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Abstract
This study presents necessary conditions for the existence and sufficient conditions for the stability or instability of the 
static meniscus (liquid bridge) appearing in the ribbon single crystal growth from the melt, of predetermined sizes, by 
using the edge-defined-film- fed (EFG) growth method. The cases when the contact angle and the growth angle verify 
the inequality                                                    are treated separately. Experimentally, only static meniscus (liquid 
bridges) which verifies the necessary condition of existence and the sufficient conditions of stability can be created; 
static meniscus (liquid bridges) which does not verify both of these conditions, exist only in theory because in reality 
they collapses. The results of this study is significant for thin ribbon single crystal growth from melt, with prior given 
macroscopic dimensions, using prior given specific equipment. That is because the obtained inequalities represent limits 
for what can and cannot be achieved experimentally. 
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1. Introduction.  The basic growth methods available for crystal growth are broadly; growth from 
the melt, growth from vapor, and growth from solution. Modern engineering does not only need  
single crystals of arbitrary shapes but also plates-, rod-,and tube-shaped single crystals, i.e. single 
crystals of shapes that allow one  to use them as final products without additional machining. This 
problem appears to be solved by profiled- container crystallization as in the case of casting. 
However, this solution is not always acceptable. Container material needs to satisfy a certain set 
of requirements: should be neither react with the melt nor be wetted by it, it should be of high-
temperature and aggressive-medium resistant, etc. Even if all these requirements are satisfied 
perfect –single crystal growth is not secured and growing very thin plate-shaped single crystals, to 
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 In case of the BS method, the melt is encapsulated in a crucible and the crystallization of the melt 
takes place in conditions of permanent contact between the melt and the crystal with the inner wall 
of the crucible. A significant advantage of the EFG method in comparison with respect to the BS 
method is that the crystal is grown without interaction with the crucible, which considerably 
improves the structural quality of the material: less residual stresses, dislocations, spurious 
nucleation or twins. In case of EFG method, there is a liquid bridge between the crystal and the 
shaper (die), called meniscus.. The melt is in a crucible, from which it flows through a capillary 
tube onto the surface of the shaper Fig.2.Fig.3.Hear a liquid bridge is formed between the shaper 
surface and the crystal. The crystallization takes place on the so “called crystallization front” which 
is the border line between the upper part of the liquid bridge and the bottom of the crystal. In the 
second section of this paper a short mathematical description of the real problem is given.  Along 
with the equations, boundary conditions, and initial values defining the model are presented. In 
the third section in the framework of the mathematical model, predictions are made concerning the 
stability and instability of convex meniscus. In the fourth section in the framework of the same 
mathematical model, predictions are made concerning the stability and instability of concave 
meniscus. These predictions are made analyzing the static stability or instability of meniscus with 
theoretical tools presented in [2].  In the fifth section we discuss the problem what is wanted and 
wat can be done.  

2. Mathematical description of meniscus free surface. The free surface of the static meniscus, 
in single crystal growth by EFG method, in hydrostatic approximation is described by the Young- 
Laplace capillary equation [3], [4]: 
𝛾𝛾 × ( 1

𝑅𝑅1
+ 1

𝑅𝑅2
) = 𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑚𝑚                           (2.1) 

Here: 𝛾𝛾  is the melt surface tension; 1
𝑅𝑅1

 , 1
𝑅𝑅2

 denote the main normal curvatures of the free surface 
at an arbitrary point M of the meniscus ; 𝑃𝑃𝑎𝑎 is the pressure above the free surface, equal to the 
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Where  

To calculate the meniscus surface shape and size in hydrostatic approximation is convenient to employ the Young–Laplace equation 
(2.2) in its differential form:
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pressure of the gas flow introduced in the furnace for release the heat and thereafter is denoted by 
𝑝𝑝𝑔𝑔 (𝑃𝑃𝑎𝑎 = 𝑝𝑝𝑔𝑔).The pressure 𝑃𝑃𝑚𝑚 under the free surface is the sum of the hydrodynamic pressure 𝑝𝑝𝑚𝑚 
in the meniscus melt (due to the thermal convection) and the hydrostatic pressure of the melt 
column equal to −𝜌𝜌 × 𝑔𝑔 × (𝑧𝑧 + 𝐻𝐻)  (see Fig.1. 2,Fig.1.3).  Here: 𝜌𝜌 denotes the melt density; 𝑔𝑔  is 
the gravity acceleration; 𝑧𝑧  is the coordinate of M  with respect to the Oz  axis, directed vertically 
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shaper top level.  𝐻𝐻  is positive when the crucible melt level is under the shaper top level and it is 
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The pressure difference 𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑚𝑚 across the free surface is  𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑚𝑚 = 𝑝𝑝𝑔𝑔 − 𝑝𝑝𝑚𝑚 + 𝜌𝜌 × 𝑔𝑔 ×
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where   𝑝𝑝=(𝑝𝑝𝑚𝑚 − 𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻) .In  hydrodynamic equilibrium 𝑝𝑝𝑚𝑚 = 0  and  
𝑝𝑝=(−𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻) .This   pressure difference 𝑝𝑝 is constant and it is called the controllable 
part of the pressure difference  𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑚𝑚.  
In hydrostatic approximation the Young -Laplace capillary surface equation can be written as : 
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Where                                𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻                                            (2.3)  
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With respect to the Oxyz, reference frame.(see Figs.1.2,1.3.) 
 
For an Oyz plan symmetric meniscus 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 = 0  equation (2.4) become 
 

𝑧𝑧′′ = 𝜌𝜌×𝑔𝑔×𝑧𝑧−𝑝𝑝
𝛾𝛾 × √[1 + 𝑧𝑧′2]3         for   𝑥𝑥1 ≤   𝑥𝑥 ≤ 𝑥𝑥0           (2.5) 

where : 𝑥𝑥1 > 0  is the single crystal ribbon half-thickness and  𝑥𝑥0   (𝑥𝑥0 > 𝑥𝑥1) is the shaper half-
thickness. 
 
Equation (2.5) is the Euler equation for the free energy functional 𝐼𝐼(𝑧𝑧) of the melt column 
𝐼𝐼(𝑧𝑧) = ∫ {𝛾𝛾 × [1 + √1 + (𝑧𝑧′)2 − 1
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where : 𝑥𝑥1 > 0  is the single crystal ribbon half-thickness and  𝑥𝑥0   (𝑥𝑥0 > 𝑥𝑥1) is the shaper half-
thickness. 
 
Equation (2.5) is the Euler equation for the free energy functional 𝐼𝐼(𝑧𝑧) of the melt column 
𝐼𝐼(𝑧𝑧) = ∫ {𝛾𝛾 × [1 + √1 + (𝑧𝑧′)2 − 1

2 × 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧2 − 𝑝𝑝 × 𝑧𝑧}𝑑𝑑𝑑𝑑𝑥𝑥0
𝑥𝑥1

  𝑧𝑧(𝑥𝑥1) = ℎ ,  𝑧𝑧(𝑥𝑥0) = 0    (2.6)         
The  Euler equation is the first order necessary condition of minimum of the  functional (2.6). 
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As the Young- Laplace equation in hydrostatic approximation (2.5) is a second order differential 
equation formulation of boundary conditions requires assignment of two boundary conditions; one 
of the melt crystal interface, the second one on the melt and shaper interface. These conditions are: 
solution 𝑧𝑧 = 𝑧𝑧(𝑥𝑥) of the Eq. (2.5) satisfy the following boundary conditions: 

pressure of the gas flow introduced in the furnace for release the heat and thereafter is denoted by 
𝑝𝑝𝑔𝑔 (𝑃𝑃𝑎𝑎 = 𝑝𝑝𝑔𝑔).The pressure 𝑃𝑃𝑚𝑚 under the free surface is the sum of the hydrodynamic pressure 𝑝𝑝𝑚𝑚 
in the meniscus melt (due to the thermal convection) and the hydrostatic pressure of the melt 
column equal to −𝜌𝜌 × 𝑔𝑔 × (𝑧𝑧 + 𝐻𝐻)  (see Fig.1. 2,Fig.1.3).  Here: 𝜌𝜌 denotes the melt density; 𝑔𝑔  is 
the gravity acceleration; 𝑧𝑧  is the coordinate of M  with respect to the Oz  axis, directed vertically 
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where   𝑝𝑝=(𝑝𝑝𝑚𝑚 − 𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻) .In  hydrodynamic equilibrium 𝑝𝑝𝑚𝑚 = 0  and  
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) = 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 − 𝑝𝑝                                       (2.2) 
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The  Euler equation is the first order necessary condition of minimum of the  functional (2.6). 
Namely   
𝑑𝑑
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2 × 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧2 − 𝑝𝑝 × 𝑧𝑧}    (2.7)              

As the Young- Laplace equation in hydrostatic approximation (2.5) is a second order differential 
equation formulation of boundary conditions requires assignment of two boundary conditions; one 
of the melt crystal interface, the second one on the melt and shaper interface. These conditions are: 
solution 𝑧𝑧 = 𝑧𝑧(𝑥𝑥) of the Eq. (2.5) satisfy the following boundary conditions: 

pressure of the gas flow introduced in the furnace for release the heat and thereafter is denoted by 
𝑝𝑝𝑔𝑔 (𝑃𝑃𝑎𝑎 = 𝑝𝑝𝑔𝑔).The pressure 𝑃𝑃𝑚𝑚 under the free surface is the sum of the hydrodynamic pressure 𝑝𝑝𝑚𝑚 
in the meniscus melt (due to the thermal convection) and the hydrostatic pressure of the melt 
column equal to −𝜌𝜌 × 𝑔𝑔 × (𝑧𝑧 + 𝐻𝐻)  (see Fig.1. 2,Fig.1.3).  Here: 𝜌𝜌 denotes the melt density; 𝑔𝑔  is 
the gravity acceleration; 𝑧𝑧  is the coordinate of M  with respect to the Oz  axis, directed vertically 
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In hydrostatic approximation the Young -Laplace capillary surface equation can be written as : 
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𝑅𝑅2
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shaper top level.  𝐻𝐻  is positive when the crucible melt level is under the shaper top level and it is 
negative when the shaper top level is under the crucible melt level. 
The pressure difference 𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑚𝑚 across the free surface is  𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑚𝑚 = 𝑝𝑝𝑔𝑔 − 𝑝𝑝𝑚𝑚 + 𝜌𝜌 × 𝑔𝑔 ×
(𝑧𝑧 + 𝐻𝐻) = 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 − (𝑝𝑝𝑚𝑚 − 𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻) = 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 − 𝑝𝑝    
where   𝑝𝑝=(𝑝𝑝𝑚𝑚 − 𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻) .In  hydrodynamic equilibrium 𝑝𝑝𝑚𝑚 = 0  and  
𝑝𝑝=(−𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻) .This   pressure difference 𝑝𝑝 is constant and it is called the controllable 
part of the pressure difference  𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑚𝑚.  
In hydrostatic approximation the Young -Laplace capillary surface equation can be written as : 
                                     𝛾𝛾 × ( 1

𝑅𝑅1
+ 1

𝑅𝑅2
) = 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 − 𝑝𝑝                                       (2.2) 

 
Where                                𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻                                            (2.3)  

 
To calculate the meniscus surface shape and size in hydrostatic approximation is convenient to 
employ the Young–Laplace equation (2.2) in its differential form: 
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2        (2.4) 

With respect to the Oxyz, reference frame.(see Figs.1.2,1.3.) 
 
For an Oyz plan symmetric meniscus 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 = 0  equation (2.4) become 
 

𝑧𝑧′′ = 𝜌𝜌×𝑔𝑔×𝑧𝑧−𝑝𝑝
𝛾𝛾 × √[1 + 𝑧𝑧′2]3         for   𝑥𝑥1 ≤   𝑥𝑥 ≤ 𝑥𝑥0           (2.5) 

where : 𝑥𝑥1 > 0  is the single crystal ribbon half-thickness and  𝑥𝑥0   (𝑥𝑥0 > 𝑥𝑥1) is the shaper half-
thickness. 
 
Equation (2.5) is the Euler equation for the free energy functional 𝐼𝐼(𝑧𝑧) of the melt column 
𝐼𝐼(𝑧𝑧) = ∫ {𝛾𝛾 × [1 + √1 + (𝑧𝑧′)2 − 1

2 × 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧2 − 𝑝𝑝 × 𝑧𝑧}𝑑𝑑𝑑𝑑𝑥𝑥0
𝑥𝑥1

  𝑧𝑧(𝑥𝑥1) = ℎ ,  𝑧𝑧(𝑥𝑥0) = 0    (2.6)         
The  Euler equation is the first order necessary condition of minimum of the  functional (2.6). 
Namely   
𝑑𝑑

𝑑𝑑𝑑𝑑 ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧′) − (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕) = 0 , 𝐹𝐹(𝑥𝑥, 𝑧𝑧, 𝑧𝑧′) = {𝛾𝛾 × [1 + √1 + (𝑧𝑧′)2 + 1
2 × 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧2 − 𝑝𝑝 × 𝑧𝑧}    (2.7)              

As the Young- Laplace equation in hydrostatic approximation (2.5) is a second order differential 
equation formulation of boundary conditions requires assignment of two boundary conditions; one 
of the melt crystal interface, the second one on the melt and shaper interface. These conditions are: 
solution 𝑧𝑧 = 𝑧𝑧(𝑥𝑥) of the Eq. (2.5) satisfy the following boundary conditions: 
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With respect to the Oxyz, reference frame. (see Figures.1.2,1.3.)

For an Oyz plan symmetric meniscus       = 0 equation (2.4) become

where: x1 > 0 is the single crystal ribbon half-thickness and x0 (x0 > x1) is the shaper half-thickness.

Equation (2.5) is the Euler equation for the free energy functional I(z) of the melt column

The Euler equation is the first order necessary condition of minimum of the functional (2.6). Namely 

 

As the Young- Laplace equation in hydrostatic approximation (2.5) is a second order differential equation formulation of boundary 
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Where αg is the growth angle, αc is the contact angle between the meniscus free surface and the edge of the shaper top.
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Computing           we find                                     .Therefore the Legendre condition is satisfied.
The Jacoby condition concern the so-called Jacoby equation:

for which a Sturm type upper bound has to be find [5].

pressure of the gas flow introduced in the furnace for release the heat and thereafter is denoted by 
𝑝𝑝𝑔𝑔 (𝑃𝑃𝑎𝑎 = 𝑝𝑝𝑔𝑔).The pressure 𝑃𝑃𝑚𝑚 under the free surface is the sum of the hydrodynamic pressure 𝑝𝑝𝑚𝑚 
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column equal to −𝜌𝜌 × 𝑔𝑔 × (𝑧𝑧 + 𝐻𝐻)  (see Fig.1. 2,Fig.1.3).  Here: 𝜌𝜌 denotes the melt density; 𝑔𝑔  is 
the gravity acceleration; 𝑧𝑧  is the coordinate of M  with respect to the Oz  axis, directed vertically 
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where   𝑝𝑝=(𝑝𝑝𝑚𝑚 − 𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻) .In  hydrodynamic equilibrium 𝑝𝑝𝑚𝑚 = 0  and  
𝑝𝑝=(−𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻) .This   pressure difference 𝑝𝑝 is constant and it is called the controllable 
part of the pressure difference  𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑚𝑚.  
In hydrostatic approximation the Young -Laplace capillary surface equation can be written as : 
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) = 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 − 𝑝𝑝                                       (2.2) 
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𝐼𝐼(𝑧𝑧) = ∫ {𝛾𝛾 × [1 + √1 + (𝑧𝑧′)2 − 1

2 × 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧2 − 𝑝𝑝 × 𝑧𝑧}𝑑𝑑𝑑𝑑𝑥𝑥0
𝑥𝑥1

  𝑧𝑧(𝑥𝑥1) = ℎ ,  𝑧𝑧(𝑥𝑥0) = 0    (2.6)         
The  Euler equation is the first order necessary condition of minimum of the  functional (2.6). 
Namely   
𝑑𝑑

𝑑𝑑𝑑𝑑 ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧′) − (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕) = 0 , 𝐹𝐹(𝑥𝑥, 𝑧𝑧, 𝑧𝑧′) = {𝛾𝛾 × [1 + √1 + (𝑧𝑧′)2 + 1
2 × 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧2 − 𝑝𝑝 × 𝑧𝑧}    (2.7)              

As the Young- Laplace equation in hydrostatic approximation (2.5) is a second order differential 
equation formulation of boundary conditions requires assignment of two boundary conditions; one 
of the melt crystal interface, the second one on the melt and shaper interface. These conditions are: 
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In hydrostatic approximation the Young -Laplace capillary surface equation can be written as : 
                                     𝛾𝛾 × ( 1

𝑅𝑅1
+ 1

𝑅𝑅2
) = 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 − 𝑝𝑝                                       (2.2) 

 
Where                                𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻                                            (2.3)  

 
To calculate the meniscus surface shape and size in hydrostatic approximation is convenient to 
employ the Young–Laplace equation (2.2) in its differential form: 
 [1 + (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕)2] × 𝜕𝜕2𝑧𝑧
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 − 2 × 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 × 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 × 𝜕𝜕2𝑧𝑧

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 + [1 + (𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕)2] × 𝜕𝜕2𝑧𝑧

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 = 𝜌𝜌×𝑔𝑔×𝑧𝑧−𝑝𝑝
𝛾𝛾 × [1 +   (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕)  2 +

(𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕)  2  ]

3
2        (2.4) 

With respect to the Oxyz, reference frame.(see Figs.1.2,1.3.) 
 
For an Oyz plan symmetric meniscus 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 = 0  equation (2.4) become 
 

𝑧𝑧′′ = 𝜌𝜌×𝑔𝑔×𝑧𝑧−𝑝𝑝
𝛾𝛾 × √[1 + 𝑧𝑧′2]3         for   𝑥𝑥1 ≤   𝑥𝑥 ≤ 𝑥𝑥0           (2.5) 

where : 𝑥𝑥1 > 0  is the single crystal ribbon half-thickness and  𝑥𝑥0   (𝑥𝑥0 > 𝑥𝑥1) is the shaper half-
thickness. 
 
Equation (2.5) is the Euler equation for the free energy functional 𝐼𝐼(𝑧𝑧) of the melt column 
𝐼𝐼(𝑧𝑧) = ∫ {𝛾𝛾 × [1 + √1 + (𝑧𝑧′)2 − 1

2 × 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧2 − 𝑝𝑝 × 𝑧𝑧}𝑑𝑑𝑑𝑑𝑥𝑥0
𝑥𝑥1

  𝑧𝑧(𝑥𝑥1) = ℎ ,  𝑧𝑧(𝑥𝑥0) = 0    (2.6)         
The  Euler equation is the first order necessary condition of minimum of the  functional (2.6). 
Namely   
𝑑𝑑

𝑑𝑑𝑑𝑑 ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧′) − (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕) = 0 , 𝐹𝐹(𝑥𝑥, 𝑧𝑧, 𝑧𝑧′) = {𝛾𝛾 × [1 + √1 + (𝑧𝑧′)2 + 1
2 × 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧2 − 𝑝𝑝 × 𝑧𝑧}    (2.7)              

As the Young- Laplace equation in hydrostatic approximation (2.5) is a second order differential 
equation formulation of boundary conditions requires assignment of two boundary conditions; one 
of the melt crystal interface, the second one on the melt and shaper interface. These conditions are: 
solution 𝑧𝑧 = 𝑧𝑧(𝑥𝑥) of the Eq. (2.5) satisfy the following boundary conditions: 

pressure of the gas flow introduced in the furnace for release the heat and thereafter is denoted by 
𝑝𝑝𝑔𝑔 (𝑃𝑃𝑎𝑎 = 𝑝𝑝𝑔𝑔).The pressure 𝑃𝑃𝑚𝑚 under the free surface is the sum of the hydrodynamic pressure 𝑝𝑝𝑚𝑚 
in the meniscus melt (due to the thermal convection) and the hydrostatic pressure of the melt 
column equal to −𝜌𝜌 × 𝑔𝑔 × (𝑧𝑧 + 𝐻𝐻)  (see Fig.1. 2,Fig.1.3).  Here: 𝜌𝜌 denotes the melt density; 𝑔𝑔  is 
the gravity acceleration; 𝑧𝑧  is the coordinate of M  with respect to the Oz  axis, directed vertically 
upwards; 𝐻𝐻  denotes the melt column height between the horizontal crucible melt level and the 
shaper top level.  𝐻𝐻  is positive when the crucible melt level is under the shaper top level and it is 
negative when the shaper top level is under the crucible melt level. 
The pressure difference 𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑚𝑚 across the free surface is  𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑚𝑚 = 𝑝𝑝𝑔𝑔 − 𝑝𝑝𝑚𝑚 + 𝜌𝜌 × 𝑔𝑔 ×
(𝑧𝑧 + 𝐻𝐻) = 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 − (𝑝𝑝𝑚𝑚 − 𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻) = 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 − 𝑝𝑝    
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  𝑧𝑧(𝑥𝑥1) = ℎ ,  𝑧𝑧(𝑥𝑥0) = 0    (2.6)         
The  Euler equation is the first order necessary condition of minimum of the  functional (2.6). 
Namely   
𝑑𝑑

𝑑𝑑𝑑𝑑 ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧′) − (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕) = 0 , 𝐹𝐹(𝑥𝑥, 𝑧𝑧, 𝑧𝑧′) = {𝛾𝛾 × [1 + √1 + (𝑧𝑧′)2 + 1
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𝛾𝛾 × √[1 + 𝑧𝑧′2]3         for   𝑥𝑥1 ≤   𝑥𝑥 ≤ 𝑥𝑥0           (2.5) 

where : 𝑥𝑥1 > 0  is the single crystal ribbon half-thickness and  𝑥𝑥0   (𝑥𝑥0 > 𝑥𝑥1) is the shaper half-
thickness. 
 
Equation (2.5) is the Euler equation for the free energy functional 𝐼𝐼(𝑧𝑧) of the melt column 
𝐼𝐼(𝑧𝑧) = ∫ {𝛾𝛾 × [1 + √1 + (𝑧𝑧′)2 − 1

2 × 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧2 − 𝑝𝑝 × 𝑧𝑧}𝑑𝑑𝑑𝑑𝑥𝑥0
𝑥𝑥1

  𝑧𝑧(𝑥𝑥1) = ℎ ,  𝑧𝑧(𝑥𝑥0) = 0    (2.6)         
The  Euler equation is the first order necessary condition of minimum of the  functional (2.6). 
Namely   
𝑑𝑑

𝑑𝑑𝑑𝑑 ( 𝜕𝜕𝜕𝜕
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2 × 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧2 − 𝑝𝑝 × 𝑧𝑧}    (2.7)              

As the Young- Laplace equation in hydrostatic approximation (2.5) is a second order differential 
equation formulation of boundary conditions requires assignment of two boundary conditions; one 
of the melt crystal interface, the second one on the melt and shaper interface. These conditions are: 
solution 𝑧𝑧 = 𝑧𝑧(𝑥𝑥) of the Eq. (2.5) satisfy the following boundary conditions: 

pressure of the gas flow introduced in the furnace for release the heat and thereafter is denoted by 
𝑝𝑝𝑔𝑔 (𝑃𝑃𝑎𝑎 = 𝑝𝑝𝑔𝑔).The pressure 𝑃𝑃𝑚𝑚 under the free surface is the sum of the hydrodynamic pressure 𝑝𝑝𝑚𝑚 
in the meniscus melt (due to the thermal convection) and the hydrostatic pressure of the melt 
column equal to −𝜌𝜌 × 𝑔𝑔 × (𝑧𝑧 + 𝐻𝐻)  (see Fig.1. 2,Fig.1.3).  Here: 𝜌𝜌 denotes the melt density; 𝑔𝑔  is 
the gravity acceleration; 𝑧𝑧  is the coordinate of M  with respect to the Oz  axis, directed vertically 
upwards; 𝐻𝐻  denotes the melt column height between the horizontal crucible melt level and the 
shaper top level.  𝐻𝐻  is positive when the crucible melt level is under the shaper top level and it is 
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(𝑧𝑧 + 𝐻𝐻) = 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 − (𝑝𝑝𝑚𝑚 − 𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻) = 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 − 𝑝𝑝    
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𝑝𝑝=(−𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻) .This   pressure difference 𝑝𝑝 is constant and it is called the controllable 
part of the pressure difference  𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑚𝑚.  
In hydrostatic approximation the Young -Laplace capillary surface equation can be written as : 
                                     𝛾𝛾 × ( 1
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𝑅𝑅2
) = 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 − 𝑝𝑝                                       (2.2) 
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To calculate the meniscus surface shape and size in hydrostatic approximation is convenient to 
employ the Young–Laplace equation (2.2) in its differential form: 
 [1 + (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕)2] × 𝜕𝜕2𝑧𝑧
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 − 2 × 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 × 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 × 𝜕𝜕2𝑧𝑧

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 + [1 + (𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕)2] × 𝜕𝜕2𝑧𝑧

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 = 𝜌𝜌×𝑔𝑔×𝑧𝑧−𝑝𝑝
𝛾𝛾 × [1 +   (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕)  2 +

(𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕)  2  ]

3
2        (2.4) 

With respect to the Oxyz, reference frame.(see Figs.1.2,1.3.) 
 
For an Oyz plan symmetric meniscus 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 = 0  equation (2.4) become 
 

𝑧𝑧′′ = 𝜌𝜌×𝑔𝑔×𝑧𝑧−𝑝𝑝
𝛾𝛾 × √[1 + 𝑧𝑧′2]3         for   𝑥𝑥1 ≤   𝑥𝑥 ≤ 𝑥𝑥0           (2.5) 

where : 𝑥𝑥1 > 0  is the single crystal ribbon half-thickness and  𝑥𝑥0   (𝑥𝑥0 > 𝑥𝑥1) is the shaper half-
thickness. 
 
