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Abstract
NASA’s press release of ‘Moon having receded by 1 m from Earth in a quarter of century’ on the Silver Jubilee Anniversary 
(20 July 1994) of Man’s landing on Moon led to the development of the Kinematic Model (KM) of evolving Earth-Moon 
System (E-M system). Best fit KM parameters is adopted for the analysis of evolving E-M system assuming the present 
length of day of Earth to be 24 hours, sidereal orbital period of Moon divided by spin period of Earth = LOM(length of 
month)/LOD(length of day) = 27.322 and the age of Moon=4.467Gy. Using the best fit model parameters the velocity of 
recession of Moon is derived as 2.3cm/y as compared to 3.7cm/y by Lunar Laser Ranging experiment (Dickey et.al. 1994) 
[1]. Matija Cuk et.al (2016) have proposed a new model for the birth and tidal evolution of our natural satellite Moon 
born from impact generated terrestrial debris in the equatorial plane of high obliquity, high angular momentum Earth 
[2]. Using Moon’s orbital plane inclination angle (α), Moon’s obliquity (β) and eccentricity(e) of Moon’s orbit around 
Earth the advanced KM was developed and used for predicting the evolutionary history of Earth’s obliquity from a (semi-
major axis of Moon) = 45RE = 2.96695×108m (Cassini State Transition orbit) to the present a = 60.336RE = 3.844×108m 
[3]. The present paper is sequel to the paper Sharma (2024) [5]. In the Advanced KM. (Φ)-Earth’s obliquity, (α)-Lunar 
orbital plane inclination, (β)-Lunar Obliquity and (e)-eccentricity of Moon’s orbit around Earth have been included. It 
has been shown that with the present epoch value of Φ = 23.4°, α = 5.14° , β = 1.54° and e = 0.0549, the general equation 
describing the evolution of E-M system from 45RE=2.96695×108m to the present a = 60.336RE = 3.844×108m yields 
(Length of Month/Length of Day) = 27.32 with fine tuning of globe-orbit parameters within its measurement error margin. 
But the tension between the predicted and the observed velocity of recession could not be removed even in the Advanced 
KM. This tension constrains Moon to be in an accelerated expanding spiral orbit where it recedes from 3.274×108m 
to the present orbit 3.844×108 m in 1.2Gy time span. In the classical model this spiral expansion took 1.9Gy where it 
monotonically expanded spirally from 18,000Km to 384,440Km.. In the new hypothesis according to Cuk et.al. of Moon’s 
origin from high obliquity, high angular momentum Earth, Moon initially spirals out in chaotic manner with the lunar 
expansion getting stalled at Laplace Plane Transition as well as in Cassini State transition [2]. Plus in multiple-impact 
scenario of Moon formation according to Rufu et.al. also results in a delayed formation of full size Moon [4]. Both these 
factors result in a longer transit time from 18,000Km to 3.012×108m of 3.267Gy. This results in an accelerated phase from 
3.012×108m to 3.844×108m in 1.2Gy subsequently resulting into radial recession rate of 3.7cm/y. In the Advanced KM, 
3.267Gy is spent in spiral orbital expansion from 3RE to 45RE but in fits and 1.2Gy is spent in accelerated monotonic 
spiral expansion from 45RE to 60.336RE. Hence this model is called fits and bound model. This also results in a much 
better match between observed LOD curve and theoretical LOD curve as is shown in a sequel paper [5]. In the present 
paper Advanced Kinematic Model analyzes the history of the evolution of Earth’s Obliqquity from the birth of Moon 
4.467Gy ago to the present modern times. 
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1. Introduction
In 1994 at the Silver Jubilee Anniversary of Man’s landing on 
Moon, NASA issued a Press Release stating that Moon had 
receded by 1 meter in a quarter of a century from 20th July 1969 

to 20th July 1994. This enabled the Author to first calculate the 
length of day curve and compare it with observed LOD curve 
[6]. This analysis was revised and presented as “Lengthening 
of Day curve could be experiencing chaotic fluctuations with 
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implications for Earth-Quake Prediction” at the World Space 
Congrss -2002, Houston, Texas, USA [7]. In the classical 
Earth-Moon Giant impact scenario, through a glancing angle 
impact of newly-formed Earth by a Mars sized planetesimal a 
circumferential disc of impact generated material is created which 
is a mix of the impactor material(Mars-sized planetesimal) and 

the target material (newly formed Earth). Beyond Roche’s Limit 
= 3RE = 18,000Km which is greater than first geo-synchronous 
orbit aG1 = 15,000Km, full size Moon accretes and is catapulted 
by gravitational sling shot on a monotonically expanding spiral 
orbit as shown in Figure 1 [8].
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Figure 1. Lunar Orbital Radius outward expanding spiral trajectory obtained from the 
simulation for the age of Moon (i.e. from the time of Giant Impact to 
the present times covering a time span of 4.53Gyrs). [Courtesy: Sharma et.al. 2009] 

This model doesnot give the match between Observed and Theoretical Length of Day Curve 
(Sharma 2024). 

In 2016 Matija Cuk and his colleagues gave the „fits and bound‟ model of Earth-Moon system. 
According to this model, Moon did not recede from Earth in a monotonically expanding orbit as 
shown in Figure 1. Our Moon while receding from Earth was interrupted by  Laplace Plane 
Transition and Cassini state transition as shown in Figure A. Cuk et. Al.(2016) present a tidal 
evolution model starting with the Moon in an equatorial orbit around an initially fast-spinning, 
high-obliquity Earth, which is a probable outcome of giant impacts. Using numerical modelling, 
they show that the solar perturbations on the Moon‟s orbit naturally induce a large lunar 
inclination and remove angular momentum from the Earth–Moon system. The tidal evolution 
model supports recent high-angular-momentum, giant-impact scenarios to explain the Moon‟s 
isotopic composition  and provides a new pathway to reach modern Earth‟s climatically 
favourable low obliquity of 23.45 . 

Figure 1: Lunar Orbital Radius outward expanding spiral trajectory obtained from the simulation for the age of Moon (i.e. 
from the time of Giant Impact to the present times covering a time span of 4.53Gyrs) [8].

