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Abstract
Based on a deduced 2153±5 s orbiting period of the extreme central binary of the supermassive black hole (ECB-SMBH), at 
Sgr A*,that is confirmed being based on the  decameter radio wave pulse observations compared with 1.3 mm wavelength 
very long baseline interferometry (VLBI) data from the event horizon telescope (EHT-Data), we depict moving images of 
Sgr A* from EHT-Data, confirming further the existence of ECB-SMBH. The results show that radio wave images of the 
two members of ECB-SMBH are radio-bright objects due to emissions caused by source agents accreting from a thick disk 
toward ECB-SMBH. We extend the confirmed concept of ECB-SMBH to the interpretation of M87*, based on two images 
released by Miyoshi et al. in 2022 using EHT-Data and by Lu et al. in 2023 using the 3.5 mm wavelength data from the 
Global Millimeter VLBI Arrays as core telescopes. For the double brilliant spots displayed in two different images of 
M87*, we consider them the same two objects that shift locations during the 369-day interval of the observation periods 
of the two images. It is concluded that M87* A and M87* B (temporarily named) are orbiting with a period of 168.8 d 
at velocities of (6.28±0.54)% and (16.7±1.5)% of the speed of light, respectively. For the existence of ECB-SMBH, the 
condition of “no gravitational wave radiation” from the SMBH is essential. Regarding the secondary BH of blazar OJ 
287, we find around 58~60-year period oscillation of the orbiting period, which is recently in a shortening phase. By 
applying the concept of ECB-SMBH to the OJ287 primary BH, whose orbiting period is approximately 1.6 yr, we interpret 
that the orbital period variation of the secondary BH is not due to the radiation of gravitational waves but is caused by 
the orbital motions of ECB-SMBH.

Advances in Theoretical & Computational Physics
ISSN: 2639-0108

Geophysical Department, Graduate School for Science, 
Tohoku University; and Astrophysics Research Task, Seisa 
University.

*Corresponding Author
Hiroshi Oya, Geophysical Department, Graduate School for Science, 
Tohoku University; and Astrophysics Research Task, Seisa University. 
Japan.

Submitted: 2024, Feb 19; Accepted: 2024, Mar 26; Published: 2024, May  20

1. Introduction 
In parallel to the search for a central concentration of matter, 
identified as a supermassive black hole through the observations 
of movements of stars around Sgr A* , [1−5], the quest to 
capture images with radio waves that reflect the existence of a 
possible supermassive black hole began to make progress , [6,7] 
The event horizon telescope (EHT), using globally developed 
network of 1.3 mm very long baseline interferometry (VLBI), 
conducted observations in 2017, and the image of Sgr A* was 
released in 2022 , [8−13].

Independently of the aforementioned efforts, observations 
using a decameter radio wave interferometer for Sgr A* have 
been ongoing for 20 years at Tohoku University, aiming to 
detect decameter wavelength pulses at 21.86 MHz, whose 
timings coincide with the spinning periods of rotating black 
holes (Kerr BHs). After developing the devices and methods for 
data analysis, the results were published in 2019 [14] based on 
observations made in 2016 and 2017, showing the existence of 

two intrinsic pulses with frequencies of 173±1 s and 148±1 s, 
which are associated with multiple sidebands corresponding to 
a period of 2200±50 s. These results indicated the existence of a 
binary system of Kerr BHs with masses of (2.27±0.02)×106 M⦿ 
(named Gaa) and (1.94±0.01)×106 M⦿ (named Gab). Assuming 
Keplerian circular orbits based on Newtonian dynamics, 
the radii of Gaa and Gab are deduced to be 1.89×1012cm and 
2.21×1012 cm, respectively, with orbiting velocities of 18% 
and 21% of the speed of light for Gaa and Gab, respectively. 
Given the current understanding of gravitational wave radiation, 
especially after extensive reports of successful observations 
[15-18] of gravitational waves from potential stellar mass black 
holes, these results were initially considered unrealistic and 
incorrect by standard evaluations. However, we interpret these 
observation results as evidence necessitating a clarification in 
the physics of gravitational wave generation, particularly for 
supermassive black holes whose average material densities 
within the event horizon become extremely tenuous, as 
function inversely proportional to the square of the total mass. 
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Consequently, we published a theory on gravitational waves 
for supermassive black holes [19], stating “No gravitational 
wave from orbiting supermassive Kerr black holes.” Here, we 
introduce the terminology “the extreme central binary of the 
supermassive black hole” (ECB-SMBH) about the reported 
supermassive black hole at Sgr A*, coupled with the theory of 
no gravitational waves from orbiting supermassive Kerr black 
holes. The aim of this paper is, therefore, to find confirmation for 
the existence of ECB-SMBH.

Contrary to initial expectations that the published Sgr A* 
image from EHT might serve as the standard for confirming the 
existence of supermassive BH at Sgr A*, criticisms have been 
raised regarding flaws in the EHT image results [20]. Initially 
the indication of erroneous processes for formation of the 
EHT image arose from the imaging of M87* [21-26], whose 
basic data were collected in April 2017 during the same EHT 
campaign as the Sgr A* observations. Without addressing the 
fundamental issues in the process of constructing source maps 
from the observed visibility data, the EHT collaboration (EHTC) 
released the image of Sgr A*.

As a first step toward confirming the proposed existence of 
ECB-SMBH at Sgr A*, we investigated the results of 1.3 mm 
wavelength VLBI observations carried out by Fish et al. (F-paper) 
[27], comparing the time-variation data provided by the F-paper. 
with a constructed” radiation model of 1.3 mm wavelength radio 
waves, applying the possible ECB-SMBH parameters derived 
from decameter radio wave pulse observations” (DRWP-Model). 
The results [28] indicated an orbital period of 2150±2.5 s, nearly 
matching the predicted range of 2200±50 s, showing consistency 
with the time-variation results of the F-paper

The second step of confirmation was carried out [29], using 
publicly released EHT data [30], independent of the analyses of 
the EHTC. To confirm the existence of ECB-SMBH, the model 
(DRWP-Model) was based on parameters concluded from 
decameter radio wave pulse observations to predict possible 
visibilities by the corresponding baselines of the VLBI system of 
the EHT. The process revealed a high correlation level between 
the observed EHT visibility data and DRWP-Model, affirming 
the existence of ECB-SMBH with an orbiting period of 2193±27 
s [29]. To solidify these results, the third step are carried out in 
the present works recovering the moving image of ECB-SMBH 
from the EHT-VLBI visibility data [30], using the established 
orbiting period as an essential key.

In Section 3, we describe the principle of the recovering the 
moving source image. The data processing approach markedly 
differs from the current method of the radio wave source 
mapping from VLBI visibility data in that the objects of the data 
are assumed to be stationary. Because ECB-SMBH at SgrA* is 
moving as a fundamental characteristic we should pick up the 
observed visibilities as a sequential series of static data from 
the original dataset, synchronizing it with the existing variation 
period. Owing to the special situation of ECB-SMBH at Sgr A*, 
whose orbital plane is almost edge-on, inclined by only 6°  with 
respect to the line of sight, the black holes' movements can be 
approximately described as a back-and-forth motion along the 

orbit line. This allows us to approximate the source image in a 
one-dimensional configuration without resorting to the orthodox 
method of two-dimensional radio source mapping typically 
utilized in VLBI studies. In this one-dimensional approach, we 
apply analyses of one-dimensional Fourier and inverse Fourier 
transformations with respect to the linearized visibility along the 
orbit line, as detailed in Sections 3 and 4.

After confirming the existence of ECB-SMBH at Sgr A* by 
recovering the moving image of the BH’s from EHT visibility 
data, we extend the confirmation to a fourth stage. By applying 
the essence of radio wave sources surrounding ECB-SMBH, 
we apply the concept of ECB-SMBH to interpret the published 
VLBI observation images of M87* (the core of galaxy M87). As 
discussed in Section 5, for the published two mm wavelength 
VLBI images of M87* [20,31] showing two bright spots in 
each image, we apply the concept of the ECB-SMBH taking the 
couple of bright spots as radio wave emitting zones surrounding 
BHs, drawing on the results from the Sgr A* case.

In progressing the steps to confirm ECB-SMBH, the blazar 
OJ287 presents a significant challenge because of reports of 
the existence of the gravitational wave reaction [47,48], on the 
orbiting supermassive BH (secondary BH). In Section 6, we 
discuss that the commonly accepted concept of the in-spiral stage 
of the secondary SMBH due to gravitational wave generation 
reactions is incorrect, proposing instead the existence of ECB-
SMBH as an alternative mechanism involving the primary 
SMBH. After an investigation of the historical records of OJ287's 
luminosity with burst timing [47]  related to the secondary BH’s 
movement across the accreting disk of the primary BH of OJ287 
system, we clarified that the orbiting period of the secondary 
BH varies periodically, with a cycle of approximately 58~ 60 yr. 
This modulation in the secondary BH's orbiting period can be 
explained by the existence of ECB-SMBH, whose member BHs 
are orbiting with a period around1.6 yr. Studies on the jet [48] 
revealed that it shows presession motion with clear nutation, 
with a period of 1.60±0.1 yr. We infer that in the process of 
accelerating plasma in the jet through electromagnetic force, 
the orbital motions of ECB-SMBH impart energy, reflecting an 
orbital period of approximately 1.6 yr as the nutation period of 
the jet.

2. Brief Review for Step 2 Confirmation of Existing ECB-
SMBH at Sgr A*[29]
The second step in confirming the existence of ECB-SMBH, 
(illustrated in Figure 1), begins with constructing the decameter 
radio wave pulse (DRWP-Model:see Introduction). This model 
aims to find correlations between the VLBI data from the EHT 
and ECB-SMBH resulted from observed DRWPs. DRWP-
Model is thus constructed to represent the real existence of 
ECB-SMBH for 1.3 mm wavelength VLBI observations, 
accommodating all baselines within the globally distributed 
EHT system. Specifically, DRWP-Model delineates the orbital 
geometry and actual orbital plane configuration, observing an 
angle of 33μas for an orbit size of 4.1 ×107km at Sgr A*, where 
the two black holes orbit with a period 2200±50 s, (as depicted 
in Figure 2).
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The EHT observations of Sgr A* were conducted on April 6 
and April 7, 2017. The data, captured at high (229.1 GHz) and 
low (227.1 GHz) frequencies by 8 antennas located at globally 
distributed stations, were correlated to produce visibility data 
corresponding to 24 sets of baselines through two data handling 
pipelines, rPICARD (CASA) and HOPS. Consequently, 
we accessed eight types of visibility data from each pair of 

observation stations, totaling 24 pairs. The VLBI data from 
the EHT, when compared with the constructed DRWP-Model, 
comprise a full visibility dataset. This dataset consist of 
baseline lengths given by u and v coordinates, amplitude and 
phase of visibilities, along with the sigma of observed values 
listed as functions of observation timing, with intervals of 10 s 
corresponding to the average timing of the data.

8 

 

visibilities, along with the sigma of observed values listed as functions of observation 

timing, with intervals of 10 s corresponding to the average timing of the data. 

 

Figure 1. Configuration of ECB-SMBH confirmed from FFT spectra for decameter 

wavelength radio waves from Sgr A*, assuming that pulse frequencies are 

synchronized with spins of SMBHs Gaa and Gab subjected to Doppler effect 

produced via orbital motion. Distance between two SMBHs is 2.84 𝑅𝑅𝑠𝑠𝑠𝑠  with 

respect to Schwartzschild radius 𝑅𝑅𝑠𝑠𝑠𝑠 if we assume a non rotating single BH. (After 

Oya ,14,28-). 

 

 

In this step2 confirmation paper, we did not use the visibility data as regular usages to 

form the source mapping but tried to find correlation between the DRWP-Model that 

contains the periodic variation of the orbiting ECB-SMBH and constructed as a model 

visibility detected by the VLBI system with the baseline corresponding to the same 

baseline to obtain the EHT visibility. From the perspective of investigating time 

variation, the EHT-VLBI visibilities can be morphologically classified into three 

categories based on the observation baseline length: these are, the case of short baseline 

Figure 1. Configuration of ECB-SMBH confirmed from FFT spectra for decameter wavelength radio waves from Sgr A*, assuming 
that pulse frequencies are synchronized with spins of SMBHs Gaa and Gab subjected to Doppler effect produced via orbital motion. 
Distance between two SMBHs is 2.84 R_ss with respect to Schwartzschild radius R_ss  if we assume a non rotating single BH. 
(After Oya [14,28]).

In this step2 confirmation paper, we did not use the visibility 
data as regular usages to form the source mapping but tried to 
find correlation between the DRWP-Model that contains the 
periodic variation of the orbiting ECB-SMBH and constructed 
as a model visibility detected by the VLBI system with the 
baseline corresponding to the same baseline to obtain the EHT 
visibility. From the perspective of investigating time variation, 
the EHT-VLBI visibilities can be morphologically classified into 
three categories based on the observation baseline length: these 
are, the case of short baseline whose length is shorter than 3 Gλ, 
the case of medium baseline whose length is in a range from 
3 Gλ to 6 Gλ, and long baseline whose length is longer than 6 
Gλ. The visibilities within the medium and long categories are 
characterized by a spread of visibility levels over time, displaying 

data oscillations with peak-to-peak (P-P) amplitudes below 2 
Jy. Although there is mention of some systematic oscillation in 
the EHTC paper [32], the predominant understanding [32,33] 
is that time variations are mostly random noises associated 
with intrinsic and stochastically stationary levels of emission 
from sources around Sgr A*, except for the case of report of 
orbital motion of the hotspot in magnetized plasma. Therefore, 
independent of the ETHC 's approach, it has been clarified that 
the oscillatory visibilities of the VLBI-EHT data represent a mix 
of random noise and radio wave emissions closely related to 
the orbital motions associated with ECB-SMBH. With an orbit 
size of 4.1×107 km as determined by DRWP observations, for a 
baseline length of approximately



Adv Theo Comp Phy, 2024       Volume 7 | Issue 2 | 4

10 

 

 

Figur

e 2.   

Geo

metri

cal 

relati

ons 

betwe

en the 

rotating ECB-SMBH at SgrA* and EHT-VLBI observatories (m) and (n) for 

construction of DRWP-Model. (A) Over all description. The orbiting ECB-SMBH 

Gaa and Gab are described in the Cartesian coordinate with the origin at the center of 

SgrA* ; the direction of x-axis coincides with the unit vector 𝑘̂𝑘𝑆𝑆𝑆𝑆 that is defined to 

coincide with the direction to connect between the earth’s center and the center of 

SgrA*.The y axis of the reference coordinate prepared to describe the ECB-SMBH 

orbital plane is set to be vertical to x axis and also to the Galactic north pole direction 

to be in parallel with the Galactic plane . The location of the VLBI observatories of 

EHT are described in the regular astronomical coordinate of the equatorial-spring 

equinox system whose 𝑧𝑧𝑒𝑒  axis coincides with the axis of the earth rotation with 

parameters 𝑟𝑟𝑚𝑚,φ𝑚𝑚, 𝜆𝜆𝑚𝑚 and ℎ𝑚𝑚   for observatory m, respectively for the distance 

between the earth center, longitude, latitude  and the height from the sea surface. The 

distance from the earth center and the center of the SgrA* is given by Lsg  meanwhile 

the distance between ECB-SMBH Gaa and Gab is expressed by LOrb  .  (B) Fine 

Figure 2.  Geometrical relations between the rotating ECB-SMBH at SgrA* and EHT-VLBI observatories (m) and (n) for 
construction of DRWP-Model. (A) Over all description. The orbiting ECB-SMBH Gaa and Gab are described in the Cartesian 
coordinate with the origin at the center of SgrA* ; the direction of x-axis coincides with the unit vector k̂Sg that is defined to coincide 
with the direction to connect between the earth’s center and the center of SgrA*.The y axis of the reference coordinate prepared to 
describe the ECB-SMBH orbital plane is set to be vertical to x axis and also to the Galactic north pole direction to be in parallel 
with the Galactic plane . The location of the VLBI observatories of EHT are described in the regular astronomical coordinate of the 
equatorial-spring equinox system whose ze axis coincides with the axis of the earth rotation with parameters rm,φm,λm  and hm  for 
observatory m, respectively for the distance between the earth center, longitude, latitude  and the height from the sea surface. The 
distance from the earth center and the center of the SgrA* is given by Lsg  meanwhile the distance between ECB-SMBH Gaa and Gab 
is expressed by LOrb .  (B) Fine description of ECB-SMBH plane with respect to the reference coordinate. The orbital plane of ECB-
SMBH is set with two inclination steps ; these are the 6 degree inclination of ECB-SMBH orbital plane looking from the Earth and 
inclination which is described as tilt of the normal direction of the ECB-SMBH orbital plane from the Galactic north pole direction 
by the angle α(see red vector) ; the new y direction in the inclined ECB-SMBH plane is defined as yα .  The real case of inclined angle 
α is searched by finding maximum correlation between the EHT-Data and DRWP-Model.(After Oya [29])
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Figure 3. Final results showing coincidence of the Modified Fourier Transformation (MDFT) for EHT-Data (black curve) and the 
MDFT for DRWP-Model (green curve). Via the identity of the results, it can be concluded that the EHT-Data have definitely the 
component of the steady time variation coinciding with the ECB-SMBH orbiting period of 2190 sec prepared in DRWP-Model. 
(After Oya  [29]).



Adv Theo Comp Phy, 2024       Volume 7 | Issue 2 | 5

3 Gλ begin to reveal a correlated signal from the area of orbiting 
ECB-SMBH motions (ECB-SMBH signal) when we estimate 
the distance of Sgr A* to be 8.3 kpc from the Earth. Through a 
morphological study of medium and long baselines, it is roughly 
estimated that the ratio of ECB-SMBH signal to random noise 
ranges from approximately 0.5 to 6.

In our comparative analysis, we directly calculated the numerical 
correlation factors between EHT observation data (EHT-Data) 

and DRWP-Model for three example cases of baselines. These 
baselines provide geometric parameters for the orbits of ECB-
SMBH as outlined in our constructed model. Through this 
process, we sought coincidences between EHT-Data and DRWP-
Model, determining that the orbital plane of ECB-SMBH aligns 
closely with the Galactic plane, deviating by no more than ±3° in 
the direction perpendicular to the Earth–Sgr A* line. Moreover, 
there is a tilt in the orbital plane of ±6° degrees in the direction of 
the Earth–Sgr A* line, as previously established [28].
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Table 1. Locations of EHT-VLBI stations selected from original information [21].

Although direct comparisons between EHT-Data and DRWP-
Model showed a clear coincidence, suggesting the existence of 
ECB-SMBH with an accurate geometrical relationship, we opt 
for the modified Fourier transformation (MDFT) as our principal 
method of comparison. This choice was made to eliminate the 
disturbances of a significant fraction of coexisting random 
noise. Furthermore, the visibility data from EHT-VLBI in the 
medium and long baseline categories, directly relevant to the 
existence of ECB-SMBH, were sampled intermittently with 
unique data sampling time window (DSTWs), featuring quasi-
periodic pauses approximately 1000 to 1100 s. These DSTWs 
complicate direct comparisons, especially in identifying existing 
periodic variations in data with short characteristic periods. The 
MDFT approach goes beyond a simple application of Fourier 
transformation to EHT-Data and DRWP-Model; it satisfies the 
requirement to apply a function equivalent to the application 
of deconvolution processes to compensate the biased effects of 
inhomogeneous data sampling windows. Instead of applying 

deconvolution directly within the MDFT method, our second 
confirmation paper introduced the use of Fourier transformation 
on white noise (random noise series); noises are generated 
in complete synchronizing timing with the data sampling 
windows of the EHT-VLBI observations prepared as a third 
Fourier transformation value S(ω), with angular frequency ω, 
independent of the Fourier transformation values of EHT-Data 
and DRWP-Model (also sampled in synchronization with EHT-
VLBI data sampling windows). The MDFT was then defined 
as the Fourier-transformed function divided by S(ω),and we 
compared the MDFT calculated for EHT-Data with the MDFT 
calculated for the DRWP-Model. An example of this comparison, 
shown in Figure 3, demonstrates the coincidence of the two 
MDFTs for EHT-Data and DRWP-Model after adjusting two free 
parameters [29] and accurately identifying the orbiting period in 
the DRWP-Model where the orbiting periods of ECB-SMBH are 
set in the searching range. By selecting three baselines SM-SP, 
AZ-SP, and LM-SM, where information for each station
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provided by EHTC is listed in Table 1. The lengths of SM-SP, 
AZ-SP, and LM-SM  baseline are 7.89 Gλ, 8.39 to 8.46 Gλ, and 
4.23 to 4.26 Gλ, respectively; we searched for the orbital periods 
of a potential ECB-SMBH within the range of 2100–2245 s. The 
results are detailed in Table 2. To ascertain that the variation in 
the resulting period is not a true variation but rather stochastic 
ambiguity attributable to existing noise, we analyzed all eight 
possible data sets for each baseline and averaged the 24 results 
obtained using the MDFT method. The aggregated results yield 
an orbital period for ECB-SMBH of 2193.3 s with a standard 
deviation of 27.5 s. We can thus assert that the time variations 
observed in VLBI data of Sgr A* from the 2017 EHT campaign 
exhibit periodicity. This periodicity aligns with the presence of 
ECB-SMBH within the error margin at Sgr A*, where ECB-
SMBH is orbiting  with a period of 2200 ± 50 sec and radius of  
4.1×107 km in the plane nearly parallel to the Galactic equatorial 
plane.

3. Sampling and Stacking of EHT Visibilities Data 
Synchronized with Orbiting Period of ECB-SMBH
3.1 Linearized Visibility
3.1.1 Coordinate Transformation of Baseline of VLBI
As discussed in Section 2, it is known that the orbital plane of 
ECB-SMBH is almost parallel to the Galactic equatorial plane, 
with a slight inclination of 6° toward or away from the line of 
sight from observation points. Therefore, we can approximately 
describe the observing orbital motion of ECB-SMBH as linearly 
constrained visibilities in the EHT-VLBI system.