Equation (2.5) is the Euler equation for the free energy functional 𝐼𝐼(𝑧𝑧) of the melt column 
𝐼𝐼(𝑧𝑧) = ∫ {𝛾𝛾 × [1 + √1 + (𝑧𝑧′)2 − 1

2 × 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧2 − 𝑝𝑝 × 𝑧𝑧}𝑑𝑑𝑑𝑑𝑥𝑥0
𝑥𝑥1

  𝑧𝑧(𝑥𝑥1) = ℎ ,  𝑧𝑧(𝑥𝑥0) = 0    (2.6)         
The  Euler equation is the first order necessary condition of minimum of the  functional (2.6). 
Namely   
𝑑𝑑

𝑑𝑑𝑑𝑑 ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧′) − (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕) = 0 , 𝐹𝐹(𝑥𝑥, 𝑧𝑧, 𝑧𝑧′) = {𝛾𝛾 × [1 + √1 + (𝑧𝑧′)2 + 1
2 × 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧2 − 𝑝𝑝 × 𝑧𝑧}    (2.7)              

As the Young- Laplace equation in hydrostatic approximation (2.5) is a second order differential 
equation formulation of boundary conditions requires assignment of two boundary conditions; one 
of the melt crystal interface, the second one on the melt and shaper interface. These conditions are: 
solution 𝑧𝑧 = 𝑧𝑧(𝑥𝑥) of the Eq. (2.5) satisfy the following boundary conditions: 

pressure of the gas flow introduced in the furnace for release the heat and thereafter is denoted by 
𝑝𝑝𝑔𝑔 (𝑃𝑃𝑎𝑎 = 𝑝𝑝𝑔𝑔).The pressure 𝑃𝑃𝑚𝑚 under the free surface is the sum of the hydrodynamic pressure 𝑝𝑝𝑚𝑚 
in the meniscus melt (due to the thermal convection) and the hydrostatic pressure of the melt 
column equal to −𝜌𝜌 × 𝑔𝑔 × (𝑧𝑧 + 𝐻𝐻)  (see Fig.1. 2,Fig.1.3).  Here: 𝜌𝜌 denotes the melt density; 𝑔𝑔  is 
the gravity acceleration; 𝑧𝑧  is the coordinate of M  with respect to the Oz  axis, directed vertically 
upwards; 𝐻𝐻  denotes the melt column height between the horizontal crucible melt level and the 
shaper top level.  𝐻𝐻  is positive when the crucible melt level is under the shaper top level and it is 
negative when the shaper top level is under the crucible melt level. 
The pressure difference 𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑚𝑚 across the free surface is  𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑚𝑚 = 𝑝𝑝𝑔𝑔 − 𝑝𝑝𝑚𝑚 + 𝜌𝜌 × 𝑔𝑔 ×
(𝑧𝑧 + 𝐻𝐻) = 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 − (𝑝𝑝𝑚𝑚 − 𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻) = 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 − 𝑝𝑝    
where   𝑝𝑝=(𝑝𝑝𝑚𝑚 − 𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻) .In  hydrodynamic equilibrium 𝑝𝑝𝑚𝑚 = 0  and  
𝑝𝑝=(−𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻) .This   pressure difference 𝑝𝑝 is constant and it is called the controllable 
part of the pressure difference  𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑚𝑚.  
In hydrostatic approximation the Young -Laplace capillary surface equation can be written as : 
                                     𝛾𝛾 × ( 1

𝑅𝑅1
+ 1

𝑅𝑅2
) = 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 − 𝑝𝑝                                       (2.2) 

 
Where                                𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻                                            (2.3)  

 
To calculate the meniscus surface shape and size in hydrostatic approximation is convenient to 
employ the Young–Laplace equation (2.2) in its differential form: 
 [1 + (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕)2] × 𝜕𝜕2𝑧𝑧
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 − 2 × 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 × 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 × 𝜕𝜕2𝑧𝑧

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 + [1 + (𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕)2] × 𝜕𝜕2𝑧𝑧

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 = 𝜌𝜌×𝑔𝑔×𝑧𝑧−𝑝𝑝
𝛾𝛾 × [1 +   (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕)  2 +

(𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕)  2  ]

3
2        (2.4) 

With respect to the Oxyz, reference frame.(see Figs.1.2,1.3.) 
 
For an Oyz plan symmetric meniscus 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 = 0  equation (2.4) become 
 

𝑧𝑧′′ = 𝜌𝜌×𝑔𝑔×𝑧𝑧−𝑝𝑝
𝛾𝛾 × √[1 + 𝑧𝑧′2]3         for   𝑥𝑥1 ≤   𝑥𝑥 ≤ 𝑥𝑥0           (2.5) 

where : 𝑥𝑥1 > 0  is the single crystal ribbon half-thickness and  𝑥𝑥0   (𝑥𝑥0 > 𝑥𝑥1) is the shaper half-
thickness. 
 
Equation (2.5) is the Euler equation for the free energy functional 𝐼𝐼(𝑧𝑧) of the melt column 
𝐼𝐼(𝑧𝑧) = ∫ {𝛾𝛾 × [1 + √1 + (𝑧𝑧′)2 − 1

2 × 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧2 − 𝑝𝑝 × 𝑧𝑧}𝑑𝑑𝑑𝑑𝑥𝑥0
𝑥𝑥1

  𝑧𝑧(𝑥𝑥1) = ℎ ,  𝑧𝑧(𝑥𝑥0) = 0    (2.6)         
The  Euler equation is the first order necessary condition of minimum of the  functional (2.6). 
Namely   
𝑑𝑑

𝑑𝑑𝑑𝑑 ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧′) − (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕) = 0 , 𝐹𝐹(𝑥𝑥, 𝑧𝑧, 𝑧𝑧′) = {𝛾𝛾 × [1 + √1 + (𝑧𝑧′)2 + 1
2 × 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧2 − 𝑝𝑝 × 𝑧𝑧}    (2.7)              

As the Young- Laplace equation in hydrostatic approximation (2.5) is a second order differential 
equation formulation of boundary conditions requires assignment of two boundary conditions; one 
of the melt crystal interface, the second one on the melt and shaper interface. These conditions are: 
solution 𝑧𝑧 = 𝑧𝑧(𝑥𝑥) of the Eq. (2.5) satisfy the following boundary conditions: 

pressure of the gas flow introduced in the furnace for release the heat and thereafter is denoted by 
𝑝𝑝𝑔𝑔 (𝑃𝑃𝑎𝑎 = 𝑝𝑝𝑔𝑔).The pressure 𝑃𝑃𝑚𝑚 under the free surface is the sum of the hydrodynamic pressure 𝑝𝑝𝑚𝑚 
in the meniscus melt (due to the thermal convection) and the hydrostatic pressure of the melt 
column equal to −𝜌𝜌 × 𝑔𝑔 × (𝑧𝑧 + 𝐻𝐻)  (see Fig.1. 2,Fig.1.3).  Here: 𝜌𝜌 denotes the melt density; 𝑔𝑔  is 
the gravity acceleration; 𝑧𝑧  is the coordinate of M  with respect to the Oz  axis, directed vertically 
upwards; 𝐻𝐻  denotes the melt column height between the horizontal crucible melt level and the 
shaper top level.  𝐻𝐻  is positive when the crucible melt level is under the shaper top level and it is 
negative when the shaper top level is under the crucible melt level. 
The pressure difference 𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑚𝑚 across the free surface is  𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑚𝑚 = 𝑝𝑝𝑔𝑔 − 𝑝𝑝𝑚𝑚 + 𝜌𝜌 × 𝑔𝑔 ×
(𝑧𝑧 + 𝐻𝐻) = 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 − (𝑝𝑝𝑚𝑚 − 𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻) = 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 − 𝑝𝑝    
where   𝑝𝑝=(𝑝𝑝𝑚𝑚 − 𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻) .In  hydrodynamic equilibrium 𝑝𝑝𝑚𝑚 = 0  and  
𝑝𝑝=(−𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻) .This   pressure difference 𝑝𝑝 is constant and it is called the controllable 
part of the pressure difference  𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑚𝑚.  
In hydrostatic approximation the Young -Laplace capillary surface equation can be written as : 
                                     𝛾𝛾 × ( 1

𝑅𝑅1
+ 1

𝑅𝑅2
) = 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 − 𝑝𝑝                                       (2.2) 

 
Where                                𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻                                            (2.3)  

 
To calculate the meniscus surface shape and size in hydrostatic approximation is convenient to 
employ the Young–Laplace equation (2.2) in its differential form: 
 [1 + (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕)2] × 𝜕𝜕2𝑧𝑧
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 − 2 × 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 × 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 × 𝜕𝜕2𝑧𝑧

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 + [1 + (𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕)2] × 𝜕𝜕2𝑧𝑧

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 = 𝜌𝜌×𝑔𝑔×𝑧𝑧−𝑝𝑝
𝛾𝛾 × [1 +   (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕)  2 +

(𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕)  2  ]

3
2        (2.4) 

With respect to the Oxyz, reference frame.(see Figs.1.2,1.3.) 
 
For an Oyz plan symmetric meniscus 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 = 0  equation (2.4) become 
 

𝑧𝑧′′ = 𝜌𝜌×𝑔𝑔×𝑧𝑧−𝑝𝑝
𝛾𝛾 × √[1 + 𝑧𝑧′2]3         for   𝑥𝑥1 ≤   𝑥𝑥 ≤ 𝑥𝑥0           (2.5) 

where : 𝑥𝑥1 > 0  is the single crystal ribbon half-thickness and  𝑥𝑥0   (𝑥𝑥0 > 𝑥𝑥1) is the shaper half-
thickness. 
 
Equation (2.5) is the Euler equation for the free energy functional 𝐼𝐼(𝑧𝑧) of the melt column 
𝐼𝐼(𝑧𝑧) = ∫ {𝛾𝛾 × [1 + √1 + (𝑧𝑧′)2 − 1

2 × 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧2 − 𝑝𝑝 × 𝑧𝑧}𝑑𝑑𝑑𝑑𝑥𝑥0
𝑥𝑥1

  𝑧𝑧(𝑥𝑥1) = ℎ ,  𝑧𝑧(𝑥𝑥0) = 0    (2.6)         
The  Euler equation is the first order necessary condition of minimum of the  functional (2.6). 
Namely   
𝑑𝑑

𝑑𝑑𝑑𝑑 ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧′) − (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕) = 0 , 𝐹𝐹(𝑥𝑥, 𝑧𝑧, 𝑧𝑧′) = {𝛾𝛾 × [1 + √1 + (𝑧𝑧′)2 + 1
2 × 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧2 − 𝑝𝑝 × 𝑧𝑧}    (2.7)              

As the Young- Laplace equation in hydrostatic approximation (2.5) is a second order differential 
equation formulation of boundary conditions requires assignment of two boundary conditions; one 
of the melt crystal interface, the second one on the melt and shaper interface. These conditions are: 
solution 𝑧𝑧 = 𝑧𝑧(𝑥𝑥) of the Eq. (2.5) satisfy the following boundary conditions: 
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of the melt crystal interface, the second one on the melt and shaper interface. These conditions are: 
solution 𝑧𝑧 = 𝑧𝑧(𝑥𝑥) of the Eq. (2.5) satisfy the following boundary conditions: 

𝑧𝑧′ (𝑥𝑥1) = −tan (𝜋𝜋
2 − 𝛼𝛼𝑔𝑔) , 𝑧𝑧′ (𝑥𝑥0) − tan (𝛼𝛼𝑐𝑐)  ,  𝑧𝑧(𝑥𝑥0) =  0   and 

 𝑧𝑧(𝑥𝑥)𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 [𝑥𝑥1 , 𝑥𝑥0]                 (2.8) 
Where 𝛼𝛼𝑔𝑔 is the growth angle, 𝛼𝛼𝑐𝑐  is the contact angle between the meniscus free surface and the 
edge of the shaper top . 
 
3. Stability or instability of a convex meniscus. A meniscus is convex if 𝑧𝑧′′(𝑥𝑥) > 0  𝑓𝑓𝑓𝑓𝑓𝑓   𝑥𝑥1 ≤
 𝑥𝑥 ≤ 𝑥𝑥0   
Remark first that in case of a convex meniscus the function 𝑧𝑧′(𝑥𝑥) is increasing. This means that 
the angle between the tangent line to meniscus in every point  , and the OX axis   𝛼𝛼(𝑥𝑥) =
−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑧𝑧′(𝑥𝑥) is decreasing. In particular, it follows that 𝛼𝛼(𝑥𝑥1) > 𝛼𝛼(𝑥𝑥0).Since 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋

2 − 𝛼𝛼𝑔𝑔  
and 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐 we obtain inequality 𝜋𝜋2 − 𝛼𝛼𝑔𝑔 > 𝛼𝛼𝑐𝑐 >0.(see Fig.2.) 
It should be noted that, the convex meniscus stability (the static one) should be distinguished from 
the dynamic stability of the crystallization process .For statically stable convex meniscus, not only 
indispensable (necessary) first order but also second order sufficient conditions of functional (2.6) 
should be satisfied. These second order sufficient conditions  for the minimum of functional (2.6) 
are the Legendre condition and the Jacobi condition [5].  
The Legendre condition is  
 𝜕𝜕2𝐹𝐹
𝜕𝜕𝜕𝜕′𝜕𝜕𝜕𝜕′  > 0                                                               (3.1) 
 
Computing   𝜕𝜕2𝐹𝐹

𝜕𝜕𝜕𝜕′𝜕𝜕𝜕𝜕′   we   find     𝜕𝜕2𝐹𝐹
𝜕𝜕𝜕𝜕′𝜕𝜕𝜕𝜕′ = 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

> 0  .Therefore the Legendre condition is 

satisfied. 

The Jacoby condition concern the so-called Jacoby equation: 

[ 𝜕𝜕2𝐹𝐹
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 − 𝑑𝑑

𝑑𝑑𝑑𝑑 ( 𝜕𝜕2𝐹𝐹
𝜕𝜕𝜕𝜕𝜕𝜕𝑧𝑧′)] × 𝜂𝜂 − 𝑑𝑑

𝑑𝑑𝑑𝑑 [ 𝜕𝜕2𝐹𝐹
𝜕𝜕𝑧𝑧′𝜕𝜕𝑧𝑧′ × 𝜂𝜂′] = 0            (3.2) 

for which a Sturm type upper bound has to be find.[5] 

In case of the functional (2.6) equation (3.2) become: 

𝑑𝑑
𝑑𝑑𝑑𝑑 [ 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0                               (3.3) 

Remark that for the coefficients of (3.3) the following inequalities hold: 
𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

> 𝛾𝛾 × (𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑔𝑔)3     and      −𝑔𝑔 × 𝜌𝜌 < 0             (3.4) 

Hence 

(𝜂𝜂′ × 𝛾𝛾 × (𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑔𝑔)3)′=0     or          𝜂𝜂′′ = 0                        (3.5) 

is a Sturm –type upper bound for (3.3)  

Since every non zero solution of the equation 𝜂𝜂′′ = 0 vanishes at most once on the interval 𝑥𝑥1 ≤
  𝑥𝑥 ≤ 𝑥𝑥0 the solution 𝜂𝜂(𝑥𝑥) of the initial value problem 

𝑧𝑧′ (𝑥𝑥1) = −tan (𝜋𝜋
2 − 𝛼𝛼𝑔𝑔) , 𝑧𝑧′ (𝑥𝑥0) − tan (𝛼𝛼𝑐𝑐)  ,  𝑧𝑧(𝑥𝑥0) =  0   and 
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should be satisfied. These second order sufficient conditions  for the minimum of functional (2.6) 
are the Legendre condition and the Jacobi condition [5].  
The Legendre condition is  
 𝜕𝜕2𝐹𝐹
𝜕𝜕𝜕𝜕′𝜕𝜕𝜕𝜕′  > 0                                                               (3.1) 
 
Computing   𝜕𝜕2𝐹𝐹

𝜕𝜕𝜕𝜕′𝜕𝜕𝜕𝜕′   we   find     𝜕𝜕2𝐹𝐹
𝜕𝜕𝜕𝜕′𝜕𝜕𝜕𝜕′ = 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

> 0  .Therefore the Legendre condition is 

satisfied. 

The Jacoby condition concern the so-called Jacoby equation: 

[ 𝜕𝜕2𝐹𝐹
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 − 𝑑𝑑

𝑑𝑑𝑑𝑑 ( 𝜕𝜕2𝐹𝐹
𝜕𝜕𝜕𝜕𝜕𝜕𝑧𝑧′)] × 𝜂𝜂 − 𝑑𝑑

𝑑𝑑𝑑𝑑 [ 𝜕𝜕2𝐹𝐹
𝜕𝜕𝑧𝑧′𝜕𝜕𝑧𝑧′ × 𝜂𝜂′] = 0            (3.2) 

for which a Sturm type upper bound has to be find.[5] 

In case of the functional (2.6) equation (3.2) become: 

𝑑𝑑
𝑑𝑑𝑑𝑑 [ 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0                               (3.3) 

Remark that for the coefficients of (3.3) the following inequalities hold: 
𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

> 𝛾𝛾 × (𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑔𝑔)3     and      −𝑔𝑔 × 𝜌𝜌 < 0             (3.4) 

Hence 

(𝜂𝜂′ × 𝛾𝛾 × (𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑔𝑔)3)′=0     or          𝜂𝜂′′ = 0                        (3.5) 

is a Sturm –type upper bound for (3.3)  

Since every non zero solution of the equation 𝜂𝜂′′ = 0 vanishes at most once on the interval 𝑥𝑥1 ≤
  𝑥𝑥 ≤ 𝑥𝑥0 the solution 𝜂𝜂(𝑥𝑥) of the initial value problem 

𝑧𝑧′ (𝑥𝑥1) = −tan (𝜋𝜋
2 − 𝛼𝛼𝑔𝑔) , 𝑧𝑧′ (𝑥𝑥0) − tan (𝛼𝛼𝑐𝑐)  ,  𝑧𝑧(𝑥𝑥0) =  0   and 
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Where 𝛼𝛼𝑔𝑔 is the growth angle, 𝛼𝛼𝑐𝑐  is the contact angle between the meniscus free surface and the 
edge of the shaper top . 
 
3. Stability or instability of a convex meniscus. A meniscus is convex if 𝑧𝑧′′(𝑥𝑥) > 0  𝑓𝑓𝑓𝑓𝑓𝑓   𝑥𝑥1 ≤
 𝑥𝑥 ≤ 𝑥𝑥0   
Remark first that in case of a convex meniscus the function 𝑧𝑧′(𝑥𝑥) is increasing. This means that 
the angle between the tangent line to meniscus in every point  , and the OX axis   𝛼𝛼(𝑥𝑥) =
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2 − 𝛼𝛼𝑔𝑔  
and 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐 we obtain inequality 𝜋𝜋2 − 𝛼𝛼𝑔𝑔 > 𝛼𝛼𝑐𝑐 >0.(see Fig.2.) 
It should be noted that, the convex meniscus stability (the static one) should be distinguished from 
the dynamic stability of the crystallization process .For statically stable convex meniscus, not only 
indispensable (necessary) first order but also second order sufficient conditions of functional (2.6) 
should be satisfied. These second order sufficient conditions  for the minimum of functional (2.6) 
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3. Stability or instability of a convex meniscus. A meniscus is convex if 𝑧𝑧′′(𝑥𝑥) > 0  𝑓𝑓𝑓𝑓𝑓𝑓   𝑥𝑥1 ≤
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The Jacoby condition concern the so-called Jacoby equation: 

[ 𝜕𝜕2𝐹𝐹
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 − 𝑑𝑑

𝑑𝑑𝑑𝑑 ( 𝜕𝜕2𝐹𝐹
𝜕𝜕𝜕𝜕𝜕𝜕𝑧𝑧′)] × 𝜂𝜂 − 𝑑𝑑

𝑑𝑑𝑑𝑑 [ 𝜕𝜕2𝐹𝐹
𝜕𝜕𝑧𝑧′𝜕𝜕𝑧𝑧′ × 𝜂𝜂′] = 0            (3.2) 

for which a Sturm type upper bound has to be find.[5] 

In case of the functional (2.6) equation (3.2) become: 

𝑑𝑑
𝑑𝑑𝑑𝑑 [ 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0                               (3.3) 

Remark that for the coefficients of (3.3) the following inequalities hold: 
𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

> 𝛾𝛾 × (𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑔𝑔)3     and      −𝑔𝑔 × 𝜌𝜌 < 0             (3.4) 

Hence 

(𝜂𝜂′ × 𝛾𝛾 × (𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑔𝑔)3)′=0     or          𝜂𝜂′′ = 0                        (3.5) 

is a Sturm –type upper bound for (3.3)  

Since every non zero solution of the equation 𝜂𝜂′′ = 0 vanishes at most once on the interval 𝑥𝑥1 ≤
  𝑥𝑥 ≤ 𝑥𝑥0 the solution 𝜂𝜂(𝑥𝑥) of the initial value problem 

𝑧𝑧′ (𝑥𝑥1) = −tan (𝜋𝜋
2 − 𝛼𝛼𝑔𝑔) , 𝑧𝑧′ (𝑥𝑥0) − tan (𝛼𝛼𝑐𝑐)  ,  𝑧𝑧(𝑥𝑥0) =  0   and 
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Where 𝛼𝛼𝑔𝑔 is the growth angle, 𝛼𝛼𝑐𝑐  is the contact angle between the meniscus free surface and the 
edge of the shaper top . 
 
3. Stability or instability of a convex meniscus. A meniscus is convex if 𝑧𝑧′′(𝑥𝑥) > 0  𝑓𝑓𝑓𝑓𝑓𝑓   𝑥𝑥1 ≤
 𝑥𝑥 ≤ 𝑥𝑥0   
Remark first that in case of a convex meniscus the function 𝑧𝑧′(𝑥𝑥) is increasing. This means that 
the angle between the tangent line to meniscus in every point  , and the OX axis   𝛼𝛼(𝑥𝑥) =
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2 − 𝛼𝛼𝑔𝑔  
and 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐 we obtain inequality 𝜋𝜋2 − 𝛼𝛼𝑔𝑔 > 𝛼𝛼𝑐𝑐 >0.(see Fig.2.) 
It should be noted that, the convex meniscus stability (the static one) should be distinguished from 
the dynamic stability of the crystallization process .For statically stable convex meniscus, not only 
indispensable (necessary) first order but also second order sufficient conditions of functional (2.6) 
should be satisfied. These second order sufficient conditions  for the minimum of functional (2.6) 
are the Legendre condition and the Jacobi condition [5].  
The Legendre condition is  
 𝜕𝜕2𝐹𝐹
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Since every non zero solution of the equation 𝜂𝜂′′ = 0 vanishes at most once on the interval 𝑥𝑥1 ≤
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In case of the functional (2.6) equation (3.2) become:

Remark that for the coefficients of (3.3) the following inequalities hold:

Hence

is a Sturm –type upper bound for (3.3) 
Since every non-zero solution of the equation η" = 0vanishes at most once on the interval x1 ≤ x ≤ x0 the solution η(x) of the initial value 
problem

has only one zero on the interval  x1 ≤ x ≤ x0 . Hence the stability condition of Jacobi is verified. 
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such that 
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𝑧𝑧′ (𝑥𝑥1) = −tan (𝜋𝜋
2 − 𝛼𝛼𝑔𝑔) , 𝑧𝑧′ (𝑥𝑥0) − tan (𝛼𝛼𝑐𝑐)  ,  𝑧𝑧(𝑥𝑥0) =  0   and 

 𝑧𝑧(𝑥𝑥)𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 [𝑥𝑥1 , 𝑥𝑥0]                 (2.8) 
Where 𝛼𝛼𝑔𝑔 is the growth angle, 𝛼𝛼𝑐𝑐  is the contact angle between the meniscus free surface and the 
edge of the shaper top . 
 
3. Stability or instability of a convex meniscus. A meniscus is convex if 𝑧𝑧′′(𝑥𝑥) > 0  𝑓𝑓𝑓𝑓𝑓𝑓   𝑥𝑥1 ≤
 𝑥𝑥 ≤ 𝑥𝑥0   
Remark first that in case of a convex meniscus the function 𝑧𝑧′(𝑥𝑥) is increasing. This means that 
the angle between the tangent line to meniscus in every point  , and the OX axis   𝛼𝛼(𝑥𝑥) =
−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑧𝑧′(𝑥𝑥) is decreasing. In particular, it follows that 𝛼𝛼(𝑥𝑥1) > 𝛼𝛼(𝑥𝑥0).Since 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋

2 − 𝛼𝛼𝑔𝑔  
and 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐 we obtain inequality 𝜋𝜋2 − 𝛼𝛼𝑔𝑔 > 𝛼𝛼𝑐𝑐 >0.(see Fig.2.) 
It should be noted that, the convex meniscus stability (the static one) should be distinguished from 
the dynamic stability of the crystallization process .For statically stable convex meniscus, not only 
indispensable (necessary) first order but also second order sufficient conditions of functional (2.6) 
should be satisfied. These second order sufficient conditions  for the minimum of functional (2.6) 
are the Legendre condition and the Jacobi condition [5].  
The Legendre condition is  
 𝜕𝜕2𝐹𝐹
𝜕𝜕𝜕𝜕′𝜕𝜕𝜕𝜕′  > 0                                                               (3.1) 

 
Computing   𝜕𝜕2𝐹𝐹

𝜕𝜕𝜕𝜕′𝜕𝜕𝜕𝜕′   we   find     𝜕𝜕2𝐹𝐹
𝜕𝜕𝜕𝜕′𝜕𝜕𝜕𝜕′ = 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

> 0  .Therefore the Legendre condition is 

satisfied. 