This model doesnot give the match between Observed and 
Theoretical Length of Day Curve [5]. In 2016 Matija Cuk et.al. 
(2016) and his colleagues gave the ‘fits and bound’ model of 
Earth-Moon system. According to this model, Moon did not 
recede from Earth in a monotonically expanding orbit as shown 
in Figure 1. Our Moon while receding from Earth was interrupted 
by Laplace Plane Transition and Cassini state transition as 
shown in Figure A. Cuk et. Al. present a tidal evolution model 
starting with the Moon in an equatorial orbit around an initially 
fast-spinning, high-obliquity Earth, which is a probable outcome 
of giant impacts [2]. Using numerical modelling, they show that 
the solar perturbations on the Moon’s orbit naturally induce a 
large lunar inclination and remove angular momentum from the 
Earth–Moon system. The tidal evolution model supports recent 
high-angular-momentum, giant-impact scenarios to explain the 
Moon’s isotopic composition and provides a new pathway to 
reach modern Earth’s climatically favourable low obliquity of 
23.45°.

Cuk and his oolleagues carry out Numerical simulation of the 
Moon’s early tidal evolution from Earth with initial obliquity 

of 70° and spin period of 2.5h. The result of this simulation is 
shown in Figure 2.

In the Reference Animation, blue arrow is Earth’s spin axis and 
points to North. 
Red is Moon’s orbital plane.

The simulation covers a time span of 60My and Moon’s spiral 
orbit expands in fits from 10RE to 18RE. There is monotonic 
expansion from 18RE to 23RE.

As animation progresses, Laplace Plane shifts from Earth’s 
equatorial plane to Solar System’s ecliptic plane. At 17RE the 
shift occurs. This is nown as ‘Laplace Plane Transition’.

For large Earth’s obliquity greater than 68.9°, the Laplace Plane 
transition causes lunar orbital plane instabilities, Moon’s orbit 
acquires substantial eccentricity and orbital plane inclination 
driven by solar secular perturbation that operate at high 
inclination as seen in Kozai resonance Kozai resonance [10].
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Time
(My)

Earth’s 
Spin(h)

Ecliptic 
Component
Of J(%)

Laplace
Plane

Earth’s 
obliquity 
(Φ)

Moon’s 
orbital 
plane 
inclination 
(α)

Comment

0.25 2.86 153.1 Equatorial plane 
of Earth

70° 0°

0.99 2.95 151.8 Equatorial plane 
of Earth

60° 0°

3.4 3.21 131.8 Equatorial plane 
of Earth

55° oscillatory Falls into resonance

9.5 3.73 127.2 Equatorial plane 
of Earth

50° oscillatory Moon moves out and 
gets stuck in evection 
resonance

12 3.98 139 Transition 40° oscillatory Unstable
20.5 5.66 112.1 Ecliptic 30° oscillatory Comes out of 

resonance
25 Stalled
28.6 6.4 102.8 Ecliptic 20° oscillatory Stalled
40 Stalled
44.8 7.04 103.6 Ecliptic 15° 20° Expansion resumed
59.5 7.35 103.1 Ecliptic 10° 25° expanding

Table 1: The history of Earth’s obliquity (Φ) and Moon’s orbital plane inclination (α) during Laplace Plane transition as 
concluded by numerical simulation.
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Figure 2. Evolution of semi-major axis of Moon for first 60My when Laplace plane 
transition is encountered at 20My and a = 17RE .[Courtesy: Cuket.al.2016] 

Figure 2: Evolution of semi-major axis of Moon for first 60My when Laplace plane transition is encountered at 20My and a 
= 17RE Matija Cuk et al (2016) [3].
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Figure 3. ANIMATION:E-M configuration in four time slots:0.4My, 18.4My, 35My and 
58.7My. tilted Earth has become vertical and Moon’s orbital plane has acquired inclination 
in Laplace Plane transition.[Courtesy: Cuk et.al.2016] 

[Tremaine, Scott; Touma, Jihad; Namouni, Fathi; (2009) “Satellite Dynamics on the Laplace 
Surface”, ApJ,137, 3706 -3717, 2009, March, DOI:10.1088/0004-6256/137/3/3706,] For any 
perturbed orbit, there exists a Laplace Plane around the normal of which the normal of the orbital 
plane of the perturbed orbit precesses (Tremaine, Touma and Namouni 2009). The Laplace Plane 
undergoes a transition during lunar tidal evolution when the Moon recedes from inner region 
dominated by perturbation of the Earth‟s equatorial bulge to the region dominated by solar 
perturbation. 

Figure 3: ANIMATION:E-M configuration in four time slots:0.4My, 18.4My, 35My and 58.7My. tilted Earth has become 
vertical and Moon’s orbital plane has acquired inclination in Laplace Plane transition Matija Cuk et al (2016) [3].

For any perturbed orbit, there exists a Laplace Plane around the 
normal of which the normal of the orbital plane of the perturbed 
orbit processes [9]. The Laplace Plane undergoes a transition 

during lunar tidal evolution when the Moon recedes from inner 
region dominated by perturbation of the Earth’s equatorial bulge 
to the region dominated by solar perturbation.
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J2 = oblateness moment of Earth. As Earth spin slows down, oblateness decreases leading to rL 
moving inward. 

                                         

For Earth‟s obliquity Φ < 68.9° , Laplace Plane transition is smooth and inclination and 
eccentricity remain zero. But for Earth‟s obliquity Φ > 68.9° , Laplace Plane transition causes  
orbital instability, acquire substantial eccentricity and inclination driven  by solar secular 
perturbation that operate at high inclination as seen in Kozai resonance (Atobe and Ida 2007). 

Atobe, Keiko; Ida, Shigeru;(2007); “Obliquity evolution of extra-solar terrestrial planets”, 
Icarus, 188, # 1, 1-17, May 2007, doi: org/10.1016/j.icarus.2006.11.022 

Tidal evolution of the Moon from high obliquity Earth followed by inclination damping  at the 
Cassini state transition (Ward 1975). 

