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Abstract
This study introduces a simple yet effective method for identifying similar data points across non-free text domains, such as 
tabular and image data, using Large Language Models (LLMs). Our two-step approach involves data point summarization 
and hidden state extraction. Initially, data is condensed via summarization using an LLM, reducing complexity and 
highlighting essential information in sentences. Subsequently, the summarization sentences are fed through another LLM to 
extract hidden states, serving as compact, feature-rich representations. This approach leverages the advanced comprehension 
and generative capabilities of LLMs, offering a scalable and efficient strategy for similarity identification across diverse 
datasets. We demonstrate the effectiveness of our method in identifying similar data points on multiple datasets. Additionally, 
our approach enables non-technical domain experts, such as fraud investigators or marketing operators, to quickly identify 
similar data points tailored to specific scenarios, demonstrating its utility in practical applications. In general, our results 
open new avenues for leveraging LLMs in data analysis across various domains.

Journal of Electrical Electronics Engineering
ISSN: 2834-4928 

1Ohio University, Athens, OH 45701 USA

2Cameo Shell InsightfulAI LLC, Allen, TX 75013

3Rutgers University, New Brunswick, NJ 08901

Keywords: Large Language Model, Data Representation, Machine Learning

1. Introduction
In the ever-evolving landscape of data science, the task of 
identifying similar data points stands as a cornerstone of numerous 
advanced applications, from refining the precision of search 
engines and enhancing recommendation systems to streamlining 
processes of data deduplication and anomaly detection. This 
critical function underpins the development and efficiency of 
machine learning models, influencing their performance and 
applicability across diverse domains such as healthcare, finance, 
housing, and e-commerce. However, the digital era's exponential 
growth in data generation has introduced significant challenges. 
The vast volumes of data, coupled with its increasing complexity 
and variety, including structured, unstructured, tabular, and 
image data, demand innovative approaches that transcend 
traditional data analysis methods. These challenges are further 
amplified by the necessity for scalable, efficient, and accurate 
techniques to manage and analyze this data deluge, highlighting 
the urgent need for novel methodologies that can adeptly handle 
the intricacies of similarity identification in such a multifaceted 
data environment.

Traditional methods for identifying similar data points, such 
as clustering algorithms, nearest neighbor searches, and 

multidimensional scaling, while foundational, often grapple 
with the limitations imposed by the scale and diversity of 
contemporary datasets. These approaches typically require 
extensive preprocessing and feature engineering efforts, 
especially when dealing with non-textual data types, which can 
be both time-consuming and resource-intensive. Moreover, their 
effectiveness diminishes as the dimensionality and complexity 
of the data increase, leading to scalability issues and a decline in 
accuracy. In the context of non-free text domains, such as tabular 
data and images, the challenge is further compounded. The 
intrinsic characteristics of these data types necessitate a more 
nuanced understanding and representation of data to facilitate 
meaningful similarity identification. As a result, there is a 
pressing need for innovative solutions that can accommodate 
the rich diversity of data forms and scales, enabling efficient 
and effective identification of similar data points without the 
burdensome requirements of traditional methodologies.

Enter Large Language Models (LLMs), a revolutionary stride 
in artificial intelligence that offers a promising solution to 
these challenges. LLMs, with their advanced comprehension 
and generative capabilities, have demonstrated unprecedented 
success in understanding and generating human-like text. Their 
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architecture, designed to process vast amounts of information 
and learn nuanced patterns within, makes them particularly adept 
at handling a wide range of data types beyond mere text. This 
adaptability stems from their ability to abstract and contextualize 
information, allowing for the processing of tabular data, images, 
and more through natural language-like representations. By 
leveraging LLMs, we can transcend traditional barriers in data 
analysis, utilizing their robust, pre-trained models to perform 
tasks such as summarization, translation, and even sentiment 
analysis across various data modalities. The potential of LLMs 
to revolutionize the identification of similar data points lies not 
just in their scalability and efficiency but also in their capacity to 
provide deeper insights into the data, paving the way for more 
sophisticated and nuanced approaches to understanding and 
leveraging data similarity.