The Jacoby condition concern the so-called Jacoby equation: 

[ 𝜕𝜕2𝐹𝐹
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 − 𝑑𝑑

𝑑𝑑𝑑𝑑 ( 𝜕𝜕2𝐹𝐹
𝜕𝜕𝜕𝜕𝜕𝜕𝑧𝑧′)] × 𝜂𝜂 − 𝑑𝑑

𝑑𝑑𝑑𝑑 [ 𝜕𝜕2𝐹𝐹
𝜕𝜕𝑧𝑧′𝜕𝜕𝑧𝑧′ × 𝜂𝜂′] = 0            (3.2) 

for which a Sturm type upper bound has to be find.[5] 

In case of the functional (2.6) equation (3.2) become: 

𝑑𝑑
𝑑𝑑𝑑𝑑 [ 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0                               (3.3) 

Remark that for the coefficients of (3.3) the following inequalities hold: 
𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

> 𝛾𝛾 × (𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑔𝑔)3     and      −𝑔𝑔 × 𝜌𝜌 < 0             (3.4) 

Hence 

(𝜂𝜂′ × 𝛾𝛾 × (𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑔𝑔)3)′=0     or          𝜂𝜂′′ = 0                        (3.5) 

is a Sturm –type upper bound for (3.3)  

Since every non zero solution of the equation 𝜂𝜂′′ = 0 vanishes at most once on the interval 𝑥𝑥1 ≤
  𝑥𝑥 ≤ 𝑥𝑥0 the solution 𝜂𝜂(𝑥𝑥) of the initial value problem 

𝑧𝑧′ (𝑥𝑥1) = −tan (𝜋𝜋
2 − 𝛼𝛼𝑔𝑔) , 𝑧𝑧′ (𝑥𝑥0) − tan (𝛼𝛼𝑐𝑐)  ,  𝑧𝑧(𝑥𝑥0) =  0   and 
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edge of the shaper top . 
 
3. Stability or instability of a convex meniscus. A meniscus is convex if 𝑧𝑧′′(𝑥𝑥) > 0  𝑓𝑓𝑓𝑓𝑓𝑓   𝑥𝑥1 ≤
 𝑥𝑥 ≤ 𝑥𝑥0   
Remark first that in case of a convex meniscus the function 𝑧𝑧′(𝑥𝑥) is increasing. This means that 
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It should be noted that, the convex meniscus stability (the static one) should be distinguished from 
the dynamic stability of the crystallization process .For statically stable convex meniscus, not only 
indispensable (necessary) first order but also second order sufficient conditions of functional (2.6) 
should be satisfied. These second order sufficient conditions  for the minimum of functional (2.6) 
are the Legendre condition and the Jacobi condition [5].  
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𝑑𝑑𝑑𝑑 [ 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2
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has only one zero on the interval 𝑥𝑥1 ≤   𝑥𝑥 ≤ 𝑥𝑥0 . Hence the stability condition of Jacobi is 
verified.  

This result can be surprising and create the impression that a convex meniscus is stable. In fact, 
the result is that if a convex meniscus exist, then it is stable. For this reason in the following, we 
will establish necessary conditions for the existence of convex meniscus (see Fig.1.2.). 

Starting from equations (2.3) and  (2.5) it is easy to see that in hydrostatic approximation the 
pressure difference 𝑝𝑝 verify equalities: 

𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧                                                    (3.7) 

Using 𝑝𝑝 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 ,the boundary conditions 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 , 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐  

,with the Lagrange mean value theorem we obtain that there exists 𝑥𝑥′ in the interval [𝑥𝑥1, 𝑥𝑥2] 
such that  

𝑝𝑝 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥′) + 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′)                        (3.8) 

 

Since  𝛼𝛼(𝑥𝑥)  is strictly decreasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 

𝛼𝛼𝑐𝑐 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔                                                                       (3.9) 

sin (𝛼𝛼𝑔𝑔) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ cos (𝛼𝛼𝑐𝑐)                                                   (3.10) 
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Therefore in case of convex meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where : 

                          𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ          and       𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ       (3.13) 

For 

               𝑑𝑑
𝑑𝑑𝑑𝑑 [ 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0              𝜂𝜂(𝑥𝑥1) = 0 ,     𝜂𝜂′(𝑥𝑥1) = 1          (3.6) 

has only one zero on the interval 𝑥𝑥1 ≤   𝑥𝑥 ≤ 𝑥𝑥0 . Hence the stability condition of Jacobi is 
verified.  

This result can be surprising and create the impression that a convex meniscus is stable. In fact, 
the result is that if a convex meniscus exist, then it is stable. For this reason in the following, we 
will establish necessary conditions for the existence of convex meniscus (see Fig.1.2.). 

Starting from equations (2.3) and  (2.5) it is easy to see that in hydrostatic approximation the 
pressure difference 𝑝𝑝 verify equalities: 

𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧                                                    (3.7) 

Using 𝑝𝑝 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 ,the boundary conditions 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 , 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐  

,with the Lagrange mean value theorem we obtain that there exists 𝑥𝑥′ in the interval [𝑥𝑥1, 𝑥𝑥2] 
such that  

𝑝𝑝 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥′) + 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′)                        (3.8) 

 

Since  𝛼𝛼(𝑥𝑥)  is strictly decreasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 

𝛼𝛼𝑐𝑐 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔                                                                       (3.9) 

sin (𝛼𝛼𝑔𝑔) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ cos (𝛼𝛼𝑐𝑐)                                                   (3.10) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                       (3.11) 

Using equality (3.8) and inequalities (3.9)-(3.11) in hydrostatic approximation, in case of the 
existence of s convex static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
following inequalities hold: 

−𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ ≤ −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 ≤ −𝛾𝛾 ×
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2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) +

𝜌𝜌 × 𝑔𝑔 × ℎ                                           (3.12) 

Therefore in case of convex meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where : 

                          𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝛾𝛾 ×
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× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ          and       𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = −𝛾𝛾 ×

𝜋𝜋
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× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ       (3.13) 

For 

               𝑑𝑑
𝑑𝑑𝑑𝑑 [ 𝛾𝛾
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× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0              𝜂𝜂(𝑥𝑥1) = 0 ,     𝜂𝜂′(𝑥𝑥1) = 1          (3.6) 

has only one zero on the interval 𝑥𝑥1 ≤   𝑥𝑥 ≤ 𝑥𝑥0 . Hence the stability condition of Jacobi is 
verified.  

This result can be surprising and create the impression that a convex meniscus is stable. In fact, 
the result is that if a convex meniscus exist, then it is stable. For this reason in the following, we 
will establish necessary conditions for the existence of convex meniscus (see Fig.1.2.). 

Starting from equations (2.3) and  (2.5) it is easy to see that in hydrostatic approximation the 
pressure difference 𝑝𝑝 verify equalities: 

𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧                                                    (3.7) 

Using 𝑝𝑝 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 ,the boundary conditions 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 , 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐  

,with the Lagrange mean value theorem we obtain that there exists 𝑥𝑥′ in the interval [𝑥𝑥1, 𝑥𝑥2] 
such that  

𝑝𝑝 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥′) + 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′)                        (3.8) 

 

Since  𝛼𝛼(𝑥𝑥)  is strictly decreasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 

𝛼𝛼𝑐𝑐 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔                                                                       (3.9) 

sin (𝛼𝛼𝑔𝑔) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ cos (𝛼𝛼𝑐𝑐)                                                   (3.10) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                       (3.11) 

Using equality (3.8) and inequalities (3.9)-(3.11) in hydrostatic approximation, in case of the 
existence of s convex static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
following inequalities hold: 

−𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ ≤ −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 ≤ −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) +

𝜌𝜌 × 𝑔𝑔 × ℎ                                           (3.12) 

Therefore in case of convex meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where : 

                          𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ          and       𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ       (3.13) 

For 

               𝑑𝑑
𝑑𝑑𝑑𝑑 [ 𝛾𝛾

(1+(𝑧𝑧′)2)
3
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× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0              𝜂𝜂(𝑥𝑥1) = 0 ,     𝜂𝜂′(𝑥𝑥1) = 1          (3.6) 

has only one zero on the interval 𝑥𝑥1 ≤   𝑥𝑥 ≤ 𝑥𝑥0 . Hence the stability condition of Jacobi is 
verified.  

This result can be surprising and create the impression that a convex meniscus is stable. In fact, 
the result is that if a convex meniscus exist, then it is stable. For this reason in the following, we 
will establish necessary conditions for the existence of convex meniscus (see Fig.1.2.). 

Starting from equations (2.3) and  (2.5) it is easy to see that in hydrostatic approximation the 
pressure difference 𝑝𝑝 verify equalities: 

𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧                                                    (3.7) 

Using 𝑝𝑝 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 ,the boundary conditions 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 , 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐  

,with the Lagrange mean value theorem we obtain that there exists 𝑥𝑥′ in the interval [𝑥𝑥1, 𝑥𝑥2] 
such that  

𝑝𝑝 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥′) + 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′)                        (3.8) 

 

Since  𝛼𝛼(𝑥𝑥)  is strictly decreasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 

𝛼𝛼𝑐𝑐 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔                                                                       (3.9) 

sin (𝛼𝛼𝑔𝑔) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ cos (𝛼𝛼𝑐𝑐)                                                   (3.10) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                       (3.11) 

Using equality (3.8) and inequalities (3.9)-(3.11) in hydrostatic approximation, in case of the 
existence of s convex static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
following inequalities hold: 

−𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ ≤ −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 ≤ −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) +

𝜌𝜌 × 𝑔𝑔 × ℎ                                           (3.12) 

Therefore in case of convex meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where : 
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2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)
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× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ       (3.13) 

For 



J Sen Net Data Comm, 2025 Volume 5 | Issue 2 | 5

where:

For

convex meniscus like in Figure.1.2 does not exit. These regions of the pressure difference are regions of static instability. A meniscus 
with p in this region collapse, For p satisfying one of the inequalities (3.14) it is impossible to create experimentally a convex meniscus 
like in Figure.1.2

Retain that the pressure difference p = − pg −    × g × H can be controlled by the gas pressure pg and the parameter H. 

In the following we will illustrate first the existence of convex static meniscus in case of Ge assuming that h = 0.00019[m] , x1 = 
0.0001[m], x0 = 0.0002[m].

In case of Ge Lleft = -2302.112493 [Pa] and Lright = -686.521879  and a convex meniscus is obtained for p = -1525[Pa] .This meniscus is 
obtained by integrating the initial value problem:

The numerical values of  

                                                                                                                 The pressure p = − 1525[Pa] was found by trial solving (3.15) for 
different values of p in the range[−2302, − 686] [Pa].

The obtained results concerning the meniscus shap z(x) and the variation of α(x) are presented in the next figures:

               𝑑𝑑
𝑑𝑑𝑑𝑑 [ 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0              𝜂𝜂(𝑥𝑥1) = 0 ,     𝜂𝜂′(𝑥𝑥1) = 1          (3.6) 

has only one zero on the interval 𝑥𝑥1 ≤   𝑥𝑥 ≤ 𝑥𝑥0 . Hence the stability condition of Jacobi is 
verified.  

This result can be surprising and create the impression that a convex meniscus is stable. In fact, 
the result is that if a convex meniscus exist, then it is stable. For this reason in the following, we 
will establish necessary conditions for the existence of convex meniscus (see Fig.1.2.). 

Starting from equations (2.3) and  (2.5) it is easy to see that in hydrostatic approximation the 
pressure difference 𝑝𝑝 verify equalities: 

𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧                                                    (3.7) 

Using 𝑝𝑝 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 ,the boundary conditions 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 , 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐  

,with the Lagrange mean value theorem we obtain that there exists 𝑥𝑥′ in the interval [𝑥𝑥1, 𝑥𝑥2] 
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sin (𝛼𝛼𝑔𝑔) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ cos (𝛼𝛼𝑐𝑐)                                                   (3.10) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                       (3.11) 

Using equality (3.8) and inequalities (3.9)-(3.11) in hydrostatic approximation, in case of the 
existence of s convex static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
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× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0              𝜂𝜂(𝑥𝑥1) = 0 ,     𝜂𝜂′(𝑥𝑥1) = 1          (3.6) 
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For 
𝑝𝑝 < −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ     and for    𝑝𝑝 > −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 ×

𝑔𝑔 × ℎ              (3.14) 

convex meniscus like in Fig.1.2 does not exit. These regions of the pressure difference are 
regions of static instability .A meniscus obtained with  𝑝𝑝  in this region collapse. For 𝑝𝑝  
satisfying one of the inequalities (3.14) it is impossible to create experimentally a convex 
meniscus like in Fig.1.2 

Retain that the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  can be controlled by the gas pressure 
𝑝𝑝𝑔𝑔 and the parameter  𝐻𝐻.  

In the following we will illustrate first the existence of convex static meniscus in case of Ge 
assuming that ℎ = 0.00019[𝑚𝑚], 𝑥𝑥1 = 0.0001[𝑚𝑚], 𝑥𝑥0 = 0.0002[𝑚𝑚] 
In case of Ge    𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  [Pa]  and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 =  [𝑃𝑃𝑃𝑃]  and a convex meniscus is 
obtained for 𝑝𝑝 = −1525[𝑃𝑃𝑃𝑃] .This meniscus is obtained by integrating the initial value problem 
: 

𝑧𝑧′(𝑥𝑥) = −tan (𝛼𝛼(𝑥𝑥))  𝛼𝛼′(𝑥𝑥) = 𝑝𝑝−𝜌𝜌×𝑔𝑔×𝑥𝑥
𝛾𝛾 × 1

cos (𝛼𝛼(𝑥𝑥))  ;     𝑧𝑧(𝑥𝑥1) = ℎ = 0.00019  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼(𝑥𝑥1) =
1.361796327.           (3.15) 

 
The numerical values of   𝜌𝜌, 𝑔𝑔, 𝛾𝛾 are:, 𝜌𝜌 = 5600[ 𝑘𝑘𝑘𝑘

𝑚𝑚3]   ,   𝑔𝑔 = 9.82[𝑚𝑚
𝑠𝑠2 ]   ,  𝛾𝛾 = 0.620 [ 𝑁𝑁

𝑚𝑚]  
, 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋

2 − 𝛼𝛼𝑔𝑔 = 𝜋𝜋
2 − 0.209=1.361796327[rad], 

 𝛼𝛼𝑔𝑔 = 0.209[𝑟𝑟𝑟𝑟𝑟𝑟]𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝐺𝐺𝐺𝐺 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ.The pressure 𝑝𝑝 = −1525[𝑃𝑃𝑃𝑃]  
was found by trial solving (3.15) for different values of 𝑝𝑝 in the range [−2302, −686][𝑃𝑃𝑃𝑃} 
The obtained results concerning the meniscus shap 𝑧𝑧(𝑥𝑥) and the variation of 𝛼𝛼(𝑥𝑥) are presented 
in the next figures: 
 

                                                                                                               
Fig.3.1.Ge convex meniscus shape for 𝑝𝑝 = −1525[𝑃𝑃𝑃𝑃]                   Fig. 3.2. 𝛼𝛼 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥                               
Fig. 3.2. 𝛼𝛼 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥  
For       we have        and         

 
According to the above results concerning stability of the static meniscus that of obtained here 
numerically is stable. Can be realized experimentally! 
We continue analyzing what happens numerically if  𝑝𝑝 < −2302.11249[𝑃𝑃𝑃𝑃]    or >
 −686.521879[𝑃𝑃𝑃𝑃] . 
First we solve (3.15) for 𝑝𝑝 = −10000[𝑃𝑃𝑃𝑃] .The obtained result is presented on Fig.3.3 and Fig 
3.4  
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regions of static instability .A meniscus obtained with  𝑝𝑝  in this region collapse. For 𝑝𝑝  
satisfying one of the inequalities (3.14) it is impossible to create experimentally a convex 
meniscus like in Fig.1.2 

Retain that the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  can be controlled by the gas pressure 
𝑝𝑝𝑔𝑔 and the parameter  𝐻𝐻.  

In the following we will illustrate first the existence of convex static meniscus in case of Ge 
assuming that ℎ = 0.00019[𝑚𝑚], 𝑥𝑥1 = 0.0001[𝑚𝑚], 𝑥𝑥0 = 0.0002[𝑚𝑚] 
In case of Ge    𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  [Pa]  and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 =  [𝑃𝑃𝑃𝑃]  and a convex meniscus is 
obtained for 𝑝𝑝 = −1525[𝑃𝑃𝑃𝑃] .This meniscus is obtained by integrating the initial value problem 
: 

𝑧𝑧′(𝑥𝑥) = −tan (𝛼𝛼(𝑥𝑥))  𝛼𝛼′(𝑥𝑥) = 𝑝𝑝−𝜌𝜌×𝑔𝑔×𝑥𝑥
𝛾𝛾 × 1

cos (𝛼𝛼(𝑥𝑥))  ;     𝑧𝑧(𝑥𝑥1) = ℎ = 0.00019  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼(𝑥𝑥1) =
1.361796327.           (3.15) 

 
The numerical values of   𝜌𝜌, 𝑔𝑔, 𝛾𝛾 are:, 𝜌𝜌 = 5600[ 𝑘𝑘𝑘𝑘

𝑚𝑚3]   ,   𝑔𝑔 = 9.82[𝑚𝑚
𝑠𝑠2 ]   ,  𝛾𝛾 = 0.620 [ 𝑁𝑁

𝑚𝑚]  
, 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋

2 − 𝛼𝛼𝑔𝑔 = 𝜋𝜋
2 − 0.209=1.361796327[rad], 

 𝛼𝛼𝑔𝑔 = 0.209[𝑟𝑟𝑟𝑟𝑟𝑟]𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝐺𝐺𝐺𝐺 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ.The pressure 𝑝𝑝 = −1525[𝑃𝑃𝑃𝑃]  
was found by trial solving (3.15) for different values of 𝑝𝑝 in the range [−2302, −686][𝑃𝑃𝑃𝑃} 
The obtained results concerning the meniscus shap 𝑧𝑧(𝑥𝑥) and the variation of 𝛼𝛼(𝑥𝑥) are presented 
in the next figures: 
 

                                                                                                               
Fig.3.1.Ge convex meniscus shape for 𝑝𝑝 = −1525[𝑃𝑃𝑃𝑃]                   Fig. 3.2. 𝛼𝛼 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥                               
Fig. 3.2. 𝛼𝛼 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥  
For       we have        and         

 
According to the above results concerning stability of the static meniscus that of obtained here 
numerically is stable. Can be realized experimentally! 
We continue analyzing what happens numerically if  𝑝𝑝 < −2302.11249[𝑃𝑃𝑃𝑃]    or >
 −686.521879[𝑃𝑃𝑃𝑃] . 
First we solve (3.15) for 𝑝𝑝 = −10000[𝑃𝑃𝑃𝑃] .The obtained result is presented on Fig.3.3 and Fig 
3.4  

𝑝𝑝 < −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ     and for    𝑝𝑝 > −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 ×

𝑔𝑔 × ℎ              (3.14) 

convex meniscus like in Fig.1.2 does not exit. These regions of the pressure difference are 
regions of static instability .A meniscus obtained with  𝑝𝑝  in this region collapse. For 𝑝𝑝  
satisfying one of the inequalities (3.14) it is impossible to create experimentally a convex 
meniscus like in Fig.1.2 

Retain that the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  can be controlled by the gas pressure 
𝑝𝑝𝑔𝑔 and the parameter  𝐻𝐻.  

In the following we will illustrate first the existence of convex static meniscus in case of Ge 
assuming that ℎ = 0.00019[𝑚𝑚], 𝑥𝑥1 = 0.0001[𝑚𝑚], 𝑥𝑥0 = 0.0002[𝑚𝑚] 
In case of Ge    𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  [Pa]  and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 =  [𝑃𝑃𝑃𝑃]  and a convex meniscus is 
obtained for 𝑝𝑝 = −1525[𝑃𝑃𝑃𝑃] .This meniscus is obtained by integrating the initial value problem 
: 

𝑧𝑧′(𝑥𝑥) = −tan (𝛼𝛼(𝑥𝑥))  𝛼𝛼′(𝑥𝑥) = 𝑝𝑝−𝜌𝜌×𝑔𝑔×𝑥𝑥
𝛾𝛾 × 1

cos (𝛼𝛼(𝑥𝑥))  ;     𝑧𝑧(𝑥𝑥1) = ℎ = 0.00019  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼(𝑥𝑥1) =
1.361796327.           (3.15) 

 
The numerical values of   𝜌𝜌, 𝑔𝑔, 𝛾𝛾 are:, 𝜌𝜌 = 5600[ 𝑘𝑘𝑘𝑘

𝑚𝑚3]   ,   𝑔𝑔 = 9.82[𝑚𝑚
𝑠𝑠2 ]   ,  𝛾𝛾 = 0.620 [ 𝑁𝑁

𝑚𝑚]  
, 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋

2 − 𝛼𝛼𝑔𝑔 = 𝜋𝜋
2 − 0.209=1.361796327[rad], 

 𝛼𝛼𝑔𝑔 = 0.209[𝑟𝑟𝑟𝑟𝑟𝑟]𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝐺𝐺𝐺𝐺 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ.The pressure 𝑝𝑝 = −1525[𝑃𝑃𝑃𝑃]  
was found by trial solving (3.15) for different values of 𝑝𝑝 in the range [−2302, −686][𝑃𝑃𝑃𝑃} 
The obtained results concerning the meniscus shap 𝑧𝑧(𝑥𝑥) and the variation of 𝛼𝛼(𝑥𝑥) are presented 
in the next figures: 
 

                                                                                                               
Fig.3.1.Ge convex meniscus shape for 𝑝𝑝 = −1525[𝑃𝑃𝑃𝑃]                   Fig. 3.2. 𝛼𝛼 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥                               
Fig. 3.2. 𝛼𝛼 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥  
For       we have        and         

 
According to the above results concerning stability of the static meniscus that of obtained here 
numerically is stable. Can be realized experimentally! 
We continue analyzing what happens numerically if  𝑝𝑝 < −2302.11249[𝑃𝑃𝑃𝑃]    or >
 −686.521879[𝑃𝑃𝑃𝑃] . 
First we solve (3.15) for 𝑝𝑝 = −10000[𝑃𝑃𝑃𝑃] .The obtained result is presented on Fig.3.3 and Fig 
3.4  

               𝑑𝑑
𝑑𝑑𝑑𝑑 [ 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0              𝜂𝜂(𝑥𝑥1) = 0 ,     𝜂𝜂′(𝑥𝑥1) = 1          (3.6) 

has only one zero on the interval 𝑥𝑥1 ≤   𝑥𝑥 ≤ 𝑥𝑥0 . Hence the stability condition of Jacobi is 
verified.  

This result can be surprising and create the impression that a convex meniscus is stable. In fact, 
the result is that if a convex meniscus exist, then it is stable. For this reason in the following, we 
will establish necessary conditions for the existence of convex meniscus (see Fig.1.2.). 

Starting from equations (2.3) and  (2.5) it is easy to see that in hydrostatic approximation the 
pressure difference 𝑝𝑝 verify equalities: 

𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧                                                    (3.7) 

Using 𝑝𝑝 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 ,the boundary conditions 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 , 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐  

,with the Lagrange mean value theorem we obtain that there exists 𝑥𝑥′ in the interval [𝑥𝑥1, 𝑥𝑥2] 
such that  

𝑝𝑝 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥′) + 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′)                        (3.8) 

 

Since  𝛼𝛼(𝑥𝑥)  is strictly decreasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 

𝛼𝛼𝑐𝑐 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔                                                                       (3.9) 

sin (𝛼𝛼𝑔𝑔) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ cos (𝛼𝛼𝑐𝑐)                                                   (3.10) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                       (3.11) 

Using equality (3.8) and inequalities (3.9)-(3.11) in hydrostatic approximation, in case of the 
existence of s convex static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
following inequalities hold: 

−𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ ≤ −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 ≤ −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) +

𝜌𝜌 × 𝑔𝑔 × ℎ                                           (3.12) 

Therefore in case of convex meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where : 

                          𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ          and       𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ       (3.13) 

For 

𝑝𝑝 < −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ     and for    𝑝𝑝 > −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 ×

𝑔𝑔 × ℎ              (3.14) 

convex meniscus like in Fig.1.2 does not exit. These regions of the pressure difference are 
regions of static instability .A meniscus obtained with  𝑝𝑝  in this region collapse. For 𝑝𝑝  
satisfying one of the inequalities (3.14) it is impossible to create experimentally a convex 
meniscus like in Fig.1.2 

Retain that the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  can be controlled by the gas pressure 
𝑝𝑝𝑔𝑔 and the parameter  𝐻𝐻.  