William R. Ward, “ Past orientation of the Lunar Spin axis”, Science, 01 August 1975, 189, 
4200, 377-379, doi: 10.1126/science189.4200.377. 

Tides raised on the Earth by the Moon have caused an expansion of the spiral orbit. Tides raised 
on Moon by Earth have de-spun the Moon to synchronous rotation and driven the spin axis of 
Moon to a Cassini State. Cassini State is a coprecessing configuration  Lunar‟s spin axis coplanar 
with the lunar orbit normal  and with the normal of the Laplace plane (which at present is 
coincident with the normal of the ecliptic). 

Moon is pushed-out due to Earth‟s tides but is pushed-in due to Moon‟s tide.. 

Cassini State Transition:  

After Laplace Plane transition, Moon continues to recede and lunar rotation passes through 
Cassini state transition. Regardless of the nature of the lunar rotation state, Moon‟s obliquity is 
very high during Cassini state transition and immediately following it, leading to  the damping of 
lunar plane inclination. Lunar plane inclination is damped from 30° ( obtained during Laplace 
plane transition)  to the present value of 5.334° if we assume the long term average  tidal 
properties for Earth and non-dissipative Moon in synchronous rotation states. 

Animation of relative orientation of lunar figure (lunar orbital inclination and lunar spin axis 
obliquity) during Cassini state transition following the simulation plotted in Figure C. 

In the Cassini-state transition animation, the Moon is seen from the ascending node of lunar orbit 
with the ecliptic plane (i.e. the Moon‟s Laplace plane at the time) parallel to the horizontal axis. 
The red arrow shows the orientation of the Moon‟s orbit normal. At first the Moon‟s orbit 
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J2 = oblateness moment of Earth. As Earth spin slows down, oblateness decreases leading to rL moving inward.

For Earth’s obliquity Φ < 68.9° , Laplace Plane transition 
is smooth and inclination and eccentricity remain zero. But 
for Earth’s obliquity Φ > 68.9° , Laplace Plane transition 
causes orbital instability, acquire substantial eccentricity and 
inclination driven by solar secular perturbation that operate at 
high inclination as seen in Kozai resonance [10].

Tidal evolution of the Moon from high obliquity Earth followed 
by inclination damping at the Cassini state transition [10,11].

Tides raised on the Earth by the Moon have caused an expansion 
of the spiral orbit [11]. Tides raised on Moon by Earth have 
de-spun the Moon to synchronous rotation and driven the spin 
axis of Moon to a Cassini State. Cassini State is a coprecessing 

configuration Lunar’s spin axis coplanar with the lunar orbit 
normal and with the normal of the Laplace plane (which at 
present is coincident with the normal of the ecliptic).

Moon is pushed-out due to Earth’s tides but is pushed-in due to 
Moon’s tide.

1.1 Cassini State Transition
After Laplace Plane transition, Moon continues to recede and 
lunar rotation passes through Cassini state transition. Regardless 
of the nature of the lunar rotation state, Moon’s obliquity is very 
high during Cassini state transition and immediately following 
it, leading to the damping of lunar plane inclination. Lunar plane 
inclination is damped from 30° ( obtained during Laplace plane 
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transition) to the present value of 5.334° if we assume the long-
term average tidal properties for Earth and non-dissipative Moon 
in synchronous rotation states.

Animation of relative orientation of lunar figure (lunar orbital 
inclination and lunar spin axis obliquity) during Cassini state 
transition following the simulation plotted in Figure 5. In the 
Cassini-state transition animation, the Moon is seen from the 
ascending node of lunar orbit with the ecliptic plane (i.e. the 
Moon’s Laplace plane at the time) parallel to the horizontal axis. 
The red arrow shows the orientation of the Moon’s orbit normal. 

At first the Moon’s orbit normal and Moon’s spin axis are on 
the same side of the normal to the Ecliptic, indicating that the 
Moon is in Cassini State 1.Once Cassini state is de-stabilized 
after some wobbling, the Moon settles in non-synchronous state 
somewhat similar to Cassini State 2 (with orbit normal and spin 
axis being on the opposite sides of the normal to the ecliptic).
During this time both the inclination and obliquity (which is 
forced by inclination) are being damped by lunar obliquity tides. 
At a = 35.1RE the Moon becomes synchronous again and enters 
Cassini State 2, where it stays for the rest of the simulation (this 
event is visible as 5° jump in obliquity).
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Figure 4. Numerical integration of the later phase of lunar tidal evolution assuming a lunar 
inclination of 30° at 25RE and the current tri-axial shape of Moon. [Courtesy: Cuk 
et.al.2016] 

Figure 4: Numerical integration of the later phase of lunar tidal evolution assuming a lunar inclination of 30° at 25RE and 
the current tri-axial shape of Moon Matija Cuk et al (2016) [3].
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Figure 5. Animations at different stages of Cassini State Transition. [Courtesy: Cuk 
et.al.2016] 

Since the current triaxial shape of the Moon matches the order of magnitude of tidal deformation 
expected at 23 to 26RE , it was assumed that Moon is rigid and has present triaxial shape frozen 
at 26RE. 

Figure 5: Animations at different stages of Cassini State Transition Matija Cuk et al (2016) [3].

Since the current triaxial shape of the Moon matches the order 
of magnitude of tidal deformation expected at 23 to 26RE, it was 

assumed that Moon is rigid and has present triaxial shape frozen 
at 26RE.
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Figure 6. Black lines have QM = 10,000 and Red lines have QM = 38 (current value of 
Moon). [Courtesy: Cuk et.al.2016] 

QE = 33 ~ 35 so that the evolution from 25RE to 60RE is covered in 4.5Gy. 

Blue lines have QM = 100 for a < 40RE  and QM = 38 for a > 40RE . 

 

Figure 6: Black lines have QM = 10,000 and Red lines have QM = 38 (current value of Moon)Matija Cuk et al (2016) [3].

QE = 33 ~ 35 so that the evolution from 25RE to 60RE is 
covered in 4.5Gy.
Blue lines have QM = 100 for a < 40RE and QM = 38 for a > 
40RE.
	
Black lines closely resembles the results of studies that neglected 
lunar obliquity tides while the other two curves indicate that the 
past lunar inclination must have been much larger owing to lunar 
obliquity tides.