The radio wave source S(ξ,η) at the right ascension ξ and 
declination η, is expressed by the VLBI visibility V(u,v)  using a 
two-dimensional baseline distribution (u,v) [34] as follows:
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The radio wave source 𝑆𝑆(ξ, η)at the right ascension ξ and declination η, is expressed by 

the VLBI visibility 𝑉𝑉(𝑢𝑢, 𝑣𝑣) using a two-dimensional baseline distribution (u,v) ,34- as 

follows: 

𝑆𝑆(ξ, η) = ∫∫𝑉𝑉(𝑢𝑢, 𝑣𝑣)𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖(ξ𝑢𝑢 + ηv)-𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑                     (3.1) 
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To describe S(ξ,η), we adhere to the same framework employed 
in previous investigation [29] for the relationship between the 
EHT observation system and assumed orbit of the ECB-SMBH 
motion, as depicted in Figure 2. Here, the directions of Sgr A* 
and Galactic north pole are denoted by unit vectors x̂ and ẑ, 
respectively. In this Cartesian coordinate system, we can define 
the unit vector, ŷ as parallel to the Galactic equator, which is 

considered approximately parallel to the orbital plane of ECB-
SMBH. By denoting the unit vector x̂e as directed toward the Sun 
at the spring equinox at UT 0 and unit vector ẑe as directed toward 
the north of Earth’s rotation axis with ŷe perpendicular to both 
x̂e and ẑe, we establish a conventional astronomical coordinate 
system. The unit vectors x̂, ŷ, and ẑ are described as follows:
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introduce unit vectors 𝑢̂𝑢 and 𝑣̂𝑣 to describe the baseline vectors parallel to the variation 

direction of the right ascension and the declination, respectively: 
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and

where ϕSg and δSg are the right ascension and declination of Sgr 
A*, respectively; and ϕGp  and δGp are the right ascension and 
declination of North Galactic pole. Further, we introduce unit 

vectors û and  to describe the baseline vectors parallel to the 
variation direction of the right ascension and the declination, 
respectively:
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 𝑢̂𝑢 ≡ 𝜕𝜕𝑥̂𝑥
𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝜕𝜕𝜙𝜙𝑆𝑆𝑆𝑆

 = −𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆𝑥𝑥𝑒𝑒 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆𝑦̂𝑦𝑒𝑒 ,                                    (3.4) 

and 

𝑣̂𝑣 ≡ 𝜕𝜕𝑥̂𝑥
𝜕𝜕𝛿𝛿𝑆𝑆𝑆𝑆

 = −𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆𝑥̂𝑥𝑒𝑒 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆𝑦̂𝑦𝑒𝑒 + 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑧̂𝑧𝑒𝑒               (3.5) 

By defining the unit vector 𝑤̂𝑤 as parallel to the line of sight, i.e., the direction toward 

Sgr A*, we can form another Cartesian coordinate system (u,v,w), that is: 

  𝑤̂𝑤 = 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆𝑥̂𝑥𝑒𝑒 + 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆𝑦̂𝑦𝑒𝑒 + 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑧̂𝑧𝑒𝑒                  (3.6) 

In Appendix A, the unit vector 𝑦̂𝑦, parallel to the ECB-SMBH motion in orbit as 

described in u-v plane, is given by: 

𝑦̂𝑦 = [𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝐺𝐺𝐺𝐺 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙𝐺𝐺𝐺𝐺 − 𝜙𝜙𝑆𝑆𝑆𝑆)]𝑢̂𝑢 

                                                            −[𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙𝐺𝐺𝐺𝐺 − 𝜙𝜙𝑆𝑆𝑆𝑆)]𝑣̂𝑣                    (3.7) 

At this juncture, we define the inclination angle 𝜃𝜃0  between the vectors 𝑦̂𝑦  and 𝑢̂𝑢  as 

follows: 

 

𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0 = 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝐺𝐺𝐺𝐺 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙𝐺𝐺𝐺𝐺 − 𝜙𝜙𝑆𝑆𝑆𝑆).       

                                                                       (3.8) 

The fundamental relation of VLBI given in eq.(3.1) can be transformed from the u,v 

coordinate system to the (ℓ,𝑡̃𝑡)system, where the source mapping is expressed in the p, q 

system via transforming relations that are detailed in the text as follows: 

ℓ = 𝑢𝑢 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0 + 𝑣𝑣 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0,                                  (3.9 − 1) 

𝑡̃𝑡 = −𝑢𝑢 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0 + 𝑣𝑣 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0,                                   (3.9 − 2) 

This allows the EHT visibilities to be represented in this newly established baseline 

coordinate system, as follows: 

𝑆𝑆(p, q) = ∫∫𝑉𝑉∗(ℓ, 𝑡̃𝑡,𝜃𝜃0)𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖(pℓ + q𝑡̃𝑡)-𝑑𝑑ℓ𝑑𝑑𝑡̃𝑡                     (3.10) 

18 

 

 𝑢̂𝑢 ≡ 𝜕𝜕𝑥̂𝑥
𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝜕𝜕𝜙𝜙𝑆𝑆𝑆𝑆

 = −𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆𝑥𝑥𝑒𝑒 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆𝑦̂𝑦𝑒𝑒 ,                                    (3.4) 

and 

𝑣̂𝑣 ≡ 𝜕𝜕𝑥̂𝑥
𝜕𝜕𝛿𝛿𝑆𝑆𝑆𝑆

 = −𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆𝑥̂𝑥𝑒𝑒 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆𝑦̂𝑦𝑒𝑒 + 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑧̂𝑧𝑒𝑒               (3.5) 

By defining the unit vector 𝑤̂𝑤 as parallel to the line of sight, i.e., the direction toward 

Sgr A*, we can form another Cartesian coordinate system (u,v,w), that is: 

  𝑤̂𝑤 = 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆𝑥̂𝑥𝑒𝑒 + 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆𝑦̂𝑦𝑒𝑒 + 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑧̂𝑧𝑒𝑒                  (3.6) 

In Appendix A, the unit vector 𝑦̂𝑦, parallel to the ECB-SMBH motion in orbit as 

described in u-v plane, is given by: 

𝑦̂𝑦 = [𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝐺𝐺𝐺𝐺 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙𝐺𝐺𝐺𝐺 − 𝜙𝜙𝑆𝑆𝑆𝑆)]𝑢̂𝑢 

                                                            −[𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙𝐺𝐺𝐺𝐺 − 𝜙𝜙𝑆𝑆𝑆𝑆)]𝑣̂𝑣                    (3.7) 

At this juncture, we define the inclination angle 𝜃𝜃0  between the vectors 𝑦̂𝑦  and 𝑢̂𝑢  as 

follows: 

 

𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0 = 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝐺𝐺𝐺𝐺 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙𝐺𝐺𝐺𝐺 − 𝜙𝜙𝑆𝑆𝑆𝑆).       

                                                                       (3.8) 

The fundamental relation of VLBI given in eq.(3.1) can be transformed from the u,v 

coordinate system to the (ℓ,𝑡̃𝑡)system, where the source mapping is expressed in the p, q 

system via transforming relations that are detailed in the text as follows: 

ℓ = 𝑢𝑢 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0 + 𝑣𝑣 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0,                                  (3.9 − 1) 

𝑡̃𝑡 = −𝑢𝑢 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0 + 𝑣𝑣 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0,                                   (3.9 − 2) 

This allows the EHT visibilities to be represented in this newly established baseline 

coordinate system, as follows: 

𝑆𝑆(p, q) = ∫∫𝑉𝑉∗(ℓ, 𝑡̃𝑡,𝜃𝜃0)𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖(pℓ + q𝑡̃𝑡)-𝑑𝑑ℓ𝑑𝑑𝑡̃𝑡                     (3.10) 

18 

 

 𝑢̂𝑢 ≡ 𝜕𝜕𝑥̂𝑥
𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝜕𝜕𝜙𝜙𝑆𝑆𝑆𝑆

 = −𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆𝑥𝑥𝑒𝑒 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆𝑦̂𝑦𝑒𝑒 ,                                    (3.4) 

and 

𝑣̂𝑣 ≡ 𝜕𝜕𝑥̂𝑥
𝜕𝜕𝛿𝛿𝑆𝑆𝑆𝑆

 = −𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆𝑥̂𝑥𝑒𝑒 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆𝑦̂𝑦𝑒𝑒 + 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑧̂𝑧𝑒𝑒               (3.5) 

By defining the unit vector 𝑤̂𝑤 as parallel to the line of sight, i.e., the direction toward 

Sgr A*, we can form another Cartesian coordinate system (u,v,w), that is: 

  𝑤̂𝑤 = 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆𝑥̂𝑥𝑒𝑒 + 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆𝑦̂𝑦𝑒𝑒 + 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑧̂𝑧𝑒𝑒                  (3.6) 

In Appendix A, the unit vector 𝑦̂𝑦, parallel to the ECB-SMBH motion in orbit as 

described in u-v plane, is given by: 

𝑦̂𝑦 = [𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝐺𝐺𝐺𝐺 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙𝐺𝐺𝐺𝐺 − 𝜙𝜙𝑆𝑆𝑆𝑆)]𝑢̂𝑢 

                                                            −[𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙𝐺𝐺𝐺𝐺 − 𝜙𝜙𝑆𝑆𝑆𝑆)]𝑣̂𝑣                    (3.7) 

At this juncture, we define the inclination angle 𝜃𝜃0  between the vectors 𝑦̂𝑦  and 𝑢̂𝑢  as 

follows: 

 

𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0 = 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝐺𝐺𝐺𝐺 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙𝐺𝐺𝐺𝐺 − 𝜙𝜙𝑆𝑆𝑆𝑆).       

                                                                       (3.8) 

The fundamental relation of VLBI given in eq.(3.1) can be transformed from the u,v 

coordinate system to the (ℓ,𝑡̃𝑡)system, where the source mapping is expressed in the p, q 

system via transforming relations that are detailed in the text as follows: 

ℓ = 𝑢𝑢 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0 + 𝑣𝑣 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0,                                  (3.9 − 1) 

𝑡̃𝑡 = −𝑢𝑢 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0 + 𝑣𝑣 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0,                                   (3.9 − 2) 

This allows the EHT visibilities to be represented in this newly established baseline 

coordinate system, as follows: 

𝑆𝑆(p, q) = ∫∫𝑉𝑉∗(ℓ, 𝑡̃𝑡,𝜃𝜃0)𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖(pℓ + q𝑡̃𝑡)-𝑑𝑑ℓ𝑑𝑑𝑡̃𝑡                     (3.10) 
18 

 

 𝑢̂𝑢 ≡ 𝜕𝜕𝑥̂𝑥
𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝜕𝜕𝜙𝜙𝑆𝑆𝑆𝑆

 = −𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆𝑥𝑥𝑒𝑒 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆𝑦̂𝑦𝑒𝑒 ,                                    (3.4) 

and 

𝑣̂𝑣 ≡ 𝜕𝜕𝑥̂𝑥
𝜕𝜕𝛿𝛿𝑆𝑆𝑆𝑆

 = −𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆𝑥̂𝑥𝑒𝑒 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆𝑦̂𝑦𝑒𝑒 + 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑧̂𝑧𝑒𝑒               (3.5) 

By defining the unit vector 𝑤̂𝑤 as parallel to the line of sight, i.e., the direction toward 

Sgr A*, we can form another Cartesian coordinate system (u,v,w), that is: 

  𝑤̂𝑤 = 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆𝑥̂𝑥𝑒𝑒 + 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆𝑦̂𝑦𝑒𝑒 + 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑧̂𝑧𝑒𝑒                  (3.6) 

In Appendix A, the unit vector 𝑦̂𝑦, parallel to the ECB-SMBH motion in orbit as 

described in u-v plane, is given by: 

𝑦̂𝑦 = [𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝐺𝐺𝐺𝐺 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙𝐺𝐺𝐺𝐺 − 𝜙𝜙𝑆𝑆𝑆𝑆)]𝑢̂𝑢 

                                                            −[𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙𝐺𝐺𝐺𝐺 − 𝜙𝜙𝑆𝑆𝑆𝑆)]𝑣̂𝑣                    (3.7) 

At this juncture, we define the inclination angle 𝜃𝜃0  between the vectors 𝑦̂𝑦  and 𝑢̂𝑢  as 

follows: 

 

𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0 = 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝐺𝐺𝐺𝐺 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙𝐺𝐺𝐺𝐺 − 𝜙𝜙𝑆𝑆𝑆𝑆).       

                                                                       (3.8) 

The fundamental relation of VLBI given in eq.(3.1) can be transformed from the u,v 

coordinate system to the (ℓ,𝑡̃𝑡)system, where the source mapping is expressed in the p, q 

system via transforming relations that are detailed in the text as follows: 

ℓ = 𝑢𝑢 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0 + 𝑣𝑣 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0,                                  (3.9 − 1) 

𝑡̃𝑡 = −𝑢𝑢 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0 + 𝑣𝑣 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0,                                   (3.9 − 2) 

This allows the EHT visibilities to be represented in this newly established baseline 

coordinate system, as follows: 

𝑆𝑆(p, q) = ∫∫𝑉𝑉∗(ℓ, 𝑡̃𝑡,𝜃𝜃0)𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖(pℓ + q𝑡̃𝑡)-𝑑𝑑ℓ𝑑𝑑𝑡̃𝑡                     (3.10) 
18 

 

 𝑢̂𝑢 ≡ 𝜕𝜕𝑥̂𝑥
𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝜕𝜕𝜙𝜙𝑆𝑆𝑆𝑆

 = −𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆𝑥𝑥𝑒𝑒 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆𝑦̂𝑦𝑒𝑒 ,                                    (3.4) 

and 

𝑣̂𝑣 ≡ 𝜕𝜕𝑥̂𝑥
𝜕𝜕𝛿𝛿𝑆𝑆𝑆𝑆

 = −𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆𝑥̂𝑥𝑒𝑒 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆𝑦̂𝑦𝑒𝑒 + 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑧̂𝑧𝑒𝑒               (3.5) 

By defining the unit vector 𝑤̂𝑤 as parallel to the line of sight, i.e., the direction toward 

Sgr A*, we can form another Cartesian coordinate system (u,v,w), that is: 

  𝑤̂𝑤 = 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆𝑥̂𝑥𝑒𝑒 + 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆𝑦̂𝑦𝑒𝑒 + 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑧̂𝑧𝑒𝑒                  (3.6) 

In Appendix A, the unit vector 𝑦̂𝑦, parallel to the ECB-SMBH motion in orbit as 

described in u-v plane, is given by: 

𝑦̂𝑦 = [𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝐺𝐺𝐺𝐺 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙𝐺𝐺𝐺𝐺 − 𝜙𝜙𝑆𝑆𝑆𝑆)]𝑢̂𝑢 

                                                            −[𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙𝐺𝐺𝐺𝐺 − 𝜙𝜙𝑆𝑆𝑆𝑆)]𝑣̂𝑣                    (3.7) 

At this juncture, we define the inclination angle 𝜃𝜃0  between the vectors 𝑦̂𝑦  and 𝑢̂𝑢  as 

follows: 

 

𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0 = 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝐺𝐺𝐺𝐺 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙𝐺𝐺𝐺𝐺 − 𝜙𝜙𝑆𝑆𝑆𝑆).       

                                                                       (3.8) 

The fundamental relation of VLBI given in eq.(3.1) can be transformed from the u,v 

coordinate system to the (ℓ,𝑡̃𝑡)system, where the source mapping is expressed in the p, q 

system via transforming relations that are detailed in the text as follows: 

ℓ = 𝑢𝑢 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0 + 𝑣𝑣 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0,                                  (3.9 − 1) 

𝑡̃𝑡 = −𝑢𝑢 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0 + 𝑣𝑣 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0,                                   (3.9 − 2) 

This allows the EHT visibilities to be represented in this newly established baseline 

coordinate system, as follows: 

𝑆𝑆(p, q) = ∫∫𝑉𝑉∗(ℓ, 𝑡̃𝑡,𝜃𝜃0)𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖(pℓ + q𝑡̃𝑡)-𝑑𝑑ℓ𝑑𝑑𝑡̃𝑡                     (3.10) 
18 

 

 𝑢̂𝑢 ≡ 𝜕𝜕𝑥̂𝑥
𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝜕𝜕𝜙𝜙𝑆𝑆𝑆𝑆

 = −𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆𝑥𝑥𝑒𝑒 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆𝑦̂𝑦𝑒𝑒 ,                                    (3.4) 

and 

𝑣̂𝑣 ≡ 𝜕𝜕𝑥̂𝑥
𝜕𝜕𝛿𝛿𝑆𝑆𝑆𝑆

 = −𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆𝑥̂𝑥𝑒𝑒 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆𝑦̂𝑦𝑒𝑒 + 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑧̂𝑧𝑒𝑒               (3.5) 

By defining the unit vector 𝑤̂𝑤 as parallel to the line of sight, i.e., the direction toward 

Sgr A*, we can form another Cartesian coordinate system (u,v,w), that is: 

  𝑤̂𝑤 = 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆𝑥̂𝑥𝑒𝑒 + 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆𝑦̂𝑦𝑒𝑒 + 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑧̂𝑧𝑒𝑒                  (3.6) 

In Appendix A, the unit vector 𝑦̂𝑦, parallel to the ECB-SMBH motion in orbit as 

described in u-v plane, is given by: 

𝑦̂𝑦 = [𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝐺𝐺𝐺𝐺 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙𝐺𝐺𝐺𝐺 − 𝜙𝜙𝑆𝑆𝑆𝑆)]𝑢̂𝑢 

                                                            −[𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙𝐺𝐺𝐺𝐺 − 𝜙𝜙𝑆𝑆𝑆𝑆)]𝑣̂𝑣                    (3.7) 

At this juncture, we define the inclination angle 𝜃𝜃0  between the vectors 𝑦̂𝑦  and 𝑢̂𝑢  as 

follows: 

 

𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0 = 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝐺𝐺𝐺𝐺 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙𝐺𝐺𝐺𝐺 − 𝜙𝜙𝑆𝑆𝑆𝑆).       

                                                                       (3.8) 

The fundamental relation of VLBI given in eq.(3.1) can be transformed from the u,v 

coordinate system to the (ℓ,𝑡̃𝑡)system, where the source mapping is expressed in the p, q 

system via transforming relations that are detailed in the text as follows: 

ℓ = 𝑢𝑢 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0 + 𝑣𝑣 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0,                                  (3.9 − 1) 

𝑡̃𝑡 = −𝑢𝑢 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0 + 𝑣𝑣 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0,                                   (3.9 − 2) 

This allows the EHT visibilities to be represented in this newly established baseline 

coordinate system, as follows: 

𝑆𝑆(p, q) = ∫∫𝑉𝑉∗(ℓ, 𝑡̃𝑡,𝜃𝜃0)𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖(pℓ + q𝑡̃𝑡)-𝑑𝑑ℓ𝑑𝑑𝑡̃𝑡                     (3.10) 

and

By defining the unit vector ŵ as parallel to the line of sight, i.e., the direction toward Sgr A*, we can form another Cartesian 
coordinate system (u,v,w), that is:

In Appendix A, the unit vector ŷ, parallel to the ECB-SMBH motion in orbit as described in u-v plane, is given by:

At this juncture, we define the inclination angle θ0 between the vectors ŷ and û as follows:

The fundamental relation of VLBI given in eq.(3.1) can be transformed from the u,v coordinate system to the (ℓ,t̃)system, where the 
source mapping is expressed in the p, q system via transforming relations that are detailed as follows:
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18 

 

 𝑢̂𝑢 ≡ 𝜕𝜕𝑥̂𝑥
𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝜕𝜕𝜙𝜙𝑆𝑆𝑆𝑆

 = −𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆𝑥𝑥𝑒𝑒 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆𝑦̂𝑦𝑒𝑒 ,                                    (3.4) 

and 

𝑣̂𝑣 ≡ 𝜕𝜕𝑥̂𝑥
𝜕𝜕𝛿𝛿𝑆𝑆𝑆𝑆

 = −𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆𝑥̂𝑥𝑒𝑒 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆𝑦̂𝑦𝑒𝑒 + 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑧̂𝑧𝑒𝑒               (3.5) 

By defining the unit vector 𝑤̂𝑤 as parallel to the line of sight, i.e., the direction toward 

Sgr A*, we can form another Cartesian coordinate system (u,v,w), that is: 

  𝑤̂𝑤 = 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆𝑥̂𝑥𝑒𝑒 + 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆𝑦̂𝑦𝑒𝑒 + 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑧̂𝑧𝑒𝑒                  (3.6) 

In Appendix A, the unit vector 𝑦̂𝑦, parallel to the ECB-SMBH motion in orbit as 

described in u-v plane, is given by: 

𝑦̂𝑦 = [𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝐺𝐺𝐺𝐺 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙𝐺𝐺𝐺𝐺 − 𝜙𝜙𝑆𝑆𝑆𝑆)]𝑢̂𝑢 

                                                            −[𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙𝐺𝐺𝐺𝐺 − 𝜙𝜙𝑆𝑆𝑆𝑆)]𝑣̂𝑣                    (3.7) 

At this juncture, we define the inclination angle 𝜃𝜃0  between the vectors 𝑦̂𝑦  and 𝑢̂𝑢  as 

follows: 

 

𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0 = 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝐺𝐺𝐺𝐺 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙𝐺𝐺𝐺𝐺 − 𝜙𝜙𝑆𝑆𝑆𝑆).       