In the following we will illustrate first the existence of convex static meniscus in case of Ge 
assuming that ℎ = 0.00019[𝑚𝑚], 𝑥𝑥1 = 0.0001[𝑚𝑚], 𝑥𝑥0 = 0.0002[𝑚𝑚] 
In case of Ge    𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  [Pa]  and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 =  [𝑃𝑃𝑃𝑃]  and a convex meniscus is 
obtained for 𝑝𝑝 = −1525[𝑃𝑃𝑃𝑃] .This meniscus is obtained by integrating the initial value problem 
: 

𝑧𝑧′(𝑥𝑥) = −tan (𝛼𝛼(𝑥𝑥))  𝛼𝛼′(𝑥𝑥) = 𝑝𝑝−𝜌𝜌×𝑔𝑔×𝑥𝑥
𝛾𝛾 × 1

cos (𝛼𝛼(𝑥𝑥))  ;     𝑧𝑧(𝑥𝑥1) = ℎ = 0.00019  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼(𝑥𝑥1) =
1.361796327.           (3.15) 

 
The numerical values of   𝜌𝜌, 𝑔𝑔, 𝛾𝛾 are:, 𝜌𝜌 = 5600[ 𝑘𝑘𝑘𝑘

𝑚𝑚3]   ,   𝑔𝑔 = 9.82[𝑚𝑚
𝑠𝑠2 ]   ,  𝛾𝛾 = 0.620 [ 𝑁𝑁

𝑚𝑚]  
, 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋

2 − 𝛼𝛼𝑔𝑔 = 𝜋𝜋
2 − 0.209=1.361796327[rad], 

 𝛼𝛼𝑔𝑔 = 0.209[𝑟𝑟𝑟𝑟𝑟𝑟]𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝐺𝐺𝐺𝐺 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ.The pressure 𝑝𝑝 = −1525[𝑃𝑃𝑃𝑃]  
was found by trial solving (3.15) for different values of 𝑝𝑝 in the range [−2302, −686][𝑃𝑃𝑃𝑃} 
The obtained results concerning the meniscus shap 𝑧𝑧(𝑥𝑥) and the variation of 𝛼𝛼(𝑥𝑥) are presented 
in the next figures: 
 

                                                                                                               
Fig.3.1.Ge convex meniscus shape for 𝑝𝑝 = −1525[𝑃𝑃𝑃𝑃]                   Fig. 3.2. 𝛼𝛼 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥                               
Fig. 3.2. 𝛼𝛼 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥  
For       we have        and         

 
According to the above results concerning stability of the static meniscus that of obtained here 
numerically is stable. Can be realized experimentally! 
We continue analyzing what happens numerically if  𝑝𝑝 < −2302.11249[𝑃𝑃𝑃𝑃]    or >
 −686.521879[𝑃𝑃𝑃𝑃] . 
First we solve (3.15) for 𝑝𝑝 = −10000[𝑃𝑃𝑃𝑃] .The obtained result is presented on Fig.3.3 and Fig 
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regions of static instability .A meniscus obtained with  𝑝𝑝  in this region collapse. For 𝑝𝑝  
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We continue analyzing what happens numerically if  𝑝𝑝 < −2302.11249[𝑃𝑃𝑃𝑃]    or >
 −686.521879[𝑃𝑃𝑃𝑃] . 
First we solve (3.15) for 𝑝𝑝 = −10000[𝑃𝑃𝑃𝑃] .The obtained result is presented on Fig.3.3 and Fig 
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numerically is stable. Can be realized experimentally! 
We continue analyzing what happens numerically if  𝑝𝑝 < −2302.11249[𝑃𝑃𝑃𝑃]    or >
 −686.521879[𝑃𝑃𝑃𝑃] . 
First we solve (3.15) for 𝑝𝑝 = −10000[𝑃𝑃𝑃𝑃] .The obtained result is presented on Fig.3.3 and Fig 
3.4  

𝑝𝑝 < −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ     and for    𝑝𝑝 > −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 ×

𝑔𝑔 × ℎ              (3.14) 

convex meniscus like in Fig.1.2 does not exit. These regions of the pressure difference are 
regions of static instability .A meniscus obtained with  𝑝𝑝  in this region collapse. For 𝑝𝑝  
satisfying one of the inequalities (3.14) it is impossible to create experimentally a convex 
meniscus like in Fig.1.2 

Retain that the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  can be controlled by the gas pressure 
𝑝𝑝𝑔𝑔 and the parameter  𝐻𝐻.  

In the following we will illustrate first the existence of convex static meniscus in case of Ge 
assuming that ℎ = 0.00019[𝑚𝑚], 𝑥𝑥1 = 0.0001[𝑚𝑚], 𝑥𝑥0 = 0.0002[𝑚𝑚] 
In case of Ge    𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  [Pa]  and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 =  [𝑃𝑃𝑃𝑃]  and a convex meniscus is 
obtained for 𝑝𝑝 = −1525[𝑃𝑃𝑃𝑃] .This meniscus is obtained by integrating the initial value problem 
: 

𝑧𝑧′(𝑥𝑥) = −tan (𝛼𝛼(𝑥𝑥))  𝛼𝛼′(𝑥𝑥) = 𝑝𝑝−𝜌𝜌×𝑔𝑔×𝑥𝑥
𝛾𝛾 × 1

cos (𝛼𝛼(𝑥𝑥))  ;     𝑧𝑧(𝑥𝑥1) = ℎ = 0.00019  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼(𝑥𝑥1) =
1.361796327.           (3.15) 

 
The numerical values of   𝜌𝜌, 𝑔𝑔, 𝛾𝛾 are:, 𝜌𝜌 = 5600[ 𝑘𝑘𝑘𝑘

𝑚𝑚3]   ,   𝑔𝑔 = 9.82[𝑚𝑚
𝑠𝑠2 ]   ,  𝛾𝛾 = 0.620 [ 𝑁𝑁

𝑚𝑚]  
, 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋

2 − 𝛼𝛼𝑔𝑔 = 𝜋𝜋
2 − 0.209=1.361796327[rad], 

 𝛼𝛼𝑔𝑔 = 0.209[𝑟𝑟𝑟𝑟𝑟𝑟]𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝐺𝐺𝐺𝐺 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ.The pressure 𝑝𝑝 = −1525[𝑃𝑃𝑃𝑃]  
was found by trial solving (3.15) for different values of 𝑝𝑝 in the range [−2302, −686][𝑃𝑃𝑃𝑃} 
The obtained results concerning the meniscus shap 𝑧𝑧(𝑥𝑥) and the variation of 𝛼𝛼(𝑥𝑥) are presented 
in the next figures: 
 

                                                                                                               
Fig.3.1.Ge convex meniscus shape for 𝑝𝑝 = −1525[𝑃𝑃𝑃𝑃]                   Fig. 3.2. 𝛼𝛼 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥                               
Fig. 3.2. 𝛼𝛼 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥  
For       we have        and         

 
According to the above results concerning stability of the static meniscus that of obtained here 
numerically is stable. Can be realized experimentally! 
We continue analyzing what happens numerically if  𝑝𝑝 < −2302.11249[𝑃𝑃𝑃𝑃]    or >
 −686.521879[𝑃𝑃𝑃𝑃] . 
First we solve (3.15) for 𝑝𝑝 = −10000[𝑃𝑃𝑃𝑃] .The obtained result is presented on Fig.3.3 and Fig 
3.4  

Figure: 3.1 Ge convex meniscus shape for p = − 1525[Pa]  Figure: 3.2 α vrsuse x 
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For  x = 0.00020000000000000 we have α(x) = 0.82070727652608210 and z(x) = -0.0000021483692772964195

According to the above results concerning stability of the static meniscus that obtained here numerically is stable. Can be realized 
experimentally!
We continue analyzing what happens numerically if p < − 2302.11249[Pa] or  > − 686.521879[Pa] .

First, we solve (3.15) for  p = −10000 [Pa].The obtained result is presented on Figure.3.3 and Figure 3.4

  

                                                                             
Fig.3.3.Ge meniscus shape for 𝑝𝑝 = −10000[𝑃𝑃𝑃𝑃]     Fig.3.4.𝛼𝛼 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 Ge meniscus                                  

This computation shows that for 𝑝𝑝 = −10000[𝑃𝑃𝑃𝑃] the meniscus shape is not convex. The 
purpose to create a convex meniscus, as in Fig.2 is not realizable experimentally! 

Now we solve (3.15) for 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃] .The obtained result is presented on Fig.3.5 and Fig 3.6 

                                                                   

Fig.3.5.Ge meniscus shape for 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃]       Fig.3.6.𝛼𝛼 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 Ge meniscus                                   

This computation shows that for 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃] the meniscus shape is not convex. The purpose to 
create a convex meniscus, as in Fig.1.2 is not realizable experimentally! 

Remember that in hydrostatic approximation 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  .This relation can be used 
for the control of 𝑝𝑝  via 𝑝𝑝𝑔𝑔 and 𝐻𝐻. 

For example if 𝑝𝑝 = −1525[𝑃𝑃𝑃𝑃] then −1525[𝑃𝑃𝑃𝑃] = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  and for a given gas 

pressure 𝑝𝑝𝑔𝑔 we can find, namely 𝐻𝐻 = 1525−𝑝𝑝𝑔𝑔
𝜌𝜌×𝑔𝑔 .For instance if 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] we have 𝐻𝐻 = 1325

𝜌𝜌×𝑔𝑔= 

0.02411897481[m].This means that the crucible melt level is under the shaper top level with 
0.02411897481[m]. 

If 𝑝𝑝 = −10000[𝑃𝑃𝑃𝑃]  and 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] then 𝐻𝐻 = 10000−𝑝𝑝𝑔𝑔
𝜌𝜌×𝑔𝑔 = 9980

𝜌𝜌×𝑔𝑔 = 0.1816659385[𝑚𝑚] .This 

means that the crucible melt level is under the shaper top level with 0.1816659385 [m]. 

 
If 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃]  and 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] then 𝐻𝐻 = 100−𝑝𝑝𝑔𝑔

𝜌𝜌×𝑔𝑔 = −100
𝜌𝜌×𝑔𝑔 = [𝑚𝑚] .This means 

that the shaper top level is under the crucible melt level with    0.00182029998[𝑚𝑚]. 
4. Stability or instability of concave meniscus. A meniscus is concave if 𝑧𝑧′′(𝑥𝑥) < 0  𝑓𝑓𝑓𝑓𝑓𝑓   𝑥𝑥1 ≤
 𝑥𝑥 ≤ 𝑥𝑥0   
Remark that in case of a concave meniscus the function 𝑧𝑧′(𝑥𝑥) is decreasing. Therefore, the angle 
between the tangent line to meniscus in every point, and the OX axis   𝛼𝛼(𝑥𝑥) = −𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑧𝑧′(𝑥𝑥) is 

  

                                                                             
Fig.3.3.Ge meniscus shape for 𝑝𝑝 = −10000[𝑃𝑃𝑃𝑃]     Fig.3.4.𝛼𝛼 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 Ge meniscus                                  

This computation shows that for 𝑝𝑝 = −10000[𝑃𝑃𝑃𝑃] the meniscus shape is not convex. The 
purpose to create a convex meniscus, as in Fig.2 is not realizable experimentally! 

Now we solve (3.15) for 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃] .The obtained result is presented on Fig.3.5 and Fig 3.6 

                                                                   

Fig.3.5.Ge meniscus shape for 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃]       Fig.3.6.𝛼𝛼 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 Ge meniscus                                   

This computation shows that for 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃] the meniscus shape is not convex. The purpose to 
create a convex meniscus, as in Fig.1.2 is not realizable experimentally! 

Remember that in hydrostatic approximation 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  .This relation can be used 
for the control of 𝑝𝑝  via 𝑝𝑝𝑔𝑔 and 𝐻𝐻. 

For example if 𝑝𝑝 = −1525[𝑃𝑃𝑃𝑃] then −1525[𝑃𝑃𝑃𝑃] = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  and for a given gas 

pressure 𝑝𝑝𝑔𝑔 we can find, namely 𝐻𝐻 = 1525−𝑝𝑝𝑔𝑔
𝜌𝜌×𝑔𝑔 .For instance if 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] we have 𝐻𝐻 = 1325

𝜌𝜌×𝑔𝑔= 

0.02411897481[m].This means that the crucible melt level is under the shaper top level with 
0.02411897481[m]. 

If 𝑝𝑝 = −10000[𝑃𝑃𝑃𝑃]  and 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] then 𝐻𝐻 = 10000−𝑝𝑝𝑔𝑔
𝜌𝜌×𝑔𝑔 = 9980

𝜌𝜌×𝑔𝑔 = 0.1816659385[𝑚𝑚] .This 

means that the crucible melt level is under the shaper top level with 0.1816659385 [m]. 

 
If 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃]  and 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] then 𝐻𝐻 = 100−𝑝𝑝𝑔𝑔

𝜌𝜌×𝑔𝑔 = −100
𝜌𝜌×𝑔𝑔 = [𝑚𝑚] .This means 

that the shaper top level is under the crucible melt level with    0.00182029998[𝑚𝑚]. 
4. Stability or instability of concave meniscus. A meniscus is concave if 𝑧𝑧′′(𝑥𝑥) < 0  𝑓𝑓𝑓𝑓𝑓𝑓   𝑥𝑥1 ≤
 𝑥𝑥 ≤ 𝑥𝑥0   
Remark that in case of a concave meniscus the function 𝑧𝑧′(𝑥𝑥) is decreasing. Therefore, the angle 
between the tangent line to meniscus in every point, and the OX axis   𝛼𝛼(𝑥𝑥) = −𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑧𝑧′(𝑥𝑥) is 

Figure: 3.3 Ge meniscus shape for p = −10000 [Pa]. Figure: 3.4 α versus x in case of Ge meniscus

This computation shows that for p = − 10000[Pa] the meniscus shape is not convex. The purpose to create a convex meniscus, as in 
Figure 2.1 is not realizable experimentally!

Now we solve (3.15) for  p = 100[Pa].The obtained result is presented on Figure.3.5 and Figure 3.6

  

                                                                             
Fig.3.3.Ge meniscus shape for 𝑝𝑝 = −10000[𝑃𝑃𝑃𝑃]     Fig.3.4.𝛼𝛼 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 Ge meniscus                                  

This computation shows that for 𝑝𝑝 = −10000[𝑃𝑃𝑃𝑃] the meniscus shape is not convex. The 
purpose to create a convex meniscus, as in Fig.2 is not realizable experimentally! 

Now we solve (3.15) for 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃] .The obtained result is presented on Fig.3.5 and Fig 3.6 

                                                                   

Fig.3.5.Ge meniscus shape for 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃]       Fig.3.6.𝛼𝛼 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 Ge meniscus                                   

This computation shows that for 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃] the meniscus shape is not convex. The purpose to 
create a convex meniscus, as in Fig.1.2 is not realizable experimentally! 

Remember that in hydrostatic approximation 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  .This relation can be used 
for the control of 𝑝𝑝  via 𝑝𝑝𝑔𝑔 and 𝐻𝐻. 

For example if 𝑝𝑝 = −1525[𝑃𝑃𝑃𝑃] then −1525[𝑃𝑃𝑃𝑃] = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  and for a given gas 

pressure 𝑝𝑝𝑔𝑔 we can find, namely 𝐻𝐻 = 1525−𝑝𝑝𝑔𝑔
𝜌𝜌×𝑔𝑔 .For instance if 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] we have 𝐻𝐻 = 1325

𝜌𝜌×𝑔𝑔= 

0.02411897481[m].This means that the crucible melt level is under the shaper top level with 
0.02411897481[m]. 

If 𝑝𝑝 = −10000[𝑃𝑃𝑃𝑃]  and 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] then 𝐻𝐻 = 10000−𝑝𝑝𝑔𝑔
𝜌𝜌×𝑔𝑔 = 9980

𝜌𝜌×𝑔𝑔 = 0.1816659385[𝑚𝑚] .This 

means that the crucible melt level is under the shaper top level with 0.1816659385 [m]. 

 
If 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃]  and 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] then 𝐻𝐻 = 100−𝑝𝑝𝑔𝑔

𝜌𝜌×𝑔𝑔 = −100
𝜌𝜌×𝑔𝑔 = [𝑚𝑚] .This means 

that the shaper top level is under the crucible melt level with    0.00182029998[𝑚𝑚]. 
4. Stability or instability of concave meniscus. A meniscus is concave if 𝑧𝑧′′(𝑥𝑥) < 0  𝑓𝑓𝑓𝑓𝑓𝑓   𝑥𝑥1 ≤
 𝑥𝑥 ≤ 𝑥𝑥0   
Remark that in case of a concave meniscus the function 𝑧𝑧′(𝑥𝑥) is decreasing. Therefore, the angle 
between the tangent line to meniscus in every point, and the OX axis   𝛼𝛼(𝑥𝑥) = −𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑧𝑧′(𝑥𝑥) is 

  

                                                                             
Fig.3.3.Ge meniscus shape for 𝑝𝑝 = −10000[𝑃𝑃𝑃𝑃]     Fig.3.4.𝛼𝛼 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 Ge meniscus                                  

This computation shows that for 𝑝𝑝 = −10000[𝑃𝑃𝑃𝑃] the meniscus shape is not convex. The 
purpose to create a convex meniscus, as in Fig.2 is not realizable experimentally! 

Now we solve (3.15) for 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃] .The obtained result is presented on Fig.3.5 and Fig 3.6 

                                                                   

Fig.3.5.Ge meniscus shape for 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃]       Fig.3.6.𝛼𝛼 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 Ge meniscus                                   

This computation shows that for 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃] the meniscus shape is not convex. The purpose to 
create a convex meniscus, as in Fig.1.2 is not realizable experimentally! 

Remember that in hydrostatic approximation 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  .This relation can be used 
for the control of 𝑝𝑝  via 𝑝𝑝𝑔𝑔 and 𝐻𝐻. 

For example if 𝑝𝑝 = −1525[𝑃𝑃𝑃𝑃] then −1525[𝑃𝑃𝑃𝑃] = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  and for a given gas 

pressure 𝑝𝑝𝑔𝑔 we can find, namely 𝐻𝐻 = 1525−𝑝𝑝𝑔𝑔
𝜌𝜌×𝑔𝑔 .For instance if 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] we have 𝐻𝐻 = 1325

𝜌𝜌×𝑔𝑔= 

0.02411897481[m].This means that the crucible melt level is under the shaper top level with 
0.02411897481[m]. 

If 𝑝𝑝 = −10000[𝑃𝑃𝑃𝑃]  and 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] then 𝐻𝐻 = 10000−𝑝𝑝𝑔𝑔
𝜌𝜌×𝑔𝑔 = 9980

𝜌𝜌×𝑔𝑔 = 0.1816659385[𝑚𝑚] .This 

means that the crucible melt level is under the shaper top level with 0.1816659385 [m]. 

 
If 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃]  and 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] then 𝐻𝐻 = 100−𝑝𝑝𝑔𝑔

𝜌𝜌×𝑔𝑔 = −100
𝜌𝜌×𝑔𝑔 = [𝑚𝑚] .This means 

that the shaper top level is under the crucible melt level with    0.00182029998[𝑚𝑚]. 
4. Stability or instability of concave meniscus. A meniscus is concave if 𝑧𝑧′′(𝑥𝑥) < 0  𝑓𝑓𝑓𝑓𝑓𝑓   𝑥𝑥1 ≤
 𝑥𝑥 ≤ 𝑥𝑥0   
Remark that in case of a concave meniscus the function 𝑧𝑧′(𝑥𝑥) is decreasing. Therefore, the angle 
between the tangent line to meniscus in every point, and the OX axis   𝛼𝛼(𝑥𝑥) = −𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑧𝑧′(𝑥𝑥) is 

Figure: 3.5 Ge meniscus shape for p = 100[Pa] Figure: 3.6 α versus x in case of Ge meniscus
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This computation shows that for p = 100[Pa] the meniscus shape is not convex. The purpose to create a convex meniscus, as in 
Figure.1.2 is not realizable experimentally!

Remember that in hydrostatic approximation  p = − pg −    × g × H.This relation can be used for the control of p via pg and H.

For example if  p = − 1525[Pa] then − 1525[Pa] = − pg −    × g × H and for a given gas pressure pg we can find, namely                    .For 
instance if pg = 200[Pa] we have               = 0.02411897481[m].This means that the crucible melt level is under the shaper top level with 
0.02411897481[m].

If p = − 10000[Pa]  and pg = 200[Pa] then                                                            .This means that the crucible melt level is under the 
shaper top level with 0.00182029998[m].
This means that the shaper top level is under the crucible melt level with.

4. Stability or Instability of Concave Meniscus
A meniscus is concave if z" (x)  < 0 for x1 ≤  x ≤ x0
Remark that in case of a concave meniscus the function z'(x) is decreasing. Therefore, the angle between the tangent line to meniscus in 
every point, and the OX axis α(x) = −arctanz' (x) is increasing. In particular, it follows that α(x1) < α(x0). Since α(x1) =    − αg and α(x0) = 
αc we obtain inequality  0 <     − αg < αc.(see Figure 1.3.)

It should be noted that, the concave meniscus stability (the static one) should be distinguished from the dynamic stability of the 
crystallization process. For statically stable concave meniscus, not only indispensable (necessary) first order but also second order 
sufficient conditions of functional (2.6) should be satisfied. These second order sufficient conditions for the minimum of functional 
(2.6) are the Legendre condition and the Jacobi condition [5]. Since the functional is the same as in convex meniscus case the Legendre 
condition and the Jacobi condition are the same as in the case of convex meniscus i.e.

Only the evaluation of coefficients of the equation (4.2) change, and in concave case is given by:

Hence

is a Sturm –type upper bound for (4.2) 
Since every non-zero solution of the equation η" = 0 vanishes at most once on the interval x1 ≤ x ≤ x0 the solution η(x) of the initial value 
problem

 
has only one zero on the interval x1 ≤ x ≤ x0. Hence the stability condition of Jacobi is verified. 

This result can be surprising and create the impression that a concave meniscus is stable. In fact, the result is that if a concave meniscus 
exist, then it is stable. For this reason, in the following, we will establish necessary conditions for the existence of concave meniscus 
(see Figure.1.3.)

Starting from equations (2.3) and (2.5) it is easy to see that in hydrostatic approximation the pressure difference p verify equalities:

 
Using                                                           , the boundary conditions                                                  ,with the Lagrange mean value theorem 

               𝑑𝑑
𝑑𝑑𝑑𝑑 [ 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0              𝜂𝜂(𝑥𝑥1) = 0 ,     𝜂𝜂′(𝑥𝑥1) = 1          (3.6) 

has only one zero on the interval 𝑥𝑥1 ≤   𝑥𝑥 ≤ 𝑥𝑥0 . Hence the stability condition of Jacobi is 
verified.  

This result can be surprising and create the impression that a convex meniscus is stable. In fact, 
the result is that if a convex meniscus exist, then it is stable. For this reason in the following, we 
will establish necessary conditions for the existence of convex meniscus (see Fig.1.2.). 

Starting from equations (2.3) and  (2.5) it is easy to see that in hydrostatic approximation the 
pressure difference 𝑝𝑝 verify equalities: 

𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧                                                    (3.7) 

Using 𝑝𝑝 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 ,the boundary conditions 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 , 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐  

,with the Lagrange mean value theorem we obtain that there exists 𝑥𝑥′ in the interval [𝑥𝑥1, 𝑥𝑥2] 
such that  

𝑝𝑝 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥′) + 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′)                        (3.8) 

 

Since  𝛼𝛼(𝑥𝑥)  is strictly decreasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 

𝛼𝛼𝑐𝑐 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔                                                                       (3.9) 

sin (𝛼𝛼𝑔𝑔) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ cos (𝛼𝛼𝑐𝑐)                                                   (3.10) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                       (3.11) 

Using equality (3.8) and inequalities (3.9)-(3.11) in hydrostatic approximation, in case of the 
existence of s convex static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
following inequalities hold: 

−𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ ≤ −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 ≤ −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) +

𝜌𝜌 × 𝑔𝑔 × ℎ                                           (3.12) 

Therefore in case of convex meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where : 

                          𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ          and       𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ       (3.13) 

For 
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Fig.3.3.Ge meniscus shape for 𝑝𝑝 = −10000[𝑃𝑃𝑃𝑃]     Fig.3.4.𝛼𝛼 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 Ge meniscus                                  

This computation shows that for 𝑝𝑝 = −10000[𝑃𝑃𝑃𝑃] the meniscus shape is not convex. The 
purpose to create a convex meniscus, as in Fig.2 is not realizable experimentally! 

Now we solve (3.15) for 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃] .The obtained result is presented on Fig.3.5 and Fig 3.6 

                                                                   

Fig.3.5.Ge meniscus shape for 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃]       Fig.3.6.𝛼𝛼 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 Ge meniscus                                   

This computation shows that for 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃] the meniscus shape is not convex. The purpose to 
create a convex meniscus, as in Fig.1.2 is not realizable experimentally! 

Remember that in hydrostatic approximation 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  .This relation can be used 
for the control of 𝑝𝑝  via 𝑝𝑝𝑔𝑔 and 𝐻𝐻. 

For example if 𝑝𝑝 = −1525[𝑃𝑃𝑃𝑃] then −1525[𝑃𝑃𝑃𝑃] = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  and for a given gas 

pressure 𝑝𝑝𝑔𝑔 we can find, namely 𝐻𝐻 = 1525−𝑝𝑝𝑔𝑔
𝜌𝜌×𝑔𝑔 .For instance if 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] we have 𝐻𝐻 = 1325

𝜌𝜌×𝑔𝑔= 

0.02411897481[m].This means that the crucible melt level is under the shaper top level with 
0.02411897481[m]. 

If 𝑝𝑝 = −10000[𝑃𝑃𝑃𝑃]  and 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] then 𝐻𝐻 = 10000−𝑝𝑝𝑔𝑔
𝜌𝜌×𝑔𝑔 = 9980

𝜌𝜌×𝑔𝑔 = 0.1816659385[𝑚𝑚] .This 

means that the crucible melt level is under the shaper top level with 0.1816659385 [m]. 

 
If 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃]  and 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] then 𝐻𝐻 = 100−𝑝𝑝𝑔𝑔

𝜌𝜌×𝑔𝑔 = −100
𝜌𝜌×𝑔𝑔 = [𝑚𝑚] .This means 

that the shaper top level is under the crucible melt level with    0.00182029998[𝑚𝑚]. 
4. Stability or instability of concave meniscus. A meniscus is concave if 𝑧𝑧′′(𝑥𝑥) < 0  𝑓𝑓𝑓𝑓𝑓𝑓   𝑥𝑥1 ≤
 𝑥𝑥 ≤ 𝑥𝑥0   
Remark that in case of a concave meniscus the function 𝑧𝑧′(𝑥𝑥) is decreasing. Therefore, the angle 
between the tangent line to meniscus in every point, and the OX axis   𝛼𝛼(𝑥𝑥) = −𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑧𝑧′(𝑥𝑥) is 
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purpose to create a convex meniscus, as in Fig.2 is not realizable experimentally! 

Now we solve (3.15) for 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃] .The obtained result is presented on Fig.3.5 and Fig 3.6 
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This computation shows that for 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃] the meniscus shape is not convex. The purpose to 
create a convex meniscus, as in Fig.1.2 is not realizable experimentally! 

Remember that in hydrostatic approximation 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  .This relation can be used 
for the control of 𝑝𝑝  via 𝑝𝑝𝑔𝑔 and 𝐻𝐻. 

For example if 𝑝𝑝 = −1525[𝑃𝑃𝑃𝑃] then −1525[𝑃𝑃𝑃𝑃] = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  and for a given gas 

pressure 𝑝𝑝𝑔𝑔 we can find, namely 𝐻𝐻 = 1525−𝑝𝑝𝑔𝑔
𝜌𝜌×𝑔𝑔 .For instance if 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] we have 𝐻𝐻 = 1325

𝜌𝜌×𝑔𝑔= 

0.02411897481[m].This means that the crucible melt level is under the shaper top level with 
0.02411897481[m]. 

