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Abstract
There is a deep link existing between symmetry and nature that may be best apprehended by using group theory. In 
physics, giving a symmetry group is entirely equivalent to fix natural laws (Noether’s theorem). Within such a framework, 
it follows that all fundamental mechanical laws may be given by defining a group of symmetry operations belonging to the 
Gal (3,1) symmetry group having ten generators (3 + 3 + 3 + 1 = 10). The move to special relativity amounts simply to 
substitute another group ISO (3,1) to Gal (3,1) and having the same number of generators. In both cases, one immediately 
perceives that we live in universe with 3 dimensions of space and 1 dimension of time. A further progress could be made 
by looking for the symmetry group that leaves Maxwell’s equations invariant. The answer to this fundamental question is 
the group ISO (4,2) ⊗U (2)  ⊗U (2) characterized by 23 generators: 15 = 10 + 5 for the conformal group ISO(4,2), 4 
for U(2) and hence 8 = 4 + 4 for the compact part U(2) ⊗U(2) that could be related to the existence of quantum physics 
besides relativity. As ISO (3,1) is a sub-group of ISO (4,2), the two numbers 4 and 2 suggests that, taking into account the 
existence of light besides matter, we live in an universe having 4 spacelike dimensions and 2 time-like dimensions. Here, 
it is proposed that, as music is characterized by a scale-invariant symmetry operation (transposition by octaves) and that 
as time may be perceived differently in shamanic trance for instance, the two “new” dimensions of our universe may 
be related to music and consciousness.  Related to the fifth dimension of music, the notion of diapason linking physical 
frequencies to a musical note is revisited. It is thus proposed to adopt a new A4 = 429.62 Hz value based on universal 
physical constants of our universe and on the mass of the water molecule H₂O, "The most abundant heteronuclear 
molecule in the entire universe". Demonstration is done that this new diapason is superior to other diapasons based on 
frequencies of 440 Hz or even 432 Hz.
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1. Introduction
Life appeared very early on Earth, around 4 billion years ago. 
Moreover, from one end of the world to the other, we agree that 
water is life. In fact, the utmost importance of water stems for 
the empirical fact that the three most abundant elements in the 
universe are hydrogen (92.8 at%), helium (7.1 at%) and oxygen 
(0.1 at%) [1]. As helium is a monoatomic gas, it follows that 
the water molecule, made up of two hydrogen atoms linked to 
the same oxygen atom (formula H₂O), is necessarily "The most 
abundant heteronuclear molecule in the entire universe". Another 
crucial fact is that everything containing water has a shape. 
Hence the expression "Morphogenic Water", forged a few years 
ago in order stressing this fundamental fact [2, 3]. As shown in 
figure 1, four main types of morphogenic water may be readily 
identified in Nature. The very first class is when water is statically 
trapped between various aluminosilicate sheets forming what is 

called “clays” or “earth” according to Aristotle’s four elementary 
qualities [4]. The second class is organisms called “plants” that 
may be derived from the combined action of sun and water 
contained in earth. As sun is the ubiquitous source of energy on 
earth, we may refer to Aristotle’s second “fire” elementary quality. 
Here, water is moving up and down, i.e. only in one direction. 
The third class is obtained when plants are eaten by organisms 
capable of moving in three-dimensional space. These organisms 
are called "animals" and, unlike plants, which grow in silence, 
they can produce a range of sounds in the form of cries, grunts or 
chirps. As they have the ability to breathe form air, we may refer to 
Aristotle’s third “air” elementary quality. Finally, there's the fourth 
class, corresponding to human beings, who can do everything that 
animals can do. What makes human special is that they are able to 
have a language structured in words and phrases, combined with 
a consciousness of existence that translates into highly elaborate 
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and symbolic societal rituals. As three elementary qualities have 
already been attributed to clays, plants and animals, this leaves the 
fourth “water” for referring to consciousness. Theoretical reasons 

behind such an association have been discussed in depth elsewhere 
[5].
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Figure 1 

  
Figure 1: The four main types of “morphogenic” water identified in nature and their association with Aristotle’s four elements theory.

The human being with a cerebral cortex, Homo Sapiens, only 
appeared 300,000 years ago. One of the original features of Homo 
Sapiens was its ability to theorize about the external world around 
him. In contrast, an animal or plant doesn't ask questions about its 
environment or its place in the universe. Of course, like a human 
being, an animal or plant acts according to its inner feelings. But 
the expression of this inner feeling translates into growth in the 
case of a plant, and movement in the case of an animal. In humans, 
there's a third possibility: articulate verbal language. Both plants 
and animals have body language, so they can never lie. For animals, 
this should be obvious. But, for plants, one may wonder how a 
plant may have its own language. In fact, since the pioneering 
work of Chandra Bose, we know that plants are irritable [6], and 
such an irritability may be exploited after conversion of the vital 
electrical activity of a plant into musical notes [7]. So, both plants 
and animals are able to express their feelings as sounds. But, thanks 
to their verbal language, human beings are faced with a Cornelian 
choice: to tell the truth or to lie? This is because words are sounds 
plus something else which is called “meaning”. 

2. The Seven Frames of Thought
Having explained what is “Morphogenic water”, we're now going 
to look at the extent to which the concept of symmetry can help 
us bring some order into human thought. Indeed, when it comes 
to grasping the development of human thought in all its breadth, 
it's very difficult to go back in time beyond ancient Egypt. Some 
may ask, quite rightly, why concern ourselves with very primitive 

ways of thinking when we have such a powerful modern science 
at our disposal. The answer to this question lies in the fact that 
modern science has completely overlooked the fact that a human 
being is not only made of matter. If this were the case, there would 
be no soul, no poetry, no art, no love in our existence. Once again, 
we come back to the need for alchemy between the material and 
spiritual sides of human nature. And the only common ground 
between matter and spirit is precisely that both can use numbers to 
express themselves. One quantitatively as a sum of units, the other 
more qualitatively as a division of a single unit. As this qualitative 
side of numbers is largely obscured in the modern scientific 
approach, Let's start with a few reminders.

To begin with, there's the number 0, which, for our Ancients, 
symbolized the entire universe in its unmanifested, latent, potential 
state. The symbol of the ouroboros, a snake biting its own tail, 
reflected this very well. However, another number, 1, could also 
play this role. But it described a manifest, real and visible state of 
this same universe. Here, the snake has stopped biting its own tail 
and can unfold in the form of an undulation that has no beginning 
and no end. In short, we have a unit, 1, and thus an essence for 
everything to come.

The number 2, on the other hand, was the number of discriminations. 
In other words, a manifestation of polarity, allowing us to 
differentiate between the head and tail of the cosmic serpent. This 
polarity is, of course, a source of instability. For if I'm on the right, 
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the question arises: wouldn't I be better off on the left? Hence 
the dissatisfaction, and hence the movement to try and regain the 
initial calm, which is of course impossible. For, if two appears, 
nothing can ever be the same again. Unit 1 has become polarized, 
and this polarization can no longer be undone.

However, if it's impossible to return to 1, we can move forward in 
search of a compromise. Here we reach the number 3, which is the 
production number of all stable terrestrial things. The Egyptians 
engraved it in stone in the shape of a triangle (pyramids), while 
the Greeks founded philosophy on thesis, antithesis and synthesis. 
Nowadays, popular wisdom holds the saying: "Never 2 without 3". 
The triangle is in fact the first creator of regular three-dimensional 

solid shapes such as the tetrahedron, octahedron and icosahedron.

Now, let's see what can be done with these first four integers: 0, 
1, 2 and 3. The idea is to take the number 3, which represents 
stability, and consider its first three powers: 3⁰ = 1, 3¹ = 3 and 3² 
= 9. Next, we draw three concentric circles (A, B, C), the second 
of which (B) has triple the diameter of the first (A) and the third 
(C) has triple the diameter of the second (B). From any point on 
circle C, draw a tangent to circle A, crossing circle B at two points. 
From the second point, draw a new tangent to circle A, which will 
intersect circle C at another point other than the starting point. 
Repeat the same operation from this new point, and so on, until 
you have a double seven-pointed star (see figure 2) [8]. 

 
Figure 2 

  

Figure 2: The regular seven-pointed star of the seven frames of human thought.

The fact that such a construction is possible with a ruler and 
compass suggests that the number 7 must be important to human 
thought. Let's see if this is indeed the case, by reviewing the 
different ways of thinking since human beings first pondered the 
“raison d'être” of things.

The most primitive frame of thought (shamanism) is undoubtedly 
linked to the idea that there are spirits in nature with whom it is 
possible to communicate via the shamanic trance. In fact, these 
altered states of consciousness are now being studied within a 

rigorous scientific framework [9].

The second frame of thought (materialism), can be linked to the 
idea that there are a number of fundamental elements in nature 
that account for the material variety of the universe. The exact 
nature of these fundamental elements varies from culture to 
culture. The emphasis here is on what can be seen, heard, touched, 
smelled or tasted. The third frame of thought (determinism) is 
linked to the idea that nothing happens by chance. Here, natural 
events are subject to a set of mathematical equations that enable 
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us to accurately predict what will happen given a set of initial 
conditions. We recognize here the framework of scientific thought 
developed from the seventeenth century onwards, mainly in 
Europe, which presupposes that, alongside matter, there is also 
light. We also know that, at the beginning of the twentieth century, 
this deterministic framework of thought proved totally inadequate 
to describe phenomena on the scale of a billionth of a meter 
(nanometer). Hence the birth of a fourth framework (probabilism) 
in which the deterministic equations of the macroscopic world are 
replaced by probabilistic equations from quantum physics.

However, the disadvantage of this fourth probabilistic framework 
is that every corpuscle of matter can be considered as a probability 
wave (wave/corpuscle duality). A fifth, more satisfactory 
framework of thought (immaterialism) has therefore been 
developed, based on quantum field theory. Here, there are no more 
waves or corpuscles, but only "quantum fields" which, depending 
on experimental conditions, can create particles or waves at will 
within a four-dimensional space-time, starting from a quantum 
vacuum that is the ultimate source of all reality. 

The vast majority of physicists believe that this fifth framework is 
sufficient to describe all physical reality. However, a small minority 
believe that this framework also has its limitations, since it does 
not take into account symmetry operations of the "dilatation/
contraction" type, implying that the object under study remains 
invariant through change of scale. And, for such invariance to be 
ensured from the atomic to the macroscopic scale, it is necessary 
to introduce new so-called "scaling waves" that enable coherence 
to be preserved whatever the scale of observation [10].  The 
consequence of this state of affairs is the existence of "musical" 
laws in the vibratory organization of matter, hence the name 
“musicalism” for this sixth way of thinking.

Finally, recently, the existence of a seventh frame of thought 
has been proposed, symbolism, to account for the capacity of 
consciousness to manipulate information and give it meaning [11]. 
This framework is of course the most general, since it considers 
that everything is made up of information that can be stored both 
in the quantum vacuum and at the level of coherence domains that 
can appear when water undergoes the virtual excitations coming 
from this same quantum vacuum. From the point of view of 
symmetry, it's worth noting that it's possible to use group theory to 
validate different ways of thinking based on determinism. The idea 
here is to study the laws of nature and see which symmetry group 
can explain the mathematical form taken by these laws.

