectric relaxation is determined by the decay mode associated 
with the smallest nonvanishing eigenvalue   which may be val-
ued in the high barrier limit, using the Kramers escape rate theory 
[26] in the so named middle to high damping limit in which the 
inertia of the particle is negligible. This is entirely consistent with 
disregarding the inertial term in the Euler-Langevin equation or 
using the Smoluchowski equation (2). We comment that the Kram-
ers escape rate theory in its original form describes the thermally 
activated escape of Brownian particles (with a standard separable 
and additive Hamiltonian consisting of the sum of the kinetic po-
tential energies) out of a 1 dimensional potential well then must be 
adapted to rotational motion with two degrees of freedom as occur 
within the present problem with the simplification that only the 
very high damping case is involved. Fortunately, this escape rate 
problem has effectively been solved within the context of mag-
netic relaxation; we may summarize as follows [31]. In magnet-

*
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ic relaxation although canonical equations exist the Hamiltonian 
which is that the sum of the anisotropy and Zeeman energies is 
generally nonseparable and two degrees of freedom namely the 
polar and azimuthal angles are always involved for non-axially 
symmetric potentials. Furthermore, the gyromagnetic term within 
the underlying Langevin equation of the method will enter into 
the escape rate formulas through the medium of a dimensionless 
damping parameter an involving the gyromagnetic ratio and there-
fore the dissipative coupling to the warmth bath. This parameter 
[31] essentially plays the role of the inertia of the particle within 
the Kramers escape rate problem for mechanical Brownian parti-
cles during a potential. Hence in magnetism [34], the three escape 
rate regimes (depending on the actual value of a) first identified by 
Kramers, namely, very low damping (VLD, where the escape rate 
is decided by the energy loss per cycle of the just about periodic 
movement of a particle at the saddle point of the potential), inter-
mediate to high damping (IHD, where the escape rate is dominated 
by friction) and a turnover region (where neither formula applies) 
will appear. The IHD formula for both spins and particles is just a 
special case of Langer’s general theory of the decay of metastable 
states (see Eq. (1.13.5.38) of [34] and (1.18.2.20) of [20]) which 
extends Kramers’ IHD calculations to nonseparable Hamiltonians 
and lots of degrees of freedom. Formulas for the escape rate for 
magnetic relaxation during a biaxial anisotropy potential are given 
for every of the three cases [34]. Now within the Debye theory of 
dielectric relaxation of rodlike molecules the underlying equation 
is that the Smoluchowski equation (2). When the rotation about the 
long molecular axis could also be neglected, this equation is just 
like Brown’s Fokker-Planck equation for the density of moment of 
a magnet orientations of single domain particles on the unit sphere 
if the gyromagnetic term is omitted [20]. The IHD escape rate for-
mula for magnetic spins (which within the present context is that 
the just one of interest) will yield because the magnetic damping 
parameter a tends to infinity the escape rate for the very highly 
damped inertial rotational Brownian movement in nonaxially sym-
metric potentials of the crystalline anisotropy. The IHD magnetic 
problem was first solved by Smith and de Rosario who derived 
from first principles the IHD escape rate for the magnetization re-
laxation of a fine single domain ferromagnetic particle with biaxial 
anisotropy which is that the exact analogue of the biaxial liquid 
problem posed by the potential Equation (4). Their solution for the 
Kramers escape rate with a tending to infinity then immediately 
yields 1 which governs the low frequency dielectric relaxation as 
[25,34]

Impartial as uniaxial, Equation (24) suggests an analytic equation 
for the delay factor   of the response in the high barrier limit. Ac-
cording to Equation (24),   defined as the ratio of the relaxation 
times in the biaxial and isotropic liquid is assumed by

We memory that for uniax nematics, the consistent equation for 
g

ǁ
biax is [18,19].

Noting that 1/σ is the dimensionless temperature and σ/∆ is the 
temperature independent ratio, Eq. (25) allows one to easily esti-
mate the dependence of gǁ

biax on temperature, which follows an Ar-
rhenius-like law. The temperature need of the prefactors in Equa-
tions (24) and (26) is different, viz., ~T  and ~T 3/2 , respectively. 
This calculation can be verified by wary clarification of dielectric 
relaxation data in the uniaxial and biaxial stages.

In order to escalate in qualitative style the general behavior of χǁ 
(ω), one may use the simple analytical method given in Ref. 20, 
Chapters 7-9. According to Ref. 20, the association function Cǁ (t)  
[in general comprising an infinite number of decaying exponen-
tials, see Equation (7)] may be approached due to the exponential 
separation of the time scales of the overbarrier and intrawell proce-
dures by two exponential modes. This include the overbarrier λ1

-1 
and intrawell relaxation times only, viz.,

where ∆1 and the intrawell time τW are expressed in terms of τǁ , τǁ
ef 

, and λ1 as

                                               
,

Thus the dynamic polarizability χǁ (ω) rendered exactly from the 
continued fraction as an infinite series of Lorentzians may be ap-
proximated by a sum of two Lorentzians only

The parameters ∆1 and τW  in Eq. (29) are resolute so as to ensure 
the correct asymptotic behavior of χǁ (ω) in the cases of very low 
and very high frequencies, Equation (12). Equation (29) can also 
be used with minor changes (µ2 in the static polarizability χǁ must 
be substituted by µ2 cos2 Θ) in order to estimate the low frequency 
part (ω/ λ1≤ 1 ) of χǁ (ω) when the dipole moment of molecules 
focused at an arbitrary angle Θ with respect to the long axis of the 
molecule because the fast rotation about the long molecular axis 
does not move the low frequency response.

