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Abstract
As is known, the Maxwell stress-energy tensor typically used in electromagnetism is not a canonical tensor in the 
sense of Noether, since its four-divergence is not zero in the presence of sources, in other words, outside of free space. 
Indeed, the result provided by the calculation of the four-divergence of this tensor is the opposite of the four-vector 
generalizing the Lorentz force density. The idea is to associate with it a tensor constructed from potentials and 
sources, such that its four-divergence is the opposite of that of the Maxwell tensor. The distribution of sources will 
also be analyzed in light of fluid mechanics, allowing us to account for its influence in terms of generated pressure 
which maybe could overcome the fluid pressure leading to negative pressure and possibly negative energy in the case 
of hyper-relativistic fluids.
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1. Introduction
In the context of Noether’s theorem, an energy-momentum tensor is canonical if the four-divergence is zero. This corresponds to the 
conservation of energy and momentum. Unfortunately, the tensor commonly used for electromagnetism satisfies this condition only in 
the absence of charges and currents.

If, within the framework of general relativity, we wish to have a geometrically correct description of spacetime on scales of galaxies, star 
systems, etc., we cannot neglect the influence of the charged particles present and their interactions with electromagnetic fields. Since 
the fields derive from scalar and vector potentials, this is equivalent to expressing these interactions in charge/potential form. These 
phenomena must therefore be taken into account in the energy-momentum tensor that appears in Einstein’s equations.

To compensate for this deficiency in the Maxwell tensor, we will construct, "by hand", a complementary symmetric tensor in such a way 
that the overall four-divergence is zero, whether in the presence or absence of sources. If sources are present, they will be modeled by a 
fluid of particles. It will be seen that symmetry comes at a cost: the potentials must satisfy the Lorenz gauge.

For the sake of simplicity in writing, the development is first carried out within the framework of special relativity, in Minkowski 
spacetime, and will then be extended to general relativity.

2. Particle Distribution
We consider a continuous distribution of particles where, for the sake of simplicity, all the particles are the same. This distribution can 
be likened to an incompressible ideal relativistic fluid. As a consequence, its rest mass density ρm is constant and the speed divergence 
is zero ∂µv

µ = 0.
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2. Particle Distribution

We consider a continuous distribution of particles where, for the sake of simplicity, all the particles
are the same. This distribution can be likened to an incompressible ideal relativistic fluid. As a
consequence, its rest mass density ρm is constant and the speed divergence is zero ∂µvµ = 0.

The quantities m and q being constants yields the ratio ρe
ρm

= q
m .

The expression for the canonical relativistic energy-momentum tensor can be found in[1,2,3,4] and
is

Tµν
f l = (E + P) uµuν − ηµνP (1)

with the symbols defined previously.
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The conservation laws of energy and momentum imply that

∂µTµν
f l = 0

The evidence that this relationship is verified is available in [1,2,3,4].

3. Initial Tensor

In this section, we will attempt to construct an initial tensor whose four-divergence provides the
generalized Lorentz force density

(
E.J
c , ρeE + J × B

)
. It is observed that it is possible to obtain it by

taking the four-divergence of a tensor Λµν (ϕα) whose components are defined as

Λ00 = −A.J

Λi0 = −jiϕ0

Λ0i = −j0ϕi

Λii = −ρeΦ + A.J − jiϕi

Λij = −jiϕj

or, more simply, as

Λµν (ϕα) = −jµϕν + ηµνϕα jα (2)

This tensor will be made symmetric later.

4. Trace

In Minkowski spacetime, the trace is readily calculated, which leads to

Λµ
µ = 3ϕα jα

where ϕα jα, being the dot product of two 4-vectors, is a relativistic invariant.
The result of calculating the trace immediately brings to mind the term of pressure obtained in

the case of a fluid. We will revisit this later in the context of this paper.