Building on the foundational capabilities of Large Language 
Models (LLMs), our study introduces a novel, two-step 
approach designed to harness their power for identifying similar 
data points across diverse, non-free text domains such as tabular 
and image data. The first step of our methodology involves 
the use of an LLM to generate summarizations of data points. 
This process effectively reduces the complexity of the data, 
distilling it into its most essential features and information in 
a natural language format that is inherently more manageable 
for analysis. Following this, we employ another LLM to process 
these summarizations, extracting hidden state representations. 
These representations serve as compact yet rich, feature vectors 
that encapsulate the essence of the data points. By leveraging 

these advanced neural network capabilities, our approach not 
only simplifies the data but also enriches the analysis, enabling 
a scalable and efficient strategy for identifying similarities. This 
innovative method underscores the versatility and potential of 
LLMs in data analysis, offering a groundbreaking solution to the 
challenges posed by the multifaceted nature of modern datasets. 
By simplifying the process of identifying similar data points 
through LLM-driven summarization and hidden state extraction, 
our approach democratizes access to advanced data analysis 
techniques. This accessibility empowers professionals across 
various fields, from fraud investigators in finance to marketing 
strategists in retail, enabling them to pinpoint relevant data 
patterns and insights without deep technical expertise in data 
science or machine learning. In summary, the key contributions 
of our paper are as follows:
● We introduce a novel two-step approach leveraging LLMs for 
summarization and hidden state extraction to identify similar 
data points, effectively bridging the gap between complex 
datasets and actionable insights.
● By reducing data complexity through summarization before 
extracting dense, feature-rich representations, our approach 
offers a scalable and efficient solution for analyzing large 
datasets. Empowers domain experts without deep technical 
backgrounds, enabling them to leverage advanced data analysis 
techniques for informed decision-making.
● In our experiments, we demonstrated the effectiveness of our 
method, which paves the way for further exploration into the 
capabilities of LLMs in data analysis and beyond, offering a rich 
avenue for future innovation.
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Figure 1. A high-level illustration of our proposed method. A) For a point-of-interest (green star) 
in the dataset, B) our method first leverages an summarization LLM to extract the data profile 
based on human’s interest, another embedding LLM is then applied to extract the hidden state 
of the data point, C) example illustration in the image dataset, D) example illustration in the 
tableau dataset. 
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The remainder of this paper is structured to systematically 
explore and substantiate our findings. Section 2 explores related 
work, offering a review of existing methodologies for identifying 
similar data points and the role of Large Language Models 
(LLMs) in data analysis, establishing the foundation upon which 
our research builds. Section 3 introduces our innovative two-
step methodology, detailing the process of data summarization 
and hidden state extraction using LLMs and elucidating the 
theoretical underpinnings and practical applications of this 
approach. Section 4 presents a comprehensive analysis of our 
methodology's application across various domains, including 
tabular data and image data, demonstrating the versatility and 
effectiveness of our approach through empirical evidence. 
Section 6 discusses the limitations and future work, suggesting 
directions for future research to further leverage and expand 
upon the capabilities of LLMs in identifying similar data points 
and beyond. Finally, Section 5 concludes the paper, summarizing 
the key insights and contributions of our study.

2. Related Work
2.1 Deep Learning, Large Language Model, and Prompting
Deep learning, a subset of machine learning based on artificial 
neural networks, has profoundly impacted various fields, offering 
insights and advancements that were previously unattainable. 
LeCun, Bengio, and Hinton [12] were pivotal in highlighting 
the power of deep learning, providing comprehensive insights 
into the capabilities of deep neural networks, particularly in 
image and speech recognition. Their foundational work set the 
stage for numerous applications across different domains. For 
instance [13] showcased the potential of deep reinforcement 
learning in the realm of board games, specifically go, where their 
system, AlphaGo, defeated a world champion. This landmark 
achievement not only demonstrated the strategic capability 
of deep learning algorithms but also spurred further research 
into complex problem-solving. In healthcare, deep learning 
has been instrumental in advancing diagnostic procedures [18-
22]. Demonstrated that deep neural networks show significant 
performance on claims data for medical outcome prediction. 
Similarly, [23,24] apply deep learning models for clinical 
outcome prediction. In natural language processing (NLP), 
Vaswani et al. [14] introduced the Transformer model, a novel 
neural network architecture eschewing recurrence in favor of 
attention mechanisms, which has since become the backbone of 
many state-of-the-art NLP systems. The transformative effects 
of deep learning continue to permeate through more specialized 
applications as well, such as autonomous driving, where detailed 
the use of convolutional neural networks for direct perception in 
self-driving cars [15].