If 𝑝𝑝 = −10000[𝑃𝑃𝑃𝑃]  and 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] then 𝐻𝐻 = 10000−𝑝𝑝𝑔𝑔
𝜌𝜌×𝑔𝑔 = 9980

𝜌𝜌×𝑔𝑔 = 0.1816659385[𝑚𝑚] .This 

means that the crucible melt level is under the shaper top level with 0.1816659385 [m]. 

 
If 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃]  and 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] then 𝐻𝐻 = 100−𝑝𝑝𝑔𝑔

𝜌𝜌×𝑔𝑔 = −100
𝜌𝜌×𝑔𝑔 = [𝑚𝑚] .This means 

that the shaper top level is under the crucible melt level with    0.00182029998[𝑚𝑚]. 
4. Stability or instability of concave meniscus. A meniscus is concave if 𝑧𝑧′′(𝑥𝑥) < 0  𝑓𝑓𝑓𝑓𝑓𝑓   𝑥𝑥1 ≤
 𝑥𝑥 ≤ 𝑥𝑥0   
Remark that in case of a concave meniscus the function 𝑧𝑧′(𝑥𝑥) is decreasing. Therefore, the angle 
between the tangent line to meniscus in every point, and the OX axis   𝛼𝛼(𝑥𝑥) = −𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑧𝑧′(𝑥𝑥) is 

  

                                                                             
Fig.3.3.Ge meniscus shape for 𝑝𝑝 = −10000[𝑃𝑃𝑃𝑃]     Fig.3.4.𝛼𝛼 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 Ge meniscus                                  

This computation shows that for 𝑝𝑝 = −10000[𝑃𝑃𝑃𝑃] the meniscus shape is not convex. The 
purpose to create a convex meniscus, as in Fig.2 is not realizable experimentally! 

Now we solve (3.15) for 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃] .The obtained result is presented on Fig.3.5 and Fig 3.6 

                                                                   

Fig.3.5.Ge meniscus shape for 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃]       Fig.3.6.𝛼𝛼 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 Ge meniscus                                   

This computation shows that for 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃] the meniscus shape is not convex. The purpose to 
create a convex meniscus, as in Fig.1.2 is not realizable experimentally! 

Remember that in hydrostatic approximation 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  .This relation can be used 
for the control of 𝑝𝑝  via 𝑝𝑝𝑔𝑔 and 𝐻𝐻. 

For example if 𝑝𝑝 = −1525[𝑃𝑃𝑃𝑃] then −1525[𝑃𝑃𝑃𝑃] = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  and for a given gas 

pressure 𝑝𝑝𝑔𝑔 we can find, namely 𝐻𝐻 = 1525−𝑝𝑝𝑔𝑔
𝜌𝜌×𝑔𝑔 .For instance if 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] we have 𝐻𝐻 = 1325

𝜌𝜌×𝑔𝑔= 

0.02411897481[m].This means that the crucible melt level is under the shaper top level with 
0.02411897481[m]. 

If 𝑝𝑝 = −10000[𝑃𝑃𝑃𝑃]  and 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] then 𝐻𝐻 = 10000−𝑝𝑝𝑔𝑔
𝜌𝜌×𝑔𝑔 = 9980

𝜌𝜌×𝑔𝑔 = 0.1816659385[𝑚𝑚] .This 

means that the crucible melt level is under the shaper top level with 0.1816659385 [m]. 

 
If 𝑝𝑝 = 100[𝑃𝑃𝑃𝑃]  and 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] then 𝐻𝐻 = 100−𝑝𝑝𝑔𝑔

𝜌𝜌×𝑔𝑔 = −100
𝜌𝜌×𝑔𝑔 = [𝑚𝑚] .This means 

that the shaper top level is under the crucible melt level with    0.00182029998[𝑚𝑚]. 
4. Stability or instability of concave meniscus. A meniscus is concave if 𝑧𝑧′′(𝑥𝑥) < 0  𝑓𝑓𝑓𝑓𝑓𝑓   𝑥𝑥1 ≤
 𝑥𝑥 ≤ 𝑥𝑥0   
Remark that in case of a concave meniscus the function 𝑧𝑧′(𝑥𝑥) is decreasing. Therefore, the angle 
between the tangent line to meniscus in every point, and the OX axis   𝛼𝛼(𝑥𝑥) = −𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑧𝑧′(𝑥𝑥) is 

increasing. In particular, it follows that  𝛼𝛼(𝑥𝑥1) < 𝛼𝛼(𝑥𝑥0). Since 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔  and 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐 

we obtain inequality 0 < 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 < 𝛼𝛼𝑐𝑐 .(see Fig.3.) 

It should be noted that, the concave meniscus stability (the static one) should be distinguished 
from the dynamic stability of the crystallization process .For statically stable concave meniscus, 
not only indispensable (necessary) first order but also second order sufficient conditions of 
functional (2.6) should be satisfied. These second order sufficient conditions for the minimum of 
functional (2.6) are the Legendre condition and the Jacobi condition [5]. Since the functional is 
the same as in convex meniscus case the Legendre condition and  the Jacobi condition are the 
same as in the case of convex meniscus i.e. 

𝜕𝜕2𝐹𝐹
𝜕𝜕𝜕𝜕′𝜕𝜕𝜕𝜕′ = 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

> 0                                                                       (4.1) 

𝑑𝑑
𝑑𝑑𝑑𝑑 [ 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0                                                  (4.2) 

Only the evaluation of coefficients of the equation (4.2) change, and in concave case is given by: 
𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

> 𝛾𝛾 × (𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑐𝑐)3  and −𝑔𝑔 × 𝜌𝜌 < 0.                                        (4.3) 

 
Hence 

(𝜂𝜂′ × 𝛾𝛾 × (𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑐𝑐)3)′=0     or          𝜂𝜂′′ = 0                                            (4.4) 

is a Sturm –type upper bound for (4.2)  

Since every non zero solution of the equation 𝜂𝜂′′ = 0 vanishes at most once on the interval 𝑥𝑥1 ≤
  𝑥𝑥 ≤ 𝑥𝑥0 the solution 𝜂𝜂(𝑥𝑥) of the initial value problem 

   𝑑𝑑
𝑑𝑑𝑑𝑑 [ 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0              𝜂𝜂(𝑥𝑥1) = 0 ,     𝜂𝜂′(𝑥𝑥1) = 1                    (4.5) 

has only one zero on the interval 𝑥𝑥1 ≤   𝑥𝑥 ≤ 𝑥𝑥0 . Hence the stability condition of Jacobi is 
verified.  

This result can be surprising and create the impression that a convex meniscus is stable. In fact, 
the result is that if a concave meniscus exist, then it is stable. For this reason in the following, we 
will establish necessary conditions for the existence of concave meniscus (see Fig.1.3.) 

Starting from equations (2.3) and  (2.5) it is easy to see that in hydrostatic approximation the 
pressure difference 𝑝𝑝 verify equalities: 

𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧                                    (4.6) 

Using 𝑝𝑝 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 ,the boundary conditions 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 , 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐  

,with the Lagrange mean value theorem we obtain that there exists 𝑥𝑥′ in the interval [𝑥𝑥1, 𝑥𝑥2] 
such that  

𝑝𝑝 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥′) + 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′)                                            (4.7) 
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Using 𝑝𝑝 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 ,the boundary conditions 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 , 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐  

,with the Lagrange mean value theorem we obtain that there exists 𝑥𝑥′ in the interval [𝑥𝑥1, 𝑥𝑥2] 
such that  

𝑝𝑝 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
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increasing. In particular, it follows that  𝛼𝛼(𝑥𝑥1) < 𝛼𝛼(𝑥𝑥0). Since 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔  and 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐 

we obtain inequality 0 < 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 < 𝛼𝛼𝑐𝑐 .(see Fig.3.) 

It should be noted that, the concave meniscus stability (the static one) should be distinguished 
from the dynamic stability of the crystallization process .For statically stable concave meniscus, 
not only indispensable (necessary) first order but also second order sufficient conditions of 
functional (2.6) should be satisfied. These second order sufficient conditions for the minimum of 
functional (2.6) are the Legendre condition and the Jacobi condition [5]. Since the functional is 
the same as in convex meniscus case the Legendre condition and  the Jacobi condition are the 
same as in the case of convex meniscus i.e. 
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the result is that if a concave meniscus exist, then it is stable. For this reason in the following, we 
will establish necessary conditions for the existence of concave meniscus (see Fig.1.3.) 
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the same as in convex meniscus case the Legendre condition and  the Jacobi condition are the 
same as in the case of convex meniscus i.e. 

𝜕𝜕2𝐹𝐹
𝜕𝜕𝜕𝜕′𝜕𝜕𝜕𝜕′ = 𝛾𝛾
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3
2

× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0                                                  (4.2) 

Only the evaluation of coefficients of the equation (4.2) change, and in concave case is given by: 
𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

> 𝛾𝛾 × (𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑐𝑐)3  and −𝑔𝑔 × 𝜌𝜌 < 0.                                        (4.3) 

 
Hence 

(𝜂𝜂′ × 𝛾𝛾 × (𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑐𝑐)3)′=0     or          𝜂𝜂′′ = 0                                            (4.4) 

is a Sturm –type upper bound for (4.2)  

Since every non zero solution of the equation 𝜂𝜂′′ = 0 vanishes at most once on the interval 𝑥𝑥1 ≤
  𝑥𝑥 ≤ 𝑥𝑥0 the solution 𝜂𝜂(𝑥𝑥) of the initial value problem 

   𝑑𝑑
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× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0              𝜂𝜂(𝑥𝑥1) = 0 ,     𝜂𝜂′(𝑥𝑥1) = 1                    (4.5) 

has only one zero on the interval 𝑥𝑥1 ≤   𝑥𝑥 ≤ 𝑥𝑥0 . Hence the stability condition of Jacobi is 
verified.  

This result can be surprising and create the impression that a convex meniscus is stable. In fact, 
the result is that if a concave meniscus exist, then it is stable. For this reason in the following, we 
will establish necessary conditions for the existence of concave meniscus (see Fig.1.3.) 

Starting from equations (2.3) and  (2.5) it is easy to see that in hydrostatic approximation the 
pressure difference 𝑝𝑝 verify equalities: 

𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧                                    (4.6) 

Using 𝑝𝑝 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 ,the boundary conditions 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 , 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐  

,with the Lagrange mean value theorem we obtain that there exists 𝑥𝑥′ in the interval [𝑥𝑥1, 𝑥𝑥2] 
such that  

𝑝𝑝 = −𝛾𝛾 ×
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increasing. In particular, it follows that  𝛼𝛼(𝑥𝑥1) < 𝛼𝛼(𝑥𝑥0). Since 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
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we obtain inequality 0 < 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 < 𝛼𝛼𝑐𝑐 .(see Fig.3.) 

It should be noted that, the concave meniscus stability (the static one) should be distinguished 
from the dynamic stability of the crystallization process .For statically stable concave meniscus, 
not only indispensable (necessary) first order but also second order sufficient conditions of 
functional (2.6) should be satisfied. These second order sufficient conditions for the minimum of 
functional (2.6) are the Legendre condition and the Jacobi condition [5]. Since the functional is 
the same as in convex meniscus case the Legendre condition and  the Jacobi condition are the 
same as in the case of convex meniscus i.e. 
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from the dynamic stability of the crystallization process .For statically stable concave meniscus, 
not only indispensable (necessary) first order but also second order sufficient conditions of 
functional (2.6) should be satisfied. These second order sufficient conditions for the minimum of 
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the same as in convex meniscus case the Legendre condition and  the Jacobi condition are the 
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verified.  

This result can be surprising and create the impression that a convex meniscus is stable. In fact, 
the result is that if a concave meniscus exist, then it is stable. For this reason in the following, we 
will establish necessary conditions for the existence of concave meniscus (see Fig.1.3.) 

Starting from equations (2.3) and  (2.5) it is easy to see that in hydrostatic approximation the 
pressure difference 𝑝𝑝 verify equalities: 

𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧                                    (4.6) 

Using 𝑝𝑝 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 ,the boundary conditions 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 , 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐  

,with the Lagrange mean value theorem we obtain that there exists 𝑥𝑥′ in the interval [𝑥𝑥1, 𝑥𝑥2] 
such that  

𝑝𝑝 = −𝛾𝛾 ×
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we obtain inequality 0 < 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 < 𝛼𝛼𝑐𝑐 .(see Fig.3.) 

It should be noted that, the concave meniscus stability (the static one) should be distinguished 
from the dynamic stability of the crystallization process .For statically stable concave meniscus, 
not only indispensable (necessary) first order but also second order sufficient conditions of 
functional (2.6) should be satisfied. These second order sufficient conditions for the minimum of 
functional (2.6) are the Legendre condition and the Jacobi condition [5]. Since the functional is 
the same as in convex meniscus case the Legendre condition and  the Jacobi condition are the 
same as in the case of convex meniscus i.e. 
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will establish necessary conditions for the existence of concave meniscus (see Fig.1.3.) 

Starting from equations (2.3) and  (2.5) it is easy to see that in hydrostatic approximation the 
pressure difference 𝑝𝑝 verify equalities: 

𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧                                    (4.6) 

Using 𝑝𝑝 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 ,the boundary conditions 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 , 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐  

,with the Lagrange mean value theorem we obtain that there exists 𝑥𝑥′ in the interval [𝑥𝑥1, 𝑥𝑥2] 
such that  

𝑝𝑝 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥′) + 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′)                                            (4.7) 

increasing. In particular, it follows that  𝛼𝛼(𝑥𝑥1) < 𝛼𝛼(𝑥𝑥0). Since 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔  and 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐 

we obtain inequality 0 < 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 < 𝛼𝛼𝑐𝑐 .(see Fig.3.) 

It should be noted that, the concave meniscus stability (the static one) should be distinguished 
from the dynamic stability of the crystallization process .For statically stable concave meniscus, 
not only indispensable (necessary) first order but also second order sufficient conditions of 
functional (2.6) should be satisfied. These second order sufficient conditions for the minimum of 
functional (2.6) are the Legendre condition and the Jacobi condition [5]. Since the functional is 
the same as in convex meniscus case the Legendre condition and  the Jacobi condition are the 
same as in the case of convex meniscus i.e. 

𝜕𝜕2𝐹𝐹
𝜕𝜕𝜕𝜕′𝜕𝜕𝜕𝜕′ = 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

> 0                                                                       (4.1) 

𝑑𝑑
𝑑𝑑𝑑𝑑 [ 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0                                                  (4.2) 

Only the evaluation of coefficients of the equation (4.2) change, and in concave case is given by: 
𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

> 𝛾𝛾 × (𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑐𝑐)3  and −𝑔𝑔 × 𝜌𝜌 < 0.                                        (4.3) 

 
Hence 

(𝜂𝜂′ × 𝛾𝛾 × (𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑐𝑐)3)′=0     or          𝜂𝜂′′ = 0                                            (4.4) 

is a Sturm –type upper bound for (4.2)  

Since every non zero solution of the equation 𝜂𝜂′′ = 0 vanishes at most once on the interval 𝑥𝑥1 ≤
  𝑥𝑥 ≤ 𝑥𝑥0 the solution 𝜂𝜂(𝑥𝑥) of the initial value problem 

   𝑑𝑑
𝑑𝑑𝑑𝑑 [ 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0              𝜂𝜂(𝑥𝑥1) = 0 ,     𝜂𝜂′(𝑥𝑥1) = 1                    (4.5) 

has only one zero on the interval 𝑥𝑥1 ≤   𝑥𝑥 ≤ 𝑥𝑥0 . Hence the stability condition of Jacobi is 
verified.  

This result can be surprising and create the impression that a convex meniscus is stable. In fact, 
the result is that if a concave meniscus exist, then it is stable. For this reason in the following, we 
will establish necessary conditions for the existence of concave meniscus (see Fig.1.3.) 

Starting from equations (2.3) and  (2.5) it is easy to see that in hydrostatic approximation the 
pressure difference 𝑝𝑝 verify equalities: 

𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧                                    (4.6) 

Using 𝑝𝑝 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 ,the boundary conditions 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 , 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐  

,with the Lagrange mean value theorem we obtain that there exists 𝑥𝑥′ in the interval [𝑥𝑥1, 𝑥𝑥2] 
such that  

𝑝𝑝 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥′) + 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′)                                            (4.7) 

increasing. In particular, it follows that  𝛼𝛼(𝑥𝑥1) < 𝛼𝛼(𝑥𝑥0). Since 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔  and 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐 

we obtain inequality 0 < 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 < 𝛼𝛼𝑐𝑐 .(see Fig.3.) 

It should be noted that, the concave meniscus stability (the static one) should be distinguished 
from the dynamic stability of the crystallization process .For statically stable concave meniscus, 
not only indispensable (necessary) first order but also second order sufficient conditions of 
functional (2.6) should be satisfied. These second order sufficient conditions for the minimum of 
functional (2.6) are the Legendre condition and the Jacobi condition [5]. Since the functional is 
the same as in convex meniscus case the Legendre condition and  the Jacobi condition are the 
same as in the case of convex meniscus i.e. 

𝜕𝜕2𝐹𝐹
𝜕𝜕𝜕𝜕′𝜕𝜕𝜕𝜕′ = 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

> 0                                                                       (4.1) 

𝑑𝑑
𝑑𝑑𝑑𝑑 [ 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0                                                  (4.2) 

Only the evaluation of coefficients of the equation (4.2) change, and in concave case is given by: 
𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

> 𝛾𝛾 × (𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑐𝑐)3  and −𝑔𝑔 × 𝜌𝜌 < 0.                                        (4.3) 

 
Hence 

(𝜂𝜂′ × 𝛾𝛾 × (𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑐𝑐)3)′=0     or          𝜂𝜂′′ = 0                                            (4.4) 

is a Sturm –type upper bound for (4.2)  

Since every non zero solution of the equation 𝜂𝜂′′ = 0 vanishes at most once on the interval 𝑥𝑥1 ≤
  𝑥𝑥 ≤ 𝑥𝑥0 the solution 𝜂𝜂(𝑥𝑥) of the initial value problem 

   𝑑𝑑
𝑑𝑑𝑑𝑑 [ 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0              𝜂𝜂(𝑥𝑥1) = 0 ,     𝜂𝜂′(𝑥𝑥1) = 1                    (4.5) 

has only one zero on the interval 𝑥𝑥1 ≤   𝑥𝑥 ≤ 𝑥𝑥0 . Hence the stability condition of Jacobi is 
verified.  

This result can be surprising and create the impression that a convex meniscus is stable. In fact, 
the result is that if a concave meniscus exist, then it is stable. For this reason in the following, we 
will establish necessary conditions for the existence of concave meniscus (see Fig.1.3.) 

Starting from equations (2.3) and  (2.5) it is easy to see that in hydrostatic approximation the 
pressure difference 𝑝𝑝 verify equalities: 

𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧                                    (4.6) 

Using 𝑝𝑝 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 ,the boundary conditions 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 , 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐  

,with the Lagrange mean value theorem we obtain that there exists 𝑥𝑥′ in the interval [𝑥𝑥1, 𝑥𝑥2] 
such that  

𝑝𝑝 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥′) + 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′)                                            (4.7) 
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we obtain that there exists x' in the interval [x1, x2] 
such that 

 
Since α(x) is strictly increasing on the interval [x1, x2] the following inequalities hold:

Using equality (4.7) and inequalities (4.8) -(4.10) in hydrostatic approximation, in case of the existence of concave static meniscus, for 
the pressure difference p = − pg −    × g × H the following inequalities hold:

  

Therefore, in case of concave meniscus the values of the pressure difference p = − pg −    × g × H has to be researched in the interval [ 
Lleft, Lright] where:

for  

concave meniscus like in Figure.1.3 does not exit. These regions of the pressure difference are regions of static instability. A meniscus 
with p in this region collapse. For p satisfying one of the inequalities (4.13) it is impossible to create experimentally a concave meniscus 
like in Figure.1.3.

Retain that the pressure difference p = − pg −    × g × H can be controlled by the gas pressure pg and the parameter H. 

In the following we will illustrate first, the existence of concave static meniscus in case of Ge assuming that h = 0.00019[m], x1 = 
0.0001[m], x0 = 0.0002[m] and αc = 1.4[rad]. This value of the contact angle  can be realized by choosing an appropriate material for 
shaper. 

In case of Germanium Lleft = 29.821049[Pa] and  Lright = 59.582547[Pa].It turns that integrating the initial value problem : 

the range of pressure difference values of                                                                                                                                       A typical 
solution of (4.14) for  is represented in the next figures,

increasing. In particular, it follows that  𝛼𝛼(𝑥𝑥1) < 𝛼𝛼(𝑥𝑥0). Since 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔  and 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐 

we obtain inequality 0 < 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 < 𝛼𝛼𝑐𝑐 .(see Fig.3.) 

It should be noted that, the concave meniscus stability (the static one) should be distinguished 
from the dynamic stability of the crystallization process .For statically stable concave meniscus, 
not only indispensable (necessary) first order but also second order sufficient conditions of 
functional (2.6) should be satisfied. These second order sufficient conditions for the minimum of 
functional (2.6) are the Legendre condition and the Jacobi condition [5]. Since the functional is 
the same as in convex meniscus case the Legendre condition and  the Jacobi condition are the 
same as in the case of convex meniscus i.e. 

𝜕𝜕2𝐹𝐹
𝜕𝜕𝜕𝜕′𝜕𝜕𝜕𝜕′ = 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

> 0                                                                       (4.1) 

𝑑𝑑
𝑑𝑑𝑑𝑑 [ 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0                                                  (4.2) 

Only the evaluation of coefficients of the equation (4.2) change, and in concave case is given by: 
𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

> 𝛾𝛾 × (𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑐𝑐)3  and −𝑔𝑔 × 𝜌𝜌 < 0.                                        (4.3) 

 
Hence 

(𝜂𝜂′ × 𝛾𝛾 × (𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑐𝑐)3)′=0     or          𝜂𝜂′′ = 0                                            (4.4) 

is a Sturm –type upper bound for (4.2)  

Since every non zero solution of the equation 𝜂𝜂′′ = 0 vanishes at most once on the interval 𝑥𝑥1 ≤
  𝑥𝑥 ≤ 𝑥𝑥0 the solution 𝜂𝜂(𝑥𝑥) of the initial value problem 

   𝑑𝑑
𝑑𝑑𝑑𝑑 [ 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0              𝜂𝜂(𝑥𝑥1) = 0 ,     𝜂𝜂′(𝑥𝑥1) = 1                    (4.5) 

has only one zero on the interval 𝑥𝑥1 ≤   𝑥𝑥 ≤ 𝑥𝑥0 . Hence the stability condition of Jacobi is 
verified.  

This result can be surprising and create the impression that a convex meniscus is stable. In fact, 
the result is that if a concave meniscus exist, then it is stable. For this reason in the following, we 
will establish necessary conditions for the existence of concave meniscus (see Fig.1.3.) 

Starting from equations (2.3) and  (2.5) it is easy to see that in hydrostatic approximation the 
pressure difference 𝑝𝑝 verify equalities: 

𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧                                    (4.6) 

Using 𝑝𝑝 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 ,the boundary conditions 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 , 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐  

,with the Lagrange mean value theorem we obtain that there exists 𝑥𝑥′ in the interval [𝑥𝑥1, 𝑥𝑥2] 
such that  

𝑝𝑝 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥′) + 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′)                                            (4.7) 

increasing. In particular, it follows that  𝛼𝛼(𝑥𝑥1) < 𝛼𝛼(𝑥𝑥0). Since 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔  and 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐 

we obtain inequality 0 < 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 < 𝛼𝛼𝑐𝑐 .(see Fig.3.) 

It should be noted that, the concave meniscus stability (the static one) should be distinguished 
from the dynamic stability of the crystallization process .For statically stable concave meniscus, 
not only indispensable (necessary) first order but also second order sufficient conditions of 
functional (2.6) should be satisfied. These second order sufficient conditions for the minimum of 
functional (2.6) are the Legendre condition and the Jacobi condition [5]. Since the functional is 
the same as in convex meniscus case the Legendre condition and  the Jacobi condition are the 
same as in the case of convex meniscus i.e. 

𝜕𝜕2𝐹𝐹
𝜕𝜕𝜕𝜕′𝜕𝜕𝜕𝜕′ = 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

> 0                                                                       (4.1) 

𝑑𝑑
𝑑𝑑𝑑𝑑 [ 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0                                                  (4.2) 

Only the evaluation of coefficients of the equation (4.2) change, and in concave case is given by: 
𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

> 𝛾𝛾 × (𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑐𝑐)3  and −𝑔𝑔 × 𝜌𝜌 < 0.                                        (4.3) 

 
Hence 

(𝜂𝜂′ × 𝛾𝛾 × (𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑐𝑐)3)′=0     or          𝜂𝜂′′ = 0                                            (4.4) 

is a Sturm –type upper bound for (4.2)  

Since every non zero solution of the equation 𝜂𝜂′′ = 0 vanishes at most once on the interval 𝑥𝑥1 ≤
  𝑥𝑥 ≤ 𝑥𝑥0 the solution 𝜂𝜂(𝑥𝑥) of the initial value problem 

   𝑑𝑑
𝑑𝑑𝑑𝑑 [ 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0              𝜂𝜂(𝑥𝑥1) = 0 ,     𝜂𝜂′(𝑥𝑥1) = 1                    (4.5) 

has only one zero on the interval 𝑥𝑥1 ≤   𝑥𝑥 ≤ 𝑥𝑥0 . Hence the stability condition of Jacobi is 
verified.  

This result can be surprising and create the impression that a convex meniscus is stable. In fact, 
the result is that if a concave meniscus exist, then it is stable. For this reason in the following, we 
will establish necessary conditions for the existence of concave meniscus (see Fig.1.3.) 