3. Group Theory
For the outer sensible world, we know that the world of elementary 

particles is totally ruled by symmetry considerations. Thus, when 
we try to marry quantum theory and general relativity, we end up 
with the idea that the notions of space, time, matter and electric 
charge don't really exist. The only real entity is the vacuum, 
whether quantum or relativistic. Such a vacuum is a highly 
symmetrical medium that can be translated, rotated, expanded 
or contracted without changing its nature. All these operations 
form what is known as a symmetry group. What's fascinating is 
that the simple fact of existence of a symmetry group is enough 
to define the form that physical laws will take. In other words, 
rather than making long and tedious measurements to empirically 
derive a law of nature, it's better to look for symmetries. And, if 
symmetries are found, one may deduce the form that equations 
must take to remain invariant under the action of the symmetry 
group. Conversely, we can also start from a known physical law 
and look for the symmetry group that keeps the mathematical form 
of this law invariant. Modern physics has thus come to consider a 
number of symmetry groups acting either on the internal states of 
a quantum object, or on external states such as mass, velocity or 
spin. Each symmetry group containing a finite or infinite number 
of elements is defined by a finite number of generators, which 
can be combined to give an exhaustive list of all the elements 
making up the group. Moreover, when these generators depend 
on an infinitesimal parameter, Noether's theorem [12] allows us 
to associate with each of them a physical quantity that will be 
conserved whatever the internal or external state of motion, as well 
as a quantity that will become unobservable.
Figure 3 summarized the fact that classical or quantum mechanics 
(first quantization) is equivalent to Galileo's group Gal(3,1). The 
number 3 here means that this group operates in a 3-dimensional 
Euclidean (x, y, z) space, to which we add a fourth real parameter (t) 
playing the role of time. This group thus has 10 generators involving 
3 spatial translations of infinitesimal distance (conservation of 
momentum), one temporal translation of infinitesimal duration 
(conservation of energy), 3 spatial rotations of infinitesimal angle 
(conservation of angular momentum) and 3 infinitesimal velocity 
changes called "thrusts" that may be considered as translations p 
→ p + m·v in reciprocal linear momentum space. It follows that 
to fully characterize a corpuscle, we need to apply at least 3 labels 
to it: a mass m, an energy E and an angular momentum called 
"spin". In the quantum version, we also demonstrate the existence 
of a selection rule prohibiting any quantum transition between 
states with different masses (conservation of mass). The laws 
of mechanics (Newton's or Schrödinger's equation, depending 
on whether the quantity of action involved is large or small), 
thermodynamics (first and second principles) and chemistry 
(conservation of mass) then derive from these great conservation 
laws imposed by the structure of Galileo's group.
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Figure 3 

  

Figure 3: Noether's theorem links any continuous symmetry operation to the great conservation principles of physics. Each symmetry 
also gives rise to a principle of relativity, meaning that a variable can take on an arbitrary value fixed by a given observer.

A trouble is then that the Gal(3,1) symmetry group is not 
able to describe electromagnetic phenomena. In other words, 
the famous Maxwell’s equations published in 1865 ruling 
electricity, magnetism and optics were not invariant through the 
symmetry operations of Gal(3,1). But, in May 1905 the French 
mathematician Henri Poincaré (1854–1912), communicating 
with his Dutch colleague H. A. Lorentz (1853– 1928), realized 
that the coordinate transformations leaving invariant Maxwell’s 
equations form another symmetry group, ISO(3,1), an acronym 
for “Inhomogeneous Special Orthogonal” group.

It is worth noticing that Poincaré’s ISO(3,1) symmetry group has 
seven infinitesimal generators in common with Gal(3,1): three 
spatial translations, three spatial rotations and one translation in 
time. The additional symmetries are three Lorentz’s boosts mixing 
each of the three space-coordinates with the time coordinate. This 
has the consequence of welding of space with time allowing only 
two Casimir invariants corresponding to the conservation of a 
single entity called mass-energy and another one named spin. In 
group-theory language, mass and energy now belong to the same 
irreducible representation of ISO(3,1). Whereas in the Gal(3,1) 
symmetry group, mass and energy belongs to different irreducible 
representations. Welding of space with time to form a 4D (4 = 
3+1) space-time continuum noted M⁴ hereafter, is the reason for 
the existence of Einstein's equation E = m·c².

However, just after the introduction of M⁴ Minkowski’s space, 
it was realized that Maxwell’s equations were in fact invariant 
under a larger Lie’s group, named the conformal group ISO(4,2). 
Here, five new generators are added to those defining ISO(3,1), 
one corresponding to dilatation in space and time and the four 
others to conformal symmetries that preserve angles between two 
arbitrary directions. The main consequence of existence of this 
new symmetry group is that the universe had better be considered 
as a 6D-continuum (6 = 4+2) with four space-like coordinates 
and two time-like coordinates. This meant that by specifying 
only four coordinates in M⁴ (x, y, z, t), some ambiguity remained. 
Consequently, one should also specify a fifth coordinate (s) setting 
the scale at which an observation is made. Such a fifth coordinate 
is crucial for living entities that could exist either as a single cell or 
as multicellular organisms able to grow in space and age in time. 

Concerning the second time-like coordinate of ISO(4,2) one may 
consider that any living entity is characterized by a birth date, a 
thing impossible in M⁴ where energy conservation implies that 
time, the conjugated variable to energy, has no origin (Noether's 
thorem). 

Basically, considering an hyper-surface in ISO(4,2), where an 
event is characterized by five coordinates (x, y, z, i·c·t, s), it 
becomes possible to speak of birth or death in an absolute sense. 
In other words, by combining the dilatation symmetry operation 
with translation and rotation symmetries, it is possible to build a 
quantum-mechanical proper time operator conjugated to mass. In a 
conformal space C⁵, it is thus meaningful to state that a given mass 
has appeared here (birthplace) at a precise time (birth date) and 
disappeared there (death place) at a posterior time (death date).

Moreover as ISO(4,2) implies the existence of a 6D-continumm, 
it follows that there is still a degree of freedom allowing 
discriminating between observable C⁵-hypersurfaces and other 
non-observable hypersurfaces. Hence, the idea that a sixth 
dimension allowing describing the information content in a V⁶ 
continuum. In fact, it was also realized that Maxwell’s equations 
were invariant under the symmetry operations of the highly 
symmetric ISO(4,2)⊗U(2)⊗U(2) group characterized by 6×5/2 
+ 22 + 22 = 23 generators. This new symmetry escaped notice 
for a long time because the eight integral-differential generators 
of U(2)⊗U(2) are associated with symmetry operations of a 
non-geometric nature. They are much harder to visualize than 
operations of the Lie algebra in the neighborhood of identity. 
The nature of these operators suggests again that it should exist 
a communication between all scales, from the smallest one to the 
largest and vice versa, whence non-locality and non-separability, 
which have been abundantly confirmed by experiments.

It follows from all these considerations that group theory fully 
validates our geometric construction of a regular seven-pointed 
star. The branch of shamanism and symbolism refers, of course, 
to the space V⁶, which unfolds in the group ISO(4,2) ⊗U(2) 
⊗U(2). The musicalism branch to a hypersurface C⁵ in V⁶ reduced 
to the ISO(4,2) subgroup, and the immaterialism branch to the 
Minkowski subspace M⁴ deriving from the ISO(3,1) subgroup. The 
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probabilism, determinism and materialism branches correspond to 
the symmetry group Gal(3,1), a subgroup of ISO(3,1). Probabilism 
takes into account the quantum aspect of nature that is ignored in 
determinism or materialism. Similarly, materialism breaks away 
from determinism as soon as we restrict ourselves to matter alone 
and ignore the existence of light.

4. Pythagorean Music
Here, we'll explore the sixth framework of thought, musicalism, 
in more detail. This is because invariance by dilation symmetry 
is most clearly expressed in this framework. Moreover, music is 
another field of knowledge where symmetry plays a major role. 
Legend has it that the Greek mathematician Pythagoras, while 
on a walk, passed a blacksmith's forge. He noticed that the note 
produced by the blacksmith's hammer as it struck the anvil 
depended solely on the weight of the hammer. Thus, with a light 
hammer, the blacksmith produced a high-pitched sound, whereas 
with a heavier hammer, the sound appeared lower. Pythagoras 
soon came to the conclusion that the interval between two notes 
depended solely on the ratio between the masses of the hammers. 
For example, if we take three hammers weighing 2, 3 and 4 kg 
respectively, we find that the notes produced by the 2 and 4 kg 
hammers sound the same, although one is higher pitched than the 
other. This similarity between two different notes is due to the fact 
that the ratio between the masses of the hammers is 2, a whole 
number. The interval associated with the 2 and 3 kg hammers, on 
the other hand, corresponds to a ratio of 3/2. Although the two 
hammers do not produce the same sound, the sound produced by 
both hammers nevertheless produces a pleasing effect on the ear.

The philosophy of Pythagoras and his school was that everything 
in nature was expressed through integers or their ratios. One of 

their most important symbols was the tetraktys, a geometric figure 
representing the first 4 strictly positive integers in triangular form 
(figure 4). The first point at the apex of the triangle represented the 
number 1, associated with the element fire. The next two points 
represented the number 2, associated with the element air. The 
three points below these two represented the number 3 and the 
element water. Finally, the four points forming the base of the 
triangle were associated with the number 4 and the element earth. 
The tetraktys thus had the property of also representing the decade, 
the number 10, but in a hidden way, since it was necessary to add 
the 4 numbers associated with the 4 elements, in order to obtain 
the secret value: 10 = 1 + 2 + 3 + 4. Only mathematicians, as the 
Pythagorean school of thought was known, were not only capable 
of understanding this after having followed the master's teaching, 
but also of seeing the connection with music, thanks to the use of 
a monochord, a piece of wood on which a string was stretched 
that could be shortened at will by means of a movable bridge. 
Using this instrument and the human ear, it was found that strings 
shortened according to the ratios involving the four digits of the 
tetraktys produced sounds pleasing to the ear. In fact, string (1) 
shortened by half (2), generated the diapason (or octave) of ratio 
2:1. The string (1) shortened by a third (3) generated the diapente 
(or fifth) corresponding to the ratio 3:2 (inverse of the ratio 2/3 = 
1 - 1/3). Similarly, the string (1), shortened by a quarter, generated 
the diatessaron (or fourth) with ratio 4/3 (inverse of ratio 3/4 
= 1 - 1/4). Through super-particular ratios of the form (n+1)/n, 
the tetraktys thus generated consonant chords that sounded very 
pleasing to the human ear. Finally, the difference between diapente 
and diatessaron gave rise to the Pythagorean epogdoon (tone or 
second). Accordingly, in Greek, the root "epi" means "above" and 
the root "ogdo" means "eight" and from mathematics : (3:2)÷(4:3) 
= (9:8).

 
Figure 4 

  
Figure 4: Cycles of ascending fifths (clockwise) or ascending fourths (counter-clockwise) generating the Pythagorean chromatic scale, 
with its two types of interval respectively short (limma = 90 ¢) and long (apotome = 114 ¢, defining the tone (204 = 114 + 90) and the 
comma (24 = 114 - 90). Intervals generated in relation to the fundamental note are also indicated with the conventions P = perfect, M = 
major, m = minor, A = augmented and d = diminished, 1 = unison, 2 = second, 3 = third, 4 = fourth, 5 = fifth, 6 = sixth and 7 = seventh. 
Tritone (TT) may be considered as A4 or d5.
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As shown below, such a Pythagorean construction is not unique 
and other constructions have proposed from antiquity up to the 
XXth century. In order to best compare different scales, it has been 
proven convenient to use a logarithmic scale where the octave 
is divided into 12×100 equal parts called cents (symbol ¢) [13]. 
Under these conditions, an octave with a ratio of 2:1 corresponds 
to 1200 cents. On such a logarithmic scale the difference ∆ 
measured in cents between two frequencies f₁ and f₂ is calculated 
using the relationship ∆ = 1200×log₂(f₁/f₂), with log₂ (x) = ln(x)/
ln(2) where ln(x) is the natural logarithm. Now, if f₁ = p×f and 
f₂ = q×f, we may also use a p:q  ratio: ∆ = 1200×log₂(p/q). The 
use of the logarithm function means that musicians add or subtract 
intervals expressed in cents, rather than multiplying or dividing 
frequencies expressed in hertz (Hz), as physicists do. The fact that 
the logarithm function transforms multiplication into addition and 
division into subtraction also makes comparisons and calculations 
much easier. Multiplying by 2 is equivalent to adding an interval of 
value 1, while dividing by 2 is equivalent to subtracting an interval 
of value 1. Now, if I add a fourth of ratio (4:3) to a fifth of ratio 
(3:2), I obtain a double frequency (4:3)×(3:2) = 2, i.e. an octave. 
Equivalently, if I use cents, I get 498¢ for the fourth plus 702¢ for 
the fifth, for a total of 1200¢, which also corresponds to the octave 
interval.

The Pythagorean method can also be used to understand the 
origin of notes altered by sharps or flats. The idea is to stack 
fifths with a ratio of 3:2 one on top of the other, starting from 
a fundamental note, in the hope of finding the starting note after 
transposing a certain number of octaves (figure 4). Thus, starting 
from the note F, the first 5 iterations lead to the note E, which is 
one limma below the starting note. The sixth iteration generates B, 
the last note of the natural scale, while the seventh results in a note 
higher than the starting F, with a difference of one apotome (also 
called “chromatic semitone”), or around 114 ¢.  As this note lies 
approximately between the F (0 ¢) and the G (204 ¢), we define 
the F sharp (F#) that will take us to the E# at the twelfth iteration 
of the 3:2 ratio. Unfortunately, this E# is still 23.5¢ too high in 
relation to the starting F, which defines the Pythagorean comma 
representing the gap between twelve fifths and seven octaves. As 
we can see, the cycle of fifths does not close in on itself, generating 
an infinite helix. If we try to force closure, we'll have to shorten 
the twelfth fifth (A#-F) by a comma, generating a highly dissonant 
interval known as the "wolf fifth". Symmetrically, we can proceed 
via a cycle of fourths with an inverse ratio of 4:3. The first iteration 
then leads to a note roughly halfway between the A and B of the 
fifths cycle. The difference, which is again one apotome with the 
note B, but downwards this time, defines B flat. In the Pythagorean 
scale, flats are therefore one Pythagorean comma lower than their 
conjoined sharps, giving the following order: F-G♭-F♯-G. Notes 
that differ by only one comma, such as G♭ and F♯, are said to be 
enharmonic.