The efficacy of LLMs is often contingent on the quality of 
the prompting mechanisms used to guide their output. In their 
influential paper, unveiled GPT-3, demonstrating the model's 
ability to perform a variety of tasks without specific tuning 
by leveraging effective prompting techniques [1]. This notion 
of "prompt engineering" or "prompt design" has become a 
critical area of research, with subsequent studies examining how 
prompts can be optimized to improve the performance of LLMs 
across tasks [2]. Further exploration into the interaction between 

LLMs and prompting has revealed that the architecture of these 
models inherently encodes a vast range of knowledge, accessible 
through the right prompts. Recent works by [3] have presented 
methodologies for zero-shot and few-shot learning, where 
LLMs perform tasks without explicit prior training, purely based 
on the context provided in a prompt. This area of prompting as 
a means of accessing the "in-context learning" capabilities of 
LLMs continues to expand, with researchers investigating the 
limits and potential of these interactions [6]. The application 
of prompting in LLMs has also extended to more complex 
tasks, such as code generation and data analysis. Studies by 
[4] on Codex have showcased how prompts can guide LLMs 
to generate code from natural language descriptions, further 
underscoring the versatility of prompting. In the realm of data 
analysis, where structured and unstructured data converge, the 
role of prompting becomes even more nuanced. Researchers are 
beginning to understand how LLMs can be prompted to interpret 
and generate insights from data, revealing patterns and anomalies 
[5]. The body of work on LLMs and prompting illustrates a 
dynamic field where the frontier is constantly advancing. As 
researchers continue to unveil the intricacies of these models, 
the art of prompting stands as a testament to the creative synergy 
between human ingenuity and artificial intelligence [23].

2.2 Human-in-the-loop Data Analysis
Human-in-the-loop data analysis has emerged as a critical field, 
balancing the scale and efficiency of algorithmic processing with 
the nuanced understanding of human analysts [11]. Holzinger et 
al. posited the need for integrative machine learning approaches 
that involve humans especially in the medical informatics field, 
where interpretability is as crucial as predictive accuracy [7]. 
Following this, researchers have explored HITL methodologies 
in various domains, finding that human expertise not only 
improves the performance of machine learning models but also 
ensures their decisions are more transparent and justifiable. For 
instance, discussed how interactive machine learning systems 
benefit from iterative input from users, enhancing the overall 
learning process [8]. Recent advances by in explainable AI 
have demonstrated how HITL can lead to the development 
of systems that provide explanations aligned with human 
reasoning, fostering trust and enabling users to effectively 
manage automated systems [9]. This synergy between human 
and machine intelligence is pivotal for applications ranging 
from data categorization to complex decision-making processes, 
where illustrated that HITL approaches could significantly reduce 
the time and expertise required to create and maintain machine 
learning models [10]. Collectively, these works underscore the 
evolving role of HITL in data analysis, where the collaboration 
between human intuition and algorithmic power is optimized to 
improve outcomes across various analytical tasks.

3. Method
This section delineates the methodology employed to identify 
similar data points across various non-free text domains, 
leveraging the capabilities of Large Language Models (LLMs). 
Our approach comprises two primary stages: data summarization 
and hidden state extraction, followed by similarity analysis.
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Figure 2. Our proposed Human-in-the-loop Strategy Using Summarization and Hidden State 
Insights. 
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significantly reducing complexity and enriching the data with contextual relevance. The core of 
this stage lies in the interactive customization of the summarization prompts. Users, such as 
domain experts or stakeholders, input their specific criteria or areas of interest into the system. 
This input dynamically shapes the LLM’s summarization prompts, ensuring that the generated 
summaries reflect the aspects most relevant to the user's needs. This approach allows for a 
higher degree of specificity and relevance in the summaries, making subsequent analyses more 
aligned with user-defined objectives. 
 
To implement this human-centric summarization, we utilize a pre-trained Transformer-based 
LLM, such as ChatGPT, or a fine-tuned LLM to excel in summarization tasks toward a specific 
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In the first stage of our methodology, we introduce the Human-
in-the-loop Data Summarization process, leveraging the 
adaptability of Large Language Models (LLMs) to generate 
data summaries tailored to specific human interests. This stage 
is pivotal in transforming non-text data into a summarized 
text format that encapsulates the essence of each data point, 
significantly reducing complexity and enriching the data with 
contextual relevance. The core of this stage lies in the interactive 
customization of the summarization prompts. Users, such as 
domain experts or stakeholders, input their specific criteria or 
areas of interest into the system. This input dynamically shapes 
the LLM’s summarization prompts, ensuring that the generated 
summaries reflect the aspects most relevant to the user's needs. 
This approach allows for a higher degree of specificity and 
relevance in the summaries, making subsequent analyses more 
aligned with user-defined objectives.