5. Angular Momentum Conservation

If the canonical tensor Λµν is not symmetric, the angular momentum tensor is written as

Mαµν = xµΛαν − xνΛαµ + Sαµν

where Sαµν is an intrinsic spin tensor. By construction Sαµν is anti-symmetric in (µ, ν).
The angular momentum conservation implies ∂αMαµν = 0 and thus, taking into account that

∂αΛαµ = ∂αΛαν = 0, the relation Λµν − Λνµ = ∂αSανµ has to be satisfied.
The anti-symmetric part of the tensor to be made symmetric must therefore be expressible as the

four-divergence of a rank-3 tensor if one wishes to make it symmetric.
If we examine the tensor Λµν, the only part to make symmetric is −jµϕν.
The calculation of the anti-symmetric part yields

Λµν − Λνµ =
1

µ0
[∂α (ϕ

µFαν − ϕνFαµ) + ∂α (ϕ
µ∂νϕα − ϕν∂µϕα) + ϕν∂α∂µϕα − ϕµ∂α∂νϕα]

where Fµα = ∂µϕα − ∂αϕµwhere Fµα = ∂µϕα − ∂αϕµ.
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where Sαµν is an intrinsic spin tensor. By construction Sαµν is anti-symmetric in (µ, ν).
The angular momentum conservation implies ∂αM

αµν = 0 and thus, taking into account that ∂αΛ
αµ = ∂αΛ

αν = 0, the relation Λµν − Λνµ = 
∂αSανµ has to be satisfied.
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Even though the term ∂α (ϕα∂µϕν + ϕα∂νϕµ − ϕµ∂νϕα − ϕν∂µϕα) is a four-divergence, it cannot
be eliminated in any way. If it were, ∂µΘµν = 0 would no longer be satisfied.

6. Hamiltonian Electromagnetic Density

For the electromagnetic part, the total energy is provided by the Hamiltonian density. In the case
of fields, it is given by the relation H = ∂L

∂(∂0ϕα)
∂0ϕα −L. Its application to − 1

4µ0
FµαFµα − ϕα jα results

in

H = − 1
µ0

F0α∂0ϕα +
1

4µ0
FµαFµα + ϕα jα

= ϵ0E2 + ϵ0E.∇Φ − 1
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ϵ0E2 − B2
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contribution, being transformed into a surface integral at infinity where all fields and potentials
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H =
1
2

(
ϵ0E2 +

B2

µ0

)
− A.J

In our canonical tensor, the Hamiltonian density is provided by the term Θ00. Calculating this
element leads to the result

Θ00 =
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(
ϵ0E2 +

B2
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− A.J +

1
µ0

∂α

(
ϕα∂0ϕ0 − ϕ0∂0ϕα

)
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7. The Complete SEM Tensor

Until now, our tensor only refers to the electromagnetic fields and their interaction with matter.
To be complete, we must add the tensor related to matter defined by “equation (1)”. This provides the
overall tensor

Tµν
(
ϕα, ∂µϕα, uα

)
=

1
µ0

Fµ
αFαν +

ηµν

4µ0
FαβFαβ + (E + P) uµuν

−1
2

ϕµ jν − 1
2

ϕν jµ + ηµν (jαϕα − P)

+
1

2µ0
∂α (ϕ

α∂µϕν + ϕα∂νϕµ − ϕµ∂νϕα − ϕν∂µϕα) (3)

Even though the term ∂α (ϕα∂µϕν + ϕα∂νϕµ − ϕµ∂νϕα − ϕν∂µϕα) is a four-divergence, it cannot
be eliminated in any way. If it were, ∂µTµν = 0 would no longer be satisfied.

This is result is similar to the tensor developed in[6].