Starting from equations (2.3) and  (2.5) it is easy to see that in hydrostatic approximation the 
pressure difference 𝑝𝑝 verify equalities: 

𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧                                    (4.6) 

Using 𝑝𝑝 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 ,the boundary conditions 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 , 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐  

,with the Lagrange mean value theorem we obtain that there exists 𝑥𝑥′ in the interval [𝑥𝑥1, 𝑥𝑥2] 
such that  

𝑝𝑝 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥′) + 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′)                                            (4.7) 

Since  𝛼𝛼(𝑥𝑥)  is strictly increasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 
𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝛼𝛼𝑐𝑐                                                                                            (4.8) 

cos (𝛼𝛼𝑐𝑐) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ sin (𝛼𝛼𝑔𝑔)                                                                       (4.9) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                                              (4.10) 

Using equality (4.7) and inequalities (4.8)-(4.10) in hydrostatic approximation, in case of the 
existence of concave static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
following inequalities hold: 

  −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ ≤ −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 ≤ −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) +

𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                                             (4.11) 

Therefore in case of concave meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where: 

 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ,  𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 ×

𝑔𝑔 × ℎ                                                                                                                                      (4.12) 

For   𝑝𝑝 < −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ     and   for    𝑝𝑝 > −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
×

sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                              (4.13) 

concave meniscus like in Fig.1.3 does not exit. These regions of the pressure difference are 
regions of static instability .A meniscus obtained with  𝑝𝑝  in this region collapse. For 𝑝𝑝  
satisfying one of the inequalities (4.13) it is impossible to create experimentally a concave 
meniscus like in Fig.1.3. 

Retain that the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  can be controlled by the gas pressure 
𝑝𝑝𝑔𝑔 and the parameter  𝐻𝐻.  

In the following we will illustrate first, the existence of concave static meniscus in case of Ge 
assuming that ℎ = 0.00019[𝑚𝑚], 𝑥𝑥1 = 0.0001[𝑚𝑚], 𝑥𝑥0 = 0.0002[𝑚𝑚] and 𝛼𝛼𝑐𝑐 = 1.4[𝑟𝑟𝑟𝑟𝑟𝑟].This 
value of 𝛼𝛼𝑐𝑐 can be realized by choosing an appropriate material for shaper.  

In case of Germanium    𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 29.821049[𝑃𝑃𝑃𝑃]   and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = 59.582547 [𝑃𝑃𝑃𝑃] .It turns that 
integrating the initial value problem :  
𝑧𝑧′(𝑥𝑥) = −tan (𝛼𝛼(𝑥𝑥))  𝛼𝛼′(𝑥𝑥) = 𝑝𝑝−𝜌𝜌×𝑔𝑔×𝑥𝑥

𝛾𝛾 × 1
cos (𝛼𝛼(𝑥𝑥))  ;     𝑧𝑧(𝑥𝑥1) = ℎ = 0.00019  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼(𝑥𝑥1) =

1.361796327                         (4.14) 
for different values of 𝑝𝑝 ∈ [ 
29.821049,59.582547] 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. A 
typical solution of  (4.14) for  
 𝑝𝑝 ∈ [ 29.821049,59.582547]  is represented in the next figures, 

Since  𝛼𝛼(𝑥𝑥)  is strictly increasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 
𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝛼𝛼𝑐𝑐                                                                                            (4.8) 

cos (𝛼𝛼𝑐𝑐) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ sin (𝛼𝛼𝑔𝑔)                                                                       (4.9) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                                              (4.10) 

Using equality (4.7) and inequalities (4.8)-(4.10) in hydrostatic approximation, in case of the 
existence of concave static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
following inequalities hold: 

  −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ ≤ −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 ≤ −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) +

𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                                             (4.11) 

Therefore in case of concave meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where: 

 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ,  𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 ×

𝑔𝑔 × ℎ                                                                                                                                      (4.12) 

For   𝑝𝑝 < −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ     and   for    𝑝𝑝 > −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
×

sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                              (4.13) 

concave meniscus like in Fig.1.3 does not exit. These regions of the pressure difference are 
regions of static instability .A meniscus obtained with  𝑝𝑝  in this region collapse. For 𝑝𝑝  
satisfying one of the inequalities (4.13) it is impossible to create experimentally a concave 
meniscus like in Fig.1.3. 

Retain that the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  can be controlled by the gas pressure 
𝑝𝑝𝑔𝑔 and the parameter  𝐻𝐻.  

In the following we will illustrate first, the existence of concave static meniscus in case of Ge 
assuming that ℎ = 0.00019[𝑚𝑚], 𝑥𝑥1 = 0.0001[𝑚𝑚], 𝑥𝑥0 = 0.0002[𝑚𝑚] and 𝛼𝛼𝑐𝑐 = 1.4[𝑟𝑟𝑟𝑟𝑟𝑟].This 
value of 𝛼𝛼𝑐𝑐 can be realized by choosing an appropriate material for shaper.  

In case of Germanium    𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 29.821049[𝑃𝑃𝑃𝑃]   and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = 59.582547 [𝑃𝑃𝑃𝑃] .It turns that 
integrating the initial value problem :  
𝑧𝑧′(𝑥𝑥) = −tan (𝛼𝛼(𝑥𝑥))  𝛼𝛼′(𝑥𝑥) = 𝑝𝑝−𝜌𝜌×𝑔𝑔×𝑥𝑥

𝛾𝛾 × 1
cos (𝛼𝛼(𝑥𝑥))  ;     𝑧𝑧(𝑥𝑥1) = ℎ = 0.00019  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼(𝑥𝑥1) =

1.361796327                         (4.14) 
for different values of 𝑝𝑝 ∈ [ 
29.821049,59.582547] 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. A 
typical solution of  (4.14) for  
 𝑝𝑝 ∈ [ 29.821049,59.582547]  is represented in the next figures, 

Since  𝛼𝛼(𝑥𝑥)  is strictly increasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 
𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝛼𝛼𝑐𝑐                                                                                            (4.8) 

cos (𝛼𝛼𝑐𝑐) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ sin (𝛼𝛼𝑔𝑔)                                                                       (4.9) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                                              (4.10) 

Using equality (4.7) and inequalities (4.8)-(4.10) in hydrostatic approximation, in case of the 
existence of concave static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
following inequalities hold: 

  −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ ≤ −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 ≤ −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) +

𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                                             (4.11) 

Therefore in case of concave meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where: 

 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ,  𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 ×

𝑔𝑔 × ℎ                                                                                                                                      (4.12) 

For   𝑝𝑝 < −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ     and   for    𝑝𝑝 > −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
×

sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                              (4.13) 

concave meniscus like in Fig.1.3 does not exit. These regions of the pressure difference are 
regions of static instability .A meniscus obtained with  𝑝𝑝  in this region collapse. For 𝑝𝑝  
satisfying one of the inequalities (4.13) it is impossible to create experimentally a concave 
meniscus like in Fig.1.3. 

Retain that the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  can be controlled by the gas pressure 
𝑝𝑝𝑔𝑔 and the parameter  𝐻𝐻.  

In the following we will illustrate first, the existence of concave static meniscus in case of Ge 
assuming that ℎ = 0.00019[𝑚𝑚], 𝑥𝑥1 = 0.0001[𝑚𝑚], 𝑥𝑥0 = 0.0002[𝑚𝑚] and 𝛼𝛼𝑐𝑐 = 1.4[𝑟𝑟𝑟𝑟𝑟𝑟].This 
value of 𝛼𝛼𝑐𝑐 can be realized by choosing an appropriate material for shaper.  

In case of Germanium    𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 29.821049[𝑃𝑃𝑃𝑃]   and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = 59.582547 [𝑃𝑃𝑃𝑃] .It turns that 
integrating the initial value problem :  
𝑧𝑧′(𝑥𝑥) = −tan (𝛼𝛼(𝑥𝑥))  𝛼𝛼′(𝑥𝑥) = 𝑝𝑝−𝜌𝜌×𝑔𝑔×𝑥𝑥

𝛾𝛾 × 1
cos (𝛼𝛼(𝑥𝑥))  ;     𝑧𝑧(𝑥𝑥1) = ℎ = 0.00019  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼(𝑥𝑥1) =

1.361796327                         (4.14) 
for different values of 𝑝𝑝 ∈ [ 
29.821049,59.582547] 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. A 
typical solution of  (4.14) for  
 𝑝𝑝 ∈ [ 29.821049,59.582547]  is represented in the next figures, 

               𝑑𝑑
𝑑𝑑𝑑𝑑 [ 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0              𝜂𝜂(𝑥𝑥1) = 0 ,     𝜂𝜂′(𝑥𝑥1) = 1          (3.6) 

has only one zero on the interval 𝑥𝑥1 ≤   𝑥𝑥 ≤ 𝑥𝑥0 . Hence the stability condition of Jacobi is 
verified.  

This result can be surprising and create the impression that a convex meniscus is stable. In fact, 
the result is that if a convex meniscus exist, then it is stable. For this reason in the following, we 
will establish necessary conditions for the existence of convex meniscus (see Fig.1.2.). 

Starting from equations (2.3) and  (2.5) it is easy to see that in hydrostatic approximation the 
pressure difference 𝑝𝑝 verify equalities: 

𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧                                                    (3.7) 

Using 𝑝𝑝 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 ,the boundary conditions 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 , 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐  

,with the Lagrange mean value theorem we obtain that there exists 𝑥𝑥′ in the interval [𝑥𝑥1, 𝑥𝑥2] 
such that  

𝑝𝑝 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥′) + 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′)                        (3.8) 

 

Since  𝛼𝛼(𝑥𝑥)  is strictly decreasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 

𝛼𝛼𝑐𝑐 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔                                                                       (3.9) 

sin (𝛼𝛼𝑔𝑔) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ cos (𝛼𝛼𝑐𝑐)                                                   (3.10) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                       (3.11) 

Using equality (3.8) and inequalities (3.9)-(3.11) in hydrostatic approximation, in case of the 
existence of s convex static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
following inequalities hold: 

−𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ ≤ −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 ≤ −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) +

𝜌𝜌 × 𝑔𝑔 × ℎ                                           (3.12) 

Therefore in case of convex meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where : 

                          𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ          and       𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ       (3.13) 

For 

Since  𝛼𝛼(𝑥𝑥)  is strictly increasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 
𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝛼𝛼𝑐𝑐                                                                                            (4.8) 

cos (𝛼𝛼𝑐𝑐) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ sin (𝛼𝛼𝑔𝑔)                                                                       (4.9) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                                              (4.10) 

Using equality (4.7) and inequalities (4.8)-(4.10) in hydrostatic approximation, in case of the 
existence of concave static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
following inequalities hold: 

  −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ ≤ −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 ≤ −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) +

𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                                             (4.11) 

Therefore in case of concave meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where: 

 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ,  𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 ×

𝑔𝑔 × ℎ                                                                                                                                      (4.12) 

For   𝑝𝑝 < −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ     and   for    𝑝𝑝 > −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
×

sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                              (4.13) 

concave meniscus like in Fig.1.3 does not exit. These regions of the pressure difference are 
regions of static instability .A meniscus obtained with  𝑝𝑝  in this region collapse. For 𝑝𝑝  
satisfying one of the inequalities (4.13) it is impossible to create experimentally a concave 
meniscus like in Fig.1.3. 

Retain that the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  can be controlled by the gas pressure 
𝑝𝑝𝑔𝑔 and the parameter  𝐻𝐻.  

In the following we will illustrate first, the existence of concave static meniscus in case of Ge 
assuming that ℎ = 0.00019[𝑚𝑚], 𝑥𝑥1 = 0.0001[𝑚𝑚], 𝑥𝑥0 = 0.0002[𝑚𝑚] and 𝛼𝛼𝑐𝑐 = 1.4[𝑟𝑟𝑟𝑟𝑟𝑟].This 
value of 𝛼𝛼𝑐𝑐 can be realized by choosing an appropriate material for shaper.  

In case of Germanium    𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 29.821049[𝑃𝑃𝑃𝑃]   and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = 59.582547 [𝑃𝑃𝑃𝑃] .It turns that 
integrating the initial value problem :  
𝑧𝑧′(𝑥𝑥) = −tan (𝛼𝛼(𝑥𝑥))  𝛼𝛼′(𝑥𝑥) = 𝑝𝑝−𝜌𝜌×𝑔𝑔×𝑥𝑥

𝛾𝛾 × 1
cos (𝛼𝛼(𝑥𝑥))  ;     𝑧𝑧(𝑥𝑥1) = ℎ = 0.00019  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼(𝑥𝑥1) =

1.361796327                         (4.14) 
for different values of 𝑝𝑝 ∈ [ 
29.821049,59.582547] 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. A 
typical solution of  (4.14) for  
 𝑝𝑝 ∈ [ 29.821049,59.582547]  is represented in the next figures, 

Since  𝛼𝛼(𝑥𝑥)  is strictly increasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 
𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝛼𝛼𝑐𝑐                                                                                            (4.8) 

cos (𝛼𝛼𝑐𝑐) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ sin (𝛼𝛼𝑔𝑔)                                                                       (4.9) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                                              (4.10) 

Using equality (4.7) and inequalities (4.8)-(4.10) in hydrostatic approximation, in case of the 
existence of concave static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
following inequalities hold: 

  −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ ≤ −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 ≤ −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) +

𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                                             (4.11) 

Therefore in case of concave meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where: 

 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ,  𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 ×

𝑔𝑔 × ℎ                                                                                                                                      (4.12) 

For   𝑝𝑝 < −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ     and   for    𝑝𝑝 > −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
×

sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                              (4.13) 

concave meniscus like in Fig.1.3 does not exit. These regions of the pressure difference are 
regions of static instability .A meniscus obtained with  𝑝𝑝  in this region collapse. For 𝑝𝑝  
satisfying one of the inequalities (4.13) it is impossible to create experimentally a concave 
meniscus like in Fig.1.3. 

Retain that the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  can be controlled by the gas pressure 
𝑝𝑝𝑔𝑔 and the parameter  𝐻𝐻.  

In the following we will illustrate first, the existence of concave static meniscus in case of Ge 
assuming that ℎ = 0.00019[𝑚𝑚], 𝑥𝑥1 = 0.0001[𝑚𝑚], 𝑥𝑥0 = 0.0002[𝑚𝑚] and 𝛼𝛼𝑐𝑐 = 1.4[𝑟𝑟𝑟𝑟𝑟𝑟].This 
value of 𝛼𝛼𝑐𝑐 can be realized by choosing an appropriate material for shaper.  

In case of Germanium    𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 29.821049[𝑃𝑃𝑃𝑃]   and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = 59.582547 [𝑃𝑃𝑃𝑃] .It turns that 
integrating the initial value problem :  
𝑧𝑧′(𝑥𝑥) = −tan (𝛼𝛼(𝑥𝑥))  𝛼𝛼′(𝑥𝑥) = 𝑝𝑝−𝜌𝜌×𝑔𝑔×𝑥𝑥

𝛾𝛾 × 1
cos (𝛼𝛼(𝑥𝑥))  ;     𝑧𝑧(𝑥𝑥1) = ℎ = 0.00019  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼(𝑥𝑥1) =

1.361796327                         (4.14) 
for different values of 𝑝𝑝 ∈ [ 
29.821049,59.582547] 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. A 
typical solution of  (4.14) for  
 𝑝𝑝 ∈ [ 29.821049,59.582547]  is represented in the next figures, 

Since  𝛼𝛼(𝑥𝑥)  is strictly increasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 
𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝛼𝛼𝑐𝑐                                                                                            (4.8) 

cos (𝛼𝛼𝑐𝑐) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ sin (𝛼𝛼𝑔𝑔)                                                                       (4.9) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                                              (4.10) 

Using equality (4.7) and inequalities (4.8)-(4.10) in hydrostatic approximation, in case of the 
existence of concave static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
following inequalities hold: 

  −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ ≤ −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 ≤ −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) +

𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                                             (4.11) 

Therefore in case of concave meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where: 

 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ,  𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 ×

𝑔𝑔 × ℎ                                                                                                                                      (4.12) 

For   𝑝𝑝 < −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ     and   for    𝑝𝑝 > −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
×

sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                              (4.13) 

concave meniscus like in Fig.1.3 does not exit. These regions of the pressure difference are 
regions of static instability .A meniscus obtained with  𝑝𝑝  in this region collapse. For 𝑝𝑝  
satisfying one of the inequalities (4.13) it is impossible to create experimentally a concave 
meniscus like in Fig.1.3. 

Retain that the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  can be controlled by the gas pressure 
𝑝𝑝𝑔𝑔 and the parameter  𝐻𝐻.  

In the following we will illustrate first, the existence of concave static meniscus in case of Ge 
assuming that ℎ = 0.00019[𝑚𝑚], 𝑥𝑥1 = 0.0001[𝑚𝑚], 𝑥𝑥0 = 0.0002[𝑚𝑚] and 𝛼𝛼𝑐𝑐 = 1.4[𝑟𝑟𝑟𝑟𝑟𝑟].This 
value of 𝛼𝛼𝑐𝑐 can be realized by choosing an appropriate material for shaper.  

In case of Germanium    𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 29.821049[𝑃𝑃𝑃𝑃]   and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = 59.582547 [𝑃𝑃𝑃𝑃] .It turns that 
integrating the initial value problem :  
𝑧𝑧′(𝑥𝑥) = −tan (𝛼𝛼(𝑥𝑥))  𝛼𝛼′(𝑥𝑥) = 𝑝𝑝−𝜌𝜌×𝑔𝑔×𝑥𝑥

𝛾𝛾 × 1
cos (𝛼𝛼(𝑥𝑥))  ;     𝑧𝑧(𝑥𝑥1) = ℎ = 0.00019  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼(𝑥𝑥1) =

1.361796327                         (4.14) 
for different values of 𝑝𝑝 ∈ [ 
29.821049,59.582547] 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. A 
typical solution of  (4.14) for  
 𝑝𝑝 ∈ [ 29.821049,59.582547]  is represented in the next figures, 

               𝑑𝑑
𝑑𝑑𝑑𝑑 [ 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0              𝜂𝜂(𝑥𝑥1) = 0 ,     𝜂𝜂′(𝑥𝑥1) = 1          (3.6) 

has only one zero on the interval 𝑥𝑥1 ≤   𝑥𝑥 ≤ 𝑥𝑥0 . Hence the stability condition of Jacobi is 
verified.  

This result can be surprising and create the impression that a convex meniscus is stable. In fact, 
the result is that if a convex meniscus exist, then it is stable. For this reason in the following, we 
will establish necessary conditions for the existence of convex meniscus (see Fig.1.2.). 

Starting from equations (2.3) and  (2.5) it is easy to see that in hydrostatic approximation the 
pressure difference 𝑝𝑝 verify equalities: 

𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧                                                    (3.7) 

Using 𝑝𝑝 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 ,the boundary conditions 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 , 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐  

,with the Lagrange mean value theorem we obtain that there exists 𝑥𝑥′ in the interval [𝑥𝑥1, 𝑥𝑥2] 
such that  

𝑝𝑝 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥′) + 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′)                        (3.8) 

 

Since  𝛼𝛼(𝑥𝑥)  is strictly decreasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 

𝛼𝛼𝑐𝑐 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔                                                                       (3.9) 

sin (𝛼𝛼𝑔𝑔) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ cos (𝛼𝛼𝑐𝑐)                                                   (3.10) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                       (3.11) 

Using equality (3.8) and inequalities (3.9)-(3.11) in hydrostatic approximation, in case of the 
existence of s convex static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
following inequalities hold: 

−𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ ≤ −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 ≤ −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) +

𝜌𝜌 × 𝑔𝑔 × ℎ                                           (3.12) 

Therefore in case of convex meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where : 

                          𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ          and       𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ       (3.13) 

For 

Since  𝛼𝛼(𝑥𝑥)  is strictly increasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 
𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝛼𝛼𝑐𝑐                                                                                            (4.8) 

cos (𝛼𝛼𝑐𝑐) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ sin (𝛼𝛼𝑔𝑔)                                                                       (4.9) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                                              (4.10) 

Using equality (4.7) and inequalities (4.8)-(4.10) in hydrostatic approximation, in case of the 
existence of concave static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
following inequalities hold: 

  −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ ≤ −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 ≤ −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) +

𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                                             (4.11) 

Therefore in case of concave meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where: 

 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ,  𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 ×

𝑔𝑔 × ℎ                                                                                                                                      (4.12) 

For   𝑝𝑝 < −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ     and   for    𝑝𝑝 > −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
×

sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                              (4.13) 

concave meniscus like in Fig.1.3 does not exit. These regions of the pressure difference are 
regions of static instability .A meniscus obtained with  𝑝𝑝  in this region collapse. For 𝑝𝑝  
satisfying one of the inequalities (4.13) it is impossible to create experimentally a concave 
meniscus like in Fig.1.3. 

Retain that the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  can be controlled by the gas pressure 
𝑝𝑝𝑔𝑔 and the parameter  𝐻𝐻.  

In the following we will illustrate first, the existence of concave static meniscus in case of Ge 
assuming that ℎ = 0.00019[𝑚𝑚], 𝑥𝑥1 = 0.0001[𝑚𝑚], 𝑥𝑥0 = 0.0002[𝑚𝑚] and 𝛼𝛼𝑐𝑐 = 1.4[𝑟𝑟𝑟𝑟𝑟𝑟].This 
value of 𝛼𝛼𝑐𝑐 can be realized by choosing an appropriate material for shaper.  

In case of Germanium    𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 29.821049[𝑃𝑃𝑃𝑃]   and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = 59.582547 [𝑃𝑃𝑃𝑃] .It turns that 
integrating the initial value problem :  
𝑧𝑧′(𝑥𝑥) = −tan (𝛼𝛼(𝑥𝑥))  𝛼𝛼′(𝑥𝑥) = 𝑝𝑝−𝜌𝜌×𝑔𝑔×𝑥𝑥

𝛾𝛾 × 1
cos (𝛼𝛼(𝑥𝑥))  ;     𝑧𝑧(𝑥𝑥1) = ℎ = 0.00019  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼(𝑥𝑥1) =

1.361796327                         (4.14) 
for different values of 𝑝𝑝 ∈ [ 
29.821049,59.582547] 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. A 
typical solution of  (4.14) for  
 𝑝𝑝 ∈ [ 29.821049,59.582547]  is represented in the next figures, 

Since  𝛼𝛼(𝑥𝑥)  is strictly increasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 
𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝛼𝛼𝑐𝑐                                                                                            (4.8) 

cos (𝛼𝛼𝑐𝑐) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ sin (𝛼𝛼𝑔𝑔)                                                                       (4.9) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                                              (4.10) 

Using equality (4.7) and inequalities (4.8)-(4.10) in hydrostatic approximation, in case of the 
existence of concave static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
following inequalities hold: 

  −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ ≤ −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 ≤ −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) +

𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                                             (4.11) 

Therefore in case of concave meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where: 

 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ,  𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 ×

𝑔𝑔 × ℎ                                                                                                                                      (4.12) 

For   𝑝𝑝 < −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ     and   for    𝑝𝑝 > −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
×

sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                              (4.13) 

concave meniscus like in Fig.1.3 does not exit. These regions of the pressure difference are 
regions of static instability .A meniscus obtained with  𝑝𝑝  in this region collapse. For 𝑝𝑝  
satisfying one of the inequalities (4.13) it is impossible to create experimentally a concave 
meniscus like in Fig.1.3. 

Retain that the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  can be controlled by the gas pressure 
𝑝𝑝𝑔𝑔 and the parameter  𝐻𝐻.  

In the following we will illustrate first, the existence of concave static meniscus in case of Ge 
assuming that ℎ = 0.00019[𝑚𝑚], 𝑥𝑥1 = 0.0001[𝑚𝑚], 𝑥𝑥0 = 0.0002[𝑚𝑚] and 𝛼𝛼𝑐𝑐 = 1.4[𝑟𝑟𝑟𝑟𝑟𝑟].This 
value of 𝛼𝛼𝑐𝑐 can be realized by choosing an appropriate material for shaper.  

In case of Germanium    𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 29.821049[𝑃𝑃𝑃𝑃]   and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = 59.582547 [𝑃𝑃𝑃𝑃] .It turns that 
integrating the initial value problem :  
𝑧𝑧′(𝑥𝑥) = −tan (𝛼𝛼(𝑥𝑥))  𝛼𝛼′(𝑥𝑥) = 𝑝𝑝−𝜌𝜌×𝑔𝑔×𝑥𝑥

𝛾𝛾 × 1
cos (𝛼𝛼(𝑥𝑥))  ;     𝑧𝑧(𝑥𝑥1) = ℎ = 0.00019  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼(𝑥𝑥1) =

1.361796327                         (4.14) 
for different values of 𝑝𝑝 ∈ [ 
29.821049,59.582547] 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. A 
typical solution of  (4.14) for  
 𝑝𝑝 ∈ [ 29.821049,59.582547]  is represented in the next figures, 

Since  𝛼𝛼(𝑥𝑥)  is strictly increasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 
𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝛼𝛼𝑐𝑐                                                                                            (4.8) 

cos (𝛼𝛼𝑐𝑐) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ sin (𝛼𝛼𝑔𝑔)                                                                       (4.9) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                                              (4.10) 

Using equality (4.7) and inequalities (4.8)-(4.10) in hydrostatic approximation, in case of the 
existence of concave static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
following inequalities hold: 

  −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ ≤ −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 ≤ −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) +

𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                                             (4.11) 

Therefore in case of concave meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where: 

 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ,  𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 ×

𝑔𝑔 × ℎ                                                                                                                                      (4.12) 

For   𝑝𝑝 < −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ     and   for    𝑝𝑝 > −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
×

sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                              (4.13) 

concave meniscus like in Fig.1.3 does not exit. These regions of the pressure difference are 
regions of static instability .A meniscus obtained with  𝑝𝑝  in this region collapse. For 𝑝𝑝  
satisfying one of the inequalities (4.13) it is impossible to create experimentally a concave 
meniscus like in Fig.1.3. 

Retain that the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  can be controlled by the gas pressure 
𝑝𝑝𝑔𝑔 and the parameter  𝐻𝐻.  

In the following we will illustrate first, the existence of concave static meniscus in case of Ge 
assuming that ℎ = 0.00019[𝑚𝑚], 𝑥𝑥1 = 0.0001[𝑚𝑚], 𝑥𝑥0 = 0.0002[𝑚𝑚] and 𝛼𝛼𝑐𝑐 = 1.4[𝑟𝑟𝑟𝑟𝑟𝑟].This 
value of 𝛼𝛼𝑐𝑐 can be realized by choosing an appropriate material for shaper.  

