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Abstract
In an aforegoing paper (Fahr and Heyl, 2021) we have studied in physical details the event of cosmic matter recombination 
expected at about 400000 years after the Big Bang at cosmic photon redshifts of about zr =1000. It turned out there, that 
photons taken as surely cooling by permanent increase of their cosmic redshifts, while electrons and protons partly are cooled 
by Thomson scatter processes with photons, but partly are heated due to the Hubble expansion of the universe. It can be shown, 
however, that in this cosmic epoch the cooling of electrons and protons is much more effective than the heating, and that a 
recombination of cosmic matter to neutral H-atoms thus is unavoidable. We then show, however, that the neutral gas atoms do 
not couple anymore to the cosmic CMB photon field, but instead are subject only to the Hubble migration in velocity space and 
thus become heated again. The question then poses itself, how cosmic structure formation in a gas with decreasing density and 
increasing temperature should have been able to take place. Where did the galaxies and clusters of galaxies come from? Looking 
into the unstable, self-gravitating acoustic oscillation modes we find the answer at what cosmic times which magnitudes of self 
gravitating critical masses can have been produced that could have sustained till the present times.
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Introduction
Standard cosmology generally assumes that cosmic matter in the 
earliest phases of cosmic evolution was at high temperatures and 
hence in a fully ionized state. At this time cosmic photons in their 
number density nv were strongly dominant by a factor of 109 com-
pared to particle number densities, like electron or proton densi-
ties ne or np (see e.g. Rees, 1978). Due to the strong thermody-
namic coupling between photons, electrons and protons at these 
pre-recombination phase, the temperatures of all these species 
were thought to be identical, i.e. Tv=Te=Tp. But in an expanding 
universe matter densities will systematically decrease with time, 
and consequently the thermodynamic coupling strengths, i.e. en-
ergy exchanges between electrons, protons and photons, become 
systematically weaker, and temperatures consequently decouple 
from each other (see studies e.g. by Burbidge, Gould and Pottasch, 
1963, or Gould,1968, or Fahr and Loch, 1991).

In case thermodynamic equilibrium could be assumed at this 
phase, then the degree ξ of ionisation could be calculated with the 
help of the Saha-Eggert equation (see M.Saha, 1920, or Rybicki 
and Lightman, 1979). In principle the actual degree of ionization 
ξ(T) is then obtained from the minimum of the Gibbs potential 
G=G(ξ) by the request: dG/dξ=0!. The whole of that classic Sa-
ha-Eggert theorem is, however, based on the fundamental assump-
tion: Thermodynamic equilibrium! - If the latter is not guaranteed, 

and if temperatures Tv; Te; Tp are different, then this theorem is not 
applicable.

In a precedent paper (Fahr and Heyl, 2021) we have, however, 
demonstrated that the equilibrium state during this phase is per-
turbed, as soon as the energetic coupling between photons, elec-
trons and protons becomes too weak, as it unavoidably occurs 
during the ongoing cosmic expansion due to permanent density 
decreases. After the recombination phase, when electrons and pro-
tons should have recombined to H-atoms, and photons start propa-
gating through cosmic space practically without further interaction 
with matter, establishing the cosmic radiation background CMB, 
the thermodynamic contact between matter and radiation for the 
following cosmic time is stopped. Both behave in principle inde-
pendent of each other, primarily only reacting to the cosmic scale 
expansion. For this reason, the initial Maxwellian atom distribu-
tion function does not persist in an expanding universe over times 
of the ongoing collision-free expansion (Fahr, 2021b).

The kinetic situation at the recombination border
What type of a kinetic distribution function f(v, t ˃ tr), and what 
change of it with respect to time t, should be expected in times 
after recombination time tr? In Fahr and Heyl (2021) we have ap-
proached this problem by use of a kinetic transport equation slight-
ly different from that used by Fahr (2021a), however, treating the 
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identical cosmophysical situation as already envisioned earlier. 
Starting from a kinetic transport equation used by Fahr (2007) one 
can describe a plasma physical scenario analogous to the one we 
are confronted with here. With the two terms a) for a temporal de-
rivative ∂f(v, t)/∂t, and b) for the particle redistribution in velocity 
space under collision-free conditions, due to the Hubble-induced

velocity space drift                                              of electrons or 
protons, are adequately represented. However, we raised the point 
there that energetic coupling processes between electrons and pho-
tons and electrons and protons need to be installed into this kinetic 
transport equation in order to take into account important interac-
tions during the recombination phase. These latter processes count 
for the cosmic era of interest here and cannot be excluded. For 
them one needs additional terms a) for the energetic coupling be-
tween protons and electrons and b) for the coupling between elec-
trons and photons, in relevant transport equations which do lead to 
the following enlarged system of equations (Fahr and Heyl, 2021):