Jumps between 30RE and 35RE is due to transitions between 
Cassini states 1 and 2 [18]
Principal moment of inertia beyond 25RE is the Principal moment 
of inertia of the current lunar shape frozen at a distance of 15 to 
17RE in an orbit with e~ 0.2
J (initial) = 1.8J0 and Earth’s obliquity = 70°.
Solar perturbations induce sizeable lunar eccentricity as Moon 
reaches rL = 17RE triggering strong eccentricity damping lunar 
tides that shrink the semi-major axis and approximately balance 
the outward push by Earth’s tides.

Eccentric orbits remove AM from the lunar orbit and transfer 
it to Earth’s heliocentric orbit. Earth tides in turn transfer AM 
from Earth’s spin to lunar orbit. During this prolonged stalling of 
lunar tidal evolution Moon acquires large inclination (over 30°) 
while Earth’s obliquity decreases. 

Laplace Plane transition leads to large AM loss, high lunar 
inclinations and low terrestrial obliquity. Earth’s obliquity = 
80° experiences stalling and reversal of tidal evolution with 
Moon getting caught in a death spiral. Where does the Moon’s 
orbital plane inclination come into picture if initially Moon was 
formed from the accretion of impact debris in Earth’s equatorial 
plane? Today the inclination should have been zero but it is not 
zero. Through AKM evolutionary history of Earth’s Obliquity, 
Moon’s Obliquity, Moon’s orbital plane inclination and lunar 
orbit’s eccentricity are studied from the time of birth of Moon 
to the modern times.
Method:
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1.2 Determination of the Total Angular Momentum of E-M System and its Orientation in the Present epoch.
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Figure 7. Vector Diagram for calculating the resultant angular momentum of Earth-Moon 
system. 

Moon‟s orbital plane inclination at present with respect to (w.r.t.) the ecliptic normal = α = 5.14° 
= 0.08970992355250854 radians; 

Moon‟s spin axis obliquity with respect to (w.r.t.) the lunar orbital plane = β ( Moon‟s axial tilt ) 
= 1.54° = 0.026878070480712675 radians ; 

Earth‟s spin axis obliquity with respect to (w.r.t.) the ecliptic normal = Φ = 23.44° = 
0.40910517666747087 radians ; 

  ⃗⃗  ⃗  ⌊  ⌋                                                                           
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Figure 7: Vector Diagram for calculating the resultant angular momentum of Earth-Moon system. [Courtesy: Author]

Moon’s orbital plane inclination at present with respect to (w.r.t.) the ecliptic normal = α = 5.14° = 0.08970992355250854 radians;
Moon’s spin axis obliquity with respect to (w.r.t.) the lunar orbital plane = β ( Moon’s axial tilt ) = 1.54° = 0.026878070480712675 
radians ;
Earth’s spin axis obliquity with respect to (w.r.t.) the ecliptic normal = Φ = 23.44° = 0.40910517666747087 radians ;
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Here „a‟ (semi-major axis of Moon‟s orbit) = 3.844×108m; and mass of our Moon m = 
0.07346×1024 Kg,  m/(1+m/M) = reduced mass =7.25674×1022 Kg, TORB orbital period of Moon 
around Earth(sidereal month) = 27.3217d and e is eccentricity = 0.0549. 

  ⃗⃗⃗⃗    ⃗⃗  ⃗                                                                   

As seen in Figure 1 , Moon‟s spin axis is tilted to Ecliptic normal by 6.68° to the left of 
Ecliptic normal. 
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Here ‘a’ (semi-major axis of Moon’s orbit) = 3.844×108m; and 
mass of our Moon m = 0.07346×1024 Kg, m/(1+m/M) = reduced 

mass =7.25674×1022 Kg, TORB orbital period of Moon around 
Earth(sidereal month) = 27.3217d and e is eccentricity = 0.0549.
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Figure 8.  Triangle ABC bounded with J0 , J1 , and J3  with angles a, b and c opposite sides 
J0 , J1 , and J3 .[ Courtesy: Author] 

Inspecting Figure 2, we see that J3  makes an angle (θ) w.r.t. the normal of the ecliptic. 

                                                                         

Figure 8: Triangle ABC bounded with J0, J1, and J3 with angles a, b and c opposite sides J0 , J1 , and J3. [Courtesy: Author]
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Inspecting Figure 2, we see that J3 makes an angle (θ) w.r.t. the normal of the ecliptic.
              θ = ArcTan = 0.8971014284837965 radians = 5.14001256472789° 6
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Figure 9. Two triangles of  J vectors: Triangle ABC sides J0(orb. J), J1 (Moon’s spin J) and 
J3 where J3 is the vector sum of J0 and J1. [ Courtesy: Author] Figure 9: Two triangles of J vectors: Triangle ABC sides J0(orb. J), J1 (Moon’s spin J) and J3 where J3 is the vector sum of 

J0 and J1. [Courtesy: Author]

Triangle ABD sides J2 (Earth’s spin J), J3(the vector sum of J0 and J1) and J4(total J of E-M system)
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Triangle ABD sides J2 (Earth’s spin J), J3(the vector sum of J0 and J1) and J4(total J of E-
M system) 

                               

                                        

The total angular momentum J4 is inclined w.r.t. ecliptic normal at γ where 
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2. Validation of present epoch LOM/LOD= 27.32 by K.M. 

In CELMEC paper CELE-D-17-00144, it has been proved that: 
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Let Sin[β] = D and Cos[β] = √(1-D2), 

Sin[α] = A and Cos[α] = √(1-A2), 

Sin[Φ] = B and Cos[Φ] =√(1-B2), 
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Using current Earth‟s obliquity (Φ = 23.44°), current Moon‟s orbital inclination (α = 5.14°) and 
current Moon‟s obliquity (β=1.54°)  

Z = { √    √        }                                                

And Cos[β] =√(1-D2) = 0.999639 ; D = 0.0268748; 

The value of N has been obtained after some fine tuning so that (9) is satisfied for the current 
values of ω/Ω (LOM/lOD), α (Inclination angle) , β (lunar obliquity), Φ (terrestrial obliquity) 
and e (eccentricity). 