To implement this human-centric summarization, we utilize a 
pre-trained Transformer-based LLM, such as ChatGPT, or a fine-
tuned LLM to excel in summarization tasks toward a specific 
domain. Users can refine their inputs based on preliminary 
outputs, fostering an iterative loop that hones in on the most 
informative and relevant data summaries. In order to ensure the 
effectiveness of this customization, we could employ natural 
language processing (NLP) techniques to refine and structure 
user inputs into coherent prompts. This step may involve 
keyword extraction, semantic analysis, and the generation of 
query-like structures that are understandable by the LLM. The 
aim is to bridge the gap between the user's natural language 
inputs and the model's operational language, ensuring that the 
prompts are both reflective of the user's intent and optimized for 
the model's processing capabilities.

After the initial summarization based on the customized prompts, 
users are presented with the option to review the summaries and 
refine their inputs. This iterative loop allows for the adjustment 
of prompts based on the outputs received, enabling a dynamic 
interaction between the user and the model. Such an approach 
is particularly beneficial in complex domains where the user's 
objectives may evolve as new information is uncovered through 
the summarization process. 

The system supports multiple iterations, with each cycle 
fine-tuning the summarization focus and fidelity. Feedback 
mechanisms are integrated to capture user satisfaction with 
the summaries, further informing model adjustments and 
prompt refinements. This iterative process ensures that the final 
summaries are highly tailored to the user's specific interests and 
requirements, making the data more accessible and actionable. 
The technical architecture supporting this human-in-the-loop 
process is designed for flexibility and user-friendliness. It 
includes an intuitive user interface that guides users through 
the input and refinement process, making it accessible to both 
technical and non-technical users. Backend components are 
optimized for rapid processing of custom prompts and generation 
of summaries, ensuring a smooth and efficient user experience.

In summary, the implementation of Stage I leverages advanced 
LLM capabilities, interactive customization, and iterative 
refinement to produce data summaries that are not only concise 
and information-rich but also meticulously aligned with the 
user's specific interests and needs. This human-centric approach 
underscores the potential of LLMs to transform data analysis 
across various domains, making it a powerful tool for researchers, 
analysts, and domain experts alike.
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Stage II: Hidden State Extraction
Following the generation of customized summaries, each 
summary is processed through a second, advanced LLM 
specifically tasked with extracting hidden states. Hidden states 
are essentially vectors that represent the distilled semantic and 
syntactic essence of the text as understood by the LLM. These 
vectors capture a level of information and knowledge about the 
text that is not directly observable in the raw data, encompassing 
relationships, context, and nuances that are critical for identifying 
similarity beyond superficial comparisons.

The LLM used for hidden state extraction is selected for its 
depth and sophistication, typically consisting of numerous 
layers of Transformer blocks known for their efficiency in 
capturing linguistic patterns and relationships. At each layer, 
the model performs complex computations that gradually 
abstract the text's information into higher-level representations. 
The specific layers from which hidden states are extracted are 
carefully chosen based on empirical evidence of their relevance 
to capturing semantic similarities. This decision is informed by 
both the literature in the field and experimental validation within 
the context of our research.

The extracted hidden states serve as a compact, yet information-
rich representation of each data point, enabling the effective 
comparison of seemingly disparate data. To facilitate this 
comparison, the hidden states are analyzed using techniques such 
as cosine similarity, which quantifies the likeness between pairs 
of hidden state vectors. This quantitative measure of similarity 
allows for the identification of data points that, while different in 
superficial aspects, share underlying patterns or themes.

Crucially, the process of hidden state extraction is designed to 
be synergistic with the human-in-the-loop insights from Stage 
I. The feature-rich representations derived in this stage are 
inherently reflective of the user-defined focuses and nuances 
emphasized during the summarization process. This integration 
ensures that the similarities identified are not only based on the 
data's inherent characteristics but also aligned with the specific 
interests and criteria defined by the users, thereby enhancing the 
relevance and applicability of the findings. In summary, Stage II 
encapsulates the technical core of our methodology, transforming 
text summaries into analyzable, feature-rich vectors. This stage 
bridges the gap between qualitative summaries and quantitative 
similarity analysis, enabling a sophisticated, nuanced approach 
to identifying similar data points across diverse datasets.