Hereby the quantities Te=Te(t) and Tv=Tv(t) represent the actual, 
time-dependent electron and photon temperatures, τe,p and τe,v de-
note typical electron-proton and electron-photon energy exchange 
periods which are given by:

with σTh=(8ᴨ/3)(e2/mec
2)2=0.66.10-24cm2 denoting the Thomson 

photon-electron scattering cross section and α being the Ste-
fan-Boltzmann constant, and furthermore according to Spitzer 
(1956):

where ˄ is the Coulomb logarithm, and δee denotes the mean ener-
gy transfer rate in electron-electron collisions.

If photons, electrons and protons are solely affected by, without 
mutual interactions, then the cosmic photons are redshifted with 
time, and their temperature Tv is permanently reduced according 
to Tv=Tv0(Ro/R) (see e.g. Fahr and Zoennchen, 2009), while, to the 
contrary, proton and electron temperatures purely reflecting the ef-
fect of the Hubble migration, as shown in Fahr (2021b), both are 
increasing, thus creating evidently a strange NLTE-situation with 
Tv<<Tp,e which would probably not allow at all the recombination 
of electrons and protons to neutral H-atoms, suggesting that the 
recombination should not take place at all.

This strongly depends on the strengths of the energetic couplings 
between photons and electrons, and as we could show in Fahr and 
Heyl (2021) taking these interaction effects quantitatively into ac-
count, the cooling of electrons and protons due to energetic cou-
pling to the redshifted and cooled photons cannot be compensated 
or even overcompensated by the Hubble migration-induced heat-
ing, unless the Hubble parameter Hr at the recombination time is 

larger than the present-day Hubble parameter H0 by a factor of 
1015. Otherwise one would in all cases have the electrons system-
atically cooled by the photons. But when the latter are cooled, and 
Coulomb collision are effective enough, these electrons cannot 
be impeded from recombining with protons, leaving as products 
neutral H-atoms for the coming period of the cosmic evolution. 
However, drastically different now from earlier approaches, these 
collision-less neutral atoms are solely subject to the effect of the 
Hubble-migration which slowly leads to a gas temperature in-
crease again (see Fahr, 2021b). Whether or not this heated cos-
mic gas will then later be able to form larger massive structures or 
complex, elementary cosmic cornerstones like stellar clusters and 
galaxies hence needs to be answered along quite a new baseline in 
the argumentation.

If the Hubble parameter has a sub-critical value
How much larger than the present-day Hubble parameter H0 could 
the actual one Hr at the time of recombination have been? What 
does one in fact know about the value of the Hubble parameter 
at earlier times in the cosmic past, especially near the point of re-
combination of cosmic matter? - To frankly confess the truth: Not 
very much! - and for sure - nothing safe yet. All depends on the 
main cosmic view that cosmologists share concerning the universe 
near recombination times. Therefore, one can only speculate on 
this point, - if it existed at all in the history of the universe, i.e. 
if cosmic matter at times in the past was at all in a fully ionized 
phase. The present day value of the Hubble parameter with Htoday = 
70km/s/Mpc is obtained from redshift observations of the more or
less nearby galaxies with redshifts z ≤ 1, and not very much can be 
speculated with this poor observational basis on the specific value 
of Hr valid for the time of recombination t = tr. If some theoretical 
conditions or prerequisites are fulfilled, then things for estimations 
would be better. For example:

If the Hubble parameter H is predetermined at all cosmic times, for 
instance by a constant vacuum energy density, i.e. only by the vac-
uum energy density ˄, at present time as well as back all the time 
till the recombination time t = tr, then it can be shown (see Fahr, 
2021a), that the Hubble parameter would have been constant all 
over this time period from the recombination period till now, i.e. H 
= H0 = Hr. That would mean concerning the above relation that Hr 
= Htoday!, and with the result of the section ahead, that the electrons 
are effectively cooled by the cosmic photons, since otherwise one 
would need Hr =1015Htoday (see the discussion above).