Substituting (10) in (9) we get: 

                                                                  

This is a quadratic equation and its roots are: 

 
     

                                                                       

The fine tuning of „N‟ has been done within the margin of measurement error of globe 
parameters and orbital parameters so that (9) yields  the present epoch LOM/LOD = 27.32 . 

3. Evolutionary spatial functions of terrestrial obliquity(Φ) and LOM/LOD 

Evolutionary spatial functions of inclination angle (α), Moon‟s obliquity(β) and of eccentricity 
„e‟ have  been determined in CELE-D-17-00144. They are as follows: 

                    

             

              

              

                             

                                                                    
                                                                                          

The LOM/LOD and Earth‟s obliquity angles are tabulated in Table 1. 
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The LOM/LOD and Earth’s obliquity angles are tabulated in Table 1.

a(×RE) a(×108m) LOM/LOD Φ (radians) Φ°
30 1.9113 23.3752 unstable unstable
35 2.22985 26.1194 unstable unstable
40 2.5484 28.1147 unstable unstable
45 2.86695 29.2938 0.113792 6.51
50 3.1855 29.5965 0.220227 12.6
55 3.50405 28.9877 0.314929 18
60 3.8226 27.4 0.398676 22.84
60.335897 3.844 27.32 0.409105 23.44

Table 2: LOM/LOD and Earth’s Obliquity for past geological epochs

3.1 Evolutionary Function of LOM/LOD
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Figure 10. ListPlot of LOM/LOD in different geologic epochs as  given in Table 1.    
[ Courtesy: Author] 
 
The approximate FIT function to the ListPlot of LOM/LOD in Figure 1 is: 
 
   
    

 
                     

                                        

 
The plot of (16) is as follows: 
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Figure 11. Plot of FIT function given by (16). [ Courtesy: Author] 
Superposition of LOM/LOD ListPlot and Fit Plot is given in Figure 3. 

 
Figure 12. Superposition of LOM/LOD ListPlot and Fit Plot. [ Courtesy: Author] 

The correspondence between LISTPLOT and FIT PLOT is good hence (16) gives 
the evolutionary history of LOM/LOD. 
3.2.Evolutionary function of Earth’s obliquity. 

Figure 11: Plot of FIT function given by (16). [Courtesy: Author]
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The correspondence between LISTPLOT and FIT PLOT is good hence (16) gives the evolutionary history of LOM/LOD.
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Figure 13. List Plot of Earth’s obliquity (Φ) angle over different geological 
epochs. [ Courtesy: Author] 

The approximate FIT function to the ListPlot of  Earth‟s obliquity in Figure 4 is: 
                                                             

The Plot of (17) is as follows: 

 
 

Figure 14.Plot of FIT function given by (17). [ Courtesy: Author] 
Superposition of ListPlot and Fit function is given in Figure 6. 

Figure 13: List Plot of Earth’s obliquity (Φ) angle over different geological epochs.  [Courtesy: Author]
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Figure 15. Superposition of  ListPlot of Earth’s obliquity (Φ) and Fit Plot.                 
[ Courtesy: Author] 

The correspondence between LISTPLOT and FIT PLOT is good hence (17) gives 
an accurate evolutionary history of Earth‟s obliquity . 

We have altogether 5 spatial function (13), (14), (15), (16) and (17) describing the 
evolution of inclination angle (α), Moon‟s obliquity (β), eccentricity(e) of lunar orbit, 
LOM/LOD and Earth‟s obliquity (Φ) respectively through different geologic epochs. 

Table 3. evolutionary history of  ω/Ω (LOM/lOD),α (Inclination angle) , β (lunar obliquity), 
e (eccentricity) and Φ (terrestrial obliquity). 

a (×RE) a (×108m) ω/Ω α radians β e Φ(rad) Sin[Φ] 
30 1.9113 23.3752 0.480685 

(27.4°) 
1.21635 
(69.69°) 

0.2524 unstable -0.464076 

35 2.22985 26.1194 0.26478 
(15.17°) 

0.952317 
(54.56°) 

0.236 unstable -0.216896 

40 2.5484 28.1147 0.168969 
(9.68°) 

0.71512 
(40.97°) 

0.214 unstable -0.0195376 

45 2.86695 29.2938 0.124631 
(7.1408°) 

0.504756 
(28.92°) 

0.1849 0.113792 
(6.51°) 

0.113547 

50 3.1855 29.5965 0.103801 
(5.04736°) 

0.321225 
(18.4°) 

0.1493 0.220227 
(12.6°) 

0.218451 

55 3.50405 28.9877 0.0941394 
(5.39379°) 

0.164527 
(9.4267°) 

0.10714 0.314929 
(18°) 

0.309749 

60 3.8226 27.4 0.0898729 
(5.149°) 

0.03466 
(1.986°) 

0.0584 0.398676 
(22.84°) 

0.388198 

60.336 3.844 27.32 0.08971 
(5.14°) 

0.0268 
(1.54°) 

0.0549 0.409105 
(23.44°) 

0.397788 

 
4. Validation of radial recession velocity of Moon = 3.7cm/y. 

Figure 15: Superposition of ListPlot of Earth’s obliquity (Φ) and Fit Plot.  [Courtesy: Author]

The correspondence between LISTPLOT and FIT PLOT is good 
hence (17) gives an accurate evolutionary history of Earth’s 
obliquity.

We have altogether 5 spatial function (13), (14), (15), (16) and 

(17) describing the evolution of inclination angle (α), Moon’s 
obliquity (β), eccentricity(e) of lunar orbit, LOM/LOD and 
Earth’s obliquity (Φ) respectively through different geologic 
epochs.
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Table 3: Evolutionary History of ω/Ω (LOM/lOD),α (Inclination angle) , β (lunar obliquity), e (eccentricity) and Φ (terrestrial 
obliquity).