Stage III: Similarity Analysis
Building upon the refined data representations obtained from 
Stage II, the final part of our methodology involves a meticulous 
Similarity Analysis. This phase is crucial for operationalizing the 
insights garnered from the human-in-the-loop summarization 
and the subsequent extraction of hidden states, ultimately 
enabling the identification of similar data points across diverse 
datasets.

The core of the Similarity Analysis lies in harnessing the dense, 
information-rich vectors—derived from the hidden states—
to systematically identify similarities between data points. By 
employing advanced computational techniques, we transform 

these abstract representations into actionable insights, facilitating 
the discovery of patterns and relationships not readily apparent 
through conventional analysis methods. Our approach utilizes 
cosine similarity as the primary metric for quantifying the 
likeness between pairs of data representations. Cosine similarity 
measures the cosine of the angle between two vectors, providing 
a scale from -1 to 1 that represents how closely the vectors 
(and thus, the data points they represent) are related in their 
semantic and contextual dimensions. This metric is chosen for 
its effectiveness in high-dimensional spaces, where traditional 
distance measures may fall short.

To translate similarity scores into actionable classifications of 
'similar' or 'not similar,' we establish a threshold value. This 
threshold is empirically determined based on the capacity or 
experience of the domain expert, ensuring that it optimally 
distinguishes between genuinely related and unrelated data 
points across different domains. The choice of threshold is 
critical, as it balances the sensitivity and specificity of similarity 
detection, thereby impacting the utility of the analysis in practical 
applications. In alignment with the human-in-the-loop ethos 
of our methodology, domain experts play a crucial role in the 
final interpretation of similarity analysis results. Their insights 
are invaluable in contextualizing the quantitative similarity 
scores within the specific nuances of the domain, enabling a 
more nuanced understanding and application of the findings. 
This collaborative approach ensures that the outcomes of the 
similarity analysis are both technically sound and practically 
relevant.

The Similarity Analysis phase culminates in a versatile tool 
for identifying related data points across a variety of contexts, 
from academic research to industry-specific applications. 
Whether it's uncovering fraudulent transactions in financial 
datasets, grouping patients with similar diagnostic images in 
healthcare, or segmenting customer preferences in marketing 
data, the methodology offers a scalable, efficient means to 
unearth hidden similarities grounded in deep semantic and 
contextual understanding. In essence, the Similarity Analysis 
not only embodies the analytical capabilities of our method but 
also highlights its potential to bridge the gap between complex 
data analysis and real-world decision-making. By meticulously 
comparing the feature-rich representations of data points, we 
unlock new possibilities for knowledge discovery and insights 
across diverse fields, paving the way for innovative applications 
and enhanced decision-making processes.

4. Experiment
A. Image Data: MIT Place365 – Scene Understanding Dataset
In this experiment, we leverage the MIT Places365 dataset, a 
vast and diverse repository of images meticulously categorized 
into 365 distinct scene types, ranging from natural landscapes 
to urban environments. Our primary objective is to evaluate the 
efficacy of our proposed method for identifying similar data 
points across image datasets using Large Language Models 
(LLMs). By employing a two-step process that first summarizes 
the contextual essence of each image before extracting and 
analyzing the hidden state representations from LLMs, we 
aim to uncover nuanced similarities among the scenes beyond 
what conventional pixel-based comparison techniques can 
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achieve. This experimental setup not only tests the versatility 
and adaptability of our method in handling complex visual 
data but also aims to contribute to the broader domain of scene 
understanding by providing a novel approach to categorizing 
and analyzing vast image datasets. Through rigorous qualitative 
and quantitative analyses, we anticipate uncovering insights 
that could significantly enhance automated scene recognition 
capabilities, ultimately aiding in the development of more 
intuitive and context-aware computer vision applications.

We first concentrate on kitchen images to explore the potential 
of Large Language Models (LLMs) in identifying similar data 
points within a specific scene category. Initially, our methodology 
involves presenting the model with a kitchen image, then 
employing our innovative two-step process—combining data 
summarization and hidden state extraction—to identify and 
extract images that the LLM recognizes as having similar 
defining characteristics, primarily ensuring they depict kitchens. 
Subsequently, we refine our focus towards a more granular 

feature within these images: the floor type. This phase aims to 
test the model's ability to discern and match floor types across 
the extracted kitchen scenes, thereby evaluating the precision of 
our method in identifying similarities in image datasets based on 
specific, detailed attributes. 