                                                                       (3.8) 

The fundamental relation of VLBI given in eq.(3.1) can be transformed from the u,v 

coordinate system to the (ℓ,𝑡̃𝑡)system, where the source mapping is expressed in the p, q 

system via transforming relations that are detailed in the text as follows: 

ℓ = 𝑢𝑢 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0 + 𝑣𝑣 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0,                                  (3.9 − 1) 

𝑡̃𝑡 = −𝑢𝑢 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0 + 𝑣𝑣 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0,                                   (3.9 − 2) 

This allows the EHT visibilities to be represented in this newly established baseline 

coordinate system, as follows: 

𝑆𝑆(p, q) = ∫∫𝑉𝑉∗(ℓ, 𝑡̃𝑡,𝜃𝜃0)𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖(pℓ + q𝑡̃𝑡)-𝑑𝑑ℓ𝑑𝑑𝑡̃𝑡                     (3.10) 
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                                                                       (3.8) 

The fundamental relation of VLBI given in eq.(3.1) can be transformed from the u,v 

coordinate system to the (ℓ,𝑡̃𝑡)system, where the source mapping is expressed in the p, q 

system via transforming relations that are detailed in the text as follows: 

ℓ = 𝑢𝑢 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0 + 𝑣𝑣 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0,                                  (3.9 − 1) 

𝑡̃𝑡 = −𝑢𝑢 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0 + 𝑣𝑣 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0,                                   (3.9 − 2) 

This allows the EHT visibilities to be represented in this newly established baseline 

coordinate system, as follows: 

𝑆𝑆(p, q) = ∫∫𝑉𝑉∗(ℓ, 𝑡̃𝑡,𝜃𝜃0)𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖(pℓ + q𝑡̃𝑡)-𝑑𝑑ℓ𝑑𝑑𝑡̃𝑡                     (3.10) 

This allows the EHT visibilities to be represented in this newly established baseline coordinate system, as follows:

where 
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where  

𝑉𝑉∗(ℓ, 𝑡̃𝑡,𝜃𝜃0) = 𝑉𝑉(ℓ𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0 − 𝑡̃𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0, ℓ𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0 + 𝑡̃𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0),   (3.10 − 1) 

𝑝𝑝 = ξ𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0 + η𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0  ,                                           (3.10 − 2) 

 and 

𝑞𝑞 = −ξ𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0 + η𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0  .                                                      (3.10 − 3) 

3.1.2 Linearized Visibility (LV) 

To describe the visibility constrained to express the orbiting ECB-SMBH detected as 

linear motion from observation points, we introduce the concept of linearized visibility 

(LV), which allows us to focus on the linear motion of ECB-SMBH from the two-

dimensional EHT visibility data. Initially, without specifying the orbit inclination angle 

𝜃𝜃0 with respect to the u-axis, we further expand the coordinate system to describe the 

LV. By defining a new inclination angle θ, as 

𝜃𝜃0 − ε <  θ < 𝜃𝜃0 + ε ,                               (3.11) 

where ε is a limit angle that permits the two-dimensional visibility to be approximated 

as one-dimensional visibility along the line with inclination angle 𝜃𝜃0 ; we can 

reformulate eq.(3.10) as follows: 

𝑆𝑆(p,𝜃𝜃0) = ∫∫ 𝑉𝑉∗(ℓcosθ, ℓsinθ,𝜃𝜃) ∙ 𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖(pℓ + q𝑡̃𝑡)- ∙ ℓ𝑑𝑑ℓ𝑑𝑑𝑑𝑑
𝜃𝜃0:ε

𝜃𝜃0;ε
 .                   (3.12) 

The limit angle ε, chosen to be as narrow as possible, focuses on the line of ECB-

SMBH to concentrate on the analysis of periodically varying components in the EHT 

visibility data. However, due to the presence of noise and potential observational errors, 

there is a lower limit for selecting ε. 

Related to eq.(3.12), we define the LV, tailored for detecting sources moving with a 

length parameter p along a line with inclination angle 𝜃𝜃, as follows: 
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and

3.1.2 Linearized Visibility (LV)
To describe the visibility constrained to express the orbiting 
ECB-SMBH detected as linear motion from observation points, 
we introduce the concept of linearized visibility (LV), which 
allows us to focus on the linear motion of ECB-SMBH from 

the two-dimensional EHT visibility data. Initially, without 
specifying the orbit inclination angle θ0  with respect to the 
u-axis, we further expand the coordinate system to describe the 
LV. By defining a new inclination angle θ, as

where ε is a limit angle that permits the two-dimensional 
visibility to be approximated as one-dimensional visibility along 

the line with inclination angle 𝜃0; we can reformulate eq.(3.10) 
as follows:

The limit angle ε, chosen to be as narrow as possible, focuses 
on the line of ECB-SMBH to concentrate on the analysis of 
periodically varying components in the EHT visibility data. 
However, due to the presence of noise and potential observational 
errors, there is a lower limit for selecting ε.

Related to eq.(3.12), we define the LV, tailored for detecting 
sources moving with a length parameter p along a line with 
inclination angle θ, as follows:
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𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0) = ∫ 𝑉𝑉∗(ℓcosθ, ℓsinθ,𝜃𝜃0)ℓ𝑑𝑑𝑑𝑑 .                        (3.13)
𝜃𝜃0:𝜀𝜀

𝜃𝜃0;𝜀𝜀
 

  This method of handling visible data, referred to as linearized visibility (LV), allows 

eq.(3.10) to be finally expressed by setting q = 0, as follows: 

𝑆𝑆(p,𝜃𝜃0) = ∫∫𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0)𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖pℓ)𝑑𝑑ℓ                     (3.14) 

This indicates that data deviating from the orbit line are unrelated to periodic time 

variation due to their independence from ECB-SMBH orbital motion. Consequently, 

by sampling data synchronized with the orbiting motion’s period, components 

unrelated to ECB-SMBH are averaged out, resulting in a constant bias level similar to 

averaging random noise. 

 

3.2 Symmetry Approximation and Synchronized Data Stacking of LV 

We now consider the periodic time dependence of VLBI visibility. Traditionally, VLBI 

study assumes statistically stationary sources. However, by viewing original visibility 

as data from time-varying sources, which change according to a given time sequence, 

we adopt a novel approach. Utilizing the identified orbiting period, we form the LV 

based on EHT data by sampling synchronized with the eclipse cycle of BHs, which is 

half of the orbital period of ECB-SMBHB. In developing the LV, we aim to simplify the 

SgrA* system by assuming symmetry for both members of the binary system, without 

losing the essence of the  
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This method of handling visible data, referred to as linearized visibility (LV), allows eq.(3.10) to be finally expressed by setting q=0, 
as follows:

This indicates that data deviating from the orbit line are unrelated 
to periodic time variation due to their independence from 
ECB-SMBH orbital motion. Consequently, by sampling data 
synchronized with the orbiting motion’s period, components 
unrelated to ECB-SMBH are averaged out, resulting in a 
constant bias level similar to averaging random noise.

3.2 Symmetry Approximation and Synchronized Data 
Stacking of LV
We now consider the periodic time dependence of VLBI 
visibility. Traditionally, VLBI study assumes statistically 
stationary sources. However, by viewing original visibility as 
data from time-varying sources, which change according to a 
given time sequence, we adopt a novel approach. Utilizing the 
identified orbiting period, we form the LV based on EHT data by 
sampling synchronized with the eclipse cycle of BHs, which is 
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half of the orbital period of ECB-SMBHB. In developing the LV, 
we aim to simplify the SgrA* system by assuming symmetry for 
both members of the binary system, without losing the essence 
of the phenomena. The symmetric approximation model for 
ECB-SMBH, illustrated in Figure 4, assumes both ECB-SMBH  
members of the binary system are identical, employing a unified 
circular orbit with a radius assumed to be the same as the actual 

distance, i.e., 4.1×107 km. By assuming 1 to 1 ratio of the binary 
members Gaa and Gab contrary to the real mass ratio of 1 to 
0.87, the model's positions, deviate from actual positions by 
less than 8%, which is sufficiently smaller than the limit range 
detectable by the EHT's VLBI system. Therefore, this symmetry 
approximation is utilized throughout the entire process to deduce 
the image of ECB-SMBH motions from EHT data.
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Figure 4.  The symmetry approximation of  CEB-SMBH at SgrA*. Panel A shows real 

situation of the CEB-SMBH at SgrA*; the symmetrically approximated orbit is 

given in Panel B where  the configuration is twisted by 8% from the real orbits. The 

positions of symmetrically assumed orbit of CEB-SMBH are expre ssed by dividing 

16 phases; eight positions numbering from 1 to 8 are selected as essential positions 

to descrive the orbital motion considering the symmetry of the configuration of the 

approximated orbit. phenomena. The symmetric approximation model for ECB-

SMBH, illustrated in Figure 4, assumes both ECB-SMBH  members of the binary 

system are identical, employing a unified circular orbit with a radius assumed to be 

the same as the actual distance, i.e., 4.1 × 107km. By assuming 1 to 1 ratio of the 

binary members Gaa and Gab contrary to the real mass ratio of 1 to 0.87, the model's 

positions, deviate from actual positions by less than 8%, which is sufficiently smaller 

than the limit range detectable by the EHT's VLBI system. Therefore, this symmetry 

approximation is utilized throughout the entire process to deduce the image of ECB-

Figure 4.  The symmetry approximation of  ECB-SMBH at SgrA*. Panel A shows real situation of the ECB-SMBH at SgrA*; the 
symmetrically approximated orbit is given in Panel B where  the configuration is twisted by 8% from the real orbits. The positions 
of symmetrically assumed orbit of ECB-SMBH are expressed by dividing 16 phases; eight positions numbering from 1 to 8 are 
selected as essential positions to descrive the orbital motion considering the symmetry of the configuration of the approximated 
orbit. 

For the anticipated periodic time-varying LV, we have set eight 
phases corresponding to the approximated symmetry orbit as 
depicted in Figure 4. The entire period of the VLBI observation 
(one day of observation) is represented by LVs corresponding to 

these eight sampling phases, because of the periodic repetition 
of the orbital motions of ECB-SMBH. Consequently, eq.(3.13) 
is reformulated as :
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where 𝑡𝑡𝑝𝑝  denotes the period of the eclipse cycle; n is twice the number of orbital 

rotations, and N represents the total number of eclipses. The timing 𝑇𝑇𝑚𝑚 refers to the 

intervals for each phase number 𝑚𝑚, which are detailed as :  

𝑇𝑇𝑚𝑚 = 𝑚𝑚(𝑡𝑡𝑝𝑝 8⁄ ).                                                                (3.16) 

                                                                                                                            

The process described by eq.(3.15), defined  as ―data stacking for the LV,― involves 

averaging EHT data sampled in synchrony with the eclipse cycle period, which is half 

of the determined orbiting period of ECB-SMBH. For additional context regarding 

sampling, the symmetrically assumed BH positions are determined by dividing the 

eclipse cycle period into eight intervals 𝑇𝑇𝑚𝑚, as illustrated in Panel B of Figure 4. In the 

context of observation, we cannot directly manage the phase numbering m depicted in 

the diagram due to the absence of precise phase information for the orbiting ECB-

SMBH. Therefore, we employ two methods of phase numbering: the absolute phase 

numbering 𝑚𝑚𝑎𝑎, used for theoretical calculations where we can determine the phase of 

the ECB-SMBH’s orbital motion, and the relative phase numbering 𝑚𝑚𝑟𝑟 (primarily for 

observation data). 
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where tp denotes the period of the eclipse cycle; n is twice the 
number of orbital rotations, and N represents the total number 

of eclipses. The timing Tm refers to the intervals for each phase 
number m, which are detailed as :

The process described by eq.(3.15), defined  as “data stacking 
for the LV,“ involves averaging EHT data sampled in synchrony 
with the eclipse cycle period, which is half of the determined 
orbiting period of ECB-SMBH. For additional context 
regarding sampling, the symmetrically assumed BH positions 
are determined by dividing the eclipse cycle period into eight 
intervals Tm, as illustrated in Panel B of Figure 4. In the context 
of observation, we cannot directly manage the phase numbering 
m depicted in the diagram due to the absence of precise phase 
information for the orbiting ECB-SMBH. Therefore, we employ 
two methods of phase numbering: the absolute phase numbering 
ma, used for theoretical calculations where we can determine the 
phase of the ECB-SMBH’s orbital motion, and the relative phase 
numbering mr (primarily for observation data).

An example of data sampling with respect to the 96 CASA AZ-JC 

baseline of EHT data, as part of the preparation for forming the 
LV, is presented in Figure 5. Here, the entire observation interval 
is divided into five time segments, with original EHT visibilities 
split into five groups along with their corresponding u-v values. 
In each time segment, we have multiple data points across the 
eight phase bins mr, allowing us to average (data stack) EHT 
visibilities along with u-v values. Subsection 3.3 showcases the 
example results of data stacking prepared for the formation of 
the LV for the current case of EHT data from the 96 CASA AZ-
JC baseline. The findings, as demonstrated in Figure 6, reveal 
that the averaged baselines (u, v) remain consistent across all 
phase bins within a given time segment, yet visibilities vary 
significantly depending on the chosen phase bins. The level of 
visibility variation significantly exceeds the associated standard 
deviation σ, suggesting the presence of periodic variation in the 
visibilities.
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3.3 Results of Synchronized data Stacking of Linearized 
Visibility
3.3.1 Formation Processes of LV from EHT Visibility Data
Following the processes described in Subsection 3.1.2, we 
formed the LV from the EHT data of SgrA* observed on April 
6, 2017 [30], which consists of 21 sets of baseline observed at 
high frequencies (229.1 GHz) and low frequencies (227.1 GHz), 
calibrated and correlated in both CASA and HOPS data handling 

pipelines [30]. The original EHT data from April 7, 2017, 
subsequently provided four data groups for each observation 
day. However, as will be explained in Subsection 3.4, it becomes 
apparent that the data from April 7 are inadequate for the present 
LV method. Therefore, we selected two data sets, 96 (April 6) 
Hi CASA and 96 Lo HOPS, from the EHT data to form the LV 
corresponding to the eight phases, seeking.
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Figure 5.  An example of  ―data stacking to form the LV‖ with respective to 96 CASA AZ-

JC baseline observations of EHT data. The  whole observation interval is divided into 5 

time segments where original visibilities are divided  into 5 groups together with 

corresponding u-v values. The sampled EHT data  are averaged  to eight sets of u-v 

values in each segment; i.e., for a given baseline of EHT data , we have 5 sets of 

linearized visibilities with corresponding eight  𝑚𝑚𝑟𝑟 phases. the ECB-SMBH orbiting 

motion with an eclipse period (half of the orbiting period). 

 

For the 96 (April 6) Hi CASA data set, observation times and data statistics with respect 

to the processes outlined in Subsections 3.1 and 3.2 for data stacking for the LV are 

presented in Table 3. Here, 21 baseline data consisting of Sgr A* observations at six 

observation stations (see Appendix B for information provided by EHTC) are utilized. 

Although start times at each observation baseline are not the same, we established a 

common sequence to synchronize with the orbital period of ECB-SMBH throughout all 

baseline data. For this purpose, we carefully set the time difference (TD), both in terms 

of real time and sequence numbers of the orbital rotation (Peri N.). The stacking 

Figure 5.  An example of  “data stacking to form the LV” with respective to 96 CASA AZ-JC baseline observations of EHT data. 
The  whole observation interval is divided into 5 time segments where original visibilities are divided  into 5 groups together with 
corresponding u-v values. The sampled EHT data  are averaged  to eight sets of u-v values in each segment; i.e., for a given baseline 
of EHT data , we have 5 sets of linearized visibilities with corresponding eight  mr  phases. 

the ECB-SMBH orbiting motion with an eclipse period (half of 
the orbiting period).

For the 96 (April 6) Hi CASA data set, observation times and data 
statistics with respect to the processes outlined in Subsections 
3.1 and 3.2 for data stacking for the LV are presented in Table 3. 
Here, 21 baseline data consisting of Sgr A* observations at six 
observation stations (see Appendix B for information provided 
by EHTC) are utilized. Although start times at each observation 
baseline are not the same, we established a common sequence to 
synchronize with the orbital period of ECB-SMBH throughout 
all baseline data. For this purpose, we carefully set the time 
difference (TD), both in terms of real time and sequence numbers 

of the orbital rotation (Peri N.). The stacking numbers in Table 3, 
defined as the number of visibility data distributed into all eight 
phase bins (from 1 to 8 of mr, see Subsection 3.2), are noted. 
When the stacking number is 20, as in the case of the baseline 
AA-SP in Table 3, there are four rounds of distributions of EHT 
visibility data for all eight phase bins throughout the entire 
observation interval of 10.3666 h; that is, because observation 
intervals are divided into five time segments, we observe four 
rounds of data distribution for each phase bin, allowing us to 
trace the orbital motion in each time segment. This means that 
the level of observed visibilities is averaged over four data 
points, reducing the sigma associated with the data by half.
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with the data by half. 

 

Figure 6.  Example results of the data stacking prepared for the formation of the LV for 

the case of the EHT data of 96 CASA AZ-JC. The baseline length components u (black 

spot) and v (red spot) are given with scale in left ordinate; the visibilities (green spot) 

Figure 6.  Example results of the data stacking prepared for the formation of the LV for the case of the EHT data of 96 CASA AZ-
JC. The baseline length components u (black spot) and v (red spot) are given with scale in left ordinate; the visibilities (green spot) 
and associated σ (small orange spot) are given with scale in the right ordinate. The baselines (u, v) averaged in each corresponding 
phase bin are almost same for all phase bins in a given time-segment but visibilities vary clearly depending on the selected phase 
bins. The variation levels of the visibilities apparently overcome the associated σ suggesting the existence of the periodic variation 
of the visibilities.

3.3.2 Formation of LV from Stacking Visibilities
In the process of forming the LV, we transform the stacked 
baseline data in the (u, v) coordinate to the baseline values in 
(ℓ, t̃ coordinate (see eqs.(3.10-1) and (3.10-2)) for the u-v values 

of the eight sets in the corresponding phase mr of the given 
time segments. As a final step, we form the LV by checking the 
associated t̃ (given by eq.(3.10-2)) considering the criteria that
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  3.3.2 Formation of LV from Stacking Visibilities 

  In the process of forming the LV, we transform the stacked baseline data in the (u, v) 

coordinate to the baseline values in (ℓ,𝑡̃𝑡) coordinate (see eqs.(3.10-1) and (3.10-2)) for 

the u-v values of the eight sets in the corresponding phase 𝑚𝑚𝑟𝑟 of the given time 

segments. As a final step, we form the LV by checking the associated 𝑡̃𝑡  (given by 

eq.(3.10-2)) considering the criteria that 

|ℓ| > 0.8| 𝑡̃𝑡|.                                           (3.17) 

This criterion corresponds to 0.21 rad as 𝜀𝜀 in eq.(3.16); the data within a fan-shaped 

area with an angle range of ±39° deviating from the selected line are then considered 

as objective 

Table 3. List of VLBI baselines of EHT data, observation times and data stacking 

number for 96 (April 6, 2017) EHT data. (Baseline information is given in Appendix 

B). 

This criterion corresponds to 0.21 rad as ε in eq.(3.16); the data within a fan-shaped area with an angle range of ± 39° deviating from 
the selected line are then considered as objective
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data for LV (see Figure 7). For the level of LVs, we set thresholds with sigmas; 

however, due to stacking effects on EHT data, where the resulting LVs are formed by 

averaging multiple numbers of EHT data, as described in Subsection 3.3.1, most levels 

of LV clear the threshold level with cases higher than 2 σ.  

 

3.4 Possibilities of LV Formation for 96 Hi CASA and 97 Hi CASA 

Results of the stacking visibility data synchronized with the eclipse cycle period of 

orbiting ECB-SMBH for the EHT visibility data of 96-Hi CASA are given in Figure 8, 

where the baseline coordinate is transformed from the u-v system to ℓ-𝑡̃𝑡 system. From 

Table 3. List of VLBI baselines of EHT data, observation times and data stacking number for 96 (April 6, 2017) EHT data. 
(Baseline information is given in Appendix B).

data for LV (see Figure 7). For the level of LVs, we set thresholds 
with sigmas; however, due to stacking effects on EHT data, where 
the resulting LVs are formed by averaging multiple numbers of 
EHT data, as described in Subsection 3.3.1, most levels of LV 
clear the threshold level with cases higher than 2 σ. 

3.4 Possibilities of LV Formation for 96 Hi CASA and 97 Hi 
CASA
Results of the stacking visibility data synchronized with the 

eclipse cycle period of orbiting ECB-SMBH for the EHT 
visibility data of 96-Hi CASA are given in Figure 8, where 
the baseline coordinate is transformed from the u-v system 
to l-t̃ system. From the displayed data, the LVs are formed by 
taking the visibility data within the colored fan-shaped region as 
visibility to be the function of ℓ that satisfies the condition given 
by eq.(3.17). The data are displayed for the mr  phases 1, 3, 5, 
and 7, where from seven to ten data points form effective 
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Figure 7. Selecting range of baseline data of the LV.  In the(ℓ,𝑡̃𝑡) systems transformed 

from u-v coordinate, the data deviating ±39°from ℓ line is selected as LV. 

Figure 7. Selecting range of baseline data of the LV.  In the(ℓ,t̃) systems transformed from u-v coordinate, the data deviating ±39° 
from ℓ line is selected as LV.

LVs in the range l >2.5× 109 λ. In Figure 9, results of the 
stacking visibility data synchronized to the eclipse cycle period 
of orbiting ECB-SMBH for the EHT visibility data of 97-Hi 
CASA are indicated. Because there is only one or two data 
points contributing to effective LVs in the range l >2.5×109 λ, it 
is disclosed that applying the present LV concept for the 97-Hi 
CASA case is inadequate. 

3.5 Results of LVs Corresponding to 96 Hi CASA and 96 Lo 
HOPS Data
3.5.1 Real Part of LV
One of the most critical and difficult steps in visualizing the 
moving ECB-SMBH is to find an exactly accurate orbiting 
period. In this context, we have already attempted to find the 
orbital period after the initial proposal of 2200±50 s based on 
the decameter radio wave pulses from SgrA* [14]. As the first 
step to confirm the proposed existence of ECB-SMBH at Sgr 
A*, we investigated the results of 1.3 mm wavelength VLBI 
observations carried out by Fish et al. [27], which give orbital 
periods of 2150±2.5 s.
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Figure 8. Results of baseline coordinate transformation from u-v system to ℓ-𝑡̃𝑡  system 

for the EHT-data of ECB-SMBH orbiting period synchronized with stacking 

processes. The  LVs are formed taking the visibility data within the colored fan 

shape region as visibility  to be the function of ℓ approximately. The data are 

displayed for the 𝑚𝑚𝑟𝑟  phases 1, 3, 5 and 7. There are 7 ~10 data which form 

effective LVs in the range ℓ > 2.5 × 109𝜆𝜆. 

 

 

Figure 8. Results of baseline coordinate transformation from u-v system to ℓ -t̃  system for the EHT-data of ECB-SMBH orbiting 
period synchronized with stacking processes. The  LVs are formed taking the visibility data within the colored fan shape region as 
visibility  to be the function of ℓ approximately. The data are displayed for the mr   phases 1, 3, 5 and 7. There are 7 ~10 data which 
form effective LVs in the range ℓ>2.5× 109 λ.