In applied calculations, Equation (29) requires a knowledge of the 
integral relaxation time τǁ, the effective relaxation time τǁ

ef  and the 
smallest non vanishing eigenvalue λ1, which in the high barrier 
limit may readily be evaluated from Equation (24). Moreover, just 
as for uniaxial nematics [19,20], the effective relaxation time τǁ

ef=    
-c1,0 (0) / c1,0 (0) can be estimated from Equation (17) for n = 1 and 
m = 0 and is given by an exact analytic equation in terms of the 
order parameter               [22].

where S can be calculated from Equation (8). We remark that 
sometimes [22] Equation (30) is used for the approximation of the 
correlation time  . However, just as for uniaxial nematics [19], Eq. 
(30) may be used for evaluation of τǁ only for small barriers, σ≤1   
(the retardation factor (1+2S) / (1-S) given by Equation (30) di-
verges exponentially from the correct asymptotic behavior Equa-
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tion (25) for σ>>1). As far as the correlation time τǁ is concerned, 
since its behavior is governed by a Fokker-Planck equation in the 
two variables α and β no simple exact integral form exists unlike 
in the uniaxial case ([20], Chapter 8). Here the approximate repre-
sentation of τǁ as λ1

-1 Equation (16) is unsuitable for the purpose of 
calculating τW  using Equation (28) as that predicts τW=0  indicating 
that τW has its origin in the difference in the third and higher order 
terms in the asymptotic expansions of τǁ and λ1

-1, see, for example, 
Equations. (7.4.3.14) and (7.4.3.15) of [20].

Results and discussion
The extreme relaxation time anticipated by the inverse Kramers 
rate, Equation (24), and the correlation time τǁ designed numerically 
by the numerical method for biaxial anisotropy are exposed in Fig-
ure 2 (as a function of the barrier height parameter σ). Apparently, 
for high barriers, σ ≥ 5  , the asymptotic Equation (24) provides a 
good approximation to τǁ for ∆≥1. We highlight that Equation (24) 
is not valid for ∆/σ→1 consistent to uniaxial anisotropy governed 
by the single coordinate β. The uniaxial asymptote Equation (26) 
is exposed in Figure 2 for contrast. Obviously noticeable changes 
in τǁ for uniaxial and biaxial anisotropy be for small values of the 
biaxiality parameter ∆ (see curve 2). If investigative expressions 
for all ∆ are wanted it would be essential to originate bridging for-
mulas (analogous to those used at a classical turning point in the 
WKBJ method in quantum mechanics) smoothly joining axially 
symmetric and non-axially symmetric escape rate formulas. This 
procedure has been described by Coffey et al. [31] for magnetic 
relaxation in the simple uniaxial potential of Equation (1) in the 
presence of a strong field applied at an arbitrary angle to the easy 
axis of magnetization which breaks the axial symmetry. The re-
sults of the calculation from Equation (29), (30)-(32) and those 
from matrix continued fractions are related in Figures 3 and 4. 
Here the imaginary of polarizability χʹʹ

ǁ (ω) (µ2 / kT =1) is designed 
for numerous values of the model parameters σ and ∆. The results 
indicate that a marked dependence of  χǁ (ω) on σ and ∆ happens. 
Furthermore, two different dispersal bands appear in the spectrum. 
The characteristic frequency and half-width of the low-frequency 
band are completely determined by λ1. Thus the low frequency be-
havior of  χʹʹ

ǁ (ω) is subjugated by the barrier journey mode. In to-
taling, a far feebler second relaxation peak seems at high frequen-
cies. This high frequency relaxation band represents the combined 
effect of the infinite number of near degenerate intrawell modes. 
The characteristic frequency of this band is                          . Appar-
ently, in Figures. 3 and 4 the agreement between the exact matrix 
continued fraction calculations and the approximate Equation (29) 
is very good in the low-frequency region, ωτD ≤ 1, because the 
low-frequency response is completely determined by the overbar-
rier relaxation mode. The approximate Equation (29) also yields a 
reasonable description of the high frequency relaxation band.

In conclusion, we have preserved the longitudinal relaxation of 
a uniaxial investigation in a biaxial nematic liquid crystal, here 
restricted for mathematical simplicity to a dipole moment parallel 
to the long axis of the molecule, using numerical methods and as-
ymptotic escape rate formulas borrowed from fine particle magne-
tism. These methods permit us to present simple analytic formulas 

for the electric polarizability. These formulas are relatively easy to 
compare with experiment due to their simple analytic form. 

Figure 2: τǁ/ τD  vs. σ for various values of ∆. Solid lines: Numer-
ical solution; symbols: Equation (24); dashed line: Equation (26).

Figure 3: Plot3D λǁ τD vs. σ and ∆:

Figure 4: -Im [χǁ (ω)] vs ωτD for ∆ =10 and various values of σ. 
Solid lines 1-3: Numerical solution. Filled circles: Equations. (29), 
(30)-(32); dotted and dashed lines: asymptotes given by Equation 
(12).
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Figure 5: -Im [χǁ (ω)] vs ωτD for σ =20 and various values of ∆. 
Solid lines 1-3: Numerical solution. Symbols: Equations. (29), 
(30)-(32); dotted and dashed lines: asymptotes given by Equation 
(12).

Figure 6: Plot3D Im [χǁ (ω)]  vs. ωτN and σ.
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