Figure 3 presents the results of an experimental process where 
images from a scene understanding dataset are summarized using 
three descriptive tags, with a focus on the functionality of the 
room depicted. This illustrates the initial phase of the two-step 
process in which LLMs are employed to generate a condensed, 
functional profile of image data. From the displayed samples, 
it is evident that the Large Language Models have successfully 
identified key functional and design elements within the bathroom 
category. The tags, such as #ModernDesign, #SanitaryWare, 
#shower, and #modern_faucet, not only highlight the primary 
function of the room but also reflect specific features that could 
play a crucial role in the identification of similar images based 
on functionality and design elements.
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Figure 3. Image profile summarization and similar image extraction for a bathroom scene

These hashtags suggest a standardized approach to tagging, 
potentially facilitating the retrieval and comparison of images. 
This could enable the subsequent step of the methodology, 
wherein these tags serve as a simplified representation for the 
extraction of hidden states by another LLM. The consistency 
in identifying the bathroom category across varied design 
presentations shows promise for the LLM's ability to abstract 
core functional features from visual data. Moreover, this tag-
based profiling may serve as a bridge between the visual 
characteristics of the scenes and the LLM's text-based processing 
capabilities, thereby transforming image attributes into a format 
more amenable to linguistic analysis. This is crucial in enabling 
LLMs, which are traditionally adept at handling textual data, to 
process and analyze image data effectively.

Figure 4 showcases the application of a refined image 
summarization process where each image is tagged with three 

descriptors concentrating on room functionality and floor color. 
This experiment extends the previous method by incorporating 
an aesthetic element — the color of the floor — which adds 
another layer to the image profiling. In this instance, the Large 
Language Models (LLMs) were able to recognize and tag not 
only the room type but also specific design attributes and the 
color of the floor. Tags such as #beige_floor, alongside #modern, 
and descriptors like 'Elegant Design' and 'Compact', demonstrate 
the model's ability to capture both functional and decorative 
elements of the room. These tags form a more detailed profile of 
the images that can be used in the subsequent analysis to identify 
similar scenes. 

The tagging process appears to perform well for the bathroom 
scenes, as indicated by the relevant tags. However, an anomaly 
is observed in the last image, which is incorrectly tagged as a 
bedroom despite it being a bathroom scene. This highlights one of 
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the challenges in automated image tagging and summarization: 
the model’s potential to misinterpret scenes when the visual 
cues are not distinct enough or when the model's training data 
does not sufficiently cover the variability within the category. In 
addition, the identification of the floor color as a tagged attribute 
emphasizes the model’s nuanced understanding of image 
features. 

Overall, this experiment underscores the importance of 
continuously refining the tagging algorithms and the potential 
need for domain-specific tuning to improve the model's 
performance across varied datasets and use cases. It also opens 
up conversations about the depth and breadth of features LLMs 
should consider when summarizing and categorizing complex 
image data in the human’s interest.

 
Figure 4. Another image profile summarization, focusing on the floor color, followed by 
similar images extraction 

B. Tabular Data: AMLSim – Anti-Money Laundering Transaction 
Dataset 
In the second experiment, we explore our application to the domain of anti-money laundering 
(AML) by utilizing the AMLSim dataset. This dataset provides synthetic but realistic transactional 
data that simulates typical behaviors observed in money laundering scenarios. Our objective is 
to construct comprehensive customer profiles from tabular data and subsequently employ 
another LLM to generate embeddings for the purpose of similarity extraction. To construct 
customer profiles, we provide the first LLM with structured instructions to capture and 
summarize essential information from the tabular data. These instructions guide the model to 
focus on key attributes that characterize customer behavior, such as transaction frequency, 
amount patterns, beneficiary details, and geographical markers. The model's summarization 
capability allows us to transform raw transactional data into a textual customer profile that 
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from textual data. These embeddings serve as numerical representations of the customer 
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B. Tabular Data: AMLSim – Anti-Money Laundering 
Transaction Dataset
In the second experiment, we explore our application to the 
domain of anti-money laundering (AML) by utilizing the 
AMLSim dataset. This dataset provides synthetic but realistic 
transactional data that simulates typical behaviors observed 
in money laundering scenarios. Our objective is to construct 
comprehensive customer profiles from tabular data and 
subsequently employ another LLM to generate embeddings 
for the purpose of similarity extraction. To construct customer 
profiles, we provide the first LLM with structured instructions 
to capture and summarize essential information from the 
tabular data. These instructions guide the model to focus on 
key attributes that characterize customer behavior, such as 
transaction frequency, amount patterns, beneficiary details, and 
geographical markers. The model's summarization capability 
allows us to transform raw transactional data into a textual 
customer profile that accentuates traits potentially indicative of 
money laundering activities.