The second step of confirmation was carried out [29]  using 
publicly released EHT data, [30]  as the results are reproduced in 
Table 2, where the orbiting periods are given in the range from 
2140 s to 2235 s for 24 cases of the EHT-VLBI data, giving 
an average of 2193.3 s with a standard deviation of 27.5 s. 
Considering the period ranges revealed by these cases, we have 
tried to search for the real orbital period of ECB-SMBH at 2143, 
2153, 2163, 2173, 2183, 2193, 2203, 2213, 2223, and 2233 

s. The adequate orbit period is judged by how the formed LV 
under the given period reveals reasonable variation compared 
with the theoretically calculated LV sequence based on the ECB-
SMBH orbital motion. In the present work, we find by trial to the 
two data sets, 96 Hi CASA and 96 Lo HOPS, that the adequate 
orbiting period is close to 2153±5 s. For this point, we will 
describe the details in Section 4.
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Figure 9. same with Figure 8. for the case of EHT data of 97 Hi CASA. There are only 

1~2 data which contribute to effective LV’s in the range ℓ > 2.5 × 109𝜆𝜆; it is disclosed 

that to apply the present LV concept for this case is inadequate. 

 

 

 

 

Figure 9. same with Figure 8. for the case of EHT data of 97 Hi CASA. There are only 1~2 data which contribute to effective LV’s 
in the range ℓ>2.5× 109 λ; it is disclosed that to apply the present LV concept for this case is inadequate.
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Figure 10. Results of real part of LV formed with the EHT, 96-Hi CASA visibility data being displayed with relative sequence 
number mr corresponding to eclipse cycle period of 2153/2 sec.  The LV is given as the function of baseline length ℓ that is set in 
parallel to the orbital plane of ECB-SMBH transformed from the regular u-v baseline coordinate. The LV shows sensitive response 
in the ℓ range from 2.5× 109  λ to 5.5× 109  λ , with condition of |LV|>σ , in each panel corresponding the phase of the orbital motion 
of the ECB-SMBH with orbit size of 33μas.    

In Figure 10, the results for the real part of LV formed with the 
EHT 96-Hi CASA visibility data are displayed sequentially with 
the relative phase number mr. The LVs are presented as a function 
of the baseline length ℓ, which is aligned parallel to the orbital 
plane of ECB-SMBH as defined by eq.(3.9-1), with respect to the 
regular u-v baseline coordinate. It is observed that the LVs show 
a sensitive response in the ℓ range from 2.5×109  λ to 5.5×109  λ, 
where it is confirmed that |LV|>σ, in each panel corresponding 
to the phase of the orbital motion of ECB-SMBH. For baseline 
lengths longer than 5.5×109  λ, LV values significantly decrease, 

showing the condition |LV|≤σ; this evidence indicates that the 
obtained LVs accurately reflect the motion effects of the ECB-
SMBH, whose orbit size reveals 33 μas. As previously described 
in Section 2, the orbit size of ECB-SMBH from the study on the 
decameter radio wave pulse observation of SgrA* is 4.1×107 km 
[14], which provides an observing angle of 33μas for the distance 
of 8.3 kpc from SgrA*. The LVij (linearized visibility defined 
between the i and j stations of VLBI) can be approximated as 
follows (see Appendix C):
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33𝜇𝜇𝜇𝜇𝜇𝜇 for the distance of 8.3 kpc from SgrA*. The 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 (linearized visibility defined 

between the i and j stations of VLBI) can be approximated as follows (see Appendix C): 

𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 (2𝜋𝜋
𝜆𝜆 𝑠𝑠𝑠𝑠𝑠𝑠𝛩𝛩0 ∙ ℓ𝑖𝑖𝑖𝑖∆𝛩𝛩)  ,                          (3.18) 

 where 𝑊𝑊𝑖𝑖𝑖𝑖, ℓ𝑖𝑖𝑖𝑖, and 𝛩𝛩0 are the visibility amplitude, the baseline length between the i 

and j stations of VLBI, and the angle between the arrival direction of the radio wave and 

baseline direction, respectively; ∆𝛩𝛩 represents the angle width of the observing object. 

The baseline range from 2.5 × 109 𝜆𝜆 to 5.5 × 109 𝜆𝜆, provides a stable visibility angle 

range from 2.51 to 5.52 rad. Details confirming the existence of the binary motions of 

ECB-SMBH will be given in the next Section 4 with the case of LV deduced from the 

EHT 96 Lo HOPS data. 

 

3.5.2 Imaginary Part of LV 

In Figure 11, the results for the imaginary part of the LV, based on the EHT 96 Hi 

CASA data, are displayed as a function of the relative phase number 𝑚𝑚𝑟𝑟 corresponding 

to the orbiting periods of 2153 s (1076.5 s eclipse cycle period). When considering the 

case of negative 𝜎𝜎, |𝐿𝐿𝐿𝐿| ≤ |𝜎𝜎| in almost the entire range of ℓ; this indicates that there 

are no significant LVs in the imaginary part of the linearized visibility. This is also 

evident in the case of negative values of ℓ as presented in Table 4, where the imaginary 

part of LVs is shown as a function of the data-stacked phases, which are relatively set by 

dividing the eclipse cycle period of ECB-SMBH into eight intervals, similar to the 

formation of the real part of LV. Compared with the magnitude of the real part, whose 

absolute values are always above 0.1 Jy, it is concluded that there are no significant 

values in the imaginary part, even in the case of negative ℓ. 
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where Wij, ℓij, and Θ0 are the visibility amplitude, the baseline 
length between the i and j stations of VLBI, and the angle 
between the arrival direction of the radio wave and baseline 
direction, respectively; ∆Θ represents the angle width of the 
observing object. The baseline range from 2.5×109  λ to 5.5×109  
λ, provides a stable visibility angle range from 2.51 to 5.52 rad. 
Details confirming the existence of the binary motions of ECB-
SMBH will be given in the next Section 4 with the case of LV 
deduced from the EHT 96 Lo HOPS data.

3.5.2 Imaginary Part of LV
In Figure 11, the results for the imaginary part of the LV, based 
on the EHT 96 Hi CASA data, are displayed as a function of the 

relative phase number mr corresponding to the orbiting periods 
of 2153 s (1076.5 s eclipse cycle period). When considering the 
case of negative σ, |LV|≤|σ|  in almost the entire range of ℓ; this 
indicates that there are no significant LVs in the imaginary part 
of the linearized visibility. This is also evident in the case of 
negative values of ℓ as presented in Table 4, where the imaginary 
part of LVs is shown as a function of the data-stacked phases, 
which are relatively set by dividing the eclipse cycle period of 
ECB-SMBH into eight intervals, similar to the formation of the 
real part of LV. Compared with the magnitude of the real part, 
whose absolute values are always above 0.1 Jy, it is concluded 
that there are no significant values in the imaginary part, even in 
the case of negative ℓ.
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almost all range of ℓ, |𝐿𝐿𝐿𝐿| ≤ |𝜎𝜎| (considering minus case of 𝜎𝜎 together) suggesting 

that there are no significant LV in the imaginary part of the linearized visibility. 

 

Figure 11. Results of the imaginary part of the LV based on the EHT, 96 Hi CASA VLBI data displayed as function of the relative 
phase number  mr corresponding to the orbiting periods 2153 sec (1076.5 sec eclipse cycle period). In almost all range of ℓ, |LV|≤|σ| 
(considering minus case of σ together) suggesting that there are no significant LV in the imaginary part of the linearized visibility.
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Table 4. Imaginary part of LV in negative ℓrange. 

 
4. Confirmation of Existence of Binary Motions of ECB-SMBH 

4.1 Theoretical Base-Fourier transformation of ECB-SMBH versus moving 

positions 

We are at the stage of the work where we decipher the binary motion of ECB-SMBH 

from the analyzed LV. For this purpose, we first calculate the Fourier transformation of 

the moving ECB-SMBH for each corresponding phase of the orbiting motion to confirm 

its coincidence with the observed LV.   Considering the relations from eqs.(3.10) to 

(3.14), given in Subsection 3.1.2, we can describe the radio wave source function 

S(𝑃𝑃,𝜃𝜃0,𝑇𝑇𝑚𝑚) at selected timing 𝑇𝑇𝑚𝑚 as follows: 

 

𝑆𝑆(𝑝𝑝,𝜃𝜃0,𝑇𝑇𝑚𝑚) = ∫𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚) ∙ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖ℓp)𝑑𝑑ℓ  .                   (4.1) 

In the present work, we adopt the approach of confirming the LV,  𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚) from 

the expected S (ｐ,𝜃𝜃0,𝑇𝑇𝑚𝑚)  function by taking the inverse Fourier transformation 
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Table 4. Imaginary part of LV in negative ℓ range.

4. Confirmation of Existence of Binary Motions of ECB- 
SMBH
4.1 Theoretical Base-Fourier transformation of ECB-SMBH 
versus moving positions
We are at the stage of the work where we decipher the binary 
motion of ECB-SMBH from the analyzed LV. For this purpose, 

we first calculate the Fourier transformation of the moving ECB 
-SMBH for each corresponding phase of the orbiting motion to 
confirm its coincidence with the observed LV. Considering the 
relations from eqs.(3.10) to (3.14), given in Subsection 3.1.2, 
we can describe the radio wave source function S(𝑃,𝜃0,𝑇𝑚) at 
selected timing 𝑇𝑚 as follows:

In the present work, we adopt the approach of confirming the LV, 𝑉𝐿(ℓ,𝜃0,𝑇𝑚) from the expected S(p,𝜃0,𝑇𝑚) function by taking the 
inverse Fourier transformation corresponding to eq.(4.1); i.e.,
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corresponding to eq.(4.1); i.e., 

𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚) = 1
2𝜋𝜋∫ 𝑆𝑆(𝑝𝑝, 𝜃𝜃0,𝑇𝑇𝑚𝑚) ∙ 𝑒𝑒𝑒𝑒𝑒𝑒(−iℓp)𝑑𝑑p

∞

;∞
 .                   (4.2) 

 

Based on a previous study ,29-, we consider the configuration of ECB-SMBH orbits in 

the plane approximately parallel to the Galactic equator, which are observed from the 

observation stations as linear back-and-forth motions along the line inclined by 𝜃𝜃0 with 

respect to the direction of right ascension (see Figure 12). The moving center position of 

BHs is given by distance 𝑎𝑎 (× 10𝜇𝜇𝜇𝜇𝜇𝜇) from the center of SgrA* along 𝑝𝑝; each BH is 

associated with a radio wave emission zone with an approximated radius of b (×

10 𝜇𝜇𝜇𝜇𝜇𝜇). 

For the configuration and motion of ECB-SMBH depicted in Figure 12, we calculate 

the LV, following eq.(4.2), as follows: 

𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚) = 1
2𝜋𝜋 6∫ A(𝑝𝑝 − 𝑎𝑎) ∙ cos [𝜋𝜋(𝑝𝑝 − 𝑎𝑎)

2𝑏𝑏 ]  ∙ 𝑒𝑒𝑒𝑒𝑒𝑒(−iℓ𝑝𝑝)𝑑𝑑𝑝𝑝
𝑎𝑎:𝑏𝑏

𝑎𝑎;𝑏𝑏

+ ∫ A(𝑝𝑝 + 𝑎𝑎) ∙ cos [𝜋𝜋(𝑝𝑝 + 𝑎𝑎)
2𝑏𝑏 ] ∙ 𝑒𝑒𝑒𝑒𝑒𝑒(−iℓ𝑝𝑝)𝑑𝑑𝑝𝑝

;𝑎𝑎:𝑏𝑏

;𝑎𝑎;𝑏𝑏
7  .        (4.3)              

 where    

A(𝑝𝑝 ± 𝑎𝑎) = 8 𝐴𝐴0:  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶     𝑓𝑓𝑓𝑓𝑓𝑓  |𝑝𝑝 ± 𝑎𝑎| < 𝑏𝑏
                              0                    𝑓𝑓𝑓𝑓𝑓𝑓  |𝑝𝑝 ± 𝑎𝑎| ≥ 𝑏𝑏                             .

 

In eq.(4.3), 𝐴𝐴0𝑐𝑐𝑐𝑐𝑐𝑐,𝜋𝜋(𝑝𝑝 − 𝑎𝑎) 2𝑏𝑏⁄ -  and 𝐴𝐴0 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐,𝜋𝜋(𝑝𝑝 + 𝑎𝑎) 2𝑏𝑏⁄ -   are models to express 

emission levels of the radio wave emitting zone around ECB-SMBH with an arbitrary 

constant 𝐴𝐴0 ; we model the emission as part of a cosine function, which shows a 

maximum at the center part and fades to zero at the radius b of the observing disk of 

ECB-SMBH. 
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emission levels of the radio wave emitting zone around ECB-SMBH with an arbitrary 

constant 𝐴𝐴0 ; we model the emission as part of a cosine function, which shows a 

maximum at the center part and fades to zero at the radius b of the observing disk of 

ECB-SMBH. 

Based on a previous study ,[29], we consider the configuration 
of ECB-SMBH orbits in the plane approximately parallel to 
the Galactic equator, which are observed from the observation 
stations as linear back and forth motions along the line inclined 
by 𝜃0 with respect to the direction of right ascension (see Figure 
12). The moving center position of BHs is given by distance 

𝑎 (×10𝜇𝑎𝑠) from the center of SgrA* along 𝑝(L); each BH is 
associated with a radio wave emission zone with an approximated 
radius of b(×10 𝜇𝑎𝑠).

For the configuration and motion of ECB-SMBH depicted in 
Figure 12, we calculate the LV, following eq.(4.2), as follows:

where

In eq.(4.3), 𝐴0𝑐𝑜𝑠[𝜋(𝑝−𝑎)/2𝑏] and 𝐴0∙𝑐𝑜𝑠[𝜋(𝑝+𝑎)/2𝑏] are models to express emission levels of the radio wave emitting zone 
around ECB-SMBH with an arbitrary constant 𝐴0; we model the emission as part of a cosine function, which shows a maximum at 
the center part and fades to zero at the radius b of the observing disk of ECB-SMBH.
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Figure 12. Configuration of moving ECB-SMBH. The binary motions orbiting in the 

plane approximately parallel to the Galactic equator are observed from the 

observation station as linear motion along the line inclined by 𝜃𝜃  with respective to 

the direction of the right ascension. The center position of BHs are given by 

distance 𝑎𝑎(× 10𝜇𝜇𝜇𝜇𝜇𝜇)  from the center of SgrA* along p; each BH are associated 

with radio wave emission zone with approximated radius b (× 10𝜇𝜇𝜇𝜇𝜇𝜇). 

 

a) Real part of LV 

The equation eq.(4.3) is then rewritten for the real part as, 

Figure 12. Configuration of moving ECB-SMBH. The binary motions orbiting in the plane approximately parallel to the Galactic 
equator are observed from the observation station as linear motion along the line inclined by 𝜃0 with respective to the direction of 
the right ascension. The center position of BHs are given by distance 𝑎(×10𝜇𝑎𝑠) from the center of SgrA* along p; each BH are 
associated with radio wave emission zone with approximated radius b (×10𝜇𝑎𝑠).

a) Real part of LV
The equation eq.(4.3) is then rewritten for the real part as,
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𝑉𝑉𝑅𝑅𝑅𝑅(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚) = 1
2𝜋𝜋 6∫ 𝐴𝐴0 ∙ cos [𝜋𝜋(𝑝𝑝 − 𝑎𝑎)

2𝑏𝑏 ]  ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(−ℓ𝑝𝑝)𝑑𝑑𝑝𝑝
𝑎𝑎:𝑏𝑏

𝑎𝑎;𝑏𝑏

+ ∫ 𝐴𝐴0 ∙ cos [𝜋𝜋(𝑝𝑝 + 𝑎𝑎)
2𝑏𝑏 ] ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(−ℓ𝑝𝑝)𝑑𝑑𝑝𝑝

;𝑎𝑎:𝑏𝑏

;𝑎𝑎;𝑏𝑏
7 

. (4.4) 

As detailed in Appendix D, 𝑉𝑉𝑅𝑅𝑅𝑅(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚) can be given by, 

   

𝑉𝑉𝑅𝑅𝑅𝑅(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚) = 𝐴𝐴0 𝑏𝑏⁄
(𝜋𝜋 2𝑏𝑏⁄ )2 − ℓ2 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ).               (4.5) 

 

b) Imaginary part 

Corresponding to eq.(4.3), the imaginary part of LV, 𝑉𝑉𝐼𝐼𝐼𝐼(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚) is expressed by: 

𝑉𝑉𝐼𝐼𝐼𝐼(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚)

= 1
2𝜋𝜋 6∫ 𝐴𝐴0 ∙ cos [𝜋𝜋(𝑝𝑝 − 𝑎𝑎)

2𝑏𝑏 ]  ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(−ℓ𝑝𝑝)𝑑𝑑𝑝𝑝
𝑎𝑎:𝑏𝑏

𝑎𝑎;𝑏𝑏

+ ∫ 𝐴𝐴0 ∙ cos [𝜋𝜋(𝑝𝑝 + 𝑎𝑎)
2𝑏𝑏 ] ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(−ℓ𝑝𝑝)𝑑𝑑𝑝𝑝

;𝑎𝑎:𝑏𝑏

;𝑎𝑎;𝑏𝑏
7 .               (4.6)  

Taking the argument 𝑝𝑝 in the above eq.(4.6) as the integration parametric argument, we 

can rewrite the second integration on the right-hand side, by changing 𝑝𝑝 = −𝑝𝑝 ,as, 

𝑉𝑉𝐼𝐼𝐼𝐼(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚)

= 1
2𝜋𝜋 6∫ 𝐴𝐴0 ∙ cos [𝜋𝜋(𝑝𝑝 − 𝑎𝑎)

2𝑏𝑏 ]  ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(−ℓ𝑝𝑝)𝑑𝑑𝑝𝑝
𝑎𝑎:𝑏𝑏

𝑎𝑎;𝑏𝑏

+ ∫ 𝐴𝐴0 ∙ cos [𝜋𝜋(𝑝𝑝 − 𝑎𝑎)
2𝑏𝑏 ] ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(−ℓ𝑝𝑝)𝑑𝑑𝑝𝑝

𝑎𝑎;𝑏𝑏

𝑎𝑎:𝑏𝑏
7 . (4.7)  
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4.2 Comparison of Fourier Transformation of Binary 
Motions with LV Based on EHT Observation Data
4.2.1 Preparations for matching of conditions between 
theoretical and observational LV
a) b Value Dependence
In Figure 13, the calculated results of the Fourier transformation, 
following eq.(4.5), are displayed, taking positions 𝑎 of the 
moving ECB-SMBH along the linearly observable orbit as a 
parameter at position 𝑚; 𝑖.𝑒.,𝑎= 𝑎 𝑚. Thus, the visibility levels 
(LV) in relative units are plotted against the transformed baseline 
ℓ for 17 positions (𝑎𝑚) of ECB-SMBH, with the parameter 
𝑎𝑚(×10 𝜇𝑎𝑠). The parameter b, expressing the radius of emission 
zones surrounding ECB-SMBH, significantly influences the 
appearance of the ℓ range through eq.(4.5). When compared 
with the LV formed from the EHT observation data of 95 Hi 
CASA, as shown in Figure 10, the feature of ℓ dependence of the 
visibility, which exhibits a clear decrease at 5.5×109𝜆, suggests 

that the possible limit of the expansion of the radio wave 
emission zone surrounding ECB-SMBH is approximately 8 𝜇𝑎𝑠. 
Then, from the perspective of searching for the positions of the 
moving BHs, the size of the radio emission zone surrounding 
the BHs is treated as a variable parameter. After exploring the 
possible range for the b(×10 𝜇𝑎𝑠) value, we selected two values; 
one case features a narrow zone with b=0.4 (4 𝜇𝑎𝑠), where the 
radius of the emission zone covers only approximately 1.5 times 
the radius of the event horizon of the maximally rotating Kerr 
BH. The other case features a wide zone with b=0.8, where the 
radius of the emission zone covers approximately three times the 
event horizon radius of the maximally rotating Kerr BH; for this 
case of a relatively wide emission zone, the calculated ℓ range 
of 𝑉𝑅𝑒(ℓ,𝜃0,𝑇𝑚) is confined from 2.5×109𝜆 to 5.5×109𝜆, which 
closely matches the observed LV, endorsing the certain existence 
of the ECB-SMBH (see Subsection 3.4).
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Figure 13. Theoretical results of the real part of the LV corresponding to eq.(4.5) for 

three cases of b values. Results are indicated as relative value of the visibility amplitude 

versus the linear baseline ℓwhich gives length of 109λunit corresponding to the distance 

2𝑎𝑎  of the ECB-SMBH where 𝑎𝑎 is given with corresponding colors ; 𝑎𝑎 is read with unit 

× 10 𝜇𝜇𝜇𝜇𝜇𝜇.  Compared with LV formed from the EHT observation data of 95 Hi CASA 

as given in Figure 10, the feature of the ℓ dependence of the visibility which show clear 

diminishing at 5.5 × 109𝜆𝜆 suggests that the possible limit of the expansion of the radio 

wave emission zone surrounding ECB-SMBH is about  8 𝜇𝜇𝜇𝜇𝜇𝜇 .  

In the ℓ range higher than 5.5E9λ, corresponding to a source size of less than 

approximately 10  𝜇𝜇𝜇𝜇𝜇𝜇 ( see Subsection 3.6), all LV values fall below the σ values. 

Therefore, in this range, we cannot discern any meaningful structure from the resulting 

LV; this may be consistent with the resolution limit of EHT-VLBI data for sizes smaller 

than 10 𝜇𝜇𝜇𝜇𝜇𝜇. 

b). Selection of Amplitude and Bias Values 

The theoretical result expressed by eq.(4.5) focuses simply on the position of two 

Figure 13. Theoretical results of the real part of the LV corresponding to eq.(4.5) for three cases of b values. Results are indicated 
as relative value of the visibility amplitude versus the linear baseline ℓwhich gives length of 109λunit corresponding to the distance 
2𝑎 of the ECB-SMBH where 𝑎 is given with corresponding colors ; 𝑎 is read with unit ×10 𝜇𝑎𝑠. Compared with LV formed from 
the EHT observation data of 95 Hi CASA as given in Figure 10, the feature of the ℓ dependence of the visibility which show clear 
diminishing at 5.5×109𝜆 suggests that the possible limit of the expansion of the radio wave emission zone surrounding ECB-SMBH 
is about 8 𝜇𝑎𝑠 .