If the Hubble parameter at present times, as well as at the recombi-
nation time tr, is purely determined by baryonic matter, i.e. by the 
rest-mass density of baryonic matter ρ=ρr, then one could use the 
following relation taken from the first of the Friedman equations 
(see e.g. Goenner, 1996)

which then would lead to the relation:

meaning that the Hubble parameter at the recombination era could 
certainly have been much larger than Htoday, but by far not large 
enough to get the cosmic electrons effectively heated competing 
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with Th  8/3e2/mec22  0.66  1024cm2 denoting the Thomson photon-electron
scattering cross section and  being the Stefan-Boltzmann constant, and furthermore
according to Spitzer (1956):
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where  is the Coulomb logarithm, and ee denotes the mean energy transfer rate in
electron-electron collisions.
If photons, electrons and protons are solely affected by, without mutual interactions,

then the cosmic photons are redshifted with time, and their temperature T is
permanently reduced according to T  T0Ro/R ( see e.g. Fahr and Zoennchen, 2009),
while, to the contrary, proton and electron temperatures purely reflecting the effect of the
Hubble migration, as shown in Fahr (2021b), both are increasing, thus creating evidently
a strange NLTE-situation with T  Tp,e which would probably not allow at all the
recombination of electrons and protons to neutral H-atoms, suggesting that the
recombination should not take place at all.
This strongly depends on the strengths of the energetic couplings between photons

and electrons, and as we could show in Fahr and Heyl (2021) taking these interaction
effects quantitatively into account, the cooling of electrons and protons due to energetic
coupling to the redshifted and cooled photons can not be compensated or even
overcompensated by the Hubble migration-induced heating, unless the Hubble
parameter Hr at the recombination time is larger than the present-day Hubble parameter
H0 by a factor of 1015. Otherwise one would in all cases have the electrons
systematically cooled by the photons. But when the latter are cooled, and Coulomb
collision are effective enough, these electrons cannot be impeded from recombining with
protons, leaving as products neutral H-atoms for the coming period of the cosmic
evolution. However, drastically different now from earlier approaches, these collision-less
neutral atoms are solely subject to the effect of the Hubble-migration which slowly leads
to a gas temperature increase again (see Fahr, 2021b). Whether or not this heated
cosmic gas will then later be able to form larger massive structures or complex,
elementary cosmic cornerstones like stellar clusters and galaxies hence needs to be
answered along quite a new baseline in the argumentation.
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If the Hubble parameter has a sub-critical value

How much larger than the present-day Hubble parameter H0 could the actual one Hr

at the time of recombination have been? What does one in fact know about the value of
the Hubble parameter at earlier times in the cosmic past, especially near the point of
recombination of cosmic matter? - To frankly confess the truth: Not very much! - and for
sure - nothing safe yet. All depends on the main cosmic view that cosmologists share
concerning the universe near recombination times. Therefore one can only speculate on
this point, - if it existed at all in the history of the universe, i.e. if cosmic matter at times in
the past was at all in a fully ionized phase. The present day value of the Hubble
parameter with Htoday  70km/s/Mpc is obtained from redshift observations of the more or
less nearby galaxies with redshifts z  1, and not very much can be speculated with this
poor observational basis on the specific value of Hr valid for the time of recombination
t  tr. If some theoretical conditions or prerequisites are fulfilled, then things for
estimations would be better. For example:
If the Hubble parameter H is predetermined at all cosmic times, for instance by a

constant vacuum energy density, i.e. only by the vacuum energy density  , at present
time as well as back all the time till the recombination time t  tr, then it can be shown
(see Fahr, 2021a) , that the Hubble parameter would have been constant all over this
time period from the recombination period till now, i.e. H  H0  Hr. That would mean
concerning the above relation that Hr  Htoday!, and with the result of the section ahead,
that the electrons are effectively cooled by the cosmic photons, since otherwise one
would need Hr  1015Htoday (see the discussion above).
If the Hubble parameter at present times, as well as at the recombination time tr, is

purely determined by baryonic matter, i.e. by the rest-mass density of baryonic matter
  r, then one could use the following relation taken from the first of the Friedman
equations (see e.g. Goenner, 1996)