Once the profiles are established, we employ a second LLM 
trained to generate embeddings from textual data. These 
embeddings serve as numerical representations of the customer 

profiles, capturing the nuanced patterns and relationships within 
the data. By leveraging the LLM's ability to understand and 
encode contextual information, we aim to produce embeddings 
that reflect the underlying behavior patterns with a high degree 
of fidelity. For similarity extraction, we utilize these embeddings 
to measure the proximity between different customer profiles. 
Through clustering algorithms or nearest-neighbor searches, we 
can identify groups of customers exhibiting similar transactional 
behaviors, which may signify coordinated activities or shared 
money laundering tactics. 

The effectiveness of this approach hinges on the LLMs' ability 
to abstract and encode complex behaviors from tabular data—a 
task that poses significant challenges due to the non-sequential 
nature of such data. In contrast to free-text, where LLMs naturally 
excel, tabular data requires a structured understanding and an 
ability to infer relationships between discrete data points. The 
potential impact of this experiment is significant, offering a novel 
tool for financial institutions to enhance their AML efforts. By 
streamlining the profile construction and similarity identification 
process, LLMs can augment existing systems, allowing for more 
efficient detection of complex money laundering schemes and 
contributing to the broader field of financial security.
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Figure 5 presents the results of our approach to detecting similar 
customer activities by converting transactional data into a risk-
focused customer profile using Large Language Models (LLMs). 
Our method first summarizes key transaction attributes into 
concise, descriptive tags that encapsulate behaviors suggestive 
of money laundering. The experiment demonstrates the LLM’s 
ability to interpret a complex tabular dataset (customer_df) and 
distill its contents into three informative tags. These tags—such 
as "High frequency cross-border transactions," "Large amounts 
in different currencies," and "Inconsistent payment formats"—
highlight activities that are commonly associated with money 
laundering. Notably, the model consistently identifies high-risk 
features across different examples, suggesting a reliable pattern 
recognition capability. In the instances marked as "Is Money 
Laundering: YES," the model's tags accurately reflect high-
risk factors, indicating that the LLM is successfully identifying 
patterns associated with money laundering. The tags suggest the 
LLM’s effectiveness in capturing the frequency, international 
scope, and inconsistency of transactions—traits that are often 
red flags for financial institutions monitoring illicit activities. 
However, there is an interesting outcome in the last example 
where, despite the presence of similar high-risk tags, the model 
concludes "Is Money Laundering: NO." This could indicate 
a discrepancy in the model's assessment criteria or a possible 
overfitting to certain data patterns, which requires further 
investigation.

The consistency and accuracy of the tags in the positive 
examples underscore the model’s potential as a tool for financial 
compliance teams. Yet, the divergence in the last example 
emphasizes the need for continued refinement of the model and the 
incorporation of additional data points or contextual information 
to improve decision-making accuracy. This experiment’s 
insights are significant for the development of LLM-based AML 

systems. It showcases the power of LLMs to streamline the 
profiling process in complex, real-world applications, while also 
highlighting areas for enhancement, such as incorporating cross-
reference checks and layering additional analytic methodologies 
to confirm the LLM's assessments. Future work will involve 
calibrating the model's sensitivity, validating its conclusions 
against additional data, and potentially integrating other forms 
of AI to triangulate findings and increase confidence in the 
results. The overarching aim is to leverage the LLM's capacity 
for nuanced data interpretation to support more proactive and 
granular detection of financial crimes.