In the ℓ range higher than 5.5E9λ, corresponding to a source 
size of less than approximately 10 𝜇𝑎𝑠  ( see Subsection 3.6), all 
LV values fall below the σ values. Therefore, in this range, we 
cannot discern any meaningful structure from the resulting LV; 
this may be consistent with the resolution limit of EHT VLBI 
data for sizes smaller than 10 𝜇𝑎𝑠.

b). Selection of Amplitude and Bias Values
The theoretical result expressed by eq.(4.5) focuses simply on 
the position of two radio sources whose emission intensity is 
modeled by a partial cosine function with a maximum point at the 
center of the binary objects. However, real data represent non-
-stationary objects associated with various origins of emissions 
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and a variety of background radio wave brightness. These factors 
contribute to the deviation from theoretical LV (T-LV) and EHT 
data-based observed LV (E-LV). Under these circumstances, we 
are permitted to adjust linear coefficients to align the T-LV with 
the E-LV; these adjustments involve amplitude and bias values. 
That is; to bridge the gap between the T-LV and E-LV, we can 
adjust the amplitude by selecting the 𝐴0 value in eq.(4.5), while 
a new constant term ―Bias. must be added to eq.(4.5) to account 
for background emissions.

Adding the new term "Bias" to eq.(4.5) introduces significant 
physical meaning to the equation. Since eq.(4.5) is the Fourier-

-transformed equation of the source distribution representing 
the central part of SgrA*, adding a constant to LV equates to 
incorporating white noise, in real space, composed of random 
noises without a spectrum peak.

c). Selection of Eight Phases for T-LV to Coincide With E-LV
For the comparison of Fourier-transformed T-LV with the E-LV, 
we need to align the timing of T-LV, for the orbiting ECB-
SMBH, with the timing of E-LV. In the present algorithm, the 
selection of timing 𝑡𝑚 (m=1 to 8) to form T-LV is set by choosing 
the ECB-SMBH distance, 𝑎𝑚(×10 𝜇𝑎𝑠), as follows:
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ECB-SMBH distance, 𝑎𝑎𝑚𝑚(× 10 𝜇𝜇𝜇𝜇𝜇𝜇), as follows: 
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where 𝛺𝛺𝑒𝑒𝑒𝑒 is the angular frequency of the orbiting ECB-SMBH in terms of the eclipse 

cycle, given by 𝛺𝛺𝑒𝑒𝑒𝑒 = 2𝜋𝜋 𝑇𝑇𝑒𝑒𝑒𝑒⁄  with 𝑇𝑇𝑒𝑒𝑒𝑒 = 2153 2 𝑠𝑠⁄  (for the presently selected eclipse 

cycle period); 𝑡𝑡𝑠𝑠  is the adjusting time to synchronize T-LV with E-LV. If we select 

where 𝛺𝑒𝑞 is the angular frequency of the orbiting ECB SMBH in terms of the eclipse cycle, given by 𝛺𝑒𝑞=2𝜋⁄𝑇𝑒𝑞 with 𝑇𝑒𝑞=2153/2 𝑠 
(for the presently selected eclipse cycle period); 𝑡𝑠 is the adjusting time to synchronize T-LV with E-LV. If we select 𝑡𝑠=0, the phase 
selection of T-LV is made by the absolute number 𝑚𝑎 (see Subsection 3.2), while E-LV is expressed by the relative number 𝑚𝑟. To 
reduce the difference between T-LV and E-LV, it is important to find a suitable 𝑡𝑠 for calculating T-LV.
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Figure 14 (A). Results of theoretical linearized visibility (T-LV: green curves in the Figure 14 (A). Results of theoretical linearized visibility (T-LV: green curves in the right collum for b=0.4) and linearized visibility 

formed from the EHT 96 Hi CASA visibility data (E-LV: black curves in the left collum). For the E-LV given sequentially with 
relative phase number 𝑚𝑟, the corresponding T-LVs are indicated being adjusted the amplitude and the bias level to meet with E-LV. 
The parameter 𝑎𝑚𝑎 in the T-LV column shows 𝑎 value in eq.(4.5); 2𝑎𝑚𝑎shows observing distance between two BHs of ECB-SMBH.
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  Figure 14 (B). Same with Figure 13(A) as continuation of phase number 𝑚𝑚𝑟𝑟  from 5 to 

8. 

 

4.3 Comparison of T-LV with E-LV for EHT 96 Hi CASA and 96 Lo HOPS Data 

Figure 14 (B). Same with Figure 13(A) as continuation of phase number 𝑚𝑟 from 5 to 8.

4.3 Comparison of T-LV with E-LV for EHT 96 Hi CASA 
and 96 Lo HOPS Data
4.3.1 Case of 96 Hi CASA
In Figures 14(A) and 14 (B), E-LVs are displayed, repeating the 
results in Figure 10 by trimming the LV to the effective range 
of ℓ from 2.5×109𝜆 to 5.5×109𝜆. In these figures, theoretically 
calculated linearized visibility (T-LV): green curves in the right 
column for b=0.4) and E-LV formed from the EHT 96 Hi CASA 
visibility data (black curves in the left column) are shown as 
pairs with the same 𝑎𝑚 in the left and right columns, respectively. 

Each pair of T-LV and E-LV results are displayed as a function of 
the data sampling timing for the orbiting ECB-SMBH. That is, 
for the E-LVs, which are given sequentially with relative phase 
number 𝑚𝑟, the corresponding T-LVs are indicated with phase 
number 𝑚a; the numbers 𝑚𝑟 and 𝑚a are selected to the same 
BH distance 𝑎m. To clarify the situation, Figure 15 is prepared, 
where the eight data sampling phases in the period of the ecliptic 
cycle of ECB-SMBH motions and parameter 𝑎𝑚 given as 𝑎=𝑎𝑚 
in eq.(4.5), are depicted. Along the orbit
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Figure 15.   The depiction of 8 data sampling phases in the period of  the ecliptic cycle 

Figure 15. The depiction of 8 data sampling phases in the period of the ecliptic cycle of ECB-SMBH motions and parameter 𝑎𝑚 
given as 𝑎= 𝑎 𝑚, in eq.(4.5), that is given as projection of orbital position (phase) of the orbiting ECB-SMBH. The orbit of ECB 
-SMBH is observed as the line approximately parallel to the Galaxy equatorial plane from the observation sights of EHT VLBI 
systems. The ECB-SMBH that are surrounded by the radio wave emission zones with the zone radius expanded up to 3 times of 
the event horizon radius of the maximum rotating Kerr BHs move back and forth along the orbiting line with the corresponding 
projection phase of the circular orbit (approximated as a single). For a phase selected by a color along the circular orbit of ECB- 
SMBH, absolute number 𝑚a which is started to count from the closest phase to the eclipse line and the relative number 𝑚𝑟 which 
is started arbitrary at the phase corresponding to start timing of the analyses of EHT data are assigned .The distance of two BHs of 
ECB-SMBH is given by 2𝑎𝑚; for a given distance two numbers are assigned as 𝑚a for T-LV and 𝑚r for E-LV.

observed as a line parallel to the Galactic equatorial plane 
approximately from the observation sites of EHT VLBI systems, 
BHs of ECB-SMBH, surrounded by radio wave emission zones 
with the zone radius expanded up to three times the event 
horizon radius, of the maximally rotating Kerr BHs, move back 
and forth; the positions of BHs are expressed with the distance 
2𝑎𝑚, projected onto the line orbit from the corresponding phase 

of the actual circular orbit (approximated as a single circle). To 
align the values between E-LV in Figures 14 (A) and 14 (B), 
amplitude and bias are adjusted to form T-LV based on the 
theoretical equation eq.(4.5), as given in Table 5. The effects of 
selecting the amplitude and bias will be discussed in the process 
of forming the image of ECB-SMBH in Subsection 4.5.
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Table 5. Selected amplitude and Bias for T LV.

Figure 15 is designed to elucidate the expressions of 𝑚a and 𝑚r 
in Figures 14 (A) and 14 (B). For a selected phase along the 
circular orbit of ECB-SMBH, the absolute number 𝑚a, which 
starts counting from the closest phase to the eclipse line, and 
the relative number 𝑚𝑟, which begins arbitrarily at the phase 
corresponding to the start timing of the EHT data analysis, are 
assigned. The distance between the two BHs of ECB-SMBH is 

denoted by 2𝑎𝑚; 𝑎𝑚 is listed in the column of T-LV in Figures 14 
(A) and 14 (B). The same distance between two ECB-SMBH 
members is assigned as 𝑚a for the T-LV and 𝑚r for the E-LV; 
the theoretically set distances of the core BHs are provided in 
the associated bracket as a reference. It is observed that in most 
cases, where the distance between the two members is closer than 
15 𝜇𝑎𝑠, the theoretically set center position and detected center 
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position of the radio wave radiation zone coincide; however, 
there is a 10 to 20% difference in the positions of the BH center 

and center of the radio wave radiation zone, in cases where 2𝑎𝑚 
(the distance between two member BHs) is larger than 20𝜇𝑎𝑠.
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Figure 16 (A). Same with Figure 14 (A) for the case corresponding to EHT 96 Lo 
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Figure 16 (B) Same with Figure 14 (B) for the case corresponding to EHT 96 Lo HOPS 

data. 

Figure 16 (B): Same with Figure 14 (B) for the case corresponding to EHT 96 Lo HOPS data.

4.3.2 Case of 96 Lo HOPS Data
In Figures 16 (A) and 16 (B), results of E-LV corresponding 
to the EHT data, 96 Lo HOPS, are presented alongside the 
corresponding T-LV, with same formats of the cases in Figures 
14 (A) and 14 (B). As with the 96 Hi CASA data, E-LV formed 
from EHT 96 Lo HOPS data focus on the ℓ range from 2.5×109𝜆 
to 5.5×109𝜆, where the orbital motions of ECB-SMBH are 
effectively reflected by EHT-VLBI observation. Theoretically 
calculated LVs (T-LV) are also shown to confirm the existence of 
the orbital motions of ECB-SMBH by revealing close similarity 
between E-LVs and T-LVs that are calculated based on eq.(4.5) 
with suitably adjusted amplitude and bias, as listed in Table 5. 
Similar to the EHT 96 Hi CASA case, T-LV (green curves in the 
right column for b=0.4) and E-LV formed from EHT visibility 

data (black curves in the left column) are indicated as pairs with 
the same 𝑎𝑚 (see Subsection 4.4). Akin to the 96 Hi CASA data, 
in most cases where the distance between two members is closer 
than 15 𝜇𝑎𝑠 we see the center position of BHs set for calculation 
and detected center position of the radio wave radiation zone 
coinciding; however, there is a 10 to 20% difference in positions 
of the BH center and center of the radio wave radiation zone 
in cases where the distance between two member BHs is larger 
than 20μas. In general, there is a basic coincidence between E 
-LV and T-LV, similar to the 96 Hi CASA data case, in all these 
displayed comparison results.

4.4 Case of Wide Radio Wave Emission Zone
As described concerning theoretical eqs.(4.3)–(4.5), we assume 
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that the radio emissions surrounding ECB-SMBH form a single 
bright zone, showing maximum intensity at the center of the 
observing disk and fading to zero at the circular limb of the disk 
with radius b. We stand on the premise that, rather than adopting 
the previously proposed ring or shadow concept based on a thin 
accreting plasma disk surrounding BHs, we select results of a 
simple bright zone surrounding the supermassive black hole (see 
Section 5 also). The parameter b for the radius of the radio wave 
emitting zone significantly impacts the theoretically calculated 
T LV, as shown in Figure 13, where the minimum limit of the 
sensitive baseline length ℓ at 5.5×109𝜆 shows the maximum 
possibility of the radio wave emission zone for b=0.8 (8 𝜇𝑎𝑠).

In addition to the previously discussed comparison of E LV and 

T-LV corresponding to the EHT 96 Hi CASA data for E-LV and 
the case of b=0.4 for T-LV, we further investigate the comparison 
for the case of a wide radio wave emission zone with b=0.8.
Figures 17 (A) and 17 (B) express the comparison of T-LV and E 
-LV for the case of a wide radio wave emission zone with b=0.8. 
The setup of the diagram remains consistent with the earlier 
cases of E-LVs and T-LV. To achieve a closer similarity between 
E-LV, shown in the left column by black curves, we search for 
the amplitude and bias values, which are then directly indicated 
in the corresponding phase of T-LV, calculated by changing the 
b value from 0.4 to the wider case of 0.8 (8 𝜇𝑎𝑠). With respect 
to the E-LV corresponding to EHT 96 Hi CASA visibility data, 
which are displayed by repeating the results in Figure 10 and 
focusing
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 Figure 17 (A). Same with Figure 14 (A) for the case of wide radio emission zones with 

radius b=0.8 (8 𝜇𝜇𝜇𝜇𝜇𝜇). The amplitude and bias adding to eq.(4.5) to make T-LV and 

E-LV close are given in the corresponding 𝑎𝑎𝑚𝑚𝑎𝑎. 

Figure 17 (A). Same with Figure 14 (A) for the case of wide radio emission zones with radius b=0.8 (8 𝜇𝑎𝑠). The amplitude and 
bias adding to eq.(4.5) to make T-LV and E-LV close are given in the corresponding 𝑎𝑚𝑎.
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Figure 17 (B). Same with Figure 17 (A) for cases of 𝑚𝑚𝑟𝑟=5 –8. 

 

 

Figure 17 (B). Same with Figure 17 (A) for cases of 𝑚𝑟=5-8.

on the effective range of ℓ from 2.5×109𝜆 to 5.5×109𝜆, given in 
the left column with black curves, T-LVs calculated for b=0.8 
following eq.(4.5) are aligned in the right column, with green 
curves. The indicated pair of LVs in the left column for the E-LV 
and in the right column for the T-LV are identified as belonging 
to the same parameter 𝑎𝑚, where 2𝑎𝑚(×10𝜇𝑎𝑠) indicates the 
distance between the two BHs of ECB-SMBH.

Comparing with the case of the narrow zone condition with 
b=0.4, the theoretically fitting amplitude and bias values increase, 
as directly indicated to compare with Table 5 for narrow b. There 
are also differences in the decided 𝑎𝑚 values for the same E-LV 
between the results given by Figures 14 (A), 14 (B), and Figures 
17 (A), 17 (B). For this difference, we consider both results to 

be acceptable, reflecting the effects of the selected width of the 
radio emission zones surrounding ECB-SMBH. Because the 
cases of b=0.8 still show reasonable results for the movement 
of ECB-SMBH, we will proceed to obtain the image of ECB- 
SMBH for these wide emission zones in the next Subsection 4.6.

4.5 Image of Orbiting ECB-SMBH Deduced from EHT Data 
of SgrA* 
Summarizing the current work to confirm the existence of 
ECB-SMBH, originally proposed based on the observation of 
decameter radio wave pulses caused by spinning Kerr black 
holes [14], through comparison with 1.3 mm VLBI observation 
data [27], including EHT data [30], we construct images of ECB- 
SMBH at the center of SgrA*. The image formation is carried 
out for radio wave emissions at 1.3 mm, 𝑆(𝑝,𝑞), as given by:
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proposed based on the observation of decameter radio wave pulses caused by spinning 

Kerr black holes ,14-, through comparison with 1.3 mm VLBI observation data ,27-, 
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The image formation is carried out for radio wave emissions at 1.3 mm, 𝑆𝑆(𝑝𝑝, 𝑞𝑞), as 

given by: 

 

𝑆𝑆(𝑝𝑝, 𝑞𝑞) = A(𝑝𝑝 − 𝑎𝑎) ∙ cos 6𝜋𝜋
(𝑝𝑝 − 𝑎𝑎)

2𝑏𝑏 7                                       
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  +A(𝑝𝑝 + 𝑎𝑎) ∙ cos 6𝜋𝜋
(𝑝𝑝 + 𝑎𝑎)

2𝑏𝑏 7 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵.                   (4.10)  

 where  

A(𝑝𝑝 ± 𝑎𝑎) = 8𝐴𝐴0: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓 (𝑝𝑝 ± 𝑎𝑎)2 + 𝑞𝑞2 < 𝑏𝑏2
  0              𝑓𝑓𝑓𝑓𝑓𝑓 (𝑝𝑝 ± 𝑎𝑎)2 + 𝑞𝑞2 > 𝑏𝑏2 .

 

  and 0.8 ≥ 𝑏𝑏 > 0. 

About eq.(4.10) we have already investigated as case of q=0, where the radio emission 

sources along the linearly observable orbit of ECB-SMBH, by finding the T-LV, 

through calculating the Fourier transformation to focus on the linear baseline 

component ℓ. Through studies described in Subsections 4.1 to 4.4, the theoretical basis 

for using S(p,0) has been verified by finding a coincidence between E-LV from EHT 

data and T-LV resulting from the Fourier transformation of S(p,0). 

 

From the validated radio wave emission model S(p,0), we proceed to expand the 

emission zone associated with the moving ECB-SMBH, assuming a circular region for 

the emission zones. This is achieved by introducing A(𝑝𝑝 ± 𝑎𝑎) functions, which define 

circular regions 
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  +A(𝑝𝑝 + 𝑎𝑎) ∙ cos 6𝜋𝜋
(𝑝𝑝 + 𝑎𝑎)
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About eq.(4.10) we have already investigated as case of q=0, where the radio emission 

sources along the linearly observable orbit of ECB-SMBH, by finding the T-LV, 

through calculating the Fourier transformation to focus on the linear baseline 

component ℓ. Through studies described in Subsections 4.1 to 4.4, the theoretical basis 

for using S(p,0) has been verified by finding a coincidence between E-LV from EHT 

data and T-LV resulting from the Fourier transformation of S(p,0). 
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where

and 0.8≥𝑏>0.

About eq.(4.10) we have already investigated as case of q=0, 
where the radio emission sources along the linearly observable 
orbit of ECB-SMBH, by finding the T-LV, through calculating 
the Fourier transformation to focus on the linear baseline 
component ℓ. Through studies described in Subsections 4.1 to 
4.4, the theoretical basis for using S(p,0) has been verified by 
finding a coincidence between E-LV from EHT data and T-LV 

resulting from the Fourier transformation of S(p,0).

From the validated radio wave emission model S(p,0), we 
proceed to expand the emission zone associated with the moving 
ECB-SMBH, assuming a circular region for the emission zones. 
This is achieved by introducing A(𝑝±𝑎) functions, which define 
circular regions
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Figure 18 (A). Formed images of ECB-SMBH at the center of SgrA* based on 
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Figure 18 (A). Formed images of ECB-SMBH at the center of SgrA* based on 

Figure 18 (A). Formed images of ECB-SMBH at the center of SgrA* based on eq.(4.10) which is endorsed by comparison of 
E-LV and T-LV as the consequence of the EHT observation data of the 96-Hi CASA. Images are displayed for the four sequences 
of movement corresponding to the data stacking timing from 𝑚𝑟=1 to 𝑚𝑟=4. The images of the moving ECB-SMBH, are displayed 
in two ways as given in the left column where the resulting images are indicated with variable threshold of the gray code whose 
representing levels change in image by image to make the most suitable viewing threshold level of the resulting picture; in the right 
column, the radio wave intensity R is given by 2+log(R) with constant threshold of the gray code. whose representing levels are 
same throughout all images to visualize the relative brightness or darkness of the radio emissions clear.
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Figure 18 (B). Same with Figure 18 (A) for the sequence of phase 𝑚𝑚𝑟𝑟 = 5 𝑡𝑡𝑡𝑡 8. 

controlled by the radius b (0.8 ≥ 𝑏𝑏 > 0). For this parameter b we opt for a wider case of 

0.8 (8 𝜇𝜇𝜇𝜇𝜇𝜇) to reconstruct the images of ECB-SMBH as detailed in Subsection 4.4. The 

necessary amplitude 𝐴𝐴0   and Bias are provided in Figures 17 (A) and 17 (B) in 

Subsection 4.4, indicating that the resulting images of ECB-SMBH are not merely 
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Figure 18 (B). Same with Figure 18 (A) for the sequence of phase 𝑚𝑟=5 𝑡𝑜 8.

controlled by the radius b (0.8≥𝑏>0). For this parameter b we 
opt for a wider case of 0.8 (8 𝜇𝑎𝑠) to reconstruct the images 
of ECB-SMBH as detailed in Subsection 4.4. The necessary 
amplitude 𝐴0 and Bias are provided in Figures 17 (A) and 17 (B) 
in Subsection 4.4, indicating that the resulting images of ECB- 
SMBH are not merely simplistic model outputs but rather reflect 
the actual situation of SgrA* as observed through EHT 96 Hi 
CASA data.

In Figures 18 (A) and 18 (B), we display the constructed images 
of ECB-SMBH at the center of SgrA*, based on eq.(4.10) and 
supported by the comparison of E-LV and T-LV as a result 
of analyzing the EHT data of 96 Hi CASA. These images 
correspond to the eight phases of data stacking timing from 
𝑚𝑟=1 to 𝑚𝑟=8, with the comparison process of E-LV and T-LV 
detailed in relation to Figures 17 (A) and 17 (B). The images 
showcase the moving ECB-SMBH in two formats: one in the 
left column with a variable threshold for gray coding to optimize 
the contrast of each image, and another in the right column 
with a consistent threshold for gray coding across all images 
to highlight the relative brightness or darkness of the radio 
emissions, by applying the logarithmic function. The impact of 
background radio wave emissions is significant for discussing 
the signal to noise ratio from the VLBI observations perspective.

Noises are incorporated based on the bias level indicated in 
Figures 17 (A) and 17 (B), as seen in the images in the left panel. 
By averaging a sufficient number of noise cases, a constant level 
emerges, allowing us to differentiate and subtract the noise level 
from the signal. Consequently, images in the right hand column 
display the radio wave emissions surrounding the moving ECB 
-SMBH without noise interference.