In case of Germanium    𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 29.821049[𝑃𝑃𝑃𝑃]   and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = 59.582547 [𝑃𝑃𝑃𝑃] .It turns that 
integrating the initial value problem :  
𝑧𝑧′(𝑥𝑥) = −tan (𝛼𝛼(𝑥𝑥))  𝛼𝛼′(𝑥𝑥) = 𝑝𝑝−𝜌𝜌×𝑔𝑔×𝑥𝑥

𝛾𝛾 × 1
cos (𝛼𝛼(𝑥𝑥))  ;     𝑧𝑧(𝑥𝑥1) = ℎ = 0.00019  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼(𝑥𝑥1) =

1.361796327                         (4.14) 
for different values of 𝑝𝑝 ∈ [ 
29.821049,59.582547] 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. A 
typical solution of  (4.14) for  
 𝑝𝑝 ∈ [ 29.821049,59.582547]  is represented in the next figures, 

Since  𝛼𝛼(𝑥𝑥)  is strictly increasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 
𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝛼𝛼𝑐𝑐                                                                                            (4.8) 

cos (𝛼𝛼𝑐𝑐) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ sin (𝛼𝛼𝑔𝑔)                                                                       (4.9) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                                              (4.10) 

Using equality (4.7) and inequalities (4.8)-(4.10) in hydrostatic approximation, in case of the 
existence of concave static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
following inequalities hold: 

  −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ ≤ −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 ≤ −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) +

𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                                             (4.11) 

Therefore in case of concave meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where: 

 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ,  𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 ×

𝑔𝑔 × ℎ                                                                                                                                      (4.12) 

For   𝑝𝑝 < −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ     and   for    𝑝𝑝 > −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
×

sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                              (4.13) 

concave meniscus like in Fig.1.3 does not exit. These regions of the pressure difference are 
regions of static instability .A meniscus obtained with  𝑝𝑝  in this region collapse. For 𝑝𝑝  
satisfying one of the inequalities (4.13) it is impossible to create experimentally a concave 
meniscus like in Fig.1.3. 

Retain that the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  can be controlled by the gas pressure 
𝑝𝑝𝑔𝑔 and the parameter  𝐻𝐻.  

In the following we will illustrate first, the existence of concave static meniscus in case of Ge 
assuming that ℎ = 0.00019[𝑚𝑚], 𝑥𝑥1 = 0.0001[𝑚𝑚], 𝑥𝑥0 = 0.0002[𝑚𝑚] and 𝛼𝛼𝑐𝑐 = 1.4[𝑟𝑟𝑟𝑟𝑟𝑟].This 
value of 𝛼𝛼𝑐𝑐 can be realized by choosing an appropriate material for shaper.  

In case of Germanium    𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 29.821049[𝑃𝑃𝑃𝑃]   and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = 59.582547 [𝑃𝑃𝑃𝑃] .It turns that 
integrating the initial value problem :  
𝑧𝑧′(𝑥𝑥) = −tan (𝛼𝛼(𝑥𝑥))  𝛼𝛼′(𝑥𝑥) = 𝑝𝑝−𝜌𝜌×𝑔𝑔×𝑥𝑥

𝛾𝛾 × 1
cos (𝛼𝛼(𝑥𝑥))  ;     𝑧𝑧(𝑥𝑥1) = ℎ = 0.00019  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼(𝑥𝑥1) =

1.361796327                         (4.14) 
for different values of 𝑝𝑝 ∈ [ 
29.821049,59.582547] 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. A 
typical solution of  (4.14) for  
 𝑝𝑝 ∈ [ 29.821049,59.582547]  is represented in the next figures, 

Since  𝛼𝛼(𝑥𝑥)  is strictly increasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 
𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝛼𝛼𝑐𝑐                                                                                            (4.8) 

cos (𝛼𝛼𝑐𝑐) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ sin (𝛼𝛼𝑔𝑔)                                                                       (4.9) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                                              (4.10) 

Using equality (4.7) and inequalities (4.8)-(4.10) in hydrostatic approximation, in case of the 
existence of concave static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
following inequalities hold: 

  −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ ≤ −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 ≤ −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) +

𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                                             (4.11) 

Therefore in case of concave meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where: 

 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ,  𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 ×

𝑔𝑔 × ℎ                                                                                                                                      (4.12) 

For   𝑝𝑝 < −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ     and   for    𝑝𝑝 > −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
×

sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                              (4.13) 

concave meniscus like in Fig.1.3 does not exit. These regions of the pressure difference are 
regions of static instability .A meniscus obtained with  𝑝𝑝  in this region collapse. For 𝑝𝑝  
satisfying one of the inequalities (4.13) it is impossible to create experimentally a concave 
meniscus like in Fig.1.3. 

Retain that the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  can be controlled by the gas pressure 
𝑝𝑝𝑔𝑔 and the parameter  𝐻𝐻.  

In the following we will illustrate first, the existence of concave static meniscus in case of Ge 
assuming that ℎ = 0.00019[𝑚𝑚], 𝑥𝑥1 = 0.0001[𝑚𝑚], 𝑥𝑥0 = 0.0002[𝑚𝑚] and 𝛼𝛼𝑐𝑐 = 1.4[𝑟𝑟𝑟𝑟𝑟𝑟].This 
value of 𝛼𝛼𝑐𝑐 can be realized by choosing an appropriate material for shaper.  

In case of Germanium    𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 29.821049[𝑃𝑃𝑃𝑃]   and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = 59.582547 [𝑃𝑃𝑃𝑃] .It turns that 
integrating the initial value problem :  
𝑧𝑧′(𝑥𝑥) = −tan (𝛼𝛼(𝑥𝑥))  𝛼𝛼′(𝑥𝑥) = 𝑝𝑝−𝜌𝜌×𝑔𝑔×𝑥𝑥

𝛾𝛾 × 1
cos (𝛼𝛼(𝑥𝑥))  ;     𝑧𝑧(𝑥𝑥1) = ℎ = 0.00019  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼(𝑥𝑥1) =

1.361796327                         (4.14) 
for different values of 𝑝𝑝 ∈ [ 
29.821049,59.582547] 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. A 
typical solution of  (4.14) for  
 𝑝𝑝 ∈ [ 29.821049,59.582547]  is represented in the next figures, 

Since  𝛼𝛼(𝑥𝑥)  is strictly increasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 
𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝛼𝛼𝑐𝑐                                                                                            (4.8) 

cos (𝛼𝛼𝑐𝑐) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ sin (𝛼𝛼𝑔𝑔)                                                                       (4.9) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                                              (4.10) 

Using equality (4.7) and inequalities (4.8)-(4.10) in hydrostatic approximation, in case of the 
existence of concave static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
following inequalities hold: 

  −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ ≤ −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 ≤ −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) +

𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                                             (4.11) 

Therefore in case of concave meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where: 

 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ,  𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 ×

𝑔𝑔 × ℎ                                                                                                                                      (4.12) 

For   𝑝𝑝 < −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ     and   for    𝑝𝑝 > −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
×

sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                              (4.13) 

concave meniscus like in Fig.1.3 does not exit. These regions of the pressure difference are 
regions of static instability .A meniscus obtained with  𝑝𝑝  in this region collapse. For 𝑝𝑝  
satisfying one of the inequalities (4.13) it is impossible to create experimentally a concave 
meniscus like in Fig.1.3. 

Retain that the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  can be controlled by the gas pressure 
𝑝𝑝𝑔𝑔 and the parameter  𝐻𝐻.  

In the following we will illustrate first, the existence of concave static meniscus in case of Ge 
assuming that ℎ = 0.00019[𝑚𝑚], 𝑥𝑥1 = 0.0001[𝑚𝑚], 𝑥𝑥0 = 0.0002[𝑚𝑚] and 𝛼𝛼𝑐𝑐 = 1.4[𝑟𝑟𝑟𝑟𝑟𝑟].This 
value of 𝛼𝛼𝑐𝑐 can be realized by choosing an appropriate material for shaper.  

In case of Germanium    𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 29.821049[𝑃𝑃𝑃𝑃]   and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = 59.582547 [𝑃𝑃𝑃𝑃] .It turns that 
integrating the initial value problem :  
𝑧𝑧′(𝑥𝑥) = −tan (𝛼𝛼(𝑥𝑥))  𝛼𝛼′(𝑥𝑥) = 𝑝𝑝−𝜌𝜌×𝑔𝑔×𝑥𝑥

𝛾𝛾 × 1
cos (𝛼𝛼(𝑥𝑥))  ;     𝑧𝑧(𝑥𝑥1) = ℎ = 0.00019  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼(𝑥𝑥1) =

1.361796327                         (4.14) 
for different values of 𝑝𝑝 ∈ [ 
29.821049,59.582547] 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. A 
typical solution of  (4.14) for  
 𝑝𝑝 ∈ [ 29.821049,59.582547]  is represented in the next figures, 

               𝑑𝑑
𝑑𝑑𝑑𝑑 [ 𝛾𝛾

(1+(𝑧𝑧′)2)
3
2

× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0              𝜂𝜂(𝑥𝑥1) = 0 ,     𝜂𝜂′(𝑥𝑥1) = 1          (3.6) 

has only one zero on the interval 𝑥𝑥1 ≤   𝑥𝑥 ≤ 𝑥𝑥0 . Hence the stability condition of Jacobi is 
verified.  

This result can be surprising and create the impression that a convex meniscus is stable. In fact, 
the result is that if a convex meniscus exist, then it is stable. For this reason in the following, we 
will establish necessary conditions for the existence of convex meniscus (see Fig.1.2.). 

Starting from equations (2.3) and  (2.5) it is easy to see that in hydrostatic approximation the 
pressure difference 𝑝𝑝 verify equalities: 

𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧                                                    (3.7) 

Using 𝑝𝑝 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 ,the boundary conditions 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 , 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐  

,with the Lagrange mean value theorem we obtain that there exists 𝑥𝑥′ in the interval [𝑥𝑥1, 𝑥𝑥2] 
such that  

𝑝𝑝 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥′) + 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′)                        (3.8) 

 

Since  𝛼𝛼(𝑥𝑥)  is strictly decreasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 

𝛼𝛼𝑐𝑐 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔                                                                       (3.9) 

sin (𝛼𝛼𝑔𝑔) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ cos (𝛼𝛼𝑐𝑐)                                                   (3.10) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                       (3.11) 

Using equality (3.8) and inequalities (3.9)-(3.11) in hydrostatic approximation, in case of the 
existence of s convex static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
following inequalities hold: 

−𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ ≤ −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 ≤ −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) +

𝜌𝜌 × 𝑔𝑔 × ℎ                                           (3.12) 

Therefore in case of convex meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where : 

                          𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ          and       𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ       (3.13) 

For 

Since  𝛼𝛼(𝑥𝑥)  is strictly increasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 
𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝛼𝛼𝑐𝑐                                                                                            (4.8) 

cos (𝛼𝛼𝑐𝑐) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ sin (𝛼𝛼𝑔𝑔)                                                                       (4.9) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                                              (4.10) 

Using equality (4.7) and inequalities (4.8)-(4.10) in hydrostatic approximation, in case of the 
existence of concave static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
following inequalities hold: 

  −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ ≤ −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 ≤ −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) +

𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                                             (4.11) 

Therefore in case of concave meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where: 

 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ,  𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 ×

𝑔𝑔 × ℎ                                                                                                                                      (4.12) 

For   𝑝𝑝 < −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ     and   for    𝑝𝑝 > −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
×

sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                              (4.13) 

concave meniscus like in Fig.1.3 does not exit. These regions of the pressure difference are 
regions of static instability .A meniscus obtained with  𝑝𝑝  in this region collapse. For 𝑝𝑝  
satisfying one of the inequalities (4.13) it is impossible to create experimentally a concave 
meniscus like in Fig.1.3. 

Retain that the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  can be controlled by the gas pressure 
𝑝𝑝𝑔𝑔 and the parameter  𝐻𝐻.  

In the following we will illustrate first, the existence of concave static meniscus in case of Ge 
assuming that ℎ = 0.00019[𝑚𝑚], 𝑥𝑥1 = 0.0001[𝑚𝑚], 𝑥𝑥0 = 0.0002[𝑚𝑚] and 𝛼𝛼𝑐𝑐 = 1.4[𝑟𝑟𝑟𝑟𝑟𝑟].This 
value of 𝛼𝛼𝑐𝑐 can be realized by choosing an appropriate material for shaper.  

In case of Germanium    𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 29.821049[𝑃𝑃𝑃𝑃]   and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = 59.582547 [𝑃𝑃𝑃𝑃] .It turns that 
integrating the initial value problem :  
𝑧𝑧′(𝑥𝑥) = −tan (𝛼𝛼(𝑥𝑥))  𝛼𝛼′(𝑥𝑥) = 𝑝𝑝−𝜌𝜌×𝑔𝑔×𝑥𝑥

𝛾𝛾 × 1
cos (𝛼𝛼(𝑥𝑥))  ;     𝑧𝑧(𝑥𝑥1) = ℎ = 0.00019  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼(𝑥𝑥1) =

1.361796327                         (4.14) 
for different values of 𝑝𝑝 ∈ [ 
29.821049,59.582547] 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. A 
typical solution of  (4.14) for  
 𝑝𝑝 ∈ [ 29.821049,59.582547]  is represented in the next figures, 

Since  𝛼𝛼(𝑥𝑥)  is strictly increasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 
𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝛼𝛼𝑐𝑐                                                                                            (4.8) 

cos (𝛼𝛼𝑐𝑐) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ sin (𝛼𝛼𝑔𝑔)                                                                       (4.9) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                                              (4.10) 

Using equality (4.7) and inequalities (4.8)-(4.10) in hydrostatic approximation, in case of the 
existence of concave static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
following inequalities hold: 

  −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ ≤ −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 ≤ −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) +

𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                                             (4.11) 

Therefore in case of concave meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where: 

 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ,  𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 ×

𝑔𝑔 × ℎ                                                                                                                                      (4.12) 

For   𝑝𝑝 < −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ     and   for    𝑝𝑝 > −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
×

sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                              (4.13) 

concave meniscus like in Fig.1.3 does not exit. These regions of the pressure difference are 
regions of static instability .A meniscus obtained with  𝑝𝑝  in this region collapse. For 𝑝𝑝  
satisfying one of the inequalities (4.13) it is impossible to create experimentally a concave 
meniscus like in Fig.1.3. 

Retain that the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  can be controlled by the gas pressure 
𝑝𝑝𝑔𝑔 and the parameter  𝐻𝐻.  

In the following we will illustrate first, the existence of concave static meniscus in case of Ge 
assuming that ℎ = 0.00019[𝑚𝑚], 𝑥𝑥1 = 0.0001[𝑚𝑚], 𝑥𝑥0 = 0.0002[𝑚𝑚] and 𝛼𝛼𝑐𝑐 = 1.4[𝑟𝑟𝑟𝑟𝑟𝑟].This 
value of 𝛼𝛼𝑐𝑐 can be realized by choosing an appropriate material for shaper.  

In case of Germanium    𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 29.821049[𝑃𝑃𝑃𝑃]   and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = 59.582547 [𝑃𝑃𝑃𝑃] .It turns that 
integrating the initial value problem :  
𝑧𝑧′(𝑥𝑥) = −tan (𝛼𝛼(𝑥𝑥))  𝛼𝛼′(𝑥𝑥) = 𝑝𝑝−𝜌𝜌×𝑔𝑔×𝑥𝑥

𝛾𝛾 × 1
cos (𝛼𝛼(𝑥𝑥))  ;     𝑧𝑧(𝑥𝑥1) = ℎ = 0.00019  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼(𝑥𝑥1) =

1.361796327                         (4.14) 
for different values of 𝑝𝑝 ∈ [ 
29.821049,59.582547] 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. A 
typical solution of  (4.14) for  
 𝑝𝑝 ∈ [ 29.821049,59.582547]  is represented in the next figures, 

Since  𝛼𝛼(𝑥𝑥)  is strictly increasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 
𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝛼𝛼𝑐𝑐                                                                                            (4.8) 

cos (𝛼𝛼𝑐𝑐) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ sin (𝛼𝛼𝑔𝑔)                                                                       (4.9) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                                              (4.10) 

Using equality (4.7) and inequalities (4.8)-(4.10) in hydrostatic approximation, in case of the 
existence of concave static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
following inequalities hold: 

  −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ ≤ −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 ≤ −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) +

𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                                             (4.11) 

Therefore in case of concave meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where: 

 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ,  𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 ×

𝑔𝑔 × ℎ                                                                                                                                      (4.12) 

For   𝑝𝑝 < −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ     and   for    𝑝𝑝 > −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
×

sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                              (4.13) 

concave meniscus like in Fig.1.3 does not exit. These regions of the pressure difference are 
regions of static instability .A meniscus obtained with  𝑝𝑝  in this region collapse. For 𝑝𝑝  
satisfying one of the inequalities (4.13) it is impossible to create experimentally a concave 
meniscus like in Fig.1.3. 

Retain that the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  can be controlled by the gas pressure 
𝑝𝑝𝑔𝑔 and the parameter  𝐻𝐻.  

In the following we will illustrate first, the existence of concave static meniscus in case of Ge 
assuming that ℎ = 0.00019[𝑚𝑚], 𝑥𝑥1 = 0.0001[𝑚𝑚], 𝑥𝑥0 = 0.0002[𝑚𝑚] and 𝛼𝛼𝑐𝑐 = 1.4[𝑟𝑟𝑟𝑟𝑟𝑟].This 
value of 𝛼𝛼𝑐𝑐 can be realized by choosing an appropriate material for shaper.  

In case of Germanium    𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 29.821049[𝑃𝑃𝑃𝑃]   and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = 59.582547 [𝑃𝑃𝑃𝑃] .It turns that 
integrating the initial value problem :  
𝑧𝑧′(𝑥𝑥) = −tan (𝛼𝛼(𝑥𝑥))  𝛼𝛼′(𝑥𝑥) = 𝑝𝑝−𝜌𝜌×𝑔𝑔×𝑥𝑥

𝛾𝛾 × 1
cos (𝛼𝛼(𝑥𝑥))  ;     𝑧𝑧(𝑥𝑥1) = ℎ = 0.00019  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼(𝑥𝑥1) =

1.361796327                         (4.14) 
for different values of 𝑝𝑝 ∈ [ 
29.821049,59.582547] 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. A 
typical solution of  (4.14) for  
 𝑝𝑝 ∈ [ 29.821049,59.582547]  is represented in the next figures, 

Since  𝛼𝛼(𝑥𝑥)  is strictly increasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 
𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝛼𝛼𝑐𝑐                                                                                            (4.8) 

cos (𝛼𝛼𝑐𝑐) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ sin (𝛼𝛼𝑔𝑔)                                                                       (4.9) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                                              (4.10) 

Using equality (4.7) and inequalities (4.8)-(4.10) in hydrostatic approximation, in case of the 
existence of concave static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
following inequalities hold: 

  −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ ≤ −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 ≤ −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) +

𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                                             (4.11) 

Therefore in case of concave meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where: 

 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ,  𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 ×

𝑔𝑔 × ℎ                                                                                                                                      (4.12) 

For   𝑝𝑝 < −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ     and   for    𝑝𝑝 > −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
×

sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                              (4.13) 

concave meniscus like in Fig.1.3 does not exit. These regions of the pressure difference are 
regions of static instability .A meniscus obtained with  𝑝𝑝  in this region collapse. For 𝑝𝑝  
satisfying one of the inequalities (4.13) it is impossible to create experimentally a concave 
meniscus like in Fig.1.3. 

Retain that the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  can be controlled by the gas pressure 
𝑝𝑝𝑔𝑔 and the parameter  𝐻𝐻.  

In the following we will illustrate first, the existence of concave static meniscus in case of Ge 
assuming that ℎ = 0.00019[𝑚𝑚], 𝑥𝑥1 = 0.0001[𝑚𝑚], 𝑥𝑥0 = 0.0002[𝑚𝑚] and 𝛼𝛼𝑐𝑐 = 1.4[𝑟𝑟𝑟𝑟𝑟𝑟].This 
value of 𝛼𝛼𝑐𝑐 can be realized by choosing an appropriate material for shaper.  

In case of Germanium    𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 29.821049[𝑃𝑃𝑃𝑃]   and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = 59.582547 [𝑃𝑃𝑃𝑃] .It turns that 
integrating the initial value problem :  
𝑧𝑧′(𝑥𝑥) = −tan (𝛼𝛼(𝑥𝑥))  𝛼𝛼′(𝑥𝑥) = 𝑝𝑝−𝜌𝜌×𝑔𝑔×𝑥𝑥

𝛾𝛾 × 1
cos (𝛼𝛼(𝑥𝑥))  ;     𝑧𝑧(𝑥𝑥1) = ℎ = 0.00019  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼(𝑥𝑥1) =

1.361796327                         (4.14) 
for different values of 𝑝𝑝 ∈ [ 
29.821049,59.582547] 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. A 
typical solution of  (4.14) for  
 𝑝𝑝 ∈ [ 29.821049,59.582547]  is represented in the next figures, 

Since  𝛼𝛼(𝑥𝑥)  is strictly increasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 
𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝛼𝛼𝑐𝑐                                                                                            (4.8) 

cos (𝛼𝛼𝑐𝑐) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ sin (𝛼𝛼𝑔𝑔)                                                                       (4.9) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                                              (4.10) 

Using equality (4.7) and inequalities (4.8)-(4.10) in hydrostatic approximation, in case of the 
existence of concave static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
following inequalities hold: 

  −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ ≤ −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 ≤ −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) +

𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                                             (4.11) 

Therefore in case of concave meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where: 

 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ,  𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 ×

𝑔𝑔 × ℎ                                                                                                                                      (4.12) 

For   𝑝𝑝 < −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ     and   for    𝑝𝑝 > −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
×

sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ                                                                                                              (4.13) 

concave meniscus like in Fig.1.3 does not exit. These regions of the pressure difference are 
regions of static instability .A meniscus obtained with  𝑝𝑝  in this region collapse. For 𝑝𝑝  
satisfying one of the inequalities (4.13) it is impossible to create experimentally a concave 
meniscus like in Fig.1.3. 

Retain that the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  can be controlled by the gas pressure 
𝑝𝑝𝑔𝑔 and the parameter  𝐻𝐻.  

In the following we will illustrate first, the existence of concave static meniscus in case of Ge 
assuming that ℎ = 0.00019[𝑚𝑚], 𝑥𝑥1 = 0.0001[𝑚𝑚], 𝑥𝑥0 = 0.0002[𝑚𝑚] and 𝛼𝛼𝑐𝑐 = 1.4[𝑟𝑟𝑟𝑟𝑟𝑟].This 
value of 𝛼𝛼𝑐𝑐 can be realized by choosing an appropriate material for shaper.  

In case of Germanium    𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 29.821049[𝑃𝑃𝑃𝑃]   and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = 59.582547 [𝑃𝑃𝑃𝑃] .It turns that 
integrating the initial value problem :  
𝑧𝑧′(𝑥𝑥) = −tan (𝛼𝛼(𝑥𝑥))  𝛼𝛼′(𝑥𝑥) = 𝑝𝑝−𝜌𝜌×𝑔𝑔×𝑥𝑥

𝛾𝛾 × 1
cos (𝛼𝛼(𝑥𝑥))  ;     𝑧𝑧(𝑥𝑥1) = ℎ = 0.00019  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼(𝑥𝑥1) =

1.361796327                         (4.14) 
for different values of 𝑝𝑝 ∈ [ 
29.821049,59.582547] 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. A 
typical solution of  (4.14) for  
 𝑝𝑝 ∈ [ 29.821049,59.582547]  is represented in the next figures, 
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Fig.4.1. 𝑧𝑧(𝑥𝑥) for 𝑝𝑝 = 59[𝑃𝑃𝑃𝑃], ℎ = 0.00019             Fig.4.2.  𝛼𝛼(𝑥𝑥) for 𝑝𝑝 = 59[𝑃𝑃𝑃𝑃], ℎ = 0.00019 
 
The computed figures show that none of the conditions 𝑧𝑧(𝑥𝑥0)=0[m], 𝛼𝛼(𝑥𝑥0) = 1.4[𝑃𝑃𝑃𝑃] is 
fulfilled. Therefore for 𝑝𝑝 ∈ [ 29.821049,59.582547][𝑃𝑃𝑃𝑃] with the prior giving data a concave 
meniscus like on Fig.1.3. can not be created.Since for 𝑝𝑝 < 29.821049  and 𝑝𝑝 > 59.582547 
concave meniscus like in Fig.1.3.does not exist (see (4.13) it follows that for the above prior 
given data concave meniscus can not be created experimentally. 
 
In the same time  Fig.4.1.and Fig.4.2. suggest that increasing the level of the crystallization front 
ℎ creation of a concave meniscus like in Fig.1.3. wood be possible.In order to verify the true 
value of this impression we assume that ℎ = 2 × 10−3[𝑚𝑚] and we compute the corresponding 
range [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] We find  
[𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] =[-69.613111,159.016207][Pa].This range is larger than that obtained  for ℎ =
0.00019[𝑚𝑚]. Integrating the initial value problem :  
𝑧𝑧′(𝑥𝑥) = −tan (𝛼𝛼(𝑥𝑥)) , 𝛼𝛼′(𝑥𝑥) = 𝑝𝑝−𝜌𝜌×𝑔𝑔×𝑥𝑥

𝛾𝛾 × 1
cos (𝛼𝛼(𝑥𝑥))  ;     𝑧𝑧(𝑥𝑥1) = ℎ = 2 ×

10−3[𝑚𝑚]  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼(𝑥𝑥1) = 1.361796327[𝑟𝑟𝑟𝑟𝑟𝑟]                         (4.15) 
for 𝑝𝑝 ∈[-69.613111,159.016207]Pa]  the following result is found:there exist a concave meniscus 
for 𝑝𝑝 = 141[𝑃𝑃𝑃𝑃] . 
 The meniscus 𝑧𝑧(𝑥𝑥) and the angle 𝛼𝛼(𝑥𝑥)  are represented in the next figures:         

                                                                          

Fig.4.3 𝑧𝑧(𝑥𝑥) for 𝑝𝑝 = 141[𝑃𝑃𝑃𝑃], ℎ = 2 × 10−3[𝑚𝑚]            Fig.4.4.  𝛼𝛼(𝑥𝑥) for , ℎ = 2 × 10−3[𝑚𝑚] 
This meniscus exist, it is stable and can be created experimentally. 