It's important to understand that the decision to create a scale 
based on seven musical notes was based on a purely numerological 
approach that had absolutely nothing to do with physiology or 

physics. Indeed, any interval involving prime factors greater than 
three, or involving irrational numbers, was rejected on principle. 
In particular, consonance was linked to having a super-particular 
ratio of the type (n+1/n) and not to the fact that the chord sounded 
pleasant to the ear. Thus, the sum of two consonances, diapason 
(2:1) plus diatessaron (4:3) corresponding to an eleventh chord 
of ratio (2:1)×(4:3) = (8:3), was considered dissonant, as it was 
neither a multiple nor a super-particular ratio.

This purely mathematical vision of music was not, of course, 
accepted by everyone, especially Aristoxenus of Taranto (375-
335 AEC), who considered the eleventh chord to be completely 
consonant. He also considered that the diatessaron should be equal 
to two tones plus a semitone, and not two tones plus a limma as 
claimed by the Pythagoreans, so as to have exactly 6 tones or 12 
semitones per octave. In this sense, Aristoxenus can be said to have 
been the precursor of the 12 equal semitones temperament used 
in music today, based on irrational numbers that were violently 
rejected by the Pythagoreans. Ptolemy of Alexandria (100-170) 
attempted to synthesize the two mathematical and empirical points 
of view, rejecting the dictatorship of tetraktys by considering 
super-particular ratios involving the number 5 as consonant, in 
order to render thirds acoustically pure. Among the new intervals 
accepted by Ptolemy were the right major third (5:4), the right 
minor third (6:5), the right minor tone (10:9) and the right diatonic 
semitone (16:15), all of which were considered dissonant by the 
Pythagoreans despite the fact that they were all super-particular 
and were perceived by the human ear as harmonious. However, 
since the numbers 2 and 5 are prime, it follows that a succession of 
thirds is no more capable of covering a whole number of diapasons 
than a succession of diapentes. It's important to understand the 
intellectual stranglehold that Pythagorean mathematics had on 
medieval music. The ancient Greek philosophers were held in 
such high esteem by medieval academics that it was very difficult 
for them to accept other systems such as those defended by later 
philosophers like Aristoxenus or Ptolemy. The dogma imposed 
by tetraktys and the emphasis on super-particular relationships 
meant that the vast majority of medieval treatises advocated music 
that took the number 3 as the absolute limit of consonance, and 
imposed the exclusive use of the unison, octave, fifth and fourth 
in this preferred order. Thirds were considered dissonant not only 
numerologically, but also because the Pythagorean third (81:64), 
22 cents above the pure acoustic third (5:4), sounded really bad to 
the ear. Although the situation began to change at the start of the 
Renaissance, Pythagorean dogma did not give way easily, since 
even in 1492, some authors continued to espouse Pythagorean 
doctrine. Eliminating the Pythagorean comma, which corresponds 
to an interval of 23¢ perfectly audible even to the unmusical ear, 
has always been an obsession for any self-respecting musician.

5. Consonance and Dissonance
What changed the game was the discovery that each musical note 
could be associated with a characteristic frequency of vibration. 
This was discovered independently between the 16th and 17th 
centuries by Galileo and Mersenne. It was also discovered 
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that when a musical note was produced on a stringed or wind 
instrument, a complex sound was obtained corresponding to a 
certain fundamental frequency, as well as to a whole sequence 
of frequencies involving integer multiples of the fundamental 
frequency. The frequency component n×f is then called the nth 
harmonic. When certain harmonics are absent, or when the simple 
sine wave contained in a complex sound does not correspond to 
an integer multiple of the fundamental frequency (drum, gong...), 
we also speak of the nth partial. On a clarinet, for example, where 
only the odd-numbered harmonics are present, the first partial 
corresponds to the fundamental frequency and the second partial 
to the third harmonic.

The question that now arises is why two notes forming an octave 
interval sound so pleasant to the human ear, while two notes 
separated by a little less or a little more than an octave sound 
unpleasantly dissonant.  With the first polyphonies appearing 
between 900 and 1300, the notion of consonance refers to the quality 
of sound produced when two notes are played simultaneously, 

regardless of context. During this period, there were only six 
consonant intervals: octave (2:1), fifth (3:2), fourth (4:3), octave 
augmented by a fifth (3:1), octave augmented by a fourth (8:3) 
and double octave (4:1). During this period, thirds and sixths 
were considered dissonant. Between 1300 and 1700, counterpoint 
appeared, in which certain notes were considered consonant in one 
context and dissonant in another.

Then, with the advent of the harmonic series, in the 18th century 
Rameau introduced the concept of the fundamental note, and an 
individual note is either consonant or dissonant in relation to this 
fundamental. Thirds and sixths thus became consonant intervals. 
Table 1 lists the 41 musical intervals that can be defined from the 
first sixteen harmonics of a fundamental note, in this case note C. 
The last column indicates, for a super-particular ratio of the type 
(n+1)/n, the name of the note associated with the nth harmonic. 
For other, non-super-particular ratios, the combination of intervals 
required to obtain such ratios is also indicated. 

 

Harmonic Ratio  Cents (¢) Interval                                  Harmonic series 
1  1:1  0               P1*                                                        C1 
2  2:1  1200               P8*                                                        C2 
3  3:2  702               P5 (+2¢)*                                              G2 
4  4:3  498               P4 (-2¢)*                                               C3 
5  5:4  386              M3 (-14 ¢)*                                            E3 
5  5:3  884              M6 (-16 ¢)*                                   (P4* ⊕ M3*) 
6  6:5  316              m3+ (+16 ¢)                                           G3 
7  7:6  267              m3- (-33 ¢)                                            B♭3 
7  7:5  582              TT- (-18 ¢)                                      (m3- ⊕ m3+) 
7  7:4  969              m7- (-31 ¢)                                     (TT- ⊕ M3*)  
8  8:7  231              M2+ (+31 ¢)                                            C4 
8  8:5  814              m6 (+14 ¢)*                                  (TT- ⊕ M2+)                                       
9  9:8  204              M2 (+4 ¢)*                                             D4 
9  9:7  435              M3++ (+35 ¢)                                (M2* ⊕ M2+) 
9  9:5  1018              m7+ (+18 ¢)                                  (M2* + m6*)                                       
10  10:9  182              M2- (-18 ¢)                                              E4 
10  10:7  617              TT (+17 ¢)*                                   (M2 ⊕ M3) 
11  11:10  165              n2+ (+15 ¢)                                          F♯4 
11  11:9  347              n3 (-3 ¢)                                       (n2+ ⊕ M2-) 
11  11:8  551              TT-- (-49 ¢)                                   (n2+ ⊕ M3*) 
11  11:7  783              m6- (-17 ¢)                                   (n2+ ⊕ TT*)    
11  11:6  1050              n7 (0¢)                                          (n2+ ⊕ M6*) 
12  12:11  151              n2 (+1 ¢)                                              G4 
12  12:7  933              M6+ (+33 ¢)                                   (m2++ ⊕ m6-)                                       
13  13:12  139              n2- (-11 ¢)                                            A4 
13  13:11  289              m3 (-11 ¢)*                                 (n2- ⊕ M2---) 
13  13:10  454              M3+++ (+54 ¢)                            (n2- ⊕ m3+) 
13  13:9  637              TT+ (+37 ¢)                                  (n2- ⊕ P4*) 
13  13:8  841              n6  (-9 ¢)                                      (n2- ⊕ P5*)         
13  13:7  1072              n7+ (+22 ¢)                                  (n2- ⊕ M6) 
14  14:13  128              m2++ (+28 ¢)                                       B♭4 
14  14:11  418              M3+ (+18 ¢)                                 (m2++ ⊕ m3*) 
14  14:9  765              m6-- (-35 ¢)                                  (m2++ ⊕ TT+) 
15  15:14  119              m2+ (+19 ¢)                                            B4 
15  15:13  248              m3-- (-52 ¢)                                  (m2+ ⊕ m2++) 
15  15:11  537              P4+ (+37 ¢)                                   (m2+ ⊕ M3+) 
15  15:8  1088              M7 (-12 ¢)*                                  (m2+ ⊕ m7-)  
16  16:15  112              m2 (+12 ¢)*                                C5 
16  16:13  360              n3+ (+10 ¢)                                    (m2* ⊕ m3--) 
16  16:11  649              TT++ (+49 ¢)                                  (m2* ⊕ P4+)     
16  16:9  996              m7 (-4 ¢)*                                      (m2* ⊕ M6*) 
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Table 1: Harmonic series fn (n ≤ 16) and best approximation ratio (*) of equal-temperament scale. P1 = “Unisson (0 ¢)”, m2 = 
“Minor second (semi-tone, 100 ¢)”, M2 = “Major second (tone, 200 ¢)”, m3 = “Minor third (300 ¢)”, M3 = “Major third (400 ¢)”, 
P4 = “Perfect fourth (500 ¢)”, TT = “Tritone (600 ¢)”, P5 = “Perfect fifth (700 ¢)”, m6 = “Minor sixth (800 ¢)”, M6 = “Major sixth 
(900 ¢)”, m7 = “Minor seventh (1000 ¢)”, M7 = “Major seventh (1100 ¢)”, P8 = “Octave (1200 ¢). Intervals n2 (150 ¢), n3 (350 ¢), 
n6 (850 ¢) and n7 (1050 ¢) are “neutral”, i.e.  cannot be qualified as having “minor” or “major” character.

 

Harmonic Ratio  Cents (¢) Interval                                  Harmonic series 
1  1:1  0               P1*                                                        C1 
2  2:1  1200               P8*                                                        C2 
3  3:2  702               P5 (+2¢)*                                              G2 
4  4:3  498               P4 (-2¢)*                                               C3 
5  5:4  386              M3 (-14 ¢)*                                            E3 
5  5:3  884              M6 (-16 ¢)*                                   (P4* ⊕ M3*) 
6  6:5  316              m3+ (+16 ¢)                                           G3 
7  7:6  267              m3- (-33 ¢)                                            B♭3 
7  7:5  582              TT- (-18 ¢)                                      (m3- ⊕ m3+) 
7  7:4  969              m7- (-31 ¢)                                     (TT- ⊕ M3*)  
8  8:7  231              M2+ (+31 ¢)                                            C4 
8  8:5  814              m6 (+14 ¢)*                                  (TT- ⊕ M2+)                                       
9  9:8  204              M2 (+4 ¢)*                                             D4 
9  9:7  435              M3++ (+35 ¢)                                (M2* ⊕ M2+) 
9  9:5  1018              m7+ (+18 ¢)                                  (M2* + m6*)                                       
10  10:9  182              M2- (-18 ¢)                                              E4 
10  10:7  617              TT (+17 ¢)*                                   (M2 ⊕ M3) 
11  11:10  165              n2+ (+15 ¢)                                          F♯4 
11  11:9  347              n3 (-3 ¢)                                       (n2+ ⊕ M2-) 
11  11:8  551              TT-- (-49 ¢)                                   (n2+ ⊕ M3*) 
11  11:7  783              m6- (-17 ¢)                                   (n2+ ⊕ TT*)    
11  11:6  1050              n7 (0¢)                                          (n2+ ⊕ M6*) 
12  12:11  151              n2 (+1 ¢)                                              G4 
12  12:7  933              M6+ (+33 ¢)                                   (m2++ ⊕ m6-)                                       
13  13:12  139              n2- (-11 ¢)                                            A4 
13  13:11  289              m3 (-11 ¢)*                                 (n2- ⊕ M2---) 
13  13:10  454              M3+++ (+54 ¢)                            (n2- ⊕ m3+) 
13  13:9  637              TT+ (+37 ¢)                                  (n2- ⊕ P4*) 
13  13:8  841              n6  (-9 ¢)                                      (n2- ⊕ P5*)         
13  13:7  1072              n7+ (+22 ¢)                                  (n2- ⊕ M6) 
14  14:13  128              m2++ (+28 ¢)                                       B♭4 
14  14:11  418              M3+ (+18 ¢)                                 (m2++ ⊕ m3*) 
14  14:9  765              m6-- (-35 ¢)                                  (m2++ ⊕ TT+) 
15  15:14  119              m2+ (+19 ¢)                                            B4 
15  15:13  248              m3-- (-52 ¢)                                  (m2+ ⊕ m2++) 
15  15:11  537              P4+ (+37 ¢)                                   (m2+ ⊕ M3+) 
15  15:8  1088              M7 (-12 ¢)*                                  (m2+ ⊕ m7-)  
16  16:15  112              m2 (+12 ¢)*                                C5 
16  16:13  360              n3+ (+10 ¢)                                    (m2* ⊕ m3--) 
16  16:11  649              TT++ (+49 ¢)                                  (m2* ⊕ P4+)     
16  16:9  996              m7 (-4 ¢)*                                      (m2* ⊕ M6*) 

In the 19th century, Helmholtz (1821-1894) studied the structure 
of the human ear and concluded that dissonance arises from the 
first six partials being too close to each other, resulting in beats. In 
simple terms, this means that major seconds M2 and minor seconds 
m2 are the most dissonant intervals, with a difference of around 
30-40 Hz, irrespective of the individual frequencies. For larger 
differences, the unpleasant sensation disappears and consonance is 
restored. Octave consonance then arises from the fact that all the 
partials of the higher note are present in those of the lower note.

