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Abstract
In the era of AI proliferation, developing robust defense mechanisms against adversarial cyberattacks is critical. This 
project focuses on identifying and evaluating the most effective defense strategy to protect AI models from adversarial 
attacks. To mitigate overfitting, the baseline AI model was constructed with 2 convolutional layers, a dense layer of 256 
nodes, pooling, and dropout layers. This foundational model demonstrated exceptional proficiency, achieving a 99.5% 
accuracy rate on the Modified National Institute of Standards and Technology (MNIST) dataset.  The next three defense 
methodologies: adversarial training (integrating perturbed images into the training regimen), defensive distillation 
(employing softened probability distributions to enhance data generalization), and gradient masking (nullifying unused 
gradients to obscure potential attack vectors) were explored. Each method was applied to train distinct defense-
augmented versions of the AI control model. The effectiveness of these defense strategies was tested against the Fast 
Gradient Sign Method (FGSM) attack which manipulates test images to deceive AI models. Each defense-enhanced 
model was evaluated based on its ability to maintain accuracy in the face of these cyberattacks. This analysis aims to 
contribute significantly to the field of AI cybersecurity, offering insights into the most viable strategies for safeguarding 
AI systems against sophisticated adversarial threats.

1. Introduction
As technological advances evolved at a more rapid pace than ever 
through artificial intelligence, the proliferation of advanced neural 
networks has brought many groundbreaking advancements across 
a litany of fields [1]. However, this progress has also unveiled 
new vulnerabilities that expose models to adversarial attacks. 
These attacks are techniques that are specifically designed for 
model manipulation by utilizing minor perturbations within the 
input data. This creates incorrect predictions which although may 
seem indifferent to the human eye, can have detrimental effects 
on the machine-learning process. In addition, the expanding role 
of machine learning in vital areas like image recognition, natural 
language processing, and autonomous vehicles has made protecting 
against adversarial attacks more essential than ever before. For 
example, university researchers from Washington, and Michigan 
have demonstrated this by adding slashes, and other images on to 
stop signs, causing AI-driven cars to misclassify images almost 
100% of the time. This is a testament to the profound real-world 
consequences that these attacks can have, including things such as 
misclassification of medical images or the manipulation of self-

driving car perception systems, being uniquely able to transcend 
traditional cybersecurity paradigms [2].

 Luckily, despite the mounting threat posed by adversarial attacks, 
researchers and cybersecurity experts have proposed a multitude of 
solutions all aimed towards mitigating the potential impact of any 
attacks. These solutions have spanned from input preprocessing 
and feature denoising to adversarial training and model architecture 
enhancements [3]. However, the fundamental question persists: 
which adversarial defense methods offer the most effective 
safeguard against ever-evolving adversarial attacks? Now through 
comprehensive exploration and evaluation of the most prominent 
adversarial defense methods in the current literature, this paper 
aims to address the answer to this question. Through analyzing 
the robustness and applicability of each of these defense systems, 
we hope to shed light on the most promising ones to give insight 
for practitioners and upcoming researchers who can now make 
informed decisions based on our research when selecting the most 
suitable method for their line of work [4].
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In the field of Adversarial Machine Learning, there have been 
numerous comprehensive literature on the topic [5].  However, most 
only look at the best theoretical method that could be developed 
to defend against attacks. Moreover, none have compared current 
strategic methods with one another to determine the most effective 
one [6].  First, to find this key answer, we must understand how 
machine learning models work. In traditional machine learning 
tasks, models are rigorously tested on training data and then tasked 
with making predictions on previously unseen test data, assigning 
probabilities to each potential outcome based on their confidence 
in the prediction. Machine learning then leverages this data as well 
as sophisticated algorithms to mimic the human learning process, 
iteratively refining its accuracy. Now, due to the complexity of 
these models, many vulnerabilities arise [7].

One of these are adversarial attacks. These attacks involve 
introducing subtle "perturbations" to the training data, changes 
that often elude human perception but can lead to incorrect 
classifications and predictions by the model [8]. One such 
method employed by attackers is the Fast Gradient Sign Method 
(FGSM), which exploits gradients within the model to manipulate 
its output [9]. To counter these adversarial threats, we explored 
three primary defense methods. Adversarial Training, Defensive 
Distillation, and Gradient Masking. Our first line of defense for 
testing was Adversarial training. This method involves training the 
model with a combination of regular and adversarial examples. 
This comprehensive training approach helps the model generalize 
its understanding of data, rendering it more resilient to adversarial 
manipulations [10]. 