4. Validation of Radial Recession Velocity of Moon = 3.7cm/y
The Tidal Torque of Satellite on the Planet and of Planet on the Satellite = Rate of change of angular momentum hence 
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But Orbital Angular Momentum using Kepler‟s Third Law: 
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Time Derivative of (15) is: 
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In super-synchronous orbit, the radius vector joining the satellite and the center of the planet is 
lagging planetary tidal bulge hence the satellite is retarding the planetary spin and the tidal 
torque is BRAKING TORQUE. This is shown in Figure 7 in context of Earth and Moon. 

In sub-synchronous orbit, the radius vector joining the satellite and the center of the planet is 
leading planetary tidal bulge hence the satellite is spinning up the planet and the tidal torque is 
ACCELERATING TORQUE.. 

 

 

Figure 16. In Earth-Moon System , Moon is in super-synchronous orbit. The off-setting of 
the line of bulge in Earth with respect to E-M radius vector creates a tidal drag and de-
spinning of Earth leading to secular lengthening of day. The de-spinning of Earth leads to 
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But Orbital Angular Momentum using Kepler’s Third Law:

a (×RE) a (×108m) ω/Ω α radians β e Φ(rad) Sin[Φ]

30 1.9113 23.3752 0.480685
(27.4°)

1.21635
(69.69°)

0.2524 unstable -0.464076

35 2.22985 26.1194 0.26478
(15.17°)

0.952317
(54.56°)

0.236 unstable -0.216896

40 2.5484 28.1147 0.168969
(9.68°)

0.71512
(40.97°)

0.214 unstable -0.0195376

45 2.86695 29.2938 0.124631
(7.1408°)

0.504756
(28.92°)

0.1849 0.113792
(6.51°)

0.113547

50 3.1855 29.5965 0.103801
(5.04736°)

0.321225
(18.4°)

0.1493 0.220227
(12.6°)

0.218451

55 3.50405 28.9877 0.0941394
(5.39379°)

0.164527
(9.4267°)

0.10714 0.314929
(18°)

0.309749

60 3.8226 27.4 0.0898729
(5.149°)

0.03466
(1.986°)

0.0584 0.398676
(22.84°)

0.388198

60.336 3.844 27.32 0.08971
(5.14°)

0.0268
(1.54°)

0.0549 0.409105
(23.44°)

0.397788
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Time Derivative of (15) is:

In super-synchronous orbit, the radius vector joining the satellite 
and the center of the planet is lagging planetary tidal bulge hence 
the satellite is retarding the planetary spin and the tidal torque is 
BRAKING TORQUE. This is shown in Figure 7 in context of 
Earth and Moon.

In sub-synchronous orbit, the radius vector joining the satellite 
and the center of the planet is leading planetary tidal bulge 
hence the satellite is spinning up the planet and the tidal torque 
is ACCELERATING TORQUE.
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Figure 16: In Earth-Moon System , Moon is in super-synchronous orbit. The off-setting of the line of bulge in Earth with 
respect to E-M radius vector creates a tidal drag and de-spinning of Earth leading to secular lengthening of day. The de-
spinning of Earth leads to transfer of angular momentum to Moon resulting in Moon’s recession. During the conservative 
phase of the gravitational sling shot impulsive torque, Moon is launched on a expanding spiral path as shown in Figure 1. 
After the conservative phase,Earth coasts on its own towards the outer Clark’s orbit where it will get locked-in in dustant 
future  [Courtesy: Author]
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its own towards the outer Clark’s orbit where it will get locked-in in dustant future.     
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Figure 17. In Mars-Phobos system, Phobos falls in sub-synchronous orbit and the 
off-setting of thePhobos bulge with respect to the radius vector joining Mars and Phobos 
causes a tidal spin-up of Mars. In the process Phobos is launched on a gravitational 
runaway collapsing orbit also known as death spiral.  

The Author  has assumed the empirical form of the Tidal Torque as follows: 
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   ]                                                                                             

(21) implies that at Inner Clarke‟s Orbit and at Outer Clarke‟s Orbit where ω/Ω= 1(geo-
synchronous orbits), tidal torque is zero and (20) implies that radial velocity is zero and there is 
no spiral-in or spiral-out.  

At Triple Synchrony, Satellite-Planet Radius Vector is aligned with planetary tidal bulge 
and the system is in equilibrium. But there are two roots of ω/Ω=1: Inner Clarke‟s Orbit and 
Outer Clarke‟s Orbit. As already shown in Total Energy Profile (CELE-D-17-00145), inner 
Clarke‟s Orbit aG1 is a maxima hence unstable equilibrium state and Outer Clarke‟s Orbit aG2 is a 
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to the radius vector joining Mars and Phobos causes a tidal spin-up of Mars. In the process Phobos is launched on a 
gravitational runaway collapsing orbit also known as death spiral  [Courtesy: Author]
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24 
 

transfer of angular momentum to Moon resulting in Moon’s recession. During the 
conservative phase of  the gravitational sling shot impulsive torque, Moon is launched on a 
expanding spiral path as shown in Figure 1. After the conservative phase,Earth coasts on 
its own towards the outer Clark’s orbit where it will get locked-in in dustant future.     

.  

 

Figure 17. In Mars-Phobos system, Phobos falls in sub-synchronous orbit and the 
off-setting of thePhobos bulge with respect to the radius vector joining Mars and Phobos 
causes a tidal spin-up of Mars. In the process Phobos is launched on a gravitational 
runaway collapsing orbit also known as death spiral.  

The Author  has assumed the empirical form of the Tidal Torque as follows: 

   
  [

 
   ]                                                                                             

(21) implies that at Inner Clarke‟s Orbit and at Outer Clarke‟s Orbit where ω/Ω= 1(geo-
synchronous orbits), tidal torque is zero and (20) implies that radial velocity is zero and there is 
no spiral-in or spiral-out.  

At Triple Synchrony, Satellite-Planet Radius Vector is aligned with planetary tidal bulge 
and the system is in equilibrium. But there are two roots of ω/Ω=1: Inner Clarke‟s Orbit and 
Outer Clarke‟s Orbit. As already shown in Total Energy Profile (CELE-D-17-00145), inner 
Clarke‟s Orbit aG1 is a maxima hence unstable equilibrium state and Outer Clarke‟s Orbit aG2 is a 

(21) implies that at Inner Clarke’s Orbit and at Outer Clarke’s 
Orbit where ω/Ω= 1(geo-synchronous orbits), tidal torque is 
zero and (20) implies that radial velocity is zero and there is no 
spiral-in or spiral-out. 