Throughout the eight phases of data stacking for E-LV and 
the corresponding T-LV, the movement of ECB-SMBH, along 
with its associated radio wave emission zones approximately 
3.3 times the diameter of the Kerr event horizon of the BHs, 
is evident. Between phases 𝑚𝑟=7 and 𝑚𝑟=8, where the 
observational distances between the two BHs are 6.4 𝜇𝑎𝑠, a full 

eclipse phenomenon is expected, with one member of the binary 
transitioning from the left side of the image to the right, vice 
versa.

The change in image brightness between phases 𝑚𝑟=7 and 𝑚𝑟=8 
remains unclear; it may result from a partial overlap of intrinsic 
data levels in neighboring phases. Although much more accurate 
determination of the orbiting period is deferred for future 
research, the existence of ECB-SMBH is corroborated by the 
images in Figures 18 (A) and 18 (B), which demonstrate the 
consistent movement of ECB-SMBH.

5. Extension of Concept of ECB-SMBH to M87*
5.1 Brief Review of Published Image of M87*
In Section 4, we have elucidated that the radio wave images of 
mm radio waves of ECB-SMBH at SgrA* feature bright zones 
surrounding BHs over the event horizon radius of each ECB- 
SMBH member. Unlike the intricate structures of emission 
intensity, such as rings or shadows, originally proposed under the 
geometrically thin and optically thick accreting disk condition 
that allows to consider fine effects of GR space time for the 
trace of the ray paths of radiated waves, these images eliminate 
detailed structural emission intensity. This difference may be 
caused by geometrically thick and optically thin accreting disk 
in the case of ECB-SMBH. Given the shared physics underlying 
the imaging of radio wave sources around SMBHs at SgrA* 
and M87*(the core SMBH at the center of galaxy M87), we 
reinvestigate the images of SMBH M87* in this section.

Current research on emissions from BHs predominantly focuses 
on scenarios where the BH is enveloped by a geometrically 
thin and optically thick accretion disk. This configuration 
yields compelling radiation source images surrounding SMBHs 
that facilitate lensing, bending, and photon capture processes, 
resulting in the emergence of a shadow alongside a bright 
emission ring [35, 36]. VLBI observations are heralded as a 
promising approach to directly verify the existence of SMBHs, 
clarifying these effects [37−41].
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Figure 19. Radio wave images of M87* resulted by Miyoshi et al. ,20- based on the 

EHT data observed in 2017 by 1.3 mm VLBI (A and B panels), and resulted by Lu et al. 

,31-, based on GMVA observations, in 2018 by 3.5 mm VLBI. 

The EHT collaboration's campaign for VLBI observation of SgrA* and M87* 

represented one of the most ambitious approach. However, due to the time-dependent 

variations in detected visibilities, the report of the Sgr A* image was delayed until 2022, 

while the M87* image was released in 2019, depicting the BH shadow encircled by a 

bright ring. 

In 2022, Miyoshi et al. published ,20-the radio wave image of M87*, criticizing the 

2019 EHT collaboration's depiction of M87* as flawed. They attributed the error to 

inadequate data covering the u-v range of the visibility corresponding to an observation 

Figure 19. Radio wave images of M87* resulted by Miyoshi et al. [20] based on the EHT data observed in 2017 by 1.3 mm VLBI 
(A and B panels), and resulted by Lu et al. [31], based on GMVA observations, in 2018 by 3.5 mm VLBI.

The EHT collaboration's campaign for VLBI observation 
of SgrA* and M87* represented one of the most ambitious 
approach. However, due to the time dependent variations in 
detected visibilities, the report of the Sgr A* image was delayed 
until 2022, while the M87* image was released in 2019, 
depicting the BH shadow encircled by a bright ring.

In 2022, Miyoshi et al. published [20] the radio wave image 
of M87*, criticizing the 2019 EHT collaboration's depiction 
of M87* as flawed. They attributed the error to inadequate 
data covering the u v range of the visibility corresponding to 
an observation angle approximately 40 𝜇𝑎𝑠 and the erroneous 
selection of the central object at the outset of the hybrid mapping 
process for forming the radio source image, referring to the gap in 
data shifted from the center as the shadow‖ anticipated from their 
BH. In their paper, Miyoshi et al. [20] presented an alternative 

image (hereafter M Image), as shown in Figure 19, Panels 
(A) and (B), excerpting an essential part from their Figure 8, 
relevant to the subjects of the present work. They identified two 
notably intense sources as the core and knot in the source area 
of the jet without specifying the SMBH’s location (Miyoshi et al 
presented their interpretation afterwards negating the relation to 
the potential super massive black hole [49].)

In 2023, Lu et al. released the image of M87* (hereafter L 
Image) based on the Global Millimeter VLBI Array (GMVA) 
observation campaign conducted at 3.5 mm wavelength on 
April 14 to 15, 2018, with the addition of the Atacama large 
millimeter/submillimeter array (ALMA) and the Greenland 
telescope (GLT). In Figure 19, panel (C), a copy of the published 
image is displayed, selected from their Figure 1 panel (b). Lu et 
al. noted that, within the
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 Figure 20. Configuration of accreting paths of plasmas surrounding ECB-SMBH.

Element particles of accreting plasmas with a common rotation sense form counter streams, in the center portion, that cause KH 
instabilities.
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resolution limit, the core region of M87* harbors a ring 
approximately 50% larger in diameter than the ring image 
reported by EHT at 1.3 mm wavelength, with two bright sections 
overlapping the detected faint ring.

5.2 Interpretation of Reported Images of M87* as ECB-SMBH
In the current paradigm regarding the possible generation of 
gravitational waves from BHs, no proposal of a binary system 
has been made about the central BH at the core of the Galaxy. 
However, we have currently concluded the existence of the 
extreme central binary of SMBH (ECB-SMBH) for SgrA* [14], 
based on the results of the decameter radio wave pulses with 
a theoretical assertion that "No gravitational waves are emitted 
from the SMBH" [19]. At this juncture, we employ the concept 
of ECB-SMBH to interpret the images reported by Miyoshi et 
al. and Lu et al. (hereafter referred to as ML Images). In this 
context, Sgr A* as ECB-SMBH exhibits simple bright zones 
surrounding the orbiting SMBHs, indicative of a thick accretion 
disk. Due to the binary configuration, accreting plasmas may 
effectively lose angular momentum in the central area between 
the two BHs, where plasma flows circulating each BH meet, 
forming counter streams (see Figure 20). This large area is likely 
subject to Kelvin Helmholtz instabilities caused by the counter 
streams of the accreting flows. Consequently, plasmas migrating 
from distant regions with significant angular momentum can fall 
into the BHs more effectively after losing angular momentum 
under the intense gravitational effects of ECB-SMBH, without 
significant counteraction from centrifugal forces due to the 
reduction in angular momentum of the circulating plasma.

Therefore, we identify SMBHs at the center of the bright 
spots presented by the M L Images; naturally, we conclude the 
existence of ECB-SMBH corresponding to the two spots in the 
M L Images. To verify the existence of ECB-SMBH at M87*, 

we need to determine the parameters of the orbiting members, 
which we subsequently refer to as M87*-A and M87*-B. This 
requires efforts from two perspectives: one is the geometrical 
aspect, which can be addressed within the framework of the 
image analysis, and the other is the dynamics in the real physical 
state.

a) Geometrical Side Approach
The goal of this approach is to determine the orbit configurations. 
Initially, we assume circular orbits for both M87*-A and M87*-B, 
which are generally observed as ellipses due to the inclination 
of the orbital plane, though we lack precise information about 
the inclination angle. However, we can establish the radii of the 
circular orbits from the observable major axes of the ellipses, 
independent of the orbital plane’s inclination. Therefore, we 
aim to identify ellipses that pass through the center of the two 
spots in both the M Image and L Image. Considering that the 
positions of M87*-A and M87*-B in both images are fixed, 
we must determine eight coordinates in this two dimensional 
configuration. Since these two images are described with 
relative coordinates, the relationship between the coordinate 
centers of the M Image and L Image is adjustable, providing 
two (due to the two dimensional constraint) free parameters. 
We use the frame of the Lu et al. image, where two spots are 
already established as the fixed base, and align the M Image 
using the same observational angle (measured in 𝜇𝑎𝑠) to match 
the fixed mutual relation of the two spots in the M Image. With 
six fixed coordinate parameters, we can search for two unknown 
coordinates that define the center position of the two ellipses. 
To establish the two ellipses passing through the four center 
positions of M87*-A and M87*-B in the M Image and L Image, 
we require a parameter for the common direction of the major 
axis of both ellipses, two for the lengths of the major axes, and 
one for the common eccentricity.
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Figure 21. Graphical solutions to find the orbits of possible ECB-SMBH at M87*. To search for the possibility to find the solutions 
to connect two bright spots provided by M Image and L Image two common circular orbits which are observable as ellipses are 
depicted.
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Therefore, including the unknown center coordinates, we have 6 
unknown parameters alongside 6 known parameters (the given 
coordinates of the 4 center positions of M87*-A and M87*-B, 
excluding the two degrees of freedom to fix the centers of the 
M Image and L Image). Thus, theoretically, we can solve for the 
two ellipses numerically.

As an initial approach, we have depicted the ellipses on the 

combined M L Image, as shown in Figure 21. Starting from this 
preliminary depiction, we aim to determine accurate orbits using 
analytical methods. For the coordinates of right ascension X and 
declination Y, we define the coordinate system (ξ,η) where the 
unit vector ξ is parallel to the direction of the major axis of the 
two orbits, and the unit vector η is set perpendicular to ξ (refer 
to Subsection 5.4). Consequently, we establish relationships 
between the coordinate systems, as

̂ 
̂ 
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Therefore, including the unknown center coordinates, we have 6 unknown parameters 

alongside 6 known parameters (the given coordinates of the 4 center positions of M87*-

A and M87*-B, excluding the two degrees of freedom to fix the centers of the M-Image 

and L-Image). Thus, theoretically, we can solve for the two ellipses numerically. 

As an initial approach, we have depicted the ellipses on the combined M-L Image, as 

shown in Figure 21. Starting from this preliminary depiction, we aim to determine 

accurate orbits using analytical methods. For the coordinates of right ascension X and 

declination Y, we define the coordinate system (ξ,η) where the unit vector ξ̂ is parallel 

to the direction of the major axis of the two orbits, and the unit vector η̂  is set 

perpendicular to ξ̂ (refer to Subsection 5.4).  Consequently, we establish relationships 

between the coordinate systems, as  

ξ = −Xcosθ − Ycosθ 

η = −Xsinθ + Ycosθ 

                                                                                                                   (5.1) 

where θ is the angle between the direction of right ascension and major axis of the 

ellipses for the orbits of M87*-A and M87*-B. Instead of directly solving the equations 

required to define the ellipses, we sought the best solutions for fixing the ellipses for the 

lengths of the major semiaxis 𝑎𝑎𝐴𝐴 and 𝑎𝑎𝐵𝐵, respectively for M87*-A and M87*-B, as well 

where θ is the angle between the direction of right ascension and 
major axis of the ellipses for the orbits of M87*-A and M87*-B. 
Instead of directly solving the equations required to define the 
ellipses, we sought the best solutions for fixing the ellipses for 
the lengths of the major semiaxis 𝑎𝐴 and 𝑎𝐵, respectively for 

M87*-A and M87*-B, as well as for the lengths of the minor 
semiaxis 𝑏𝐴 and 𝑏𝐵, respectively. We did this by creating a 
decision function 𝐷(𝑎𝐴,𝑎𝐵,𝑏𝐴 ,𝑏𝐵,θ), the minimum point of which 
provides the solution in the (X, Y) plane, coupled with eq.(5.1). 
This involves:
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𝑛𝑛<1
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𝑚𝑚<1
 

                              

where 𝜅𝜅 = 𝑏𝑏𝐴𝐴 𝑎𝑎𝐴𝐴⁄ = 𝑏𝑏𝐵𝐵 𝑎𝑎𝐵𝐵⁄ ; and ξ𝑚𝑚, η𝑚𝑚, ξ𝑛𝑛, and η𝑛𝑛 are given following eq.(5.1) as 

ξ𝑚𝑚 = −X𝑚𝑚cosθ − Y𝑚𝑚cosθ , 

η𝑚𝑚 = −X𝑚𝑚sinθ + Y𝑚𝑚cosθ , 

ξ𝑛𝑛 = −X𝑛𝑛cosθ − Y𝑛𝑛cosθ + α, 

and 

η𝑛𝑛 = −X𝑛𝑛sinθ + Y𝑛𝑛cosθ + β 

                                                                                                                                          

(5.3) 

with α and β representing the adjustment of center coordinates for relative right 

ascensions and declination. In eq.(5.3), X𝑚𝑚,𝑎𝑎𝑎𝑎𝑎𝑎 Y𝑚𝑚 are right ascension and declination , 

respectively of M87*-A with m=1 for the L-Image data (L:A), and m=2 for the M-

Image data(M:A); further X𝑛𝑛and Y𝑛𝑛 are right ascension and declination , respectively of 

M87*-B with n=1 for the L-Image data (L:B), and n=2 for the M-Image data (M:B).  

with α and β representing the adjustment of center coordinates 
for relative right ascensions and declination.In eq.(5.3), X𝑚1, 
𝑎𝑛𝑑 Y𝑚1 are right ascension and declination , respectively of 
M87*-A with m=1 for the L Image data (L:A), and m=2 for the 

M Image data(M:A); further X𝑚2  and Y𝑚2 are right ascension and 
declination , respectively of M87*-B with m=1 for the L Image 
data (L:B), and m=2 for the M Image data (M:B).
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Figure 22. The decided two orbits of proposed ECB-SMBH at M87* 
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are resulted by solving eq.(5.2) finding the minimum point for D value. 
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for M87*-A and M87*-B in the L-Image, and M:A and M:B for M87*-A and M87*-B 

in the M-Image, respectively. It is observed that all four centers of the bright spots are 

situated close to the identified ellipses, except for L:A, which deviates from its orbit 
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Figure 22. The decided two orbits of proposed ECB-SMBH at M87*. The decision of the central coordinate, axes directions and 
length and eccentricity are resulted by solving eq.(5.2) finding the minimum point for D value.

The results of the analytical fitting described here are given 
in Figure 22 where the centers of each bright spot in the L M 
Images are marked as L:A and L:B respectively for M87*-A and 
M87*-B in the L Image, and M:A and M:B for M87*- A and 
M87*- B in the M Image, respectively. It is observed that all 
four centers of the bright spots are situated close to the identified 
ellipses, except for L:A, which deviates from its orbit more than 

the other three cases. However, considering that there is an error 
margin of ±5% in determining the center position of the bright 
spots within the broadly expanded bright disk in the L M Image, 
we deem the deviation of L: A from its ideal position to be within 
an acceptable range at this stage. The results are summarized in 
Table 6, where the widths of the visible angles are denoted in 
𝜇𝑎𝑠.
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where T and G are the orbiting period and gravitational constant, respectively. From the 
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And it also follows that 

𝑟𝑟𝐴𝐴 
𝑟𝑟𝐵𝐵 

= 𝑀𝑀𝐵𝐵
𝑀𝑀𝐴𝐴

 .                                                      (5.6) 

When we introduce 𝜅𝜅𝑅𝑅 as 𝜅𝜅𝑅𝑅 ≡ 𝑟𝑟𝐴𝐴 𝑟𝑟𝐵𝐵 ⁄ , and the total mass 𝑀𝑀𝑇𝑇(= 𝑀𝑀𝐴𝐴 + 𝑀𝑀𝐵𝐵), it follows 

that 

𝑀𝑀𝐴𝐴 = 𝑀𝑀𝑇𝑇 (1 + 𝜅𝜅𝑅𝑅)⁄ ,         𝑎𝑎𝑎𝑎𝑎𝑎          𝑀𝑀𝐵𝐵 = 𝜅𝜅𝑅𝑅 ∙ 𝑀𝑀𝑇𝑇 (1 + 𝜅𝜅𝑅𝑅)⁄  .                   (5.7)  

The current estimates of distance and mass for M87* are not unified but vary around 

certain average values; for distance, these include 16.4 ±

0.5 Mpc ,42-, 16.67;0.96
:1.02 ,43-, 16.8 ,31-  17.0±0.4 Mpc ,44-, and 17.9Mpc,45-. For 

the total mass estimates are 6.5 × 109𝑀𝑀⦿,31- , (6.5 ± 0.7) × 109𝑀𝑀⦿  ,21- , and 

(6.6 ± 0.4) × 109𝑀𝑀⦿ ,42-. Among these, the distance of M87* seems to be converging 

approximately 16.8 ± 0.8 Mpc, which is also the figure employed in the EHTC paper. 

The mass of M87* has been extensively derived by Gebhardt et al. ,42- from stellar 

dynamics; however, they assumed a distance of 17.9 Mpc for M87*. Following their 

assertion that the deduced value of the mass scales linearly with the assumed distance, 

we can adjust the mass to (6.2 ± 0.4) × 109𝑀𝑀⦿,corresponding to the distance 16.8 ±

0.8 Mpc. We decided to use this value as the total mass of M87* in the present work, as 

it is the median value cited in the EHTC paper.  
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unified but vary around certain average values; for distance, 
these include 16.4± 0.5 Mpc [42],16.67     Mpc [43], 16.8 Mpc 
[31] 17.0±0.4 Mpc [44], and 17.9Mpc [45]. For the total mass 
estimates are 6.5×109𝑀⦿ [31], (6.5±0.7)×109𝑀⦿ [21], and 
(6.6±0.4)×109𝑀⦿ [42]. Among these, the distance of M87* 
seems to be converging approximately 16.8 Mpc, which is also 
the figure employed in the EHTC paper. The mass of M87* has 
been extensively derived by Gebhardt et al. [45] from stellar 
dynamics; however, they assumed a distance of 17.9 Mpc for 
M87*. Following their assertion that the deduced value of the 
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the mass to (6.2±0.4)×109𝑀⦿,corresponding to the distance 
16.8±0.8 Mpc. We decided to use this value as the total mass of 

M87* in the present work, as it is the median value cited in the 
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5.3 Deduced Parameters of ECB-SMBH at M87*
Based on the relations from eqs.(5.4) to (5.7), we estimate 
the parameters for the proposed ECB-SMBH, M87*-A, and 
M87*-B, starting from the visual angles of the semi major axis 
lengths listed in Table 6. In concert with the distance of M87*, 
as crucial factor for calculating physical parameters from visual 
angles, we account for a scaling error of ±5% for the semi major 
axis lengths. Therefore, we calculate parameters for 9 scenarios 
resulting from combinations of three cases each for the upper 
limit, middle value, and lower limit for the M87* distance, and 
for the scaling error of the visual angle.
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                                                            Table 7 

 
 In Table 7, the orbital radii 𝑟𝐴 of M87*- A and 𝑟𝐵 of M87*- B, derived from the semi major angles listed in Table 6 by multiplying 

by the M87* distance 16.8 Mpc, are summarized as follows: for 𝑟𝐴 as 4.37+0.42 ×1015 cm, and 𝑟𝐵 as 1.16-0.10  ×1016 cm.-0.44 +0.12

+1.02
-0.96
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In Table 7, the orbital radii 𝑟𝑟𝐴𝐴 of M87*-A and 𝑟𝑟𝐵𝐵 of M87*-B, derived from the semi-

major angles listed in Table 6 by multiplying by the M87* distance 16.8 ± 0.8 Mpc, are 

summarized as follows: for 𝑟𝑟𝐴𝐴   as 4.37;0.42
:0.44 × 1015 cm, and 𝑟𝑟𝐵𝐵  as 1.16;0.10

:0.12 × 1016 cm.  

                                                      Table 8 

 

In Table 8, the masses 𝑀𝑀𝐴𝐴 of M87*-A and 𝑀𝑀𝐵𝐵 of M87*-B are presented as results of 

calculations using eqs.(5.6) and (5.7). We conclude that 𝑀𝑀𝐴𝐴 is 4.51;0.22
:0.21 × 109𝑀𝑀⦿; and 

𝑀𝑀𝐵𝐵  is (1.68 ± 0.08) × 109𝑀𝑀⦿. Based on the deduced orbiting radii and masses, the 

orbiting period T (in days) is calculated as shown in Table 9, where the shift angle of the 

binary positions after 369 d corresponds to the times between the EHT observation (M-

Image) and GMVA observation (L-Image). 

                                                           Table 9 

 
In Figure 22, each shift angle of M87*-A and 𝑀𝑀𝐵𝐵 of M87*-B between L-image and M-

image is indicated to be 68; this requires a constraint on the T values listed in Table 9, 

ranging from 143.5 d to 183.2 d. That is, for the case of counterclockwise orbiting 

motion, the following should be satisfied, 

2𝑇𝑇 + 68
360𝑇𝑇 = 369,                                      (5.8) 
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In Table 8, the masses 𝑀𝐴 of M87*-A and 𝑀𝐵 of M87*-B 
are presented as results of calculations using eqs.(5.6) and 
(5.7). We conclude that 𝑀𝐴 is                ×109𝑀⦿; and 𝑀𝐵 is 
(1.68±0.08)×109𝑀⦿. Based on the deduced orbiting radii and 

masses, the orbiting period T (in days) is calculated as shown 
in Table 9, where the shift angle of the binary positions after 
369 d corresponds to the times between the EHT observation (M 
Image) and GMVA observation (L Image).

In Figure 22, each shift angle of M87*-A and of M87*-B between 
L image and M image is indicated to be 680; this requires a 
constraint on the T values listed in Table 9, ranging from 143.5 

d to 183.2 d. That is, for the case of counterclockwise orbiting 
motion, the following should be satisfied,

that gives result, T=168.6 d as the required median period. 
Then, we can conclude that 𝑇=168.6± 2.0 d, referring to Table 
9, where the case of T=170.4 d (0.2 s lower than the upper limit) 
corresponds to a shift angle of 61.2°(lower than 68° by 6.8°), 
and the case of T=166.6 d coincides with the lower limit with a 
shift angle of 75.6°, which is also close to 68°.