Let's take a look at the octave (ratio 2:1). Starting from note C, 
the first six partials are: C1 - C2 - G2 - C3 - E3 - G3. And, starting 
from the octave C2, we find: C2 - C3 - G3 - C4 - E4 - G4. Note that 
there are three common notes (C2, C3 and G3) and only octave 
relationships for the other notes. There are no conflicting notes of 
the m2 or M2 type, resulting in maximum consonance. Now let's 
see what happens if we start with the fifth of C1, i.e. note G1. The 
partials here are: G1 - G2 - D3 - G3 - B3 - D4. Here we find two 
M2 conflicts: C3-D3 and D3-E3. The same phenomenon occurs 
with C1's major sixth with partials: A1 - A2 - E3 - A3 - C#4 - E4, 
leading to two M2 conflicts with C1-partials (G2-A2 and G3-A3). 
Then comes C1's fourth with partials: F1 - F2 - C2 - F3 - A3 - 
C4, leading to three M2 conflicts with C1-partials (F2-G2, F3-G3, 
G3-A3) and a single m2 conflict (E3-F3). For the minor third of 
C1, we have the series: E♭1 - E♭2 - B♭2 - E♭3 - G3 - B♭3, with 
one M2-type conflict with the C1-partials (B♭2-C3) and one m2-

type conflict (E♭3-E3). The minor sixth of C1 has partials: A♭1 
- A♭2 - E♭3 - A♭3 - C4 - E♭4, meanwhile, is characterized by 
three M2-type conflicts with C1-partials (G2-A♭2, E♭3-E3, G3-
A♭3). As might be expected, C1's second major gives the series: 
D1 - D2 -A2- D3 - F#3 - A3 with six M2-type conflicts with C1-
partials (C1-D1, C2-D2, G2-A2, C3-D3, E3-F♯3, G3-A3) and one 
m2-type conflict (F♯3-G3). Finally, for C1's second minor, we find 
the series: D♭1 - D♭2 - A♭2 - D♭3 - F3 - A♭3, with six m2-type 
conflicts with C1-partials (C1-D♭1, C2-D♭2, G2-A♭2, C3-D♭3, 
E3-F3, G3-A♭3) and one M2-type conflict (F3-G3).

These considerations of partials therefore enable us to classify our 
nine intervals in descending order of consonance: P8 (2:1) > P5 
(3:2) ≈ M6 (5:3) > m3 (6:5) > P4 (4:3) > M3 (5:4) > m6 (8:5) > 
M2 (9:8) > m2 (16:15). These observations were confirmed in the 
20th century via the notion of critical bandwidth that corresponds 
to the difference in frequency between two pure tones at which 
the sensation of "roughness" disappears and the tones sound 
smooth [14]. It was found that maximum dissonance is obtained 
with simple sinusoidal waves for a frequency deviation equal to 
a quarter of the critical bandwidth, with consonance becoming 
maximum when this same deviation becomes of the order of 
the critical bandwidth (figure 5). For more complex sounds, it 
was assumed, as before, that the total dissonance is the sum of 
the dissonances caused by each pair of adjacent partials from the 
fundamental to the sixth harmonic. Note the very intense peaks for 
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Figure 5 

  

Figure 5: The basilar membrane of the human cochlea can be seen as a bandpass filter, letting through all frequencies within a certain 
frequency band and blocking all frequencies outside this band (bottom left). The figure at top left shows that the size of the critical 
bandwidth lies somewhere between a whole tone and a minor third for a large part of the audible range, and tends towards a major third 
for low frequencies. The figure at top right shows that dissonance appears maximum for a frequency deviation equal to a quarter of the 
critical bandwidth. Bottom right: the variation in consonance for an interval involving a complex sound with a fundamental frequency 
of 250 Hz and another sound with a higher frequency. Adapted from Plompt and Levelt (1965). 

the unison (1:1), octave (1:2) and perfect fifth (2:3), and the less 
intense peaks for the minor third (5:6), major third (4:5), perfect 
fourth (3:4) and major sixth (3:5), in good agreement with the 
previous classification. The consequence of this notion of critical 
bandwidth is that if we consider a note with partials of 440, 860, 

1203 and 1683 Hz and another with partials of 225, 440, 615 and 
860 Hz, we will obtain a consonant sound despite the fact that the 
partials are not at the octave. It follows that consonant intervals 
can be obtained even when using frequencies with non-integer or 
even irrational frequency ratios. 

6. Riemann’s Zeta-Function
Once we understand the physiological importance of an interval 
between two notes, the problem arises of building a scale from 
the simplest possible frequency ratios. The first ratio after the 1:1 
unison and the 2:1 octave is, of course, the 3:2 fifth. Generally 
speaking, as we have seen with the Pythagorean fifth cycle, the 
result is an infinite succession of notes. The same applies to the 
harmonic series, where there's no need to limit yourself to the 
sixteenth harmonic. To obtain a musical scale from an infinite 
scale, each note characterized by a p:q ratio, must be transposed 
by a whole number m of octaves to arrive at a situation where 1 
≤ (p:q)/m ≤ 2. A musical scale is thus a finite succession of notes 
limited to a single octave. 

For scales of equal temperament, it is usual consider that a full 
octave (2:1 ratio) corresponds to 12 intervals of 100¢, i.e. 1200¢ 
(12-EDO meaning 12-Equal Division of Octave). Of course, this 

raises the question of why 12 and not 41, 53 or 72 intervals? One 
answer is provided by the Pythagorean spiral of perfect fifths, 
which after 12 iterations of the ratio 3:2 covers roughly 7 octaves. 
But, again, this means overemphasizing Pythagoras. In strictly 
mathematical terms, the Pythagorean method seeks to solve the 
equation (3÷2)a = 2b, or 3a = 2(a+b). Since all integer powers of 3 
are odd numbers, while all integer powers of 2 are even numbers, 
this equation has no solution. Another formulation is to look for a 
number b such that 2 = bn and 3/2 = bm. Moving on to logarithms, 
this is equivalent to solving the following equation:

Here 1/b is the average step of each interval. The aim is therefore 
to find two integers q2 and q3 such that q2×ln 3 = q3×ln 2, from 
which it will be possible to deduce a 1/ln b solution. Obviously, 
as we saw above, there is no such thing as an integer solution to 
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Here 1/b is the average step of each interval. The aim is therefore to find two integers q2 and q3 

such that q2×ln 3 = q3×ln 2, from which it will be possible to deduce a 1/ln b solution. Obviously, 

as we saw above, there is no such thing as an integer solution to such an equation, hence the 

existence of the various commas. But perhaps there are solutions very close to an integer. The 

degree of harmony can also be increased by solving equations: 
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In fact, if we find two quasi-integers q2 and q3 as solutions to such an equation, we'll also have 

as solutions the quasi-integers q4 = 2×q₂ and q6 = q2 + q3. There is in fact a graphical way of 

solving such equations (fig. 6). All you have to do is place markers on an x-axis for the values 

1/ln 2, 2/ln 2, 3/ln 3, 4/ln 2... then just below the markers for the values 1/ln 3, 2/ln 3, 3/ln 3, 

4/ln 4... and so on. The values of x = 1/ln b where there is quasi-coincidence of the markers are 

quasi-integers that are solutions to the equation posed. Now, is there a way of finding such 

coincidences more systematically, without using a graph? The idea here is to consider the 

following function F(x) [15]: 
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The choice of a cosine function is justified by the fact that the function f(x) = cos (2πx) has 

peaks f(x) = 1 for all integer values of x, while the σ factor ensures the convergence of the 

series. Here Re denotes the real part of a complex number and ζ is the Riemann zeta function 

defined on the plane of complex numbers. Now the problem of finding coincidences for ratios 

qn/ln n (n = 2, 3, 4, 5,) has been reduced to finding the local maxima of the function Re[ζ(σ + 

2πix)] as a function of x, for a fixed value of σ. Figure 6 shows the variation of this function for 

σ = ½ and the good correspondence that exists between coincidences and local maxima. Each 

of these maxima in fact happens to be very close to the so-called Gram points gk (k = -1, 0, 1, 

2...) which are such that: 

Im[ζ(σ + igk)] = 0 and Re[ζ(σ + igk)] ≠ 0 

It therefore suffices to evaluate the Riemann zeta function at the level of its Gram points divided 

by 2π. The table given in figure 6 thus lists all significant maxima up to the value x = 2000. The 

first 4 columns show the index k of the Gram point, its position and the value of F(x) in absolute 

value and in relative value with respect to the dotted curve, which gives an idea of the growth 

rate of these local maxima. The last column gives the quasi-integer qn for prime number n = 2. 

Values of qn for other prime numbers (5, 7, 11, 13…) are easily computed from the value of x: 

qn = x·ln n. As F(x) increases, the integers qn become closer to integer values, and the range 

where qn intervals correspond to a frequency ratio of type 1: n becomes better. We can see that 
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1/ln 2, 2/ln 2, 3/ln 3, 4/ln 2... then just below the markers for the values 1/ln 3, 2/ln 3, 3/ln 3, 

4/ln 4... and so on. The values of x = 1/ln b where there is quasi-coincidence of the markers are 

quasi-integers that are solutions to the equation posed. Now, is there a way of finding such 

coincidences more systematically, without using a graph? The idea here is to consider the 

following function F(x) [15]: 
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The choice of a cosine function is justified by the fact that the function f(x) = cos (2πx) has 

peaks f(x) = 1 for all integer values of x, while the σ factor ensures the convergence of the 

series. Here Re denotes the real part of a complex number and ζ is the Riemann zeta function 

defined on the plane of complex numbers. Now the problem of finding coincidences for ratios 

qn/ln n (n = 2, 3, 4, 5,) has been reduced to finding the local maxima of the function Re[ζ(σ + 

2πix)] as a function of x, for a fixed value of σ. Figure 6 shows the variation of this function for 

σ = ½ and the good correspondence that exists between coincidences and local maxima. Each 

of these maxima in fact happens to be very close to the so-called Gram points gk (k = -1, 0, 1, 

2...) which are such that: 

Im[ζ(σ + igk)] = 0 and Re[ζ(σ + igk)] ≠ 0 

It therefore suffices to evaluate the Riemann zeta function at the level of its Gram points divided 

by 2π. The table given in figure 6 thus lists all significant maxima up to the value x = 2000. The 

first 4 columns show the index k of the Gram point, its position and the value of F(x) in absolute 

value and in relative value with respect to the dotted curve, which gives an idea of the growth 

rate of these local maxima. The last column gives the quasi-integer qn for prime number n = 2. 