At Triple Synchrony, Satellite-Planet Radius Vector is aligned 
with planetary tidal bulge and the system is in equilibrium. 
But there are two roots of ω/Ω=1: Inner Clarke’s Orbit and 
Outer Clarke’s Orbit. As already shown in Total Energy Profile 
(CELE-D-17-00145), inner Clarke’s Orbit aG1 is a maxima 
hence unstable equilibrium state and Outer Clarke’s Orbit aG2 is 
a minima hence stable equilibrium state. In any Binary System, 

secondary is conceived at aG1 . This is the CONJECTURE 
assumed in Kinematic Model. From this point of inception 
Secondary may either tumble short of aG1 or tumble long of 
aG1 . If it tumbles short, satellite gets trapped in Death Spiral 
and it is doomed to its destruction as all hot Jupiters are destined 
to be. If it tumbles long, satellite gets launched on an expanding 
spiral orbit due to gravitational sling shot impulsive torque 
during of conservative phase which quickly decays due to the 
growing differential of ω and Ω and the resulting tidal heating. 
After the impulsive torque has decayed, the satellite coasts on it 
own toward final lock-in at aG2 . 
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on it own toward final lock-in at aG2 .  

Equating the magnitudes of the torque in (20) and (21) we get: 
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Rearranging the terms in (22) we get assuming X= ω/Ω: 

 ( )                               
√ 
  ,   -                           

The Velocity in (23) is given in m/s but we want to work in m/y therefore (23) R.H.S is 
multiplied by 31.5569088×106s/(solar year).  

 ( )         
√ 
  ,   -               

                    

Equation (9) gives the value of X in advanced Kinematic Model: 

(  )           ( )  (  )        

 (    )( )√            

 √(    )    ( )     (    )( )√     * +                             

In (24) „a‟ refers to the semi-major axis of the evolving Satellite. There are two 
unknowns: exponent „Q‟ and structure constant „K‟. Therefore two unequivocal boundary 
conditions are required for the complete determination of the Velocity of Recession. 

If Laplace Plane Transition and Cassini State Transition are neglected then First 
boundary condition is at a = a2 which is a Gravitational Resonance Point where ω/Ω = 2 
[Rubicam 1975], 

i.e. (Na3/2 – Fa2 )= 2 has a root at a2. 

In E-M case, a2 = 2.40649×107 m. 
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[Rubicam 1975], 

i.e. (Na3/2 – Fa2 )= 2 has a root at a2. 

In E-M case, a2 = 2.40649×107 m. 

Rearranging the terms in (22) we get assuming X= ω/Ω:

The Velocity in (23) is given in m/s but we want to work in m/y therefore (23) R.H.S is multiplied by 31.5569088×106s/(solar year).

Equation (9) gives the value of X in advanced Kinematic Model:

In (24) ‘a’ refers to the semi-major axis of the evolving Satellite. There are two unknowns: exponent ‘Q’ and structure constant ‘K’. 
Therefore two unequivocal boundary conditions are required for the complete determination of the Velocity of Recession.

If Laplace Plane Transition and Cassini State Transition are neglected then First boundary condition is at a = a2 which is a Gravitational 
Resonance Point where ω/Ω = 2 [Rubicam 1975],
i.e. (Na3/2 – Fa2 )= 2 has a root at a2.
In E-M case, a2 = 2.40649×107 m.
At a2 the velocity of recession maxima occurs. i.e. V(a2) = Vmax.
Therefore at a = a2, (δV(a)/δa)(δa/δt)|a2 = 0.
On carrying out the partial derivative of V(a) with respect to ‘a’ we get the following:

Equating the magnitudes of the torque in (20) and (21) we get:
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 Solving (21) at 2:1 Mean Motion Resonance orbit „a2‟ we obtain : 

                                                                                                                      

Now structure constant (K) has to be determined . This will be done by trial error so as to 
get  the right age of Moon3 i.e. 4.46Gy. Rewriting (24) and substituting the best fit values of the 
exponent and constants N and F we obtain the structure constant „K‟.  

 ( )     
    √ 

  ,   -                                                          24 

We will assume the age of Moon 4.46Gy as already mentioned in Foot Note 3. The 
Transit Time from aG1 to the present „a‟ is given as follows: 

              ∫  
 ( )   

 

   
                                                                                     

Since Laplace Plane Transition and Cassini State Transition has to be considered 
therefore we will consider the time span spent in spiraling out from 2.86695×108m to the present 
orbit of 3.844×108m. 

Paleo-astronomical studies conducted by Wells(1963,1966) , Charles P.Sonnet (1998) 
and Arbab(2009) tell us that transition from 45RE = 2.86695×108m to the present has taken 3Gy. 
So the definite integral in transiting from 2.87×108m to 3.844×108m should give 3Gy. 
                                                            
3The birth of the Solar System is the time when the condensation of the first solid took place 
from the Solar Nebula. This is taken as 4.567Gya. The last giant impact on Earth formed the 
Moon and initiated the final phase of core formation by melting the mantle of the Earth. The date 
of this last impact decides the birth date of Moon which was completed in a few hundred years 
by the accretion of the impact generated  debris.Yin et al., 2002; Jacobsen, 
2005; Taylor et al., 2009 claim an age of 30My after the birth of Solar System.Touboul et al., 
2007; Allègre et al., 2008; Halliday, 2008 claim an younger Moon formed after 50 to 100My 
after the first solid condensed. The concentration of highly siderophile elements (HSEs) in 
Earth‟s mantle constrains the mass of chondritic material added to Earth during Late Accretion 
(Chyba, 1991; Bottke et al., 2010). Using HSE abundance measurements (Becker et al., 2006; 
Walker, 2009), Jacobson et.al.determine a Moon-formation age of 95± 32 Myr after the 
condensation. This method is invariant of the geo-chemistry chronometer adopted by earlier 
researchers.So it will be realistic to take the age of Moon as 4.46Gya. 
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condensation. This method is invariant of the geo-chemistry chronometer adopted by earlier 
researchers.So it will be realistic to take the age of Moon as 4.46Gya. 
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At a2 the velocity of recession maxima occurs. i.e. V(a2) = Vmax . 