5. Limitation and Future Work
The exploration of Large Language Models (LLMs) for 
identifying similar data points in non-textual domains, while 
innovative, is not without its constraints. A primary limitation 
arises from the challenge of model generalization. The LLMs' 
performance, as evidenced through our experimentation 
with image and tabular data, might not uniformly extend to 
disparate types or datasets. Varied domains each bring unique 
complexities that demand an expansive array of training data 
to cultivate a well-rounded model comprehension. Another 
critical concern is the interpretability of LLMs. The opaque 
nature of these models often leaves users questioning the 
"how" and "why" behind the model’s outputs. This lack of 
transparency can impede user trust and complicate efforts to 
diagnose and rectify model errors. Furthermore, the study faced 
instances of misclassification, signaling a necessity to enhance 
precision and develop a more nuanced understanding of edge 
cases. Preprocessing of data, a vital step in our methodology, 
poses its own challenges. Inaccuracies in these initial stages can 
have a cascading effect, influencing the overall success of the 
similarity analysis. Moreover, the computational demands of 
running LLMs are not insignificant. The resources required to 
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process large datasets may limit the feasibility of this approach 
for smaller organizations or individual researchers. 

In contemplating the future trajectory of our research, several 
avenues present themselves. An immediate focus would be on 
increasing the transparency of the LLMs. Introducing techniques 
to unpack the decision-making process of these models could 
bolster their interpretability. Expanding the diversity of the 
datasets in question would likely enhance the robustness of the 
models, better equipping them to deal with a wider array of 
data complexities. Refining the models through fine-tuning and 
transfer learning may offer improvements in both accuracy and 
operational efficiency. Additionally, the potential of multimodal 
LLMs that can innately process and understand both visual and 
textual information holds promise for a more seamless analysis. 
The integration of human feedback into the model's learning 
cycle, a 'human-in-the-loop' approach, could serve as a valuable 
checkpoint for correcting misclassifications and fine-tuning the 
tagging accuracy. Lastly, to truly scale our approach for practical, 
widespread use, solutions to mitigate the resource-intensive 
nature of LLMs must be explored. This could involve seeking 
out more computationally economical models or leveraging 
cloud-based infrastructures. Complementing our models with 
robust validation mechanisms, perhaps through ensemble 
methods that amalgamate multiple AI systems' insights, could 
further safeguard against erroneous similarity identifications. In 
sum, future work will hinge on bridging these gaps, enhancing 
the methodologies, and ensuring that the foray into using LLMs 
for data analysis extends its reach, ensuring robust, scalable, and 
transparent solutions for various real-world applications.

6. Conclusion
This research presented a pioneering exploration into the use 
of Large Language Models (LLMs) for the identification of 
similar data points across non-free text domains, specifically 
within image and tabular datasets. Our methodology, employing 
a two-step approach that includes data point summarization and 
hidden state extraction, has demonstrated significant potential 
in extracting nuanced similarities that traditional analysis 
methods might overlook. The experimental findings from the 
MIT Places365 dataset highlighted the LLM’s adeptness at 
summarizing complex image data into concise tags that represent 
both the functional aspects and aesthetic features of scenes, 
specifically within bathroom environments. This capability 
points to a novel application of LLMs in scene understanding 
and recognition tasks, extending beyond their conventional 
textual domain. However, the emergence of outliers, where the 
model misclassified a room type, signals a need for enhanced 
model training or supplementary validation techniques. In 
the realm of tabular data, our experiments with the AMLSim 
dataset yielded promising results in constructing customer 
profiles that are indicative of potential money laundering 
activities. The LLM’s proficiency in distilling transactional data 
into descriptive tags that reflect risk factors pertinent to AML 
endeavors could revolutionize the way financial institutions 
monitor and investigate suspicious activities. Notwithstanding 
these advances, our experiments also surfaced challenges 
inherent in applying LLMs across varied data types. In instances 
of image data, the need to accurately convert visual information 
into textual summaries that LLMs can process was critical, while 

for tabular data, ensuring the model's interpretative accuracy 
remained a pivotal concern. The occasional discordance between 
the model-generated tags and the expected outcomes suggests 
avenues for further refinement, such as integrating multimodal 
data processing or employing ensemble methods to increase 
the robustness of the models. Overall, our research contributes 
a novel strategy for leveraging LLMs in data analysis across 
diverse datasets, offering a scalable and efficient approach 
for similarity identification. The practical applications of our 
method have been showcased, providing non-technical domain 
experts with a tool to swiftly identify data points of interest. Our 
work opens new pathways for future research in the application 
of language models beyond the textual domain, advocating for a 
closer look into multimodal learning and the continued evolution 
of AI in analytical applications.
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