H2  8G
3 B

which then would lead to the relation:

Hr  Htoday  
Rtoday
Rr

3/2  Htoday   103Rr
Rr

3/2  104.5Htoday

meaning that the Hubble parameter at the recombination era could certainly have
been much larger than Htoday, but by far not large enough to get the cosmic electrons
effectively heated competing with the cooling by CMB photons .
This seems to show that electron cooling in this cosmic phase is unavoidable, and that

consequently also a recombination of the cooling electrons and with ambient protons to
neutral H-atoms, as soon as KTet  EB , with EB  13.6 eV denoting the hydrogen
ionization energy, also appears unavoidable. But then one automatically enters into the
consecutive problem that the recombination product, i.e. the resonance-free baryon gas
(H gas), when it is now decoupled from the CMB photon field, does not continue to cool
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(H gas), when it is now decoupled from the CMB photon field, does not continue to cool
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with the cooling by CMB photons. 

This seems to show that electron cooling in this cosmic phase is 
unavoidable, and that consequently also a recombination of the 
cooling electrons with ambient protons to neutral H-atoms, as soon 
as KTe(t) ≤ EB, with EB = 13. 6 eV denoting the hydrogen ioniza-
tion energy, also appears unavoidable. But then one automatically 
enters into the consecutive problem that the recombination prod-
uct, i.e. the resonance-free baryon gas (H -gas), when it is now 
decoupled from the CMB photon field, does not continue to cool 
further down, but to the contrary, when solely being subject to the 
Hubble drift connected with the cosmic expansion, will again start 
increasing its temperature (see relations given further above and 
in Fahr, 2021b).

The historic evolution of the Hubble parameter H = H(t) can be 
even put on a broader, more analytic basis by again looking back 
to the first of the Friedman equations (see e.g. Goenner, 1996) ex-
pressing the fact that the Hubble parameter is given by:.

where all quantities like the mass densities ρB, ρD, ρv, ρ˄ of baryonic 
matter, of dark matter, of photons, and of the vacuum energy are 
thought to be known functions of time t, or equivalently, of the 
scale of the universe R = R(t).

Introduction of Ω0 = 3H0
2 /8ᴨG with H0 denoting the present-day 

Hubble parameter, then allows to write the upper equation in the 
form:

For the present epoch one has, however, obtained observational 
best-fit values for the above quantities ΩB, ΩD, Ωv, Ω˄ given by 
(Perlmutter et al., 1999, Bennet et al., 2003) by the following val-
ues:

                        ΩB = 0. 04
                        ΩD = 0. 23
                        Ωv = 0. 01
                        Ω˄ = 0. 72

Inserting now the expected dependences of ρB; ρD; ρv; ρ˄ on the 
scale R of the universe leads us to:

Hereby the equivalent mass energy density ρv of the cosmic pho-
tons has been taken into account by its value corresponding to 
a cosmologically redshifted Planck radiation (see e.g. Fahr and 
Zoennchen, 2009). When introducing the present-day Ω- values 
into the upper equation, one then obtains:

or expressing the fact that the R - dependence of the Hubble pa-
rameter is given by:

or expressed by the relation:

Figure 1: Hubble parameter H(x) (yellow curve) and the expan-
sion velocity R(x) (blue curve) as functions of the normalized Hub-
ble scale x = R/R0

Going back to the expected recombination point at Rr = R0 /1000 
we thus obtain a Hubble parameter given by:

or expressing the surprising fact that at the expected recombina-
tion time t = tr the photon field does contribute the most to the Hub-
ble parameter which itself amounts at that time t = tr to: Hr ~ 105H0.

Recapitulating, however, our earlier request that, to really have an 
effective heating of the electron gas occurring, one would need a 
Hubble parameter of Hr ≥ 1013H0. This then tells us that an electron 
cooling at this period seems unavoidable.