The second method which was tested was defensive distillation. 
While maintaining the same training processes, this method 
"distills down" the network's output probabilities, producing softer, 
less confident predictions. By introducing an element of ambiguity 
and uncertainty into the training process, the model becomes more 
vigilant towards subtle changes or perturbations [11]. 

Finally, we explored Gradient Masking. This defensive method 
adds an extra layer of protection by injecting "gradient noise" into 
the data, perturbing the gradients used by the model. This approach 
introduces complexity to the data, making it arduous for potential 
attackers to pinpoint the specific areas of training data that need 

manipulation. As a result, the model's vulnerability to adversarial 
attacks is reduced. The approach hinges on the notion of enhancing 
data generalization and injecting unpredictability into the model's 
learning process [12].

In our pursuit of determining the most optimal methods for detecting 
and defending against adversarial attacks, we delve deeper into the 
nuances of these defense strategies. By incorporating them into 
our project, we aim to bolster the security and dependability of 
machine learning models in the face of the ever-evolving threat 
landscape.

3. Methodology
In this research, we began by initializing the MNIST dataset, a 
collection of 70,000 28x28 color images distributed across ten 
distinct classes, each containing 6,000 images. This dataset serves 
as the foundation for our experimental evaluations. 

Next, a train-test split was performed on the MNIST dataset to 
maintain the integrity of our experiments. This division allocates 
one subset for model training and the other for model evaluation, 
preventing data leakage and ensuring an unbiased assessment 
of the models' generalization capabilities. To assess the model’s 
robustness, we employed a custom architecture that included 3 
convolutional layers, each with its own Batch Normalization and 
MaxPooling layer to prevent overfitting. The architecture includes 
a pooling layer for feature map downsampling, a dense layer with 
256 nodes for capturing high-level features, and a final dense layer 
with 10 nodes representing the 10 MNIST classes. 

We then defined a function for Fast Gradient Sign Method 
(FGSM) attacks, a white-box attack that perturbs the input data to 
maximize prediction errors. Using the function, tf.GradientTape(), 
tape.watch, and categorical cross entropy, the attack calculated the 
gradient direction of maximum loss. Upon knowing the direction 
which would create maximum loss, the fgsm_attack function 
would apply that perturbation to the input data’s pixel values 
and effectively increase the error from the model, because it has 
never encountered this new perturbed image before. To test each 
defense method’s resilience against adversarial attacks, we created 
3 functions to implement the three distinct defense strategies. 
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The first strategy employed was adversarial training, incorporating 
adversarial examples generated by the FGSM attack during 
model training. The second strategy was Defensive Distillation. 
This function was created by 2 separate models, one student 
and one teacher model. The teacher model would have a higher 
“temperature” which meant that it would produce softened 
probabilities using the softmax cross entropy function. Next, the 
student model would learn off of the gradients that the teacher 
model produced to achieve a balance between hard and softened 
probability output. This should help the model be less confident 
in its probability outputs to reduce the impact of adversarial 
perturbations, as well as increase the generalization of the data. 
The third method was gradient masking, which involved feature 
extraction, where unused nodes were changed to 0 to obscure 
the correct direction of perturbation from the attacker. To gauge 
the effectiveness of these defense mechanisms, we assess the 
robustness of each model by subjecting them to an FGSM attack. 

This was performed by creating adversarial images using the FGSM 
function and recording the resulting accuracy of each defense 
method through the categorical cross-entropy function. Next every 
possible permutation of the defense methods was tested. This was 
performed by training 4 epochs of the first model, saving it into a 
.H5 file, and training that model for another 3 epochs on the second 
method. Once all of these were tested, the best defense method 
was determined. 

Consecutive testing on different model complexities was tested 
to determine the optimal version of the best performing defense 
method. This evaluation enables a comparative analysis of the 
performance of the three defense methods in the presence of 
adversarial attacks, to determine efficacy in bolstering model 
security. The aim is to maximize the valuable insights gained into 
the enhancement of model robustness against adversarial threats, 
ultimately advancing the development of more secure deep 
learning models.

4. Results
This study analyzed three defense techniques against FGSM 
attacks conducted over many epochs. We found that all defense 
model accuracies were significantly different from each other as 
well as compared to the Control Model without a defense method. 
The best-performing model was a purely adversarially trained 
model, with an accuracy of 88.5% after a FGSM attack. This 
was significantly higher than the accuracy of the Control Model 
without the defense of 29.15%. 