Values of qn for other prime numbers (5, 7, 11, 13…) are easily computed from the value of x: 

qn = x·ln n. As F(x) increases, the integers qn become closer to integer values, and the range 
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such an equation, hence the existence of the various commas. But 
perhaps there are solutions very close to an integer. The degree of 
harmony can also be increased by solving equations:

In fact, if we find two quasi-integers q2 and q3 as solutions to such 
an equation, we'll also have as solutions the quasi-integers q4 = 
2×q₂ and q6 = q2 + q3. There is in fact a graphical way of solving 
such equations (fig. 6). All you have to do is place markers on an 
x-axis for the values 1/ln 2, 2/ln 2, 3/ln 3, 4/ln 2... then just below 
the markers for the values 1/ln 3, 2/ln 3, 3/ln 3, 4/ln 4... and so 
on. The values of x = 1/ln b where there is quasi-coincidence of 
the markers are quasi-integers that are solutions to the equation 
posed. Now, is there a way of finding such coincidences more 
systematically, without using a graph? The idea here is to consider 
the following function F(x) [15]:

The choice of a cosine function is justified by the fact that the 
function f(x) = cos (2πx) has peaks f(x) = 1 for all integer values 
of x, while the σ factor ensures the convergence of the series. 
Here Re denotes the real part of a complex number and ζ is the 
Riemann zeta function defined on the plane of complex numbers. 
Now the problem of finding coincidences for ratios qn/ln n (n = 
2, 3, 4, 5,) has been reduced to finding the local maxima of the 
function Re[ζ(σ + 2πix)] as a function of x, for a fixed value of 
σ. Figure 6 shows the variation of this function for σ = ½ and the 
good correspondence that exists between coincidences and local 
maxima. Each of these maxima in fact happens to be very close to 
the so-called Gram points gk (k = -1, 0, 1, 2...) which are such that:
	
	 Im[ζ(σ + igk)] = 0 and Re[ζ(σ + igk)] ≠ 0

It therefore suffices to evaluate the Riemann zeta function at the 
level of its Gram points divided by 2π. The table given in figure 
6 thus lists all significant maxima up to the value x = 2000. The 
first 4 columns show the index k of the Gram point, its position 
and the value of F(x) in absolute value and in relative value with 
respect to the dotted curve, which gives an idea of the growth rate 
of these local maxima. The last column gives the quasi-integer qn 
for prime number n = 2. Values of qn for other prime numbers (5, 
7, 11, 13…) are easily computed from the value of x: qn = x·ln n. 
As F(x) increases, the integers qn become closer to integer values, 
and the range where qn intervals correspond to a frequency ratio 
of type 1: n becomes better. We can see that the smallest prime 
numbers tend to give the best approximations to integers. Note 
that octaves are always well represented, even though this was not 
imposed at the outset, demonstrating the natural importance of the 
prime factor 2 in the perception of octaves, which has been noted 

since antiquity. The q2 column thus provides us with a sequence of 
integers for the optimal division of the octave into N intervals: N = 
1, 2, 3, 5, 7, 12, 19, 31, 53, 72, 270, 311, 342 and 494.

Let us show, for the case N = 7, how to get ratios from the 
corresponding qn values. For this, we will restrict ourselves to the 
prime integers n = 2, 3 and 5. As here, x = 10.04, we may compute:
q2 = 10.04×ln 2 = 6.96 ≈ 7
q3 = 10.04×ln 2 = 11.03 ≈ 11
q5 = 10.04×ln 5 = 16.16 ≈ 16

The game here is to find a combination of quasi-integers q2, q3 and 
q5 capable of generating seven intervals numbered from 1 to 7. For 
instance, starting from note C (P1 = 1:1), the first degree could be 
obtained as:
2q3 - 3q2 = 2×11 - 3×7 = 22 -21 = 1

In order to find the ratio corresponding to a qn combination, each 
value of n present in the combination is elevated at the power of the 
qn coefficient, positive values corresponding to the numerator and 
negative values to the denominator. Here, for the major second, the 
q₃ coefficient is 2 while that of q₂ is -3, so that M2 = 3²:2³ = 9:8 (D). 
Here is what may be obtained for other intervals:
q₅ - 2q₂ = 16 - 2×7 = 16 - 14 = 2, i.e. M3 = 5¹:2² = 5:4 (E)
2q₂ - q₃ = 2×7 - 11 = 14 - 11 = 3, i.e. P4 = 2²:3¹ = 4:3 (F)
q₃ - q₂ = 11 - 7 = 4, i.e. P5 = 3¹:2¹ = 3:2 (G)
q₅ - q₃ = 16 - 11 = 5, i.e. M6 = 5¹:3¹ = 5:3 (A)
q₃ + q₅ -3q₂ = 11 + 16 - 3×7 = 27 - 21 = 6, i.e. M7 = (3¹×5¹):2³ = 
15:8 (B)
q₂ = 7, i.e. P8 = 2¹:1 = 2:1 (C)
This is the seven-note major scale with the right intonation. To 
obtain the minor scale, we need to find another combination of 
quasi-integers for the second interval, for example:
q₂ + q₃ - q₅ = 7 + 11 - 16 = 18 - 16 = 2, or m3 = (2¹×3¹):5¹ = 6:5 
(E♭, D♯)
For the minor seventh (sixth interval), we could have:
4q₂ - 2q₃ = 4×7 - 2×11 = 28 - 22 = 6, or m7 = 2⁴:3² = 16:9 (B♭, A♯))
For the sixth minor (fifth interval), we could take:
3q₂ - q₅ = 3×7 - 16 = 21 - 16 = 5, or m6 = 2³:5¹ = 8:5 (A♭, G♯)
Finally, for the second minor (first interval) we'd have:
4q₂ - q₃ - q₅ = 4×7 - 11 - 16 = 28 - 27 = 1, or m2 = 2⁴:(3¹×5¹) = 
16:15 (D♭, C♯)
Note also the possibility of another ratio for the second major (first 
interval) since:
q₂ + q₅ - 2q₃ = 7 + 16 - 2×11 = 23 - 22 = 1, i.e. M2 = (2¹×5¹):3² = 
10:9
The advantage of this method is that you can very well have ratios 
not included in table 1. For example, the triton (third interval) can 
be obtained as follows:
2q₅ - 2q₃ - q₂ = 2×16 - 2×11 - 7 = 32 - 22 - 7 = 3, or TT = 5²:(3²×2¹) 
= 25:18 (F♯,G♭)
Of course, it is not mandatory to use a seven-notes scale. The 
value N = 2 means that the octave is split into just two parts. From 
figure 6, we know that x = 2.84, hence q₂ = 2.84×ln 2 = 1.97 ≈ 
2 and q₃ = 2.84×ln 3 = 3.12 ≈ 3. Here, with a single degree, two 
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possibilities: q₃ - q₂ = 3 - 2 = 1, i.e. the perfect fifth P5 with ratio 
3:2, or alternatively, 2q₂ - q₃ = 2×2 - 3 = 4 - 3 = 1, i.e. the perfect 
fourth P4 with ratio 4:3. Similarly, we could have chosen N = 5, 
i.e. x = 7.26 with q₂ = 7.26×ln 2 = 5.03 ≈ 5, q₃ = 7.26×ln 3 = 
7.98 ≈ 8 and q₅ = 7.26×ln 5 = 11.69 ≈ 12. Hence the countless 
pentatonic scales used around the world. Here we recognize all 
five-note modal music including, in particular, most of the scales 
used in blues and jazz. The simplest one, derived from the natural 
major scale, is easily obtained as:
First degree: 2q₃ - 3q₂ = 2×8 - 3×5 = 16 - 15 = 1, i.e. M2 = 3²:2³ 
= 9:8
Second degree: q₅ - 2q₂ = 12 - 2×5 = 12 - 10 = 2, i.e. M3 = 5¹:2² 
= 5:4
Third degree: q₃ - q₂ = 8 - 5 = 3, i.e. P5 = 3:2
Fourth degree: q₅ - q₃ = 12 - 8 = 4, i.e. M6 = 5:3
So far, Riemann's Zeta function simply reproduces what human 
beings have discovered empirically, at the cost of a great deal of 
more or less harmonious trials and errors. The main interest in this 
approach lies in microtonal music, where the octave is divided into 
more than 12 intervals. Thus, after the value N = 7, we find N = 
12, N = 19 and N = 31. Not surprisingly, the astronomer Christian 
Huygens was the first to use a 19-tone equal-temperament 
scale (19-EDO) towards the end of the 17th century, providing 
a very good approximation of the right intonation and allowing 
modulation to other keys.

With q₃ = 27.34×ln 3 = 30.03 ≈ 30, the perfect fifth of ratio 3:2 
corresponds here to the eleventh degree of the scale (q₃ - q₂ = 30 
- 19 = 11), i.e. an interval  ¹⁹√2¹¹ =694.7 ¢ that is less good than 
the approximation of the 12-DEO scale (12√27 =700.0 ¢). Huygens 
therefore also considered the case of a 31-EDO scale already studied 

in a musical treatise dated 1555 written by the Italian musician 
Nicola Vincentino and published in Rome under the title “L'antica 
musica ridotta alla moderna pratica”. Here, with q₃ = 44.69×ln 3 = 
49.10 ≈ 49, the perfect fifth corresponds to the eighteenth degree of 
the scale (q₃ - q₂ = 49 - 31 = 18), i.e. an interval of 31√218 = 696.8 ¢, 
which is still not as good as the 12-EDO fifth. The main advantage 
of this scale is that it achieves an excellent approximation of the 
mesotonic fifth P5 = 696.6 ¢, allowing the entire mesotonic scale 
to be found. The musician Adriaan Fokker was an ardent advocate 
of such a 31-degree scale. However, to get the best approximation 
of the perfect fifth of ratio 3:2 = 701.96 ¢, it's best to take the value 
N = 53, since with q₃ = 76.46×ln 3 = 84, the perfect fifth here 
corresponds to the thirty-one degree of the scale (q₃ - q₂ = 84 - 53 
= 31), i.e. an interval of ⁵³√2³¹ =701.89 ¢, which beats the 12-EDO 
fifth by a wide margin. In the Pythagorean version of this scale, 
the fifth is divided into 24 apotomes and 7 limmas, while the tone 
is divided into 31 + 31 - 53 = 9 units corresponding to 7 apotomes 
and 2 limmas. It should be noted that the Chinese musician King 
Fâng, who lived in the third century BC, had already observed that 
the fifty-fourth note of the Pythagorean cycle of fifths was very 
close to the first note. Similarly, Philolaos, a disciple of Pythagoras, 
imagined that a tone could be broken down into two minor 
semitones plus a Pythagorean comma, and considered that each 
minor semitone contained 4 commas. With 9 commas per tone and 
4 commas per minor semitone, we obtain a total of 9×5 + 2×4 = 53 
commas for the octave composed of 5 tones and 2 semitones. The 
mathematician Gérard Mercator (1620-1687) precisely calculated 
the numerical value of the ratio 353:284 = 3.62¢, hence the name 
“Mercator comma”. A division of the octave into 53 intervals was 
also envisaged by Isaac Newton.
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However, the next approximation, N = 72, is even more interesting, as 72 is a multiple of 12, and the human ear is in tune to distinguish 
between the different degrees of such a scale, known as “moria” (table 2). Note that the next integer in figure 6 is N = 270, which gives 
intervals that are indistinguishable to the human ear, and therefore corresponds to scales of purely mathematical interest.

Interval Degree Ratio Degree Ratio Degree Ratio Degree Ratio Degree Ratio Degree Ratio 
P1 0 1:1 - - - - - - - - - - 
A1 1 81:80 2 45:44 3 33:32 - - - - - - 
m2 4 25:24 5 21:20 6 35:33 7 15:14 - - - - 
n2 8 27:25 9 12:11 10 11:10 - - - - - - 
M2 11 10:9 12 9:8 13 25:22 14 8:7 15 81:70 - - 
m3 16 7:6 17 33:28 18 25:21 19 6:5 - - - - 
n3 20 40:33 21 11:9 22 99:80 - - - - - - 
M3 23 5:4 24 44:35 25 14:11 26 9:7 27 35:27 - - 
P4 28 21:16 29 33:25 30 4:3 31 27:20 32 15:11 33 11:8 
TT 34 25:18 35 7:5 36 99:70 37 10:7 38 36:25 - - 
P5 39 16:11 40 22:15 41 40:27 42 3:2 43 50:33 44 32:21 
m6 45 54:35 46 14:9 47 11:7 48 35:22 49 8:5 - - 
n6 50 81:50 51 18:11 52 33:20 - - - - - - 
M6 53 5:3 54 27:16 55 56:33 56 12:7 57 121:70 - - 
m7 58 7:4 59 44:25 60 16:9 61 9:5 - - - - 
n7 62 20:11 63 11:6 64 50:27 - - - - - - 
M7 65 15:8 66 66:35 67 21:11 68 27:14 - - - - 
d8 69 35:18 70 49:25 71 99:50 - - - - - - 
P8 72 2:1 - - - - - - - - - - 

 
Table 2: Derivation of a 72-note scale from the limit 11 harmonic series. According to Fig. 
5, for this type of scale we have x = 103.81, i.e. q₂ = 103.81×ln 2 = 71.96 ≈ 72; q₃ = 103.81×ln 
3 = 114. 05 ≈ 114; q₅ = 103.81×ln 5 = 167.08 ≈ 167; q₇ = 103.81×ln 7 = 202.01 ≈ 202; q₁₁ = 
103.81×ln 11 = 248.93 ≈ 249. We can check that for simple ratios, we have q₇ - q₅ = 202 - 
167 = 35 (ratio 7:5); q₃ - q₂ = 114 - 72 = 42 (ratio 3: 2); q₁₁ - q₇ = 249 - 202 (ratio 11:7) and 
q₅ - q₃ = 167 - 114 = 53 (ratio 5:3), according to this table. The same can be done for the 
other 68 compound ratios.  