Evolution of the cosmic scale
From the result obtained in the section above we use the expres-
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the following values:

B  0.04

D  0.23

v  0.01

  0.72
Inserting now the expected dependences of B;D;; on the scale R of the

universe leads us to:

H2  R 2
R2  8G

3 B0R0/R3  D0R0/R3  0R0/R4  

Hereby the equivalent mass energy density  of the cosmic photons has been taken
into account by its value corresponding to a cosmologically redshifted Planck radiation
(see e.g. Fahr and Zoennchen, 2009). When introducing the present-day  values into
the upper equation, one then obtains:

H2  R 2
R2  H0

2  BR0/R3  DR0/R3  R0/R4  

or expressing the fact that the R  dependence of the Hubble parameter is given by:
H2

H0
2  0.04R0/R3  0.23R0/R3  0.01R0/R4  0.72

or expressed by the relation:

H  H0  0.27R0/R3  0.01R0/R4  0.72

further down, but to the contrary, when solely being subject to the Hubble drift connected
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further down, but to the contrary, when solely being subject to the Hubble drift connected
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Figure 1: Hubble parameter Hx (yellow curve) and the expansion velocity R x
(blue curve) as functions of the normalized Hubble scale x  R/R0

Going back to the expected recombination point at Rr  R0/1000 we thus obtain a
Hubble parameter given by:

Hr  H0  0.27R0/R3  0.01R0/R4  0.72  105H0

or expressing the surprising fact that at the expected recombination time t  tr the
photon field does contribute the most to the Hubble parameter which itself amounts at
that time t  tr to: Hr  105H0.
Recapitulating, however, our earlier request that, to really have an effective heating of

the electron gas occuring, one would need a Hubble parameter of Hr  1013H0 . This
then tells us that an electron cooling at this period seems unavoidable.

Evolution of the cosmic scale

From the result obtained in the section above we use the expression that gives the
actual Hubble parameter as a function of the scale of the universe in the form:
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This relation also allows to write the scale velocity R as function of the scale R in the
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By means of this upper expression, separating variables R and t, one can then find a
solution for the scale R as function of the cosmic time t in the form:

dR
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which can be integrated to yield the following relation:
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Introducing the new variable x  R/R0 we then find:

H0  t  tr  
xr

x dx
0.27/x  0.017/x2  0.72x2

Figure 2 : Hubble time t  trH0 as function of the Hubble scale x  R/R0 :
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Introducing the new variable x = R/R0 we then find:

Figure 2: Hubble time (t -tr)H0 as function of the Hubble scale x 
= R/R0:

Structure formation in a heated cosmic gas
As discussed in Fahr and Zönnchen (2009) in a homogeneous 
expanding cosmic gas cosmic matter structures can form due to 
self-gravitational interactions in density perturbations of this cos-
mic gas. These self-generating structures are persistent phenomena 
of cosmic sound waves, however, when self-gravity of the oscil-
latory matter is included. The typical dispersion relation for such 
self-gravitating, acoustic waves is given in the following form (see 
Jeans, 1929, Chandrasekhar, 1961):

with ω as the wave frequency, k = 2ᴨ/λ as the wave vector and 
wave length λ, and vs as the effective, local sound velocity at re-
combination era. G is Newton‘s gravitational constant ,and ρr is 
the actual local matter density at the recombination time t = tr.

As evident from the above dispersion relation, there exists a critri-
cal wave number kc with

and the property that all waves with wavenumbers k ≤ kc lead to 
unstable, standing waves with imaginary values for associated fre-
quencies ω, i.e. with growing wave amplitudes and hence ongoing 
of structure formation.

From that fact one can conclude that the characteristic wave-
lengths of standing wave structures at the recombination epoch 
are given by:

Calculating the value of λc one obtains with vs = Pr/ρr and γ= 5/3, 
Pr = nrKTr and Tr denoting pressure and temperature of the cosmic 
H-gas:

The temperature at the recombination era is expected to be about 
3000K, and due to the redshift cooling of the present CMB (3K-ra-
diation) one obtains the redshift relation: (1 + z) = (R0/Rr) ~1000. 
This means that the present cosmic density of the universe ρ0 = 
10-31g/cm3 should have been larger at the recombination era by a 
factor (1000)3 yielding an actual value at t = tr of ρr = 10-22g/cm3. 
This argumentation is based on the assumption that cosmic pho-
tons are subject to redshifts which are due to the expansion of the 
universe. If this cosmic mainstream basis is questioned, then, as 
we shall show at the end, this would change all of our conclusions.