For 𝑝𝑝 < −69.613111[Pa]     and    𝑝𝑝 > 159.016207[Pa] concave static menisc does not 
exit.Therefore can not be created experimentally. 

A meniscus 𝑧𝑧(𝑥𝑥) and 𝛼𝛼(𝑥𝑥)  obtained for 𝑝𝑝 = −71[𝑃𝑃𝑃𝑃] are presented in the next figures: 

                                                                             
    
Fig.4.1. 𝑧𝑧(𝑥𝑥) for 𝑝𝑝 = 59[𝑃𝑃𝑃𝑃], ℎ = 0.00019             Fig.4.2.  𝛼𝛼(𝑥𝑥) for 𝑝𝑝 = 59[𝑃𝑃𝑃𝑃], ℎ = 0.00019 
 
The computed figures show that none of the conditions 𝑧𝑧(𝑥𝑥0)=0[m], 𝛼𝛼(𝑥𝑥0) = 1.4[𝑃𝑃𝑃𝑃] is 
fulfilled. Therefore for 𝑝𝑝 ∈ [ 29.821049,59.582547][𝑃𝑃𝑃𝑃] with the prior giving data a concave 
meniscus like on Fig.1.3. can not be created.Since for 𝑝𝑝 < 29.821049  and 𝑝𝑝 > 59.582547 
concave meniscus like in Fig.1.3.does not exist (see (4.13) it follows that for the above prior 
given data concave meniscus can not be created experimentally. 
 
In the same time  Fig.4.1.and Fig.4.2. suggest that increasing the level of the crystallization front 
ℎ creation of a concave meniscus like in Fig.1.3. wood be possible.In order to verify the true 
value of this impression we assume that ℎ = 2 × 10−3[𝑚𝑚] and we compute the corresponding 
range [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] We find  
[𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] =[-69.613111,159.016207][Pa].This range is larger than that obtained  for ℎ =
0.00019[𝑚𝑚]. Integrating the initial value problem :  
𝑧𝑧′(𝑥𝑥) = −tan (𝛼𝛼(𝑥𝑥)) , 𝛼𝛼′(𝑥𝑥) = 𝑝𝑝−𝜌𝜌×𝑔𝑔×𝑥𝑥

𝛾𝛾 × 1
cos (𝛼𝛼(𝑥𝑥))  ;     𝑧𝑧(𝑥𝑥1) = ℎ = 2 ×

10−3[𝑚𝑚]  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼(𝑥𝑥1) = 1.361796327[𝑟𝑟𝑟𝑟𝑟𝑟]                         (4.15) 
for 𝑝𝑝 ∈[-69.613111,159.016207]Pa]  the following result is found:there exist a concave meniscus 
for 𝑝𝑝 = 141[𝑃𝑃𝑃𝑃] . 
 The meniscus 𝑧𝑧(𝑥𝑥) and the angle 𝛼𝛼(𝑥𝑥)  are represented in the next figures:         

                                                                          

Fig.4.3 𝑧𝑧(𝑥𝑥) for 𝑝𝑝 = 141[𝑃𝑃𝑃𝑃], ℎ = 2 × 10−3[𝑚𝑚]            Fig.4.4.  𝛼𝛼(𝑥𝑥) for , ℎ = 2 × 10−3[𝑚𝑚] 
This meniscus exist, it is stable and can be created experimentally. 

For 𝑝𝑝 < −69.613111[Pa]     and    𝑝𝑝 > 159.016207[Pa] concave static menisc does not 
exit.Therefore can not be created experimentally. 

A meniscus 𝑧𝑧(𝑥𝑥) and 𝛼𝛼(𝑥𝑥)  obtained for 𝑝𝑝 = −71[𝑃𝑃𝑃𝑃] are presented in the next figures: 

Figure: 4.1 z(x) for p = 59(Pa), h = 0.00019
Figure: 4.2 α(x) for p = 59(Pa), h = 0.00019

The computed figures show that none of the conditions z(x0) = 0[m], α (x0) = 1.4[Pa] is fulfilled. Therefore for                                                                                          
                   with the prior giving data a concave meniscus like on Figure.1.3. can not be created.Since for p < 29.821049 and p > 59.582547 
concave meniscus like in Figure.1.3.does not exist (see (4.13) it follows that for the above prior given data concave meniscus can not 
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For 𝑝𝑝 < −69.613111[Pa]     and    𝑝𝑝 > 159.016207[Pa] concave static menisc does not 
exit.Therefore can not be created experimentally. 

A meniscus 𝑧𝑧(𝑥𝑥) and 𝛼𝛼(𝑥𝑥)  obtained for 𝑝𝑝 = −71[𝑃𝑃𝑃𝑃] are presented in the next figures: 

                                                                             
    
Fig.4.1. 𝑧𝑧(𝑥𝑥) for 𝑝𝑝 = 59[𝑃𝑃𝑃𝑃], ℎ = 0.00019             Fig.4.2.  𝛼𝛼(𝑥𝑥) for 𝑝𝑝 = 59[𝑃𝑃𝑃𝑃], ℎ = 0.00019 
 
The computed figures show that none of the conditions 𝑧𝑧(𝑥𝑥0)=0[m], 𝛼𝛼(𝑥𝑥0) = 1.4[𝑃𝑃𝑃𝑃] is 
fulfilled. Therefore for 𝑝𝑝 ∈ [ 29.821049,59.582547][𝑃𝑃𝑃𝑃] with the prior giving data a concave 
meniscus like on Fig.1.3. can not be created.Since for 𝑝𝑝 < 29.821049  and 𝑝𝑝 > 59.582547 
concave meniscus like in Fig.1.3.does not exist (see (4.13) it follows that for the above prior 
given data concave meniscus can not be created experimentally. 
 
In the same time  Fig.4.1.and Fig.4.2. suggest that increasing the level of the crystallization front 
ℎ creation of a concave meniscus like in Fig.1.3. wood be possible.In order to verify the true 
value of this impression we assume that ℎ = 2 × 10−3[𝑚𝑚] and we compute the corresponding 
range [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] We find  
[𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] =[-69.613111,159.016207][Pa].This range is larger than that obtained  for ℎ =
0.00019[𝑚𝑚]. Integrating the initial value problem :  
𝑧𝑧′(𝑥𝑥) = −tan (𝛼𝛼(𝑥𝑥)) , 𝛼𝛼′(𝑥𝑥) = 𝑝𝑝−𝜌𝜌×𝑔𝑔×𝑥𝑥

𝛾𝛾 × 1
cos (𝛼𝛼(𝑥𝑥))  ;     𝑧𝑧(𝑥𝑥1) = ℎ = 2 ×

10−3[𝑚𝑚]  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼(𝑥𝑥1) = 1.361796327[𝑟𝑟𝑟𝑟𝑟𝑟]                         (4.15) 
for 𝑝𝑝 ∈[-69.613111,159.016207]Pa]  the following result is found:there exist a concave meniscus 
for 𝑝𝑝 = 141[𝑃𝑃𝑃𝑃] . 
 The meniscus 𝑧𝑧(𝑥𝑥) and the angle 𝛼𝛼(𝑥𝑥)  are represented in the next figures:         

                                                                          

Fig.4.3 𝑧𝑧(𝑥𝑥) for 𝑝𝑝 = 141[𝑃𝑃𝑃𝑃], ℎ = 2 × 10−3[𝑚𝑚]            Fig.4.4.  𝛼𝛼(𝑥𝑥) for , ℎ = 2 × 10−3[𝑚𝑚] 
This meniscus exist, it is stable and can be created experimentally. 

For 𝑝𝑝 < −69.613111[Pa]     and    𝑝𝑝 > 159.016207[Pa] concave static menisc does not 
exit.Therefore can not be created experimentally. 

A meniscus 𝑧𝑧(𝑥𝑥) and 𝛼𝛼(𝑥𝑥)  obtained for 𝑝𝑝 = −71[𝑃𝑃𝑃𝑃] are presented in the next figures: 

                                                                             
    
Fig.4.1. 𝑧𝑧(𝑥𝑥) for 𝑝𝑝 = 59[𝑃𝑃𝑃𝑃], ℎ = 0.00019             Fig.4.2.  𝛼𝛼(𝑥𝑥) for 𝑝𝑝 = 59[𝑃𝑃𝑃𝑃], ℎ = 0.00019 
 
The computed figures show that none of the conditions 𝑧𝑧(𝑥𝑥0)=0[m], 𝛼𝛼(𝑥𝑥0) = 1.4[𝑃𝑃𝑃𝑃] is 
fulfilled. Therefore for 𝑝𝑝 ∈ [ 29.821049,59.582547][𝑃𝑃𝑃𝑃] with the prior giving data a concave 
meniscus like on Fig.1.3. can not be created.Since for 𝑝𝑝 < 29.821049  and 𝑝𝑝 > 59.582547 
concave meniscus like in Fig.1.3.does not exist (see (4.13) it follows that for the above prior 
given data concave meniscus can not be created experimentally. 
 
In the same time  Fig.4.1.and Fig.4.2. suggest that increasing the level of the crystallization front 
ℎ creation of a concave meniscus like in Fig.1.3. wood be possible.In order to verify the true 
value of this impression we assume that ℎ = 2 × 10−3[𝑚𝑚] and we compute the corresponding 
range [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] We find  
[𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] =[-69.613111,159.016207][Pa].This range is larger than that obtained  for ℎ =
0.00019[𝑚𝑚]. Integrating the initial value problem :  
𝑧𝑧′(𝑥𝑥) = −tan (𝛼𝛼(𝑥𝑥)) , 𝛼𝛼′(𝑥𝑥) = 𝑝𝑝−𝜌𝜌×𝑔𝑔×𝑥𝑥

𝛾𝛾 × 1
cos (𝛼𝛼(𝑥𝑥))  ;     𝑧𝑧(𝑥𝑥1) = ℎ = 2 ×

10−3[𝑚𝑚]  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼(𝑥𝑥1) = 1.361796327[𝑟𝑟𝑟𝑟𝑟𝑟]                         (4.15) 
for 𝑝𝑝 ∈[-69.613111,159.016207]Pa]  the following result is found:there exist a concave meniscus 
for 𝑝𝑝 = 141[𝑃𝑃𝑃𝑃] . 
 The meniscus 𝑧𝑧(𝑥𝑥) and the angle 𝛼𝛼(𝑥𝑥)  are represented in the next figures:         

                                                                          

Fig.4.3 𝑧𝑧(𝑥𝑥) for 𝑝𝑝 = 141[𝑃𝑃𝑃𝑃], ℎ = 2 × 10−3[𝑚𝑚]            Fig.4.4.  𝛼𝛼(𝑥𝑥) for , ℎ = 2 × 10−3[𝑚𝑚] 
This meniscus exist, it is stable and can be created experimentally. 

For 𝑝𝑝 < −69.613111[Pa]     and    𝑝𝑝 > 159.016207[Pa] concave static menisc does not 
exit.Therefore can not be created experimentally. 

A meniscus 𝑧𝑧(𝑥𝑥) and 𝛼𝛼(𝑥𝑥)  obtained for 𝑝𝑝 = −71[𝑃𝑃𝑃𝑃] are presented in the next figures: 

Figure: 4.3 z(x) for p = 141(Pa), h = 2 × 10-3[m] Figure: 4.4 α(x) for, h = 2 × 10-3[m]



J Sen Net Data Comm, 2025 Volume 5 | Issue 2 | 10

This meniscus exist, it is stable and can be created experimentally.

For p < − 69.313111[Pa] and p < − 159.0.16207[Pa] concave static menisc does not exit.Therefore can not be created experimentally.

A meniscus z(x) and α(x) obtained for p = −71[Pa] are presented in the next figures:

                                                                              

Fig.4.5.𝑧𝑧(𝑥𝑥) for 𝑝𝑝 = −71[𝑃𝑃𝑃𝑃], ℎ = 2 × 10−3[𝑚𝑚]              Fig.4.6.  𝛼𝛼(𝑥𝑥) for , ℎ = 2 × 10−3[𝑚𝑚] 

A meniscus shape 𝑧𝑧(𝑥𝑥) and 𝛼𝛼(𝑥𝑥)  obtained for 𝑝𝑝 = 161[𝑃𝑃𝑃𝑃] and ℎ = 2 × 10−3[𝑚𝑚]are 
represented in the next figures: 

                                                                               

Fig.4.7 𝑧𝑧(𝑥𝑥) for 𝑝𝑝 = 161[𝑃𝑃𝑃𝑃], ℎ = 2 × 10−3[𝑚𝑚]               Fig.4.8.  𝛼𝛼(𝑥𝑥) for , ℎ = 2 × 10−3[𝑚𝑚] 
 

Note that experimentally the increase of the crystallization front ℎ from  ℎ = 0.00019[𝑚𝑚]  to ℎ =
2 × 10−3[𝑚𝑚] imply modification of the thermal field. 

Remember that in hydrostatic approximation 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  .This relation can be used for 
the control of 𝑝𝑝  via 𝑝𝑝𝑔𝑔 and 𝐻𝐻. 

For example if 𝑝𝑝 = 141[𝑃𝑃𝑃𝑃] then 141[𝑃𝑃𝑃𝑃] = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  and for a given gas pressure 𝑝𝑝𝑔𝑔 

we can find 𝐻𝐻, namely 𝐻𝐻 = 141−𝑝𝑝𝑔𝑔
𝜌𝜌×𝑔𝑔 .For instance if 𝑝𝑝𝑔𝑔 = 100[𝑃𝑃𝑃𝑃] we have 𝐻𝐻 = 41

𝜌𝜌×𝑔𝑔= 

0.0007463229940[m].This means that the crucible melt level is under the shaper top level with 
0.0007463229940[m]. 

If 𝑝𝑝 = −71[𝑃𝑃𝑃𝑃]  and 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] then 𝐻𝐻 = −271
𝜌𝜌×𝑔𝑔 = [𝑚𝑚] 

This means that the shaper top level is under the  crucible melt level with [m]. 
If 𝑝𝑝 = 161[𝑃𝑃𝑃𝑃]  and 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] then 𝐻𝐻 = 161−200

𝜌𝜌×𝑔𝑔 = −39
𝜌𝜌×𝑔𝑔 = [𝑚𝑚] .This means 

that the shaper top level is under the crucible melt level with [m]. 
5.Results. Necessary conditions for the existence and sufficient conditions for the stability or 
instability of the static meniscus (liquid bridge) appearing in the ribbon single crystal growth from 
the melt, of predetermined sizes, by using the edge-defined-film- fed (EFG) growth method, are 
presented. Theoretical results are illustrated numerically in case of Germanium ribbon growth. 
 
6. Comments and Conclusions. The main novelty in this article consists in the obtained 
inequalities. These represent limits for what can and cannot be achieved. Experimentally, only 
stable static liquid bridges can be created if they exist theoretically. Unstable static liquid bridges 
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represented in the next figures: 
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Figure: 4.5 z(x) for p = - 71[Pa], h = 2 × 10-3[m]

Figure: 4.7 z(x) for p = 161[Pa], h = 2 × 10-3[m]

Figure: 4.6 α(x) for, h = 2 × 10-3[m]

A meniscus shape z(x) and α(x) obtained for p = 161[Pa] and h = 2 × 10-3[m] are represented in the next figures:
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presented. Theoretical results are illustrated numerically in case of Germanium ribbon growth. 
 
6. Comments and Conclusions. The main novelty in this article consists in the obtained 
inequalities. These represent limits for what can and cannot be achieved. Experimentally, only 
stable static liquid bridges can be created if they exist theoretically. Unstable static liquid bridges 

Figure: 4.8 α(x) for, h = 2 × 10-3[m]

Note that experimentally the increase of the crystallization front h from h = 0.00019[m] to h = 2 × 10-3 imply modification of the thermal 
field.
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For example if p = 141[Pa] = − pg −    × g × H  then  and for a given gas pressure pg we can find H, namely                      .For instance 
if pg = 100[Pa]  we have           = 0.0007463229940[m].This means that the crucible melt level is under the shaper top level with 
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× 𝜂𝜂′] − 𝑔𝑔 × 𝜌𝜌 × 𝜂𝜂 = 0              𝜂𝜂(𝑥𝑥1) = 0 ,     𝜂𝜂′(𝑥𝑥1) = 1          (3.6) 

has only one zero on the interval 𝑥𝑥1 ≤   𝑥𝑥 ≤ 𝑥𝑥0 . Hence the stability condition of Jacobi is 
verified.  

This result can be surprising and create the impression that a convex meniscus is stable. In fact, 
the result is that if a convex meniscus exist, then it is stable. For this reason in the following, we 
will establish necessary conditions for the existence of convex meniscus (see Fig.1.2.). 

Starting from equations (2.3) and  (2.5) it is easy to see that in hydrostatic approximation the 
pressure difference 𝑝𝑝 verify equalities: 

𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧                                                    (3.7) 

Using 𝑝𝑝 = 𝛾𝛾 × 𝛼𝛼′ × 𝑐𝑐𝑐𝑐𝑐𝑐 ∝ +𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧 ,the boundary conditions 𝛼𝛼(𝑥𝑥1) = 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔 , 𝛼𝛼(𝑥𝑥0) = 𝛼𝛼𝑐𝑐  

,with the Lagrange mean value theorem we obtain that there exists 𝑥𝑥′ in the interval [𝑥𝑥1, 𝑥𝑥2] 
such that  

𝑝𝑝 = −𝛾𝛾 ×
𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥′) + 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′)                        (3.8) 

 

Since  𝛼𝛼(𝑥𝑥)  is strictly decreasing  on the interval [𝑥𝑥1, 𝑥𝑥2] the following inequalities hold: 

𝛼𝛼𝑐𝑐 ≤ 𝛼𝛼(𝑥𝑥′) ≤ 𝜋𝜋
2 − 𝛼𝛼𝑔𝑔                                                                       (3.9) 

sin (𝛼𝛼𝑔𝑔) ≤ cos (𝛼𝛼(𝑥𝑥′)) ≤ cos (𝛼𝛼𝑐𝑐)                                                   (3.10) 

−𝜌𝜌 × 𝑔𝑔 × ℎ ≤ 𝜌𝜌 × 𝑔𝑔 × 𝑧𝑧(𝑥𝑥′) ≤ 𝜌𝜌 × 𝑔𝑔 × ℎ                                       (3.11) 

Using equality (3.8) and inequalities (3.9)-(3.11) in hydrostatic approximation, in case of the 
existence of s convex static meniscus, for the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻 the 
following inequalities hold: 

−𝛾𝛾 ×
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𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) +

𝜌𝜌 × 𝑔𝑔 × ℎ                                           (3.12) 

Therefore in case of convex meniscus the values of the pressure difference 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 ×
𝐻𝐻  has to be researched in the interval [𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡] where : 
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× cos(𝛼𝛼𝑐𝑐) − 𝜌𝜌 × 𝑔𝑔 × ℎ          and       𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = −𝛾𝛾 ×

𝜋𝜋
2−(𝛼𝛼𝑐𝑐+𝛼𝛼𝑔𝑔)

𝑥𝑥0−𝑥𝑥1
× sin(𝛼𝛼𝑔𝑔) + 𝜌𝜌 × 𝑔𝑔 × ℎ       (3.13) 
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Fig.4.5.𝑧𝑧(𝑥𝑥) for 𝑝𝑝 = −71[𝑃𝑃𝑃𝑃], ℎ = 2 × 10−3[𝑚𝑚]              Fig.4.6.  𝛼𝛼(𝑥𝑥) for , ℎ = 2 × 10−3[𝑚𝑚] 

A meniscus shape 𝑧𝑧(𝑥𝑥) and 𝛼𝛼(𝑥𝑥)  obtained for 𝑝𝑝 = 161[𝑃𝑃𝑃𝑃] and ℎ = 2 × 10−3[𝑚𝑚]are 
represented in the next figures: 

                                                                               

Fig.4.7 𝑧𝑧(𝑥𝑥) for 𝑝𝑝 = 161[𝑃𝑃𝑃𝑃], ℎ = 2 × 10−3[𝑚𝑚]               Fig.4.8.  𝛼𝛼(𝑥𝑥) for , ℎ = 2 × 10−3[𝑚𝑚] 
 

Note that experimentally the increase of the crystallization front ℎ from  ℎ = 0.00019[𝑚𝑚]  to ℎ =
2 × 10−3[𝑚𝑚] imply modification of the thermal field. 

Remember that in hydrostatic approximation 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  .This relation can be used for 
the control of 𝑝𝑝  via 𝑝𝑝𝑔𝑔 and 𝐻𝐻. 

For example if 𝑝𝑝 = 141[𝑃𝑃𝑃𝑃] then 141[𝑃𝑃𝑃𝑃] = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  and for a given gas pressure 𝑝𝑝𝑔𝑔 

we can find 𝐻𝐻, namely 𝐻𝐻 = 141−𝑝𝑝𝑔𝑔
𝜌𝜌×𝑔𝑔 .For instance if 𝑝𝑝𝑔𝑔 = 100[𝑃𝑃𝑃𝑃] we have 𝐻𝐻 = 41

𝜌𝜌×𝑔𝑔= 

0.0007463229940[m].This means that the crucible melt level is under the shaper top level with 
0.0007463229940[m]. 

If 𝑝𝑝 = −71[𝑃𝑃𝑃𝑃]  and 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] then 𝐻𝐻 = −271
𝜌𝜌×𝑔𝑔 = [𝑚𝑚] 

This means that the shaper top level is under the  crucible melt level with [m]. 
If 𝑝𝑝 = 161[𝑃𝑃𝑃𝑃]  and 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] then 𝐻𝐻 = 161−200

𝜌𝜌×𝑔𝑔 = −39
𝜌𝜌×𝑔𝑔 = [𝑚𝑚] .This means 

that the shaper top level is under the crucible melt level with [m]. 
5.Results. Necessary conditions for the existence and sufficient conditions for the stability or 
instability of the static meniscus (liquid bridge) appearing in the ribbon single crystal growth from 
the melt, of predetermined sizes, by using the edge-defined-film- fed (EFG) growth method, are 
presented. Theoretical results are illustrated numerically in case of Germanium ribbon growth. 
 
6. Comments and Conclusions. The main novelty in this article consists in the obtained 
inequalities. These represent limits for what can and cannot be achieved. Experimentally, only 
stable static liquid bridges can be created if they exist theoretically. Unstable static liquid bridges 
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If  p = − 71[Pa] and pg = 200[Pa] then

This means that the shaper top level is under the crucible melt level with − 0.00493301295[m].

If p = 161[Pa] and pg = 200[Pa] then                                                                .This means that the shaper top level is under the crucible 
melt level with − 0.000709916994[m].

5. Results
Necessary conditions for the existence and sufficient conditions for the stability or instability of the static meniscus (liquid bridge) 
appearing in the ribbon single crystal growth from the melt, of predetermined sizes, by using the edge-defined-film- fed (EFG) growth 
method, are presented. Theoretical results are illustrated numerically in case of Germanium ribbon growth.

6. Comments and Conclusions
The main novelty in this article consists in the obtained inequalities. These represent limits for what can and cannot be achieved. 
Experimentally, only stable static liquid bridges can be created if they exist theoretically. Unstable static liquid bridges could exist just 
in theory; in reality, they collapse; therefore, they are not appropriate for crystal growth [6,7].
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Note that experimentally the increase of the crystallization front ℎ from  ℎ = 0.00019[𝑚𝑚]  to ℎ =
2 × 10−3[𝑚𝑚] imply modification of the thermal field. 

Remember that in hydrostatic approximation 𝑝𝑝 = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  .This relation can be used for 
the control of 𝑝𝑝  via 𝑝𝑝𝑔𝑔 and 𝐻𝐻. 

For example if 𝑝𝑝 = 141[𝑃𝑃𝑃𝑃] then 141[𝑃𝑃𝑃𝑃] = −𝑝𝑝𝑔𝑔 − 𝜌𝜌 × 𝑔𝑔 × 𝐻𝐻  and for a given gas pressure 𝑝𝑝𝑔𝑔 

we can find 𝐻𝐻, namely 𝐻𝐻 = 141−𝑝𝑝𝑔𝑔
𝜌𝜌×𝑔𝑔 .For instance if 𝑝𝑝𝑔𝑔 = 100[𝑃𝑃𝑃𝑃] we have 𝐻𝐻 = 41

𝜌𝜌×𝑔𝑔= 

0.0007463229940[m].This means that the crucible melt level is under the shaper top level with 
0.0007463229940[m]. 

If 𝑝𝑝 = −71[𝑃𝑃𝑃𝑃]  and 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] then 𝐻𝐻 = −271
𝜌𝜌×𝑔𝑔 = [𝑚𝑚] 

This means that the shaper top level is under the  crucible melt level with [m]. 
If 𝑝𝑝 = 161[𝑃𝑃𝑃𝑃]  and 𝑝𝑝𝑔𝑔 = 200[𝑃𝑃𝑃𝑃] then 𝐻𝐻 = 161−200

𝜌𝜌×𝑔𝑔 = −39
𝜌𝜌×𝑔𝑔 = [𝑚𝑚] .This means 

that the shaper top level is under the crucible melt level with [m]. 
5.Results. Necessary conditions for the existence and sufficient conditions for the stability or 
instability of the static meniscus (liquid bridge) appearing in the ribbon single crystal growth from 
the melt, of predetermined sizes, by using the edge-defined-film- fed (EFG) growth method, are 
presented. Theoretical results are illustrated numerically in case of Germanium ribbon growth. 
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