Therefore at a = a2, (δV(a)/δa)(δa/δt)|a2 = 0. 

On carrying out the partial derivative of V(a) with respect to „a‟  we get the following: 

           (   )       (     )     (     )                      

 Solving (21) at 2:1 Mean Motion Resonance orbit „a2‟ we obtain : 

                                                                                                                      

Now structure constant (K) has to be determined . This will be done by trial error so as to 
get  the right age of Moon3 i.e. 4.46Gy. Rewriting (24) and substituting the best fit values of the 
exponent and constants N and F we obtain the structure constant „K‟.  

 ( )     
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We will assume the age of Moon 4.46Gy as already mentioned in Foot Note 3. The 
Transit Time from aG1 to the present „a‟ is given as follows: 

              ∫  
 ( )   

 

   
                                                                                     

Since Laplace Plane Transition and Cassini State Transition has to be considered 
therefore we will consider the time span spent in spiraling out from 2.86695×108m to the present 
orbit of 3.844×108m. 

Paleo-astronomical studies conducted by Wells(1963,1966) , Charles P.Sonnet (1998) 
and Arbab(2009) tell us that transition from 45RE = 2.86695×108m to the present has taken 3Gy. 
So the definite integral in transiting from 2.87×108m to 3.844×108m should give 3Gy. 
                                                            
3The birth of the Solar System is the time when the condensation of the first solid took place 
from the Solar Nebula. This is taken as 4.567Gya. The last giant impact on Earth formed the 
Moon and initiated the final phase of core formation by melting the mantle of the Earth. The date 
of this last impact decides the birth date of Moon which was completed in a few hundred years 
by the accretion of the impact generated  debris.Yin et al., 2002; Jacobsen, 
2005; Taylor et al., 2009 claim an age of 30My after the birth of Solar System.Touboul et al., 
2007; Allègre et al., 2008; Halliday, 2008 claim an younger Moon formed after 50 to 100My 
after the first solid condensed. The concentration of highly siderophile elements (HSEs) in 
Earth‟s mantle constrains the mass of chondritic material added to Earth during Late Accretion 
(Chyba, 1991; Bottke et al., 2010). Using HSE abundance measurements (Becker et al., 2006; 
Walker, 2009), Jacobson et.al.determine a Moon-formation age of 95± 32 Myr after the 
condensation. This method is invariant of the geo-chemistry chronometer adopted by earlier 
researchers.So it will be realistic to take the age of Moon as 4.46Gya. 
 

Solving (21) at 2:1 Mean Motion Resonance orbit ‘a2’ we obtain :

Now structure constant (K) has to be determined . This will 
be done by trial error so as to get the right age of Moon1  i.e. 
4.46Gy. Rewriting (24) and substituting the best fit values of the 

exponent and constants N and F we obtain the structure constant 
‘K’.

We will assume the age of Moon 4.46Gy as already mentioned in Foot Note 3. The Transit Time from aG1 to the present ‘a’ is given 
as follows:
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Since Laplace Plane Transition and Cassini State Transition 
has to be considered therefore we will consider the time span 
spent in spiraling out from 2.86695×108m to the present orbit of 
3.844×108m.

Paleo-astronomical studies conducted by Wells(1963,1966) , 
Charles P.Sonnet (1998) and Arbab(2009) tell us that transition 
from 45RE = 2.86695×108m to the present has taken 3Gy. So 
the definite integral in transiting from 2.87×108m to 3.844×108m 
should give 3Gy.

Using several iterations we will determine the structure constant 
‘K’ which yields transit time from birth to the present to be 3Gy 
within the limits of definite integral . These values of ‘K’ and ‘Q’ 
will be utilized in the advanced Kinematic Model to determine 
the radial velocity of recession. 

By classical E-M model Q is calculated to be Q = 3.22684.
K = 5.5×1042Newton/( ),Transit Time (from 3.012×108m to 
3.844×108m) =2.38Gy.
This gives present epoch velocity of recession of Moon as 
=2.4cm/y.

K = 8.33269×1042Newton-mQ that Moon’s crust frmed ,Transit 
Time (from 3.012×108m to 3.844×108m) = 1.57732 Gy.

This gives present epoch velocity of recession of Moon as = 
3.7cm/y.

5. Discussion
LLR measurement of 3.7cm/y was resulting in too short an age 
of Moon (~ 3Gy) which was contrary to the observed age of the 
rocks brought from Moon during Apollo Missions from 1969 to 
1972 (curation/Lunar-NASA). These missions brought 382Kg of 
lunar rock, core samples, pebbles, sand and dust from the Moon 
surface. It is estimated that Moon’s crust formed 4.4by ago. A 
team of scientist have studied Apollo 14 zircon fragments. They 
put the age of Moon at 4.51by [12]. Matja Cuk et.al. finally has 
resolved this conundrum [2]. According to this research, from 
3RE to 45RE , Moon does not have a smooth transit. Infact it is 
bumpy. It is chaotic, gets stuck in resonances and comes out of 
the resonances and gets stalled and resumes its tidal evolution. 
In fact Moon takes 3.267Gy to spirally expand from 3RE to 
45RE in fits and stalled manner. From 45RE to 60.336RE, Moon 
smoothly coasts in 1.2Gy. This accelerated spiral expansion in 
the on-going phase results in present day velocity of recession 
of 3.7cm/y. As we see in abstract Sharma 2024, this consistency 
with LLR results resolves a long standing problem of mismatch 
between observed LOD curve and theoretical LOD curve. In this 
new E-M model, a precise match is obtained between the theory 
and observation.

6. Conclusion
The series of papers in CELMEC VII and these two abstracts 
ID 20609 and ID 20935 in COSPAR-2018 have set the stage for 
Advanced KM to be established as a well tested tool for further 
applications in Space Dynamics. I also envisage the application 

of this model in earth-quake predictions.
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