The baryon gas temperature Tr, solely due to the influence of the 
Hubble drift at the recombination era, should develop according to 
a linear approach for 0. 1 ≥ Hr(t - tr) by (Fahr, 2021b):

and the density is given by:
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As discussed in Fahr and Zönnchen (2009) in a homogeneous expanding cosmic gas

cosmic matter structures can form due to selfgravitational interactions in density
perturbations of this cosmic gas. These self-generating structures are persistent
phenomena of cosmic sound waves, however, when selfgravity of the oscillatory matter
is included. The typical dispersion relation for such self-gravitating, accoustic waves is
given in the following form (see Jeans, 1929, Chandrasekhar, 1961):

2k  vs2k2  4Gr

with  as the wave frequency, k  2/ as the wave vector and wave length , and vs
as the effective, local sound velocity at recombination era. G is Newton‘s gravitational
constant ,and r is the actual local matter density at the recombination time t  tr.
As evident from the above dispersion relation, there exists a critrical wave number kc

with

kc 
4Gr

vs2

and the property that all waves with wavenumbers k  kc lead to unstable, standing
waves with imaginary values for associated frequencies , i.e. with growing wave
amplitudes and hence ongoing of structure formation.
From that fact one can conclude that the characteristic wavelengths of standing wave

structures at the recombination epoch are given by:
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Calculating the value of c one obtains with vS  Pr/r and   5/3, Pr  nrKTr and
Tr denoting pressure and temperature of the cosmic H-gas :

c 
Pr

Gr
2 

nrKTr

Gr
2 

KTr
mGr

 2.3 KTr
mGr

The temperature at the recombination era is expected to be about 3000K, and due to
the redshift cooling of the present CMB (3K-radiation) one obtains the redshift relation:
1  z  R0/Rr  1000. This means that the present cosmic density of the universe
0  1031g/cm3 should have been larger at the recombination era by a factor 10003

yielding an actual value at t  tr of r  1022g/cm3. This argumentation is based on the
assumption that cosmic photons are subject to redshifts which are due to the expansion
of the universe. If this cosmic mainstream basis is questioned, then, as we shall show at
the end, this would change all of our conclusions.
The baryon gas temperature Tr, solely due to the influence of the Hubble drift at the

recombination era, should develop according to a linear approach for 0.1  Hrt  tr by
(Fahr, 2021b):

THt  THr
1  Hrt  tr2

and the density is given by :

Ht  r  
Rtr
Rt 3

Covering a time period t after the recombination point t  tr, over which the Hubble
parameter H  Hr can be considered as constant, permits then to write

Rt  RtrexpHrt  tr
and consequently yielding the following density as function of time:

Ht  r  
Rtr

RtrexpHrt  tr
3  r exp3Hrt  tr

The critical mass Mc of a collapse-critical gas package is then given by:

Mc  4
3 c

3H  4
3 2.33 KTH

mGH
3/2H  51.3   KTH

mG 3/2H
1/2

If now one introduces the above expressions for THt and Ht as functions of t , one
then can see the critically possible, selfgravitational collapse mass Mc  Mct as
function of the cosmic time t after the recombination point as given by:
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

2.3  105M 
exp3/2Hrt  tr

1  Hrt  tr3
 Mc0  t

The above expression t describing the growth factor of the mass condensate in
time is shown in Figure 3. The three curves represent solutions for three Hubble
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The above expression μ(t) describing the growth factor of the mass 
condensate in time is shown in Figure 3. The three curves repre-
sent solutions for three Hubble parameters namely H0 = Htoday = 
70km/s/Mpc; H1 = 2H0; and H2 = 4H0. One can see that the critical 
mass substantially increases and also reaches the expected mag-
nitude of 106, meaning that masses of the order of Mc ˃ 1011 Mʘ, 
i.e. solar masses, within a time of several Billions of years are pos-
sible, however, it must be realized that the results of Figure 3 are 
based on the assumption that within the considered time the actual 
Hubble parameter is not varying, but keeps a value of H = H1,2,3.