This approach has proven to increase model robustness by 
exposing it to specifically crafted examples designed to deceive it. 
Moreover, the combination of training with regular and adversarial 
examples allows the model to better generalize and defend against 
unseen adversarial perturbations, thus accounting for its high 
accuracy.  

Next, Defensive Distillation method was tested and showed 
an average accuracy of 33.12%. This demonstrates that there 

is no significant difference found between utilizing Defensive 
Distillation versus a regular defenseless model. This technique 
introduces a level of uncertainty and variability in training by 
softening output probabilities, to mitigate the impact of adversarial 
perturbations. Despite this approach, there are potential trade-offs 
associated with determining the optimal level of softening, and 
gradients lost through the student-teacher model transfer, proving 
it may be necessary to conduct further fine-tuning and optimization 
in order to maintain competitive levels of accuracy. 

Finally, Gradient Masking method was tested and had an 
average accuracy of 47.52%, performing better than Defensive 
Distillation however falling short of Adversarial Training and was 
significantly less.  This effectively added complexity to the data, 
making it difficult for potential attackers to pinpoint vulnerable 
areas. However, the accuracy fluctuated across epochs, indicating 
potential sensitivity to this method. It's likely that forcibly altering 
already trained gradients played a role in its overall performance. 
It is also important to note that the Defenseless Control Model 
as expected, performed the worst over 16 test runs, exhibiting an 
average accuracy of 29.15%. 

Additionally testing revealed an increase in model accuracy 
after adding additional convolutional layers. Gradient Masking 
and Adversarial Training combined was the best-performing 
combination of defense methods with an average accuracy of 
85.56. Furthermore, the Adversarial Training Defense Model 
accuracy increased from 88.5% with 2 convolutional layers to a 
maximum accuracy of 97.9% with 5 convolutional layers.   The 
model's inability to withstand FGSM attacks highlights the 
necessity of incorporating sophisticated defense mechanisms to 
bolster its security.

5. Conclusion
As it is shown, Adversarial Training performed the best 
comparatively performing much better then Gradient Masking and 
Defensive Distillation. The control model included convolutional 
layers and dense layers, as well as pooling and drop out layers. It 
performed flawlessly with an average accuracy of 99.5% on the 
MNIST dataset without an attack. However correctly classified 
only 29% of the Adversarially Perturbed images demonstrating 
how crucial developing defense methods are. Adversarial training, 
which includes the addition of perturbed images to the training 
process, performed exceptionally well with an average of 90.69%. 
This technique proved to be unrivaled in fortifying model 
robustness by exposing the model to carefully crafted adversarially 
attacks. Defensive Distillation, which utilizes softened probability 
distributions, performed decently with an average of 33.12%. 
However, it was not statistically significant compared to if the 
model did not have any defenses. This highlights how challenging 
it is to balance softening with competitive accuracy simultaneously. 
Finally was introducing “gradient noise” into data as an effective 
technique that uses gradient masking to increase complexity and 
deter attackers. However, its performance can vary across different 
epochs, suggesting sensitivity and potential challenges associated 
with manipulating trained gradients. This highlights the importance 
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of sophisticated defense mechanisms in the face of ever-evolving 
adversarial threats. Adversarial training has shown its ability to 
improve model generalization and robustness against unexpected 
adversarial disturbances. These findings provide valuable guidance 
for practitioners and researchers to choose defense strategies based 
on the specific requirements of their applications. 

Future Direction
Through more detailed research, and projects such as these 
researchers and cybersecurity experts can offer promising 
prospects for fortifying artificial intelligence systems against 
evolving security threats. During our testing, it was discovered that 
a model with only 1 extra convolutional layer developed a much 
higher accuracy. With Adversarial Training, it achieved accuracies 
of 96% instead of 90%, Defensive Distillation went from 30% to 
70%, and Gradient Masking went from 50% to 90%. More detailed 
research could greatly determine the effects of model complexity 
on robustness. Future research could include testing other defense 
methods (Adversarial Logit Pairing, Feature Denoising, Gaussian 
Data Augmentation) as well as testing for the most optimal 
combination of defense methods. i.e. Defensive Distillation + 
Adversarial Training or Gradient Masking + Adversarial Training. 
In conclusion, this study advances our understanding of machine 
learning in the context of adversarial defense. It provides a strong 
basis for developing AI systems that are safer and more resilient in 
the rapidly evolving environment of cyber threats. 
Going forward, it is essential to fine-tune and optimise the defense 
strategies outlined in this study, as well as explore novel approaches 
to remain ahead and hope to save many lives.
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