The orbital velocities of M87*-A and M87*-B, deduced 
from 𝑟𝐴∙(2𝜋/𝑇)  and 𝑟𝐵∙(2𝜋/𝑇) are (1.88±0.17)×109 cm/s 
and (5.04±0.42)×109 cm/s, respectively. These velocities are 
(6.28±0.54)% of the speed of light for the M87*-A orbiting 
motion and (16.7±1.5)% of the speed of light for the M87*-B 
orbiting motion, indicating that these are indeed ECB-SMBH, 
similar to the case of Sgr A*, where the binary Gaa and Gab 
are moving at velocities of 16% and 21% of the speed of 
light, respectively [14]. In this proposed case of ECB-SMBH 
of M87*, it is also essential, as in the case of Sgr A*, that no 
gravitational waves are radiated from the supermassive BH 
binary system [19]. That is, if gravitational waves are radiated 
from the M87*-A and M87*-B binary system, they would merge 

within approximately 9 yr, following the estimation by Landau 
Lifshits [46] of orbit shrinkage caused by energy consumption 
due to radiation of the gravitational waves.

6. Discussion
6.1 Brief Review on No Gravitational Waves from ECB- 
SMBH
The proposal of the existence of ECB-SMBH is intrinsically 
linked to the assertion that gravitational waves are not generated 
by this system of supermassive black hole binaries. This concept 
was articulated by Oya in 2023 [19], stating, "No gravitational 
wave from orbiting supermassive Kerr black hole''. The 
fundamental principle of this theory rests on the significant 
difference in internal mass density between supermassive black 
holes and those of stellar mass compact stars. The radius of the 
event horizon is directly proportional to the mass, while the 
volume within the event horizon scales cubically with mass, 
leading to extremely low average material densities within the 
event horizon as a function of the inverse square of the total 
mass.
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binaries. This concept was articulated by Oya in 2023 ,19-, stating, ―No gravitational 

wave from orbiting supermassive Kerr black hole.‖ The fundamental principle of this 

theory rests on the significant difference in internal mass density between supermassive 

black holes and those of stellar mass compact stars. The radius of the event horizon is 

directly proportional to the mass, while the volume within the event horizon scales 

cubically with mass, leading to extremely low average material densities within the 

event horizon as a function of the inverse square of the total mass. 

Table 10. Average internal material density of ECB-SMBH. 

 

For examples, we list the average internal material density of ECB-SMBH for three 

scenarios: Sgr A*, M87*, and the hypothesized case of OJ287, in Table 10. In all 

instances, we presume the maximum rotation for the Kerr BH, where the event horizon 

radius is half that of the Schwarzschild radius. Even in the case of Sgr A*, which 

exhibits relatively high density compared to other more massive cases, the internal 

densities are still exceedingly low compared to those of stellar mass BH, exemplified by 

a solar mass black hole at 1.84 × 1016g/cc. 

 

In the published theory, it is highlighted that these sparse materials, which adhere to 

classical physics, are not uniformly distributed inside the event horizon but are 

condensed into a compact core according to post-Newtonian dynamics derived from the 

Einstein equation for observations transformed into coordinates that form a weak field 

condition. Consequently, we confirmed a scenario where the material within the event 

Table 10. Average internal material density of ECB-SMBH.

For examples, we list the average internal material density 
of ECB-SMBH for three scenarios: Sgr A*, M87*, and the 
hypothesized case of OJ287, in Table 10. In all instances, we 
presume the maximum rotation for the Kerr BH, where the event 
horizon radius is half that of the Schwarzschild radius. Even 
in the case of Sgr A*, which exhibits relatively high density 
compared to other more massive cases, the internal densities 
are still exceedingly low compared to those of stellar mass BH, 
exemplified by a solar mass black hole at 1.84×1016g/cc.

In the published theory, it is highlighted that these sparse 
materials, which adhere to classical physics, are not uniformly 
distributed inside the event horizon but are condensed into a 
compact core according to post Newtonian dynamics derived 
from the Einstein equation for observations transformed into 
coordinates that form a weak field condition. Consequently, 

we confirmed a scenario where the material within the event 
horizon is condensed into a compact region with a radius of 
1/50 of the event horizon, leaving a vast empty space inside the 
supermassive Kerr BH through which generated gravitational 
waves could propagate. The publication [19]. explains how 
the propagation of gravitational waves ceases imposed by Kerr 
spacetime while propagating inside of the event horizon.

In Figure 23, we depict the internal mechanics of GW generation 
and propagation, as illustrated in Figure 13 of the original paper. 
This figure portrays one of BH of ECB-SMBH moving along 
binary orbits, forming quadrupole sources with its pair BH, 
thus potentially generating GWs. As detailed in the original 
publication, the generated GW propagate through the interior 
Kerr spacetime with velocity V(tob,r,θ), as described by:
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V(t b, r, θ) = c √∆ ,                            (6.1) 

where t b, r, and θ are the observation time, the radial distance with its origin at the 

center of the source material (see Figure 23), and the polar angle with its origin also set 

at the center of the inner material, respectively. The coordinate system depicted in 

Figure 23 is thus given by a polar coordinate system, which rotates in the azimuthal 

direction with the spin angular velocity   of the BH. In eq.(6.1), ∆ and   are functions 

that express the Kerr spacetime, further defined by imposing the rotational constraint ―a‖ 

with angular velocity  = 𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ , with respect to the azimuthal angle  ; that is: 

ds2 = −8.1−
rrg
 /+

2carrgsin2θ
 ( c) − 4r2 + a2 +

a2rrgsin2θ
 5 sin2θ ( c)

2
9 c2dt2

+  
∆ dr

2 +  dθ2,                                                                              (6.2) 

where ∆= 𝑟𝑟2 − 𝑟𝑟𝑟𝑟𝑔𝑔 + a2   and  = 𝑟𝑟2 + a2𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 ; 𝑟𝑟𝑔𝑔 = 2𝐺𝐺𝐺𝐺 𝑐𝑐2⁄  and a = 𝐽𝐽 𝑀𝑀 ⁄ with 

respect to the gravitational constant 𝐺𝐺, the speed of light c, the black hole mass 𝑀𝑀, and 
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respect to the gravitational constant 𝐺𝐺, the speed of light c, the black hole mass 𝑀𝑀, and 

where tob,r,and θ are the observation time, the radial distance 
with its origin at the center of the source material (see Figure 
23), and the polar angle with its origin also set at the center of 
the inner material, respectively. The coordinate system depicted 
in Figure 23 is thus given by a polar coordinate system, which 

rotates in the azimuthal direction with the spin angular velocity 
Ω of the BH. In eq.(6.1), Δ and Σ are functions that express 
the Kerr spacetime, further defined by imposing the rotational 
constraint ''a'' with angular velocity Ω=𝑑φ/𝑑𝑡, with respect to 
the azimuthal angle φ; that is:

where Δ=𝑟2−𝑟𝑟𝑔+a2 and =𝑟2+a2𝑐𝑜𝑠2𝜃; 𝑟𝑔=2𝐺𝑀/𝑐2 and a=𝐽/𝑀 with respect to the gravitational constant 𝐺, the speed of light c, the 
black hole mass 𝑀, and the angular momentum of the Kerr black hole 𝐽. Consequently, the F value in eq.(6.1) is defined by:
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the angular momentum of the Kerr black hole 𝐽𝐽. Consequently, the F value in eq.(6.1) is 

defined by: 

 2 = .1−
rrg
 /+

2carrgsin2θ
 ( c)

− 4r2 + a2 +
a2rrgsin2θ

 5 sin2θ ( c)
2
.                   (6.3) 

Following this, under a given spin condition with  , the generated GWs cease to 

propagate at points (r , θ ) where  2 = 0, as outlined in eq.(6.1). These results are 

clearly indicated in Figure 23. 

Figure 23. Calculated velocity of GW propagating in the interior region of Kerr BH. 

Results are given in r–θ cross section, including spin axis for 𝐴𝐴𝛺𝛺= 8 (see Eq. (6.17) and 

Figure 13 in the original paper), with IMSBH radius 𝑟𝑟𝑀𝑀𝑀𝑀 𝑟𝑟E⁄ = 1 50⁄ . The GW velocity 

is indicated as gray code, from pure white for light velocity to pure black for null 

velocity. The GWs that propagate radially in the direction of the polar angle 𝜃𝜃 cease to 
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Following this, under a given spin condition with Ω, the generated GWs cease to propagate at points (rF,θF) where F2=0, as outlined 
in eq.(6.1). These results are clearly indicated in Figure 23.

Figure 23. Calculated velocity of GW propagating in the interior region of Kerr BH. Results are given in r - θ cross section, 
including spin axis for 𝐴𝛺= 8 (see Eq. (6.17) and Figure 13 in the original paper ), with SMBH radius 𝑟𝑀𝑐/𝑟E=1/50. The GW 
velocity is indicated as gray code, from pure white for light velocity to pure black for null velocity. The GWs that propagate radially 
in the direction of the polar angle 𝜃 cease to propagate at (𝑟F, 𝜃F), corresponding to 𝐹2=0 (see eq.(6.3)) before arriving at event 
horizon. (After Oya,[19])

The GWs encountering the F zero point revert toward their 
starting points, associated with the initial phase; the returning 
and forwarding GWs interact to form standing waves at each 
encounter point. Thus, within the interior region of the Kerr 
BH, GWs are unable to transport energy away from the source. 
Thus, for supermassive BH systems, a model can be established 
in which generated GWs are not radiated outside the event 
horizon and do not disturb the orbital motion, even in the case of 
extremely close binaries.

6.2 Gravitational wave problem of OJ287
6.2.1 Brief summary of research results
The blazar OJ287, recognized as an exemplary candidate for 
an active galactic nucleus (AGN) with a distance of z=0.3 
(equivalent to 3.5 billion light years), has garnered significant 
interest from AGN researchers. This surge in studies includes 
pivotal works by Valtonen et al., [47] and Britzen et al., [48], 
published in 2018, which are directly relevant to the ongoing 
discourse.

The OJ287 features a binary system composed of primary BH 
with a mass of 1.835×1010𝑀⦿ and secondary BH with a mass 
of 1.50×108𝑀⦿ , [47]. The secondary BH, which orbits the 
primary BH on an elliptical path with an eccentricity of 0.657 
and a major axis length of approximately 104 AU, is estimated 
to approach the peri primary BH region every 12 yr. This 
behavior is in a figure raising thought that the secondary is in 
an in spiral phase due to gravitational wave radiation ,[47, 48]. 
Valtonen et al.'s methodology for analyzing the quasi Keplerian 
orbit dynamics of the OJ287 binary system incorporates post 
Newtonian approximations for gravitational wave effects on 
orbital dynamics. Their model, which requires nine parameters, 
is refined by constraints derived from the timing of the secondary 
BH’s approach, as indicated by V band light flares resulting from 
interactions with the primary BH's accretion disk (hereafter 
referred to as the Valtonen Model). With increasing chances of 
observations of OJ287's flares, the number of constraints up to 
16, allow for a highly accurate solution to determine unknown 
parameters. Among the significant findings, it is reported that 
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the binary's orbital period of 12.062 yr, is decreasing by 38 d 
per century due to gravitational wave radiation. This implies 
that the OJ287 binary is on a trajectory toward merging within a 
timeframe not exceeding 10,000 yr.

Considering the broader context of confirming the existence of 
ECB-SMBH of the present work, the gravitational phenomena 
described here pose contradictions that necessitates a through re 
investigation of the gravitational wave aspects from foundational 
principles.

6.2.2 Fourier analyses of published historical light curve of 
OJ287
a) Fourier Analyses of historical v band data
To elucidate the period variation within the Valtonen Model, 
we reanalyzed the light curve data presented by the authors. 
Recognizing the essence of a flare as the moment of peak 
brightness, our analysis focused on identifying the maximum 
point on the light curve for each observational year.
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Figure 24. Historical light curve of OJ287 from Valtonen et al. publication ,44- for V-

band with scale of magnitude (top panel) and selected maximum level in each year 

of observation interval with linearized scale of luminosity taking zero magnitude as 

unity (bottom panel). Two remarkable burst events marked by 𝛼𝛼 and 𝛽𝛽 are discussed 

in main text relating to proposal of ECB-SMBH for primary BH.  
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Figure 25. Results of the Fourier transformation for the time variations of V-band 

light given as the linearized luminosity. In panel (A) the results are given as the 

function of the periods with unit of yr while the results are expressed as function of 

the frequency with the unit of the mIY (milli inverse year) which is defined, in the 

present study, as 1/(1000yr). ARL indicates average of the Fourier transformation of 

the random signal level. Remarkable peaks P1, P2 and P3 of the spectra are detailed 

in the main text. 

 

In the bottom panel of Figure 24, we converted the luminosity of V-band light from 

magnitude to linear luminosity. This transformation aims to achieve uniform sensitivity 

in Fourier transform functions for detecting occurrence periods. Figure 25 presents the 
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transformation of the random signal level. Remarkable peaks P1, P2 and P3 of the spectra are detailed in the main text.

In the bottom panel of Figure 24, we converted the luminosity 
of V band light from magnitude to linear luminosity. This 
transformation aims to achieve uniform sensitivity in Fourier 
transform functions for detecting occurrence periods. Figure 25 
presents the outcomes of the Fourier transformation applied to 
the time variations of V band luminosity, linearized for analysis. 
In Panel (A), the results are depicted as functions of periods, 
with the unit of yr, while the results are expressed as a function 
of frequency, in panel (B), utilizing the unit milli inverse year 

(mIY), defined in this study as 1/(1000yr).

b) General scope for understanding peaks of spectra seeking 
for the origin of the formation
For understanding peaks of spectra seeking for the origin of 
the peak formation, we opt a generalized formulation which 
represent the interaction of the secondary BH with accreting 
disk of the primary BH in occasions passing the peri primary 
BH region with the period of 12 yr, that is:
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1 that is expressed using WKB 

approximation form for the orbiting angular frequency 𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) generalized to describe 

the time dependent variation of the orbiting period. This eq.(6.4) shows that the radiated 

power of flare 𝑊𝑊𝑓𝑓 caused by the encounter of the secondary BH with the primary BH’s 

accreting disk is largely controlled by the form of the amplitude modulation 𝐼𝐼𝑓𝑓 that is 

given, by 
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where 𝑎𝑎𝑓𝑓  and 𝐾𝐾𝑓𝑓  are constant to express the flare intensity as model; 𝛷𝛷𝑓𝑓(𝑡𝑡) is phase 
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where 𝑎𝑎𝑓𝑓  and 𝐾𝐾𝑓𝑓  are constant to express the flare intensity as model; 𝛷𝛷𝑓𝑓(𝑡𝑡) is phase 

where 𝑊𝑓 is a model of radiated power of flares raised every 
recurrences of the secondary BH given by the last term 
,                                       that is expressed using WKB approximation 
form for the orbiting angular frequency 𝜔𝑜𝑟𝑏(𝑡) generalized to 

describe the time dependent variation of the orbiting period. 
This eq.(6.4) shows that the radiated power of flare 𝑊𝑓 caused 
by the encounter of the secondary BH with the primary BH’s 
accreting disk is largely controlled by the form of the amplitude 
modulation 𝐼𝑓 that is given, by

where 𝑎𝑓 and 𝐾𝑓 are constant to express the flare intensity as 
model; 𝛷𝑓(𝑡) is phase function corresponding to the time shift 
between the occurrence of the flares and the passage of the 

secondary BH crossing the peri primary BH point. By this 
equation, we can express the raised flare intensity depending on 
the positions, of encounter of the secondary BH with accreting 
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disk of the primary BH, which is intrinsically function of relative 
phase angle                                 of the concerning BHs. By 

rewriting eq.(6.4) after mathematical manipulation, we have the 
expression, as
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2 𝑐𝑐𝑐𝑐𝑐𝑐[𝛷𝛷𝑓𝑓(𝑡𝑡)]

+
𝑎𝑎𝑓𝑓𝐾𝐾𝑓𝑓

2 𝑐𝑐𝑐𝑐𝑐𝑐 62∫ 𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)𝑑𝑑𝑑𝑑
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𝑡𝑡0
+ 𝛷𝛷𝑓𝑓(𝑡𝑡)7 .        (6.6) 

The three terms in the right hand side of above eq.(6.6) are correspond to the principal 

peaks  

labeled in the Fourier analyzed historical V-band data given in Figure 25; the peaks P1, 

P2 and P3 given in Figure 25 in panels (A) and (B) correspond to the first, second and 

third terms, respectively, in the right hand side of eqs.(6.6). 

 

c) Frequency modulation on the orbital period of the secondary BH 

The spectrum peak, P1 is one of the remarkable peaks at the periods 12 yr which is 

identified as same with peaks established through the current studies on the secondary 

BH orbiting motion in the OJ287. The point of P1peak attracting our notice is the 

existence of the side bands with a given frequency gaps corresponding to the period 

around 56 to 60yr. If 𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  in the first term of right hand side of eq(6.6), the 

peak should appear as a single peak reflecting 𝑎𝑎𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐,𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡- ; though there exists errors 

caused by background noises, we cannot negate associated four side bands with  

constant intervals of frequency of about 16mIY (around 60yr) centered at the principal 
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constant intervals of frequency of about 16mIY (around 60yr) centered at the principal 

The three terms in the right hand side of above eq.(6.6) are 
correspond to the principal peaks labeled in the Fourier analyzed 
historical V band data given in Figure 25; the peaks P1, P2 and 
P3 given in Figure 25 in panels (A) and (B) correspond to the 
first, second and third terms, respectively, in the right hand side 
of eqs.(6.6).

c) Frequency modulation on the orbital period of the 
secondary BH
The spectrum peak, P1 is one of the remarkable peaks at the 
periods 12 yr which is identified as same with peaks established 
through the current studies on the secondary BH orbiting 

motion in the OJ287. The point of P1peak attracting our notice 
is the existence of the side bands with a given frequency gaps 
corresponding to the period around 56 to 60yr. If 𝜔𝑜𝑟𝑏(𝑡)=𝑐𝑜𝑛𝑠𝑡 
in the first term of right hand side of eq(6.6), the peak should 
appear as a single peak reflecting 𝑎𝑓 𝑐𝑜𝑠,[𝜔𝑜𝑟𝑏𝑡]; though there 
exists errors caused by background noises, we cannot negate 
associated four side bands with constant intervals of frequency 
of about 16mIY (around 60yr) centered at the principal 
frequency of 83.333 mIY(12yr). Here we should take 𝜔𝑜𝑟𝑏(𝑡) as 
time dependent function. As details are described in Appendix 
E, we realize that the orbiting period T𝑜𝑠of the secondary BH is 
frequency modulated as,
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frequency of  83.333 mIY(12yr). Here we should take 𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)  as time dependent 

function. As details are described in Appendix-E, we realize that the orbiting period 

T𝑜𝑜𝑜𝑜of the secondary BH is frequency modulated as, 

𝑇𝑇𝑜𝑜𝑜𝑜 ≈ 𝑇𝑇0 [1 − 𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁 (2𝜋𝜋
60 𝑡𝑡)] .                              (6.7) 

where 𝑇𝑇0 is the intrinsic orbiting period; and  𝜁𝜁 is the modulation rate of the period 

variation.  

where 𝑇𝑇0  represents the intrinsic orbiting period, and 𝜁𝜁  is the modulation rate of the 

period variation. In Appendix E, with the rewritten parameters 𝜔𝜔0𝑆𝑆 ≡ 2𝜋𝜋 𝑇𝑇0𝑆𝑆⁄ ,𝑝𝑝0𝑆𝑆 ≡

2𝜋𝜋 60,𝑎𝑎𝑎𝑎𝑎𝑎 𝜉𝜉0𝑆𝑆 ≡ (2𝜋𝜋 𝑇𝑇0⁄ ) ∙ 𝜁𝜁⁄ . (𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒. (𝐸𝐸3)) , the time-varying function with 

frequency modulation of eq.(6.7), described in years, is expressed as follows: 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴*𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆) + 𝐽𝐽1(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐,(𝜔𝜔0𝑆𝑆 + 𝑝𝑝0𝑆𝑆)𝑡𝑡 − 𝜃𝜃0𝑆𝑆-
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where 𝑇0 is the intrinsic orbiting period; and 𝜁 is the modulation 
rate of the period variation.

In Appendix E, with the rewritten parameters 𝜔0𝑆≡2𝜋/
𝑇0𝑆,𝑝0𝑆≡2𝜋/60,𝑎𝑛𝑑 𝜉0𝑆≡(2𝜋/𝑇0)∙𝜁.(𝑠𝑒𝑒 𝑒𝑞.(𝐸3)), the time 
varying function with frequency modulation of eq.(6.7), 
described in years, is expressed as follows:

where A denotes an arbitrary constant; and 𝜃0𝑆 represents a constant phase angle, determined at the starting time 𝑡0 as

As detailed in Appendix E through Fourier transformation 
analysis, we observe spectral peaks at the angular frequencies 
𝜔0𝑆−2𝑝0𝑆 with amplitude 𝐽2(𝜉0𝑆/𝑝0𝑆), derived by the second 
order Bessel function of the first kind. Similarly, peaks are noted 
at 𝜔0𝑆−𝑝0𝑆,𝜔0𝑆, 𝜔0𝑆+𝑝0𝑆,and 𝜔0𝑆+2𝑝0𝑆 with amplitudes 𝐽1(𝜉0𝑆/
𝑝0𝑆),𝐽0(𝜉0𝑆/𝑝0𝑆),𝐽1(𝜉0𝑆/𝑝0𝑆) and 𝐽2(𝜉0𝑆/𝑝0𝑆), respectively. In Table 
11, we have cataloged spectral peaks, comparing those detected 
from the historical record of OJ287 flares with theoretical 
predictions from eqs.(6.7) to eq.(6.9). As illustrated in Figure 24, 
both period and frequency expressions of the spectra coincide 
with a constant bias level of approximately 0.072, in terms of 
relative spectral value. This bias level, termed the ARL results 

from averaging spectral data related to random phenomena 
associated with the original events. Rather than considering 
this random component as an error, we recognize that the 
original light records consist of two components: one related to 
apparent periodic phenomena and the other to random emissive 
phenomena. Given that the spectra are derived from averaging 30 
Fourier transformed functions, the random characteristic tends 
to stabilize, independent of the analyzed period or frequency. 
Consequently, we can exclude this component to focus on the 
periodic components. In Table 11, we present three cases of ARL 
subtraction, considering potential error to scale the displayed 
diagrams (see Table 11).
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Table 11. Comparison of detected 83.333 mIY (12 yr period) spectra associated with sidebands with theoretical values.
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The analysis of the detected spectra shows that the second sidebands, corresponding to 

the theoretical 𝐽𝐽2 functions, align closely with the analytical limits set by reading errors 

and existing noise. However, the first sidebands, associated with the theoretical 𝐽𝐽1 

functions, exhibit discernible levels in terms of their ratio to the central peak level. 