8. Hamiltonian Density

In our canonical tensor, the Hamiltonian density is provided by the term T00. Calculating this
element leads to the following expression:

Too =
1
2

(
ε0E2 +

B2

µ0

)
− A.J +

E + P V2

c2

1 − V2

c2

which corresponds well to the sum of the electromagnetic energy and the fluid energy densities.
To find the nonrelativistic limit (v << c), it is convenient to express the total energy density E as

the sum of the mass energy ρmc2 and the internal energy ρmϖ densities.
In doing so, it brings us to

Too =
1
2

(
ε0E2 +

B2

µ0

)
− A.J + ρmc2 + ρmϖ +

1
2

ρmv2

where the contribution of P V2

c2 is not taken into account as negligible with respect to the other
terms.
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For a relativistic perfect fluid, one can demonstrate [6] that the trace of its energy-momentum tensor equals γ−1ρmc2.

As for ultra-relativistic fluids γ−1 ≈ 0 and hence ε ≈ 3P. It means that Tµ
µ will then depends almost only on the electromagnetism through 

3ϕα j
α or 3ρeΦ in a co-moving rest frame.

For baryonic matter, Tµ
µ must be positive or null which implies ε ≥ 3 (P − ϕα j

α). Violation of this condition would indicate that we are 
in the presence of exotic matter.

As it’s always possible to find a region of space small enough to use the usual Minkowski spacetime coordinates, it would be interesting 
to check whether 3ϕα j

α does not become (transiently) negative enough for Tµ
µ to become negative too, especially in regions where 

ultrarelativistic fluids are present.

10. General Relativity
In the presence of charges, the Maxwell stress-energy momentum tensor is not suitable for use, as is the case for Einstein’s equation, 
because its 4-divergence is not null. On the other hand, the tensor that we developed in (3) does not suffer from this defect and can be 
introduced directly, as is, in Einstein’s equation.

Its covariant form, adapted to general relativity, is given by
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Tµν

(
ϕα, ∂µϕα, uα

)
=

1
µ0

FµαFα
ν +

gµν

4µ0
FαβFαβ + (E + P) uµuν

−1
2

ϕµ jν −
1
2

ϕν jµ + gµν (ϕα jα − P)

− 1
2µ0

∇α

(
ϕµ∇νϕα + ϕν∇µϕα − ϕα∇µϕν − ϕα∇νϕµ

)
(4)

that can be split into the electromagnetic part

TEM µν

(
ϕα, ∂µϕα

)
=

1
µ0

FµαFα
ν +

gµν

4µ0
FαβFαβ − 1
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ϕµ jν −
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2

ϕν jµ + gµνϕα jα

− 1
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∇α

(
ϕµ∇νϕα + ϕν∇µϕα − ϕα∇µϕν − ϕα∇νϕµ

)
(5)

and the fluid part Tf l µν (uα) = (E + P) uµuν − gµνP.
This is result is similar to the tensor developed in[6].

11. Conclusions

The motivation of this article was to render the four-divergence of the Maxwell energy-momentum
tensor zero in the presence of charges. This is the result we present here, achieved by introducing a
tensor physically connected to fluid mechanics, where the sources are necessarily a consequence of the
presence of massive particles.

The main idea was to find out a tensor which its four-divergence yields the Lorentz density
four-vector and augmented the Maxwell tensor in order to make it canonical, meaning that its
four-divergence is zero in the presence of charged or uncharged massive particles.

The final result for electromagnetism is given by “equation 5”.
By treating these particles as an incompressible fluid, we observe that these sources have the

effect of modifying the fluid pressure, as it could be calculated, for instance, from the ideal gas law.
We also open some paths to detect exotic matter in vicinity of black holes and supernovae. Clearly,

this modeling is only a basic example, and further modeling can be envisaged by adding additional
tensors, provided that they agree with Einstein’s equation of general relativity.

By treating these particles as incompressible fluids, we observe that these sources modify the
fluid pressure, as can be calculated, for instance, from the ideal gas law.
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tensor zero in the presence of charges. This is the result we present here, achieved by introducing a
tensor physically connected to fluid mechanics, where the sources are necessarily a consequence of the
presence of massive particles.