Figure 3: The mass growth factor μ(t) as function of cosmic time 
in Billion years in a linear approach with H = 1, 2, 4 H0

The above expression shows that possible critical masses Mc(t) are 
growing with cosmic time t, however, one should keep in mind, to 
produce elementary cosmic cornerstones like galaxies, one would 
need a growth factor of about 106. Furthermore, there exists a se-
vere limitation for this mass growth given through a comparison 
between gravitational free-fall times τff and expansion times τex. 
The time τff is the time it takes to condense the gravitationally un-
stable mass Mc(t) to a stable structure by its free-fall in the genuine 
gravitational field, without the pressure action taken into account, 
and is given by:

The expansion time τex is the typical time needed to expand the 
mass Mc(t) with the ongoing Hubble expansion to infinity or say: 
back to the whole universe!, and it is simply given by:

The critical mass can only survive as a cosmic structure, as long 
as τff is smaller than τex, meaning that one should numerically have 
the following relation fulfilled:

At considerations of gravitational instabilities on smaller scales, 
say in galactic gas clouds, there is usually also an other character-
istic time τs that counts, namely the pressure reaction time (sound 
time!). i.e. the time it takes to communicate a pressure increase in 
the center of the condensation back to its border. If the cloud diam-
eter is given by D then this time τs is estimated by:

Usually this allows to conclude that the dimension of the gas con-
densation in order to fulfil the above relation should not be larger 
than:

Hence a limitation on the mass of such a gas condensation is again 
given by:

Conclusions
In an aforegoing paper (Fahr, 2021b) it had been shown that after 
a recombination of cosmic matter, the remaining hydrogen atoms 
are without interactions with the CMB photon field and can be 
taken as a collision-free gas. They will be solely subject to the 
cosmic scale expansion of the universe, and, astonishingly, due 
to the kinetic action of the Hubble drift on the whole gas popula-
tion in velocity space, the thermal spread, i.e. the temperature of 
this population, will increase, though embedded in an expanding 
universe. This latter effect, however, only takes place in this form 
after the recombination of electrons and protons to neutral gas at-
oms, since before this occurs, electrons, instead of being heated, 
are much more effectively cooled via Thomson scatter processes 
with the cooling cosmic photon radiation field, which is perma-
nently redshifted in time and, according to standard expectations, 
is unavoidably cooled by the expansion of the universe. This 
would be completely different, if freely propagating photons with-
out any material interactions are not redshifted, al least as long as 
they are not locally interacting or registered (see Fahr and Heyl, 
2017, 2018). The latter circumstance, if taken serious in this con-
text, would have tremendous consequences, because based on our 
earlier theoretical derivations cosmic photons at free flights along 
their light-geodetics will not change their characteristic properties, 
i.e. their frequencies or wavelengths. That would imply that their 
original spectral distribution would not change with cosmic time, 
only their spectral photon densities would change with cosmic 
time, meaning that the actual cosmic photon spectrum in fact is 
not anymore a true Planck spectrum with its typical characteristics.

Otherwise the electrons cooled by redshifted photons on their side 
are then also effectively cooling the protons by Coulomb colli-
sions, since it turns out that in the first collision-dominated phase 
this cooling by the cooled electrons is dominant over the Hub-
ble-heating in the expanding universe. As we could show in this 
paper the electron cooling by Thomson scatter processes with the 
cooling CMB radiation field is much more effective compared to 
the Hubble induced heating. Hence one can conclude that the re-
combination of electrons and protons is not impeded by the elec-
tron heating. However, when finally, the recombination is finished 
and only neutral gases are left, then these neutral gases, when ex-
clusively being subject to the Hubble expansion, will again start
being heated despite the expansion of the scale of the universe. 
The question then remains whether or not this heated cosmic gas 
would, or would not, have impeded the evolution of larger struc-
tures of cosmic matter in form of stars and galaxies. As we do 
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At considerations of gravitational instabilities on smaller scales, say in galactic gas
clouds, there is usually also an other characteristic time S that counts, namely the
pressure reaction time (sound time!). i.e. the time it takes to communicate a pressure
increase in the center of the condensation back to its border. If the cloud diameter is
given by D then this time S is estimated by:
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the temperature of this population, will increase, though embedded in an expanding
universe. This latter effect, however, only takes place in this form after the recombination
of electrons and protons to neutral gas atoms, since before this occurs, electrons,
instead of being heated, are much more effectively cooled via Thomson scatter
processes with the cooling cosmic photon radiation field, which is permanently redshifted
in time and, according to standard expectations, is unavoidably cooled by the expansion
of the universe. This would be completely different, if freely propagating photons without
any material interactions are not redshifted, al teast as long as they are not locally
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show at the end of this article here the evolution of typical cos-
mic mass elements of about 1011 solar masses appears, however, 
as likely along the process of self gravitational formations of gas 
density fluctuations.
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