Table 2: Derivation of a 72-note scale from the limit 11 harmonic series. According to Fig. 5, for this type of scale we have x = 
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Figure 6: Generation of optimal ranges at N = 1, 2, 3, 5, 7, 12, 19, 31, 53, 72 and 270 degrees using Riemann's zeta function. Note 
that 3 = 2+1, 5 = 2+3, 7 = 2+5, 12 = 7+5, 19 = 12+7 and 31= 12+19, 53 = 19+31+3, 72 = 19+53, reminiscent of the Fibonacci series 
converging on the golden number.
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7. The Tonnetz
A chord corresponds to a triad i.e. to a set of 3 notes. A major 
chord is composed of a root, a major third and a fifth. A minor 
chord is made up of a root, a minor third and a fifth. In 1739, 
the mathematician Leonhard Euler (1707-1783) had the idea of 
representing tonal and harmonic relationships in music by means 
of a "tonal network" or "Tonnetz" in German. This was a diagram 
representing the tonal space of intonation in the form of a grid. In 
particular, this first version shows the relationships of fifths (ratio 
3:2) and major thirds (ratio 5:4) between the degrees of the system. 
Thirty-five years later, in 1774, Euler provided a new version of this 
grid, this time called "Speculum musicum" or "Musical Mirror", 
where the notes are aligned horizontally in fifths and vertically 
in major thirds. The Tonnetz was rediscovered in 1866 by Arthur 
von Oettingen (1836-1920), who conceived it with a theoretically 
infinite extension in all directions (ascending or descending 
fifths, to the right or left; ascending or descending major thirds, 

down or up) and minor thirds on the diagonals. Hugo Riemann 
(1849-1919) then extended the Tonnetz to equal temperament to 
infinity. Riemann defined three transformations: P (for "Parallel"), 
L (for "Leittonwechsel") and R (for "Relative"). Figure 7 shows 
a modern version of this neo-Riemannian Tonnetz. Take, for 
example, a well-known harmonic chord progression such as: C - G 
- Am - F, as found in The Beatles' "Let it Be" (1970) or Elton John's 
"Can you feel the love tonight" (1994). If we refer to the Tonnetz, 
the transition from the C chord (C-E-G) to the G chord (G-B-D) 
corresponds to an LR-type movement. Then, the transition from 
the G chord (G-B-D) to the Am chord (A-C-E) corresponds to an 
RLR-type movement. Finally, the last passage from the Am chord 
(A-C-E) to the F chord (F-A-C) is an L-type movement, i.e. three 
L-type movements for three R-type movements. Thus, the neo-
Riemannian Tonnetz is based on the parsimony of movements, i.e. 
"The rule of the shortest path". Or, as Jean-Philippe Rameau put it: 
"You can only go from one note to another by the one closest to it".
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Figure 7: The Oettingen/Riemann Tonnetz derived from the “Speculum Musicum” of Leonard Euler (1774). 
The Tonnetz may also be seen as a tessellation of the plane, 
i.e. a covering of the plane with geometric shapes (in this case, 
triangles). We call these periods the fundamental domains that 
allow us to see the Tonnetz as a topological object, in other words, 

a torus. Every piece of music therefore leaves a characteristic trace 
on the Tonnetz. As Table 3 shows, the symmetry operations of the 
Tonnetz form a group isomorphic to the dihedral group D12.
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Table 3:  Cyclic group structure of the Tonnetz. The relative (R) minor of a major chord increases its fifth by a tone. The 
lowering (L) of a minor chord increases its fifth by a semi-tone. Starting from a C major chord, the same chord is recovered after 
twelve iterations of alternating operations R and L, meaning that (LR)¹² = 1, the identity. Moreover, the parallel (P) operation 
transforming a major chord in its minor form (lowering of the third by one semi-tone) may be expressed as: P = R(LR)³. As 
L(CEG) = EGB and L(EGB) = CEG, we also have L² = 1 and L(LR)L = RL = (LR)⁻¹. As the Dihedral D₁₂ group is of order h = 24 
and may be generated according to D₁₂ = < a,b | a12=b2=1, bab=a-1 >, we see here that a = (LR) and b = L.

 

Iteration Relative minor of major chord Lowering of minor chord 

1 R(C = CEG) = ACE (Am) L(Am) = FAC (F) 

2 R(F) = DFA (Dm) L(Dm) = B♭DF (B♭) 
3 R(B♭) = GBD (Gm) L(Gm) = E♭GB♭ (E♭) 
4 R(E♭) = CE♭G (Cm) L(Cm) = A♭CE♭ (A♭) 
5 R(A♭) = FA♭C (Fm) L(Fm) = D♭FA♭ (D♭) 
6 R(D♭) = B♭D♭F (B♭m) L(B♭m) = G♭B♭D♭ (G♭) 
7 R(G♭) = E♭G♭B♭ (E♭m) L(E♭m) = B♭E♭G♭ = BD♯F♯ (B) 

8 R(B) = G♯BD♯ (G♯m) L(G♯m) = EG♯B (E) 

9 R(E) = C♯EG♯ (G♯m) L(C♯m) = AC♯E (A) 

10 R(A) = F♯AC♯ (F♯m) L(F♯m) = DF♯A (D) 

11 R(D) = BDF♯ (Bm) L(Bm) = GBD (G) 

12 R(G) = EGB (Em) L(Em) = CEG (C) 

 
Table 3:  Cyclic group structure of the Tonnetz. The relative (R) minor of a major chord 

increases its fifth by a tone. The lowering (L) of a minor chord increases its fifth by a semi-tone. 

Starting from a C major chord, the same chord is recovered after twelve iterations of alternating 

operations R and L, meaning that (LR)¹² = 1, the identity. Moreover, the parallel (P) operation 

transforming a major chord in its minor form (lowering of the third by one semi-tone) may be 

expressed as: P = R(LR)³. As L(CEG) = EGB and L(EGB) = CEG, we also have L² = 1 and 

L(LR)L = RL = (LR)⁻¹. As the Dihedral D₁₂ group is of order h = 24 and may be generated 

according to D₁₂ = < a,b | a12=b2=1, bab=a-1 >, we see here that a = (LR) and b = L. 

 

  

8. The Water Diapason
From the above, we can see that music and science are closely 
related. Now, there's a completely unsatisfactory point that 
needs to be considered. It's well known that each musical note 
has a corresponding frequency, and that whole multiples of this 
frequency constitute the various harmonics. But the fact remains 
that it's impossible to establish a correspondence between a 
musical note and a frequency, without the input of what we 
call a "diapason".  Without this crucial data, a musical note can 
correspond to any frequency. A diapason (from the Low Latin 
diapason, from the Greek dia pasôn khordôn, through all the 
strings) is therefore a device shaped as a tuning fork that produces 
a pure frequency corresponding to a perfectly sinusoidal wave, 
to which we arbitrarily associate a particular note, generally the 
note A4. This reference note is written between the second and 
third staff lines on a score. It corresponds to the open string of the 
violin and viola. This modern meaning of the word “diapason” 
corresponding to a tuning-fork, should not be confused with the 
Pythagorean diapason, synonym of “octave” (i.e. 2:1 ratio).

In 1936, the American National Standards Institute recommended 
that this A4 note be tuned to a frequency of 440 Hz. This standard 
was accepted by the International Organization for Standardization 
(ISO) in 1955 as ISO 16. It is now used as a reference frequency 
for tuning pianos, violins and other instruments. It's worth noting 
that there's no rational basis for choosing the 440 Hz frequency 
for the note A4. Between the 16th and 19th centuries, the frequency 

of this note ranged from 373 to 521 Hertz [16]. In 1859, France 
established its reference A4 note at 435 Hz at a temperature of 
18°C. This was the first standardization on a national scale. 
In 1953, at the international conference in London, A4 = 440 
Hertz became the reference for all orchestras worldwide. No one 
knows exactly what led to this precise value. One thing is certain, 
however. If the pitch is too high, it can affect the sound and vocal 
performance of singers. On the other hand, according to Hector 
Berlioz, wind instrument manufacturers were responsible for the 
constant rise in pitch between 1700 and 1858 (from 404 Hz to 457 
Hz) [17]. This was to ensure maximum brilliance for flutes, oboes 
and clarinets. For stringed instruments (violins, violas, basses), this 
wasn't too much of a problem, since all they had to do was stretch 
their strings a little more. The main malcontents were musicians 
playing bassoon, horn, trumpet or second oboe, who had to take 
their instruments to the maker to have the tube shortened...

Initiated by the French, the standardization of a A4-diapason was 
primarily a response to economic and commercial motivations. 
To be able to distribute fixed-tone instruments over increasingly 
vast territories, instrument makers needed to know which pitch 
to use to manufacture the instruments in large quantities. But 
while the A4 = 440 Hertz is now the standard, the musician or 
conductor is free to use any tuning fork. For example, musicians 
specializing in Baroque music use a pitch of 415 Hz, while 
symphony orchestras use pitches between 445 and 450 Hz. There 
is also much controversy on the Internet about the use of a 432 



  Volume 7 | Issue 4 | 16J Huma Soci Scie, 2024

cells for a child [19]. Given that 99.1 mol% of a cell is made up of water molecules [3], it 

follows that music can also influence our body water, our constituent cells and not just our ears.  

In fact, in this fifth dimensional scale of the universe, masses must synchronize on a musical 

scale because energy can be expressed in two different, intrinsically equivalent ways. On the 

one hand, any mass m can be seen as energy according to the relation E = m·c², where c = 

299,792,458 m·s⁻¹ is the propagation speed of light in a vacuum. On the other hand, according 

to quantum physics, all energy can be considered as a frequency f, according to the relation E 

= h·f, where h = 6.62606954×10⁻³⁴ J·s represents Planck's quantum of action. If we accept that 

we're talking about the same energy E in both cases, then it follows that m·c² = h·f, which means 

that any mass m can be associated with a characteristic frequency f. Now, for molecules, mass 

is expressed in Daltons (Da = g·mol⁻¹), which requires us to go through Avogadro's constant, 

NA = 6.02214076×10²³ mol⁻¹, to get a mass expressed in kilograms (kg). Hence our fundamental 

relationship: 
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f/Hz = 2.252342926840606×10²⁴×(m/Da) 

 

So, for a water molecule with a mass m = 18.01528 Da, we rigorously calculate a frequency f 

= 4.05767×10²⁵ Hz. It id at this point that the notion of scale invariance comes into play, 

coupling the world of the infinitely small with our macroscopic scale. In music, this scale 

invariance is expressed by the principle of octave identity, recognized since antiquity. At the 

frequency level, this principle corresponds to division or multiplication by a factor of 2. As the 

quantum frequencies of molecules are really very high, the most convenient is to use the 

logarithm function of base 2, noted log₂, which allows us writing: 

 

log₂ f₀ = 76 + 1.575772681758021 + log₂ (m/Da) 

 

⇒ f₀/2⁷⁶ (Hz) = 2.980951043045587×(m/Da) 

 

 

So, for a water molecule with a mass m = 18.01528 Da, we 
rigorously calculate a frequency f = 4.05767×10²⁵ Hz. It is at this 
point that the notion of scale invariance comes into play, coupling 
the world of the infinitely small with our macroscopic scale. In 
music, this scale invariance is expressed by the principle of octave 
identity, recognized since antiquity. At the frequency level, this 
principle corresponds to division or multiplication by a factor of 2. 
As the quantum frequencies of molecules are really very high, the 
most convenient is to use the logarithm function of base 2, noted 
log₂, which allows us writing:

log₂ f₀ = 76 + 1.575772681758021 + log₂ (m/Da)

⇒ f₀/2⁷⁶ (Hz) = 2.980951043045587×(m/Da)

Then, as m[H₂O] = 18.01528 Da, we should have f₀(H₂O) 
= 53.702667706758303 Hz. As this frequency is too low to 
correspond to a A4-diapason, we simply raise it by three octaves 
to arrive at the final result:

f₃(H₂O) = 53.702667706758303×2³ = 429.621341654066421 Hz
The interest of music produced with this A4 = 429.62 Hz water-
based diapason, is that, via the scale waves involving the fifth 
dimension of our universe, we make our tens of trillions of 
body cells vibrate. We can therefore expect a very particular and 
objective feeling for this precise diapason in any living being 
having water as its basic constituent molecule.