The main idea was to find out a tensor which its four-divergence yields the Lorentz density
four-vector and augmented the Maxwell tensor in order to make it canonical, meaning that its
four-divergence is zero in the presence of charged or uncharged massive particles.

The final result for electromagnetism is given by “equation 5”.
By treating these particles as an incompressible fluid, we observe that these sources have the

effect of modifying the fluid pressure, as it could be calculated, for instance, from the ideal gas law.
We also open some paths to detect exotic matter in vicinity of black holes and supernovae. Clearly,

this modeling is only a basic example, and further modeling can be envisaged by adding additional
tensors, provided that they agree with Einstein’s equation of general relativity.

By treating these particles as incompressible fluids, we observe that these sources modify the
fluid pressure, as can be calculated, for instance, from the ideal gas law.
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We hope that this article will contribute to better modeling ionized gas behavior within the interstellar medium and, linked to metrics 
such as the Schwarzschild or Friedmann–Lematre–Robertson–Walker metrics, improve cosmology understanding.

The price to pay for achieving tensor symmetry is the adherence to the Lorenz gauge. Therefore, it is tempting to consider the Lorenz 
gauge as a fifth equation of electromagnetism that would complement the four Maxwell’s equations.
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The Greek indices take the values 0, 1, 2, 3, while the Latin indices range from 1 to 3.
The main symbols used in this paper are summarized in the following table.
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The Greek indices take the values 0, 1, 2, 3, while the Latin indices range from 1 to 3.
The main symbols used in this paper are summarized in the following table.

ηµν = ηµν = diag (1,−1,−1,−1) Minkowski metric
gµν General relativity spacetime metric
E Electric field
B Magnetic induction
q Particle charge
m Particle mass
P Fluid pressure
n Particle density (number of particles per m3)

x Position in 3D
xµ = (ct, x) Position 4-vector

∇ =
(

∂
∂x1 , ∂

∂x2 , ∂
∂x3

)
3D Nabla operator

∂µ =
(

∂
∂x0 ,∇

)
4-divergence derivative operator

∇µ 4-divergence covariant derivative operator
v Speed in 3D
vµ = (c, v) Speed 4-vector
γ = 1√

1− v2

c2

Lorentz contraction factor

uµ = γ
(
1, v

c
)

Normalized speed 4-vector
ρm = mn Particle rest mass density
ρe = qn Particle rest charge density
E Particle rest total energy density
J = ρev Current density
Φ Scalar potential
A Vector potential

ϕµ =
(

Φ
c , A

)
Potential 4-vector

Fµν = ∂µϕν − ∂νϕµ Contravariant Faraday tensor
jµ = (ρec, ρev) = 1

µ0
∂αFαµ Current density 4-vector

f µ =
(

E.J
c , ρeE + J × B

)
= jαFµα Lorentz force density 4-vector

References

1. Weinberg, S. Gravitation and Cosmology Ch. 2 (J. Wiley & Sons, 1972).
2. Landau, L. D. & Lifshitz, E. M. The Classical Theory of Fields Ch. 4 (Elsevier, 2010).
3. Landau, L. D. & Lifshitz, E. M. Fluid Mechanics Ch. 1, 15 (Pergamon Press, 1987).
4. Barrau, A. & Grain, J. Relativit gnrale Ch. 5 (Dunod, 2011).

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 September 2024 doi:10.20944/preprints202409.2288.v1

Minkowski metric
General relativity spacetime metric
Electric field
Magnetic induction
Particle charge
Particle mass
Fluid pressure
Particle density (number of particles per m3)
Position in 3D
Position 4-vector
3D Nabla operator
4-divergence derivative operator
4-divergence covariant derivative operator
Speed in 3D
Speed 4-vector
Lorentz contraction factor
Normalized speed 4-vector
Particle rest mass density
Particle rest charge density
Particle rest total energy density
Current density
Scalar potential
Vector potential



  Volume 1 | Issue 1 | 7

Copyright: ©2024 Serge Collin. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited.

https://opastpublishers.com/Arch Nucl Energy Sci Technol, 2025

6 of 7

We hope that this article will contribute to better modeling ionized gas behavior
within the interstellar medium and, linked to metrics such as the Schwarzschild or
Friedmann–Lematre–Robertson–Walker metrics, improve cosmology understanding.