Hz pitch to produce music that is considered less aggressive and 
more serene than that produced at a 440 Hz pitch. A recent double-
blind study involving 33 healthy volunteers has concluded that 
music tuned to 432 Hz was associated with a slight non-significant 
decrease in mean (systolic and diastolic) blood pressure values, 
as well as a marked decrease in mean heart rate (-4.79 bpm, p = 
0.05) and a slight decrease in mean respiratory rate values (1 r.a., 
p = 0.06), compared to music tuned to 440 Hz [18]. Subjects were 
more focused on listening to music and more satisfied overall after 
sessions in which they listened to music tuned to A4 = 432 Hz. 
However, the results of the study suggest repeating the experiment 
with a larger sample and introducing randomized controlled trials 
covering more clinical parameters. 

The theoretical arguments of those who defend the use of a 
diapason tuned at 432 Hz almost all appeal to more or less 
esoteric considerations, or else have recourse to numerology. As it 
happens, the number 432 is the product of 2⁴ = 16 by 3³ = 27. All 
that remains then is to find out how frequencies of 8 Hz or 144 Hz 
are natural (two numbers present in the famous Fibonacci series 
converging towards the golden number) and the "demonstration" 
is done... The weakness of such arguments becomes obvious when 
we consider that the number 8 = 2³ is common to both frequencies, 
since 432 = 8×54 and 440 = 8×55. Since we're trying to discuss 
a difference of just 1 Hz after transposing 3 octaves downwards, 
all these numerological arguments must be rejected. If it gives 
you pleasure to use a 432 Hz pitch for listening to music, don't 
hesitate for a second. But please don't try to claim that it's better 
than the 440 Hz tuning. After all, intellectual honesty dictates that 
all diapasons are basically equivalents. However, the same cannot 
be said for the way each one feels. Here, subjectivity reigns, and 
each human being is unique in his or her listening to music.

However, if one diapason is really better than other ones, the 

frequency of that diapason must be calculable and justifiable by 
means of the known laws of physics, through the judicious use of 
the universal physical constants of our universe. Here, we propose 
such a calculation, and then demonstrate with objective parameters 
that such an optimal diapason for playing music indeed exists. As 
explained before, arguments based on group theory applied to 
Maxwell's equations, strongly suggest that our universe is not a 
4-dimensional space-time continuum, but rather a five-dimensional 
space-time-scale hyper-surface embedded in a sixth-dimensional 
continuum of consciousness [13]. In this sixth framework of 
thought, called “musicalism” (see figure 2), the choice of a 
diapason can no longer be arbitrary. For, the fifth dimension of 
scale implies that any living being can recognize itself from its 
constituent molecules (nanometer scale) to the meter scale via its 
36×10¹² cells for a man, 28×10¹² cells for a woman and 17×10¹² 
cells for a child [19]. Given that 99.1 mol% of a cell is made up of 
water molecules [3], it follows that music can also influence our 
body water, our constituent cells and not just our ears. 

In fact, in this fifth dimensional scale of the universe, masses must 
synchronize on a musical scale because energy can be expressed in 
two different, intrinsically equivalent ways. On the one hand, any 
mass m can be seen as energy according to the relation E = m·c², 
where c = 299,792,458 m·s⁻¹ is the propagation speed of light in 
a vacuum. On the other hand, according to quantum physics, all 
energy can be considered as a frequency f, according to the relation 
E = h·f, where h = 6.62606954×10⁻³⁴ J·s represents Planck's 
quantum of action. If we accept that we're talking about the same 
energy E in both cases, then it follows that m·c² = h·f, which 
means that any mass m can be associated with a characteristic 
frequency f. Now, for molecules, mass is expressed in Daltons (Da 
= g·mol⁻¹), which requires us to go through Avogadro's constant, 
NA = 6.02214076×10²³ mol⁻¹, to get a mass expressed in kilograms 
(kg). Hence our fundamental relationship:
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For example, let's take the carbon dioxide molecule CO₂ with 
mass m = 44.009 Da. The associated quantum frequency is f = 
2.981×44.009 = 131.19 Hz, or ∆f = -2054 ¢. Hence, going back 2 
octaves: ∆f = 2400 - 2054 = 346 ¢. According to the table above, 
this difference corresponds to the note C increased by 46 ¢. 
Another choice would have been the note C# reduced by 54¢. But 
if you want to deviate as little as possible from the tempered scale, 
the best choice is the note C (+46¢).  This is how to create entirely 
original "molecular" music, as soon as the composer has access 
to software and a high-quality sound bank. In this case, the use of 
software is imperative if we wish to maintain the cents deviation 
from the tempered scale, both in terms of the notes and the pitch 
of 429.62 Hz. 

So far, so good. But now, how can we prove, objectively, that 
this computed diapason of 429.62 Hz is an optimal one? Here, 
the best is to choose a well-known musical piece and look at the 

frequency spectrum for a given diapason. For example, below is 
the frequency spectrum for Pachelbel's canon composed around 
1680 and harmonized with a 429.62 Hz pitch (figure 8). We've 
also zoomed in on the richness of the sound generated at this pitch, 
associated with the water molecule. We then used other pitches 
(415 Hz, 432 Hz, 435 Hz, 439 Hz, 440 Hz and 442 Hz) to see the 
effect of changing pitch for the same composition using the same 
instruments.

Note that we have here a representation of the piece of music 
giving the frequencies (vertical scale graduated in Hertz) involved 
as a function of time (horizontal scale graduated in minutes and 
seconds). Such a representation is called a spectrogram. In addition 
to the spectrogram itself, we show, at the very top, in orange, how 
loudness varies (vertical scale graduated in decibels) as a function 
of time. There are two diagrams in each case, since we're dealing 
here with stereo sound.

∆f(¢) = 1200×log₂(f/f₃) where f₃ = 429.62 Hz (A4)

A(0¢) A#(100¢) B(200¢) C(300¢) C#(400¢) D(500¢) D#(600¢) E(700¢) F(800¢) F#(900¢) 
G(1000¢) G#(1100¢) A(1200¢)

9. Spectrograms
From a practical point of view, some very famous pieces of 
classical music have been reproduced with this new tuning fork. 
So that everyone can form their own opinion, they can be listened 
to and downloaded from the website of composer Tommi Jack's 
[20-22]. But using the water-based diapason at 429.62 Hz, also 
makes it possible to create entirely original music, by giving 

oneself a list of molecules and calculating the associated notes 
using the same method as that used for the water molecule. Thus, 
knowing the frequency f of these molecules calculated by means 
of their molecular mass, we can obtain the corresponding musical 
note based on the fact that there are exactly 1200 cents (¢) in an 
octave:

 
Figure 8 

  

Figure 8: Top: Frequency spectrum of Johann Pachelbel’s canon harmonized at 429.62 Hz pitch. Bottom: Zoom into the frequency 
spectrum, showing the existence of a "light" in the sound.
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Figure 9: How to read a spectrogram.

Now let's see how to read a spectrogram. Figure 9 summarizes 
what you need to know. At the very bottom, we find the sound 
dynamics linked to low frequencies and corresponding to sound 
energy. The greater the dynamic range, the more yellow the color. 
Sound engineers refer here to the "light" contained in the sound, 
which can be strong or weak. Then, for higher frequencies above 
5 kHz, we enter the realm of psychoacoustics, i.e. the presence 

of sound corresponding to red colors. Finally, beyond 10 kHz 
(typically), we find the "depth" of sound, corresponding to violet-
tinged colors. Thanks to the spectrogram, it's also possible to tell 
whether a sound has been compressed or not. If the sound has 
been compressed (in MP3 format, for example), there will be no 
frequencies above 15 kHz. We now have everything we need to see 
and understand the effect of the choice of pitch on a spectrogram.

 
 

Figure 9 

  
Thus, figure 10 (top) shows the spectrogram of Pachelbel's Canon 
using a pitch of 415 Hz for the musical rendering (German 
Baroque). Note that here all settings are identical, only the pitch 
has changed relative to figure 8. We immediately notice that with 
this pitch, the sound has much less depth and that the light in the 
sound is much weaker, especially in the very low frequencies, 
below 1 kHz, where we see very little yellow color. This translates 
into a division by 2 of the sound intensities represented in orange. 
The sound has thus been considerably impoverished and weakened 
in relation to the pitch of the water molecule at 429.62 Hz.

Figure 10 also shows the spectrogram of the same Pachelbel 
canon with a pitch of 432 Hz (middle). Again, no other settings 
were changed. The result appears much better than with the 415 
Hz pitch. However, it still lacks the richness of the 429.62 Hz 
diapason. Here too, the sound clearly lacks depth (black band 
around 20 kHz), even if we have recovered a fair amount of light 
at low frequencies. The problem here lies in the psychoacoustics of 
the sound, with a black band appearing between 7 and 8 kHz. This 

translates into a much-reduced sound intensity compared with the 
429.62 Hz tuning fork, but still much better than with the 415 Hz 
tuning fork. This is obviously a pretty good diapason, but far from 
being optimal.

The last spectrogram in figure 10 shows the effect of using a 435 
Hz pitch for A4. As can be easily seen, the richness of the sound 
is much lower than at 432 Hz or 429.62 Hz pitch. Here, there is 
virtually no light left in the sound, with the appearance of a black 
band around 1 kHz, in addition to the black band between 7 and 
8 kHz already observed with the 432 Hz tuning fork. The sound 
has also lost considerable depth, with many completely black 
zones above 10 kHz. The result is a considerably reduced sound 
intensity, even weaker than that obtained with the 415 Hz tuning 
fork. Remember that the 435 Hz pitch was the pitch recommended 
in France from 1853 onwards. Looking at the spectrogram, it's easy 
to understand why no other country has followed France down this 
path, since it considerably impoverishes the sound. 
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Figure 10 

  

Figure 10: Spectrograms of the Pachelbel Canon for three A4 pitch values.

Now, figure 11a shows the spectrogram obtained, again for 
Pachelbel's canon, with a pitch of 439 Hz, which was the official 
pitch of the Royal Philharmonic Orchestra in London. There's 
greater depth of sound, but very little light below a frequency of 1 
kHz. This weakened sound dynamic translates into a considerably 
reduced loudness, i.e. a factor of two compared with the French 
diapason at 435 Hz. In the light of these spectrograms, the advocates 
of the 432 Hz diapason were quite justified in extolling the virtues 
of their choice, which does indeed deliver less attenuated loudness 
and greater sonic richness. But today, with the new 429.62 Hz 
diapason, the 432 Hz tuning appears to be not an optimum choice, 
i.e. the least bad choice compared to the "historic" diapasons.

Obviously, it's now time to consider the Pachelbel canon with a 
pitch of 440 Hz for A4 (figure 11b), a standard that was accepted 
by the International Organization for Standardization (ISO) in 
1955 as ISO 16. This standard is now used as a reference frequency 
in the tuning of pianos, violins and other instruments sold in the 

musical instrument trade. Note that the sound has good depth and 
plenty of light below a frequency of 1 kHz. On the other hand, as 
with the 432 Hz diapason, there are those two black bands between 
7 and 8 kHz and around 20 kHz frequency. The result is a rather 
mediocre sound intensity, which appears much lower than that 
obtained with the 432 Hz diapason. Once again, this confirms the 
position of those in favor of the 432 Hz diapason. But these same 
proponents, in turn, have to capitulate to the A4 = 429.62 Hz pitch 
spectrogram. 

We conclude this analysis of the effect of pitch by considering 
the orchestral pitch, set at 442 Hz for A4. Figure 11c shows the 
Pachelbel canon rendered with this latter pitch. Note that the two 
black bands present in music at 432 Hz or 440 Hz pitch have 
disappeared. This is obviously a very positive point. The result 
is a much stronger sound intensity. Nevertheless, the intensity 
remains slightly lower than that obtained with a 429.62 Hz tuning 
fork. The main reason for this seems to be the lack of light in the 
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low frequencies below 1 kHz, where red largely dominates over 
yellow.

Following the study of these different spectrograms, it is possible 
to classify the different diapasons considered as follows: 

429.62 Hz > 442 Hz > 432 Hz > 440 Hz > 415 Hz > 435 Hz > 439 
Hz

Note that all these pitches are more or less arbitrary, with the 
exception of 429.62 Hz, which is the result of a rational calculation 
involving Planck's quantum of action, the speed of light in vacuum, 
Avogadro's constant and the average molar mass of a water 
molecule. These values are not arbitrary; they are fixed by Nature 
itself, not by human feeling. Remarkably, 429.62 Hz provides the 
richest spectrogram in terms of dynamics, psychoacoustics and 
sonic depth. It's a win-win situation, with optimal sound intensity.

10. Integrated Loudness (IL) and Loudness Range (LRA)
Of course, this classification could be criticized for its somewhat 
subjective nature. We have therefore also generated piano sounds 
for these different diapasons, and used the two concepts of 
Integrated Loudness (IL) and Dynamic Excursion Level (LRA). 
The first concept, IL gives a figure expressed in units known as 
LUFS (acronym for "Loadness Units relative to Full Scale"), with 
1 LU = 1 dB. The aim here is to characterize the overall sound 
energy received by the human ear over the entire length of a piece 
of music. The value ranges from -30 LUFS for a whispering voice, 
through -16 LUFS for a scream, to the maximum value of 0 LUFS 
for a sound that becomes painful to listen to. In radio and television, 
for example, a standard has been set at -23 ± 1 LUFS to ensure that 
the sound level remains more or less stable whatever the program. 
In music, there is no standard, but to achieve a constant sound level 

without having to change the volume with each song, a sound level 
of between -20 LUFS and -16 LUFS is considered comfortable. 
This does not, of course, preclude the possibility of higher sound 
levels, in which case we leave it up to the listener to manually 
lower the volume of his or her listening system to achieve the 
optimum sound for his or her hearing. For example, in the case 
of our Pachelbel canon with a pitch of 429.62 Hz, we found IL = 
-8.71 LUFS.

One well-known way of increasing the sound level without 
having to touch any "volume" knob is to compress the music, i.e. 
to reduce its dynamic range, which has the effect of artificially 
increasing its integrated sound level. The problem here is to find, 
for a given piece of music, the right compromise between a song 
with a very wide dynamic range and therefore almost inaudible, 
and the same song with a very narrow dynamic range, which will 
certainly be much more powerful sonically, but also hopelessly 
flat and boring in terms of musical rendering. Hence the idea of 
a second parameter called the "Dynamic Excursion Indicator", or 
LRA (acronym for "Loudness Range"). For the Pachelbel canon at 
a pitch of 429.62 Hz, we had LRA = 4.11 LU, a value indicating 
that there is little tension in the musical rendering. Indeed, below 
LRA = 4 LU, we have a gentle piece to listen to that encourages 
meditation, but which can also quickly become weary and boring. 
Above LRA = 5 LU, the track alternates between gentle moments 
and others that put you under tension. Finally, if 6 ≤ LRA ≤ 12 LU, 
we have a track where there are strong sonic differences between 
different sections of the song. This is what we're looking for in 
classical music where, very often, we have LRA ≥ 9 LU. The same 
applies to ballads. For country-jazz music, we'll typically have 6 
≤ LRA ≤ 8 LU. For rock or electronic music, we're looking for an 
LRA around 5 LU. Finally, for Hip Hop or rap, we typically have 
LRA ≤ 5.
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Figure 11 

  

Figure 11: Spectrograms of the Pachelbel Canon for three other A4 pitch values.

With this in mind, we generated the same piano sounds for the 
seven diapasons considered above, using the Pachelbel canon. 
Figure 12 shows the spectrograms obtained in each case. As we're 
dealing here with a relatively simple sound, it's rather difficult to 
establish a classification with the naked eye. Fortunately, software 
is available to calculate the Integrated Loudness (IL) and Dynamic 
Excursion Rating (DER) given for each pitch. Thus, based on the 
sound level, we obtain the following classification:

429.62 > 432 > 439 > 435 > 440 > 442 > 415

Note that we're dealing here with non-compressed sound files. 
Consequently, what defines the sound level is frequency richness 
and the fact of having relative phases that reinforce rather than 
oppose each other. Remember that when two waves of the 
same frequency are in phase coincidence, they reinforce each 

other, resulting in maximum amplitude. Conversely, if there is 
phase opposition, they cancel each other out, giving zero sound 
amplitude. As a result, the 429.62 Hz pitch clearly stands out from 
the other pitches, with a sound level 1.36 LUFS above the 432 Hz 
pitch in second place. Note that this A4 = 432 Hz diapason stands 
out quite clearly (∆IL ≈ 0.4 LUFS) from the others (439 Hz, 435 
Hz, 440 Hz, 442 Hz), which fit into a pocket handkerchief. As with 
the Pachelbel canon, the least frequency-rich and phase-coherent 
spectrogram is obtained with the German baroque pitch of 415 Hz, 
with a deviation of 0.86 LUFS from the orchestral pitch at 442 Hz.

Let's now consider the dynamic excursion indicator (LRA), which 
gives the following ranking:

429.62 < 440 < 442 < 432 < 435 < 439 < 415
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The 429.62 Hz diapason is again distinguished from the others 
by its narrower dynamic excursion range (∆LRA = 0.23 LU), 
closely followed (∆ = 0.15 LU) by the "official" 440 Hz pitch. In 
other words, it's the 429.62 pitch that provides the least tension/
relaxation contrast in the sound. Or, if you prefer, it's at this pitch 
that the sound is the softest and least stressful. In contrast, the 
German Baroque pitch at 415 Hz is the most stressful. This is 
hardly surprising, given that classical music rarely seeks to lull 
the listener to sleep. On the contrary, strong contrasts are desired, 
to better highlight a particular voice or instrument. If this is the 
desired effect, the pitch based on the mass of the water molecule is 
not the right one for musical contrasts.

All of which goes to show that there really is something special 
with music composed at the pitch of the water molecule, at 429.62 
Hz. The fact that it's a diapason calculated using the laws of physics 
with universal constants, and not an empirical diapason based on 
musical feeling, gives it an interesting universality. Of course, we 
could have chosen any molecule other than the water molecule. 
As explained in the introduction, based the relative abundances 
of the atomic elements in the universe, it follows that the water 
molecule H₂O, should be the most abundant molecule in the entire 
universe. And, as everything containing water has a shape (hence 
the expression "Morphogenic Water", recalling this fundamental 
fact), using the molar mass of this molecule to deduce an optimal 
and universal diapason seems perfectly logical.

In order to better understand the deep link existing between life 
and water, one may refer to figure 13. It shows that a single-celled 
living creature such as the bacterium Escherichia Coli, for its part, 
is 99.1 mol% water. So, here too, the choice of the water molecule 
as the universal diapason in biology, and not just in chemistry and 
physics, is obvious. Moreover, if we consider a human being, male 
or female, we find that the proportion of water molecules is 96.49 
mol% in a man and 97.05 mol% in a woman (table 4). And, as 
music was created by human beings for other human beings, the 
pitch of water at 429.62 Hz is once again a very natural choice. 
Obviously, much lower numbers would have been obtained if 
percentages have been expressed in wt% (mass of entities) and not 
in mol% (number of entities). This is what is usually done in most 
papers interested in water in biology. The trouble in dealing with 
mass is to mix two very different scales: the scale of macroscopic 
entities submitted to the force of gravitation (kilograms) with the 
scale of molecular entities submitted to the forces of diffusion 
(m²·s⁻¹). Such a practice being not logical, a better approach is then 
to count entities with integers that have no dimensional content. 
By using the scale-invariant mol% concept, one may treat on the 
same ground molecules as well as polymers, as here mass does 
not matter. Of course, such a practice in perfectly justified owing 
to the extraordinary small intrinsic value of the gravitational force 
relative to the electromagnetic force (10⁻³⁹:10⁻²) at the scale of a 
proton or a neutron [23]. 

 
Figure 12 

  
Figure 12: Sound quantization of a sequence of piano notes for seven different diapasons.
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Figure 13 

Figure 13: Main constituents of a single-celled living being such as the E. coli bacterium.

Man m / g M / Da Wt% Mol% 

Water (total) 45 000 18.0 55.14 96.39 

Water (IC) 24 900 18.0 30.51 53.33 

Water (EC) 20 100 18.0 24.63 43.05 

Lipids 19 800 600 24.26 1.27 

Proteins 13 070 40 000 16.01 0.01 

Phosphates 1 704 98,0 2.09 0.67 

Calcium 1 230 40.1 1.51 1.18 

Glucides 500 180.6 0.61 0.11 

Potassium 149 39,1 0.18 0.15 

Sodium 82 23,0 0.10 0.14 

Chloride 77.5 35.5 0.09 0.08 

Total 81 612.5 - 100.00 100.00 

Woman m / g M / Da Wt% Mol% 

Water (total) 30 900 18.0 52.32 97.49 

Water (IC) 15 400 18.0 44.78 67.80 

Water (EC)  15 500 18.0 19.61 29.69 

Lipids 15 900 600 20.11 0.91 

Proteins 9 270 40 000 11.73 0.01 

Phosphates 1 372 98.0 1.74 0.48 

Calcium 905.5 40.1 1.15 0.78 

Glucides 500 180.6 0.63 0.10 

Potassium 88.5 39.1 0.11 0.08 

Sodium 63.5 23.0 0.08 0.10 

Chloride 61.5 35.5 0.08 0.08 

Total 59 061.0 - 100.0 100.0 

Table 4:  Average physical body composition for an adult Caucasian man and woman (20-29 

years) living in the USA. IC = intracellular. EC = extracellular. Source : K. J. Ellis, « Reference 

man and woman more fully characterized », Biological Trace Element Research, G. N. 

Schrauzer Ed., The Humana Press Inc. (1990) pp. 385-400. 
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11. Conclusion
In this study, we have tried to demonstrate that music can provide 
a completely rational and coherent framework for thinking, 
especially when it comes to choosing a diapason to transform any 
vibratory frequency into a musical note. We therefore recommend 
the use of a "scientific" diapason at 429.62 Hz, a value that can 
be calculated using the recognized laws of physics via a set of 
three universal constants (speed of light in vacuum c, quantum of 
action h and Avogadro number NA) and knowledge of the mass of 
a water molecule. We also demonstrated, through an analysis of 
spectrograms associated with different parameters for measuring 
sonic richness, that the choice of this diapason proved to be optimal 
compared with other choices of neighboring frequencies such as 
A4 = 432 Hz or A4 = 440 Hz. To date, dozens of musicians around 
the world have already chosen to use such a diapason in their 
musical performances with a wide variety of instruments. They 
all agree that making music at 429.62 Hz pitch greatly changes the 
experience for both them and the audience. We sincerely hope that 
this pitch will soon become a new musical standard in the world 
of music.

On a theoretical and scientific level, the reasons for such success 
can be traced back to the fact that Maxwell's equations remain 
invariant when the symmetry operations of the ISO(4,2) group are 
applied. This is important, given that all living beings are at least 
96% or more water, and that water, via its "coherence domains", 
is highly sensitive to electromagnetic waves of all frequencies 
[5, 24]. In particular, the fact that the ISO (4,2) symmetry group 
exhibits space-time dilatation operators helps us to understand how 
sound effects on the scale of the human ear can affect molecular 
processes taking place on the nanometer scale via scale resonance. 
These "scale waves" regulating the relative values of masses at 
different scales of observation are by no means new, since their 
existence was predicted as early as 1983 to explain the mass 
spectra of elementary particles [10]. What is new is the ability to 
relate them to the existence of the ISO (4,2) symmetry group.

With this study, we hope to have taken a decisive step towards 
ensuring that, in future, music will no longer be regarded only as 
an art, but also as a science with mathematical foundations as solid 
as those of physics, chemistry or molecular biology. Finally, since 
we know that music can also have therapeutic effects, we may 
hope that, in the not-too-distant future, agriculture and medicine 
will be enriched and enhanced by the systematic use of music at 
A4 = 429.62 diapason, in complement, of course, to the techniques 
that have been tried and tested since the advent of the scientific 
method.
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