The price to pay for achieving tensor symmetry is the adherence to the Lorenz gauge. Therefore,
it is tempting to consider the Lorenz gauge as a fifth equation of electromagnetism that would
complement the four Maxwell’s equations.

Funding: There is no funding related to this research.

Data Availability Statement: Data Availability Statement: No Data associated in the manuscript

Conflicts of Interest: I have no conflicts of interests or competing interests to declare.

Notation

The Greek indices take the values 0, 1, 2, 3, while the Latin indices range from 1 to 3.
The main symbols used in this paper are summarized in the following table.

ηµν = ηµν = diag (1,−1,−1,−1) Minkowski metric
gµν General relativity spacetime metric
E Electric field
B Magnetic induction
q Particle charge
m Particle mass
P Fluid pressure
n Particle density (number of particles per m3)

x Position in 3D
xµ = (ct, x) Position 4-vector

∇ =
(

∂
∂x1 , ∂

∂x2 , ∂
∂x3

)
3D Nabla operator

∂µ =
(

∂
∂x0 ,∇

)
4-divergence derivative operator

∇µ 4-divergence covariant derivative operator
v Speed in 3D
vµ = (c, v) Speed 4-vector
γ = 1√

1− v2

c2

Lorentz contraction factor

uµ = γ
(
1, v

c
)

Normalized speed 4-vector
ρm = mn Particle rest mass density
ρe = qn Particle rest charge density
E Particle rest total energy density
J = ρev Current density
Φ Scalar potential
A Vector potential

ϕµ =
(

Φ
c , A

)
Potential 4-vector

Fµν = ∂µϕν − ∂νϕµ Contravariant Faraday tensor
jµ = (ρec, ρev) = 1

µ0
∂αFαµ Current density 4-vector

f µ =
(

E.J
c , ρeE + J × B

)
= jαFµα Lorentz force density 4-vector

References

1. Weinberg, S. Gravitation and Cosmology Ch. 2 (J. Wiley & Sons, 1972).
2. Landau, L. D. & Lifshitz, E. M. The Classical Theory of Fields Ch. 4 (Elsevier, 2010).
3. Landau, L. D. & Lifshitz, E. M. Fluid Mechanics Ch. 1, 15 (Pergamon Press, 1987).
4. Barrau, A. & Grain, J. Relativit gnrale Ch. 5 (Dunod, 2011).

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 September 2024 doi:10.20944/preprints202409.2288.v1

Potential 4-vector
Contravariant Faraday tensor
Current density 4-vector
Lorentz force density 4-vector

References
1.	 Weinberg, S. (1972). Gravitation and Cosmology, Ch. 16, p 619-631.
2.	 Landau, L. D. (Ed.). (2013). The classical theory of fields (Vol. 2). Elsevier.
3.	 Landau, L. D., & Lifshitz, E. M. (1987). Fluid Mechanics: Volume 6 (Vol. 6). Elsevier.
4.	 Barrau, A. & Grain, J. (2011). Relativit gnrale Ch. 5.
5.	 Belinfante, F. J. (1940). On the current and the density of the electric charge, the energy, the linear momentum and the angular 

momentum of arbitrary fields. Physica, 7(5), 449-474.
6.	 Collin, S. (2024). Tensor Lorentz Force Representation Yields a New Electromagnetic CanonicalEnergy-MomentumTensor. 

https://doi.org/10.1016/S0031-8914(40)90091-X
https://doi.org/10.1016/S0031-8914(40)90091-X