The analysis of the detected spectra shows that the second 
sidebands, corresponding to the theoretical 𝐽2 functions, align 
closely with the analytical limits set by reading errors and 
existing noise. However, the first sidebands, associated with the 
theoretical 𝐽1 functions, exhibit discernible levels in terms of their 
ratio to the central peak level. Based on the results in Table 11, 
we infer that 𝜉0𝑆/𝑝0𝑆=0.63±0.2. Consequently, the modulation 
rate 𝜁 in eq.(6.4) equals (0.63±0.2)(𝑇0/60). For an intrinsic orbital 
period 𝑇0 of 12 yr, the rate of variation in the flare occurrence 
period is 0.126±0.04yr. This implies that the flare occurrence 
period, influenced by the secondary BH, oscillates between a 
maximum of (13.5±0.48) 𝑦𝑟 and a minimum of (10.5±0.48)𝑦𝑟, 
showing sinusoidal variation over a cycle of58±1 yr.

Thus, we may consider the time interval when the orbiting 
period 𝑇𝑜𝑠 is in the 30 years of the decreasing phase; and we 
will meet the time interval during 30 years in future when the 
orbiting period enters in increasing phase. From this perspective, 
the results of the decreasing of the orbital period pointed out 
by Valtonen model cannot take as permanent nature as their 
proposal of gravitational wave generation model.

6.2.3 Possibility of ECB-SMBH as Primary BH
a) Necessity of requirement of another binary system 
alternative to Primary BH
Regarding the evidence of the oscillating period of flare 

occurrence discussed in Subsection 6.2.2, we investigate the 
possibility of ECB-SMBH system as an alternative to the 
traditional concept of the primary BH being a single SMBH, as 
currently assumed in all studies. This alternative ECB-SMBH 
concept suggests that the oscillation in the encounter period of 
the secondary BH with the accretion disk of the primary BH 
is not solely attributable to the precession of the secondary BH 
orbit. Instead, it includes the variation effects of the gravitational 
force in the peri primary BH region, which fluctuates depending 
on the mutual configuration of the three bodies (as illustrated 
in Figure 26). This implies that the configuration periodically 
repeats, combining the secondary BH’s orbiting period.

b) Orbiting parameters of ECB-SMBH given as alternative 
of primary BH
Before delving into the dynamics to clarify the variation in the 
orbital period of the secondary BH, we explore the relationship 
between the assumed orbiting characteristics of ECB-SMBH 
system and the pericenter passage of the secondary BH. As 
illustrated in Figure 26, we define an angle, Φ (radian) between 
the direction of the radial vector of the secondary BH and the 
vector direction connecting the member BHs temporarily named 
EA and EB, of the ECB-SMBH system, For this case, Φ is 
expressed by:
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where± 𝑇𝐸 and 𝑇𝑜𝑟𝑏 represent the orbiting periods of the ECB- 
SMBH and the secondary BH, respectively. We choose + 𝑇𝐸 for 
the case where the ECB-SMBH and the secondary BH rotate 
in the same sense, and 𝑇𝐸 for the scenario where they rotate in 

opposite senses. Drawing from the historical records of OJ287 
flares [47], we recognize the need for recurrences in the mutual 
relationships of

Table 12. Calculated orbiting peri od of ECB-SMBH (unit; yr),
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three BHs with a period of 5𝑇𝑜𝑟𝑏, which imposes a constraint on eq.(6.10) as follows:
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The current results from VLBI observations of the OJ287 
jet [48] reveal a time variation in the structure. Notably, the 
analysis of the jet structure by Britzen et al. [48], based on 
VLBI observation data at 4.8, 8.0, and 14.5 GHz, identified 
the presession of the jet with a period of 27±5 yr. A significant 

result relevant to this work is the confirmed presence of clear 
nutation, associated with the presession, displaying a period of 
1.6±0.1yr. As the source of this nutation effect on the twisting 
jet, we postulate that the orbital motions of the ECB-SMBH, as 
an alternative to the primary BH, might supply ample energy 
through possible electromagnetic dynamics, leading to the rapid 
movement of plasma as jets at sub light velocity. In this context, 
Table 12 includes the recurrence period of 58 yr with N=37 
showing a 1.59 yr period of ECB-SMBH for counter rotation, 
and a recurrence period of 60 yr for a 1.598 yr period (at N=37) 
for corotation and a 1.602 yr period (at N=38) for counter 
rotation of the ECB-SMBH orbiting motion.
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Considering the period range, we can apply the Keplerian relationship based on 
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0.222c × 𝜅𝜅𝑂𝑂𝑂𝑂 (1 + 𝜅𝜅𝑂𝑂𝑂𝑂)⁄  and 0.222c (1 + 𝜅𝜅𝑂𝑂𝑂𝑂),⁄  respectively for EA-BH and EB-BH. 

This reveals that the proposed ECB-SMBH, is analogous in term of moving velocities, 

proposed for Sgr A* and M87*. In Table 13, we see examples of masses, orbiting radii 

and orbital velocities of the member BH of ECB-SMBH for ten cases of the mass ratio. 
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from eqs.(5.4) to (5.7), which are applied to the case of ECB 
-SMBH of M87*. Assuming a circular orbit and defining the 
masses as 𝑀𝐴 and 𝑀𝐵 respectively for EA-BH and EB-H of the 
ECB-SMBH as an alternative to the OJ287 primary BH, and 
defining the orbit radii as 𝑟𝐴 and 𝑟𝐵, respectively for EA-BH 
and EB-BH, with mass ratio 𝜅𝑂𝐽=𝑀𝐵/𝑀𝐴,we can estimate, that 
𝑀𝐴=1.835×1010𝑀⦿/(1+𝜅𝑂𝐽),𝑀𝐵=1.835×1010𝑀⦿×𝜅𝑂𝐽/(1+𝜅𝑂𝐽), 
𝑟𝐴=5.40×1016×𝜅𝑂𝐽/(1+𝜅𝑂𝐽) cm, and 𝑟𝐵=5.40×1016/(1+𝜅𝑂𝐽) 
cm. The orbiting velocities are then estimated as 0.222c×𝜅𝑂𝐽 ⁄ 
(1+𝜅𝑂𝐽)and 0.222c/(1+𝜅𝑂𝐽), respectively for EA-BH and EB-
BH. This reveals that the proposed ECB-SMBH, is analogous 
in term of moving velocities, proposed for Sgr A* and M87*. In 
Table 13, we see examples of masses, orbiting radii and orbital 

velocities of the member BH of ECB-SMBH for ten cases of the 
mass ratio.

6.2.4 Time variations of flare occurrences associated with 
secondary BH interacting with accretion disks of ECB- 
SMBH
(a) P2 effects
In the Panel (A), of Figure 25, we observe spectral peaks P2 
around 58±1 yr, that is represented by the second terms of 
the right hand side of the interaction model equation eq.(6.6) 
, (𝑎𝑓𝐾𝑓/2)𝑐𝑜𝑠 [𝛷𝑓(𝑡)] where 𝛷𝑓(𝑡) is the phase function (see 
eq.(6.5)) corresponding to the time shift to the encounter of the 
secondary BH with the primary BH’s accretion disc. We rewrite 
for the case of the proposed ECB-SMBH, considering eqs.(6.10) 
and (6.11) , as

91 

 

interacting 

        with accretion disks of ECB-SMBH 

(a) P2 effects 

In the  Panel (A), of Figure 25, we observe spectral peaks P2  around 58±1 yr, that is 

represented by the second terms of the right hand side of the interaction model equation 

eq.(6.6) ,  (𝑎𝑎𝑓𝑓𝐾𝐾𝑓𝑓 2⁄ )𝑐𝑐𝑐𝑐𝑐𝑐 [𝛷𝛷𝑓𝑓(𝑡𝑡)]   where 𝛷𝛷𝑓𝑓(𝑡𝑡)  is the phase function (see eq.(6.5)) 

corresponding to the time shift to the encounter of the secondary BH with the primary 

BH’s accretion disc. We rewrite for the case of the proposed ECB-SMBH, considering 

eqs.(6.10) and (6.11) , as 

𝛷𝛷𝑓𝑓(𝑡𝑡) = 2𝜋𝜋 [( 1
±𝑇𝑇𝐸𝐸

) − 1
24 (

38.7
180)] 𝑡𝑡.                                                 (6.12) 

 

.                     

In addition to the secondary BH orbital period of 12 yr, the Valtonen Model highlights a 

periodic variation affected by the significant presession of the secondary BH, attributed 

to the effects of general relativity near the peri-primary BH. According to the Valtonen 

Model, with each peri-primary passage, the precession angle accumulates by 38.7°, 

causing the ellipse's axis to rotate 180°with 56 yr period. For this context we take the 

effect of the pression of GR effect in Valtonen Model significant as given in eqs, 

(6.10)~(6.12). 

With respective to the P2 peak of spectra in Figure 25, the 56yr period expected by the 

Valtonen Model is not necessarily remarkable, there is a noticeable spread in the spectra 

around the 58-yr peak, ranging from 56 to 60 yr.  At this stage, we are required to 

investigate whether the observed frequency modulation has relation to the precession of 

the secondary BH or not. A critical aspect of this inquiry is encapsulated in the 
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Valtonen Model highlights a periodic variation affected by the 
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precession angle accumulates by 38.7°, causing the ellipse's axis 
to rotate 180°with 56 yr period. For this context we take the 
effect of the pression of GR effect in Valtonen Model significant 



Adv Theo Comp Phy, 2024       Volume 7 | Issue 2 | 44

as given in eqs, (6.10)~(6.12).

With respective to the P2 peak of spectra in Figure 25, the 
56yr period expected by the Valtonen Model is not necessarily 
remarkable, there is a noticeable spread in the spectra around the 

58 yr peak, ranging from 56 to 60 yr. At this stage, we are required 
to investigate whether the observed frequency modulation has 
relation to the precession of the secondary BH or not. A critical 
aspect of this inquiry is encapsulated in the expression for the 
frequency modulation, as:

Figure 26.  Qualitative configuration of the three BHs orbits at the center region of OJ287 .
The secondary BH passes through the two accreting disks associated with the ECB-SMBH proposed as alternative to the single 
primary  BH  ; depending on the geometrical relation of the secondary BH between the ECB-SMBH whose orbiting positions are 
represented by the white line which connects EA-BH and EB-BH of the ECB-SMBH, occurrences of the flares raised by accreting 
disk encounter of the secondary BH change features as function of  the thickness and density (simply expressed by two grades 
as Inner and Outer Accretion Disks) of the accreting disks of the member BHs of ECB-SMBH. Angle Φ is defined between the 
direction of the connection line of orbiting BHs of ECB-SMBH  and the direction  of the position vector of the secondary BH at the 
peri-center of the secondary BH’s orbit given by 2nD. In Panel (A) the case of asymmetrical disk encounters (corresponding to the 
cases of α and β in the historical records given in Figure 24 ,from the qualitative perspective) is  indicated ; after the first encounter 
passing through the relatively tenuous plasma disk , the secondary BH encounters thick and dens  accreting disk taking a close path 
to EB- BH of ECB-SMBH where the large flare takes place in the occasion of second encounter. Panel B shows the case of the 
encounters of the secondary BH with relatively tenuous  accreting disks of ECB-SMBH causing flares of almost equal intensities in 
a medium range for twice encounters . In both Panels (A) and (B), orbits of ECB-SMBH are expressed by OACB both for EA-BH 
and EB-BH of ECB-SMBH.
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When we denote the timing of the accretion disk crossing for the m time as 𝑡𝑡𝑚𝑚, the 

crossing time can be expressed as a time shift from the peri-primary BH passage, 

resulting in the function as follows: 

 

𝑓𝑓(𝑡𝑡 ± ∆𝑡𝑡) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 4∫ 2𝜋𝜋
𝑇𝑇𝑜𝑜𝑜𝑜

𝑡𝑡±∆𝑡𝑡

𝑡𝑡0
𝑑𝑑𝑑𝑑5 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 4∫ 2𝜋𝜋

𝑇𝑇𝑜𝑜𝑜𝑜

𝑡𝑡

𝑡𝑡0
𝑑𝑑𝑑𝑑 ± 2𝜋𝜋

𝑇𝑇𝑜𝑜𝑜𝑜
∆𝑡𝑡5 .        ( 6.14) 

where ∆𝑡𝑡 represents the time shift necessary for the encounter with the accreting disk to 

occur after passing the peri-primary BH point, thus 𝑡𝑡𝑚𝑚 = 𝑡𝑡 + ∆𝑡𝑡. Comparing eqs.(6.13) 

and (6.14), we can apply a well-established mathematical relationship for Fourier 

transformation, as  

|∫ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔)𝑒𝑒;𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑
∞

;∞
| = |∫ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔 + 𝛷𝛷𝑚𝑚)𝑒𝑒;𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑

∞

;∞
| .                              (6.15) 

where 𝛷𝛷𝑚𝑚  represents the phase shift angle ± 2𝜋𝜋∆𝑡𝑡 𝑇𝑇𝑜𝑜𝑜𝑜⁄  representing the m-th time 

crossing of the accretion disk of the primary BH; the periodic recurrence of the 

secondary BH is modeled by a simple cosine function. Consequently, we deduce that 
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crossing of the accretion disk of the primary BH; the periodic recurrence of the 
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When we denote the timing of the accretion disk crossing for the m time as 𝑡𝑚, the crossing time can be expressed as a time shift 
from the peri primary BH passage, resulting in the function as follows:

where Δ𝑡 represents the time shift necessary for the encounter with the accreting disk to occur after passing the peri primary 
BH point, thus 𝑡𝑚=𝑡+Δ𝑡. Comparing eqs.(6.13) and (6.14), we can apply a well established mathematical relationship for Fourier 
transformation, as

where 𝛷𝑚 represents the phase shift angle ±2𝜋Δ𝑡/𝑇𝑜𝑠 representing 
the m th time crossing of the accretion disk of the primary 

BH; the periodic recurrence of the secondary BH is modeled 
by a simple cosine function. Consequently, we deduce that the 
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variation in flare occurrence timing, driven by the encounters 
of the secondary BH with the accretion disk and a precession 
angle of 38.7°per pericenter passage, does not induce frequency 
modulation on the orbital period of the secondary BH around the 
primary BH.

Then from perspective to consider the ECB-SMBH as alternative 
of the single primary BH we have investigated the recurrency of 
the phase 𝛷𝑓(𝑡) given by eq.(6.12) with the frequency modulated 
orbiting period of the secondary BH, that is given by
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The results show that the configuration formed by three BHs 
recures within period range from 56yr to 60yr centered at 58yr in 
the case of counter sense of orbiting motion between the orbiting 
sense of ECB-SMBH and the orbiting sense of the secondary 
BH.

(b) P3 peaks in the analyzed spectra
As effects of the occurrence of the flare caused by the encounter 
of the secondary BH with the ECB-SMBH, alternative primary 
BH, the P3 peaks corresponding to the third term of the right 
hand side of eq.(6.6) is revealed principally around half period 
(twice frequency) of the orbital period as given in panel (B) of 
Figure 25 that is, (𝑎𝑓𝐾𝑓/2)∙𝑐𝑜𝑠(2∫𝑡𝑡0𝜔𝑜𝑟𝑏(𝑡)𝑑𝑡+𝛷𝑓(𝑡)). Because 
of time dependent phase 𝛷𝑓(𝑡) and frequency modulation in 
𝜔𝑜𝑟𝑏(𝑡) the shape of spectra is spread widely around 166 mIY 
(6yr).

c) ECB-SMBH effects
It is naturally thought by proposal of the ECB-SMBH that the 
configuration of the accreting disk where the secondary BH 
encounters in the periods of peri center region passage, changes 
asymmetrically depending on orbital motion of the member 
BH of ECB-SMBH as depicted in Figure 26 by Panel (A) and 
Panel(B). Therefore the timing of the encounter of secondary 
BH with accretion disks of ECB-SMBH and intensities of 
caused flares at the encounter time largely affected by the angle 
Φ𝑆 ,i.e., the positions of the member of the central binary. (see 
Figure 26). The case of Panel (B) represents the usual time 
of occurrence of flare levels in historical records where the 
difference of intensities between two accretion disks crossing is 
not so large. On the other hand, we see the case given in the panel 
(A), of Figure 26, where a qualitative image of the configuration 
of three BHs which shows the inhomogeneous state of the 
accretion disk surrounding the ECB-SMBH is depicted. The first 
encounter of primary BH occurs with tenuous state of the disk 
while the returning encounter takes place in the thick disk which 
can be expected to radiate more intense emissions than the first 
case. As applicable cases of this asymmetrical flare occurrences, 
we see in Bottom Panel of Figure 24, where two cases of the 
remarkable flare of light emissions are picked up with notes α 
and β from the historical records of V Band emissions. What we 
making notice especially in these phenomena is the 58±0.3 yr 
interval, of occurrence, when the same mutual configurations of 

the triple BH had possibly taken place.
6.3 Summary on OJ287 ECB-SMBH
The suggestion of ECB-SMBH as an essential subject, aligning 
with the study results for Sgr A* and M87* to ensure the 
condition of no gravitational wave emission from supermassive 
BHs, looks presenting contradictory issue against current 
interpretations of the historical records of V band flares from 
OJ287. However, detailed analyses of the flare occurrence of 
OJ287 reveal that there is evidence of the periodical variation 
(frequency modulation) on the orbital period of the secondary 
BH orbiting around the primary BH. As the most plausible 
candidate to result the periodic modulation on the second BH’s 
orbiting period, we present the proposal of ECB-SMBH as an 
alternative to the primary BH of OJ287.

However, it is significant that we investigate whether there 
remain rooms which strengthen or newly present subjects in 
current established knowledge of OJ287 system or not. For these 
matters, we have four subjects given as follows.
1) The interpretation of the extraordinary large flares in 1913 
and 1972 (as shown in Figure 24 marked by 𝛼 and 𝛽)

These unique instances of accretion disk crossing by the 
secondary BH, occurring only twice with an interval of 58±0.3 
yr, cannot be explained by a single rotating BH for the primary, 
surrounded by a rotationally symmetrical configuration of the 
accretion disk (see Figure 26). Such a model does not account 
for the special enhancement of intensity from the disk encounter 
of the secondary BH due to simple geometric changes from 
orbital presession. Instead, an extraordinarily asymmetrical 
configuration of the accretion disk (see Figure 26), as proposed 
for the ECB- SMBH, can satisfy the required asymmetry and 
explain these special encounters.

2) The recurrence interval of flare occurrences in the OJ287 
system is closer to 58 yr rather than 56 yr.

As the main cause of flare recurrence in the OJ287 system, 
current understanding, as represented by the Valtonen Model, 
highlights the effects of the secondary BH's precession in the 
pericenter region. This model considers no ECB-SMBH effect, 
and with eq.(6.11) and rotational symmetry with 𝑁=1/2, it 
follows that:
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An often-overlooked consideration is the likelihood of detecting the end-stage 

phenomena, especially when the remnant cannot be observed. The theory that allows for 

gravitational wave generation suggests the merger timing of the OJ287 system to be no 
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where 𝑇𝑖 is thought as constant in Valtonen Model, giving 5𝑇𝑖≈56. 
However, as noted in relation to Figure 25, Panel (A), the 56 
yr peak is not distinctly marked but falls within a higher level 
period range associated with spectral peak at 58 yr, indicating 
significant relevance in the ECB-SMBH model. We propose 
that eq.(6.11), supported by observational results, offers a more 
accurate description of the recurrence configuration related to 
light outbursts associated with accretion disk encounters than 
does eq.(6.17).

3) Interpretation of cause of the nutation of the jet
The nutation of the jet, originating from periodic rotational 
phenomena with a period of 1.6±0.1 𝑦𝑟, is naturally explained 
by the presence of an ECB-SMBH. Its orbiting period aligns 
with the oscillation period of the observed jet structure's nutation 
detected by radio waves. This nutation period is significantly 
different from the spin period of a single BH, which would not 
exceed 5 h per rotation.

4) Observation chance in case of gravitational wave radiation 
from OJ287
An often overlooked consideration is the likelihood of detecting 
the end stage phenomena, especially when the remnant cannot 
be observed. The theory that allows for gravitational wave 
generation suggests the merger timing of the OJ287 system to 
be no more than 10,000 yr in the future, within a potential total 
lifetime ranging from 109 to 1010 yr. This implies we are currently 
witnessing an extremely rare event, with probabilities ranging 
from 10-5 to 10-6. Therefore, we consider the model that accounts 
for gravitational wave generation for OJ287 to be observing a 
miraculous event, rather than witnessing effects indicative of 
an ECB-SMBH existing under the premise of no gravitational 
waves from the SMBH.

7. Conclusion
Based on observations of decameter wavelength radio wave 
pulses from Sgr A* at 21.86 MHz, we have concluded the 
existence of the extreme central binary of the super massive 
black hole (ECB-SMBH) at the center of the Milky Way Galaxy. 
The system consists of SMBHs with masses 2.27×106𝑀⦿ 
and 1.94×106𝑀⦿, orbiting each other at a mutual distance of 
4.1×1012 cm with a period of 2200±50 s. The orbiting velocities 
are 18% and 22% of the speed of light, respectively [14].
The existence of ECB-SMBH is contingent upon a physical 
scenario where no gravitational waves are radiated from these 
supermassive black holes [19]. The primary goal of this work 
is to confirm the existence of ECB-SMBH at Sgr A*. Following 
this confirmation, opportunities arise to search for evidence of 
ECB-SMBH in M87* and further in the blazar OJ287, as part of 
a broader effort to identify existing ECB-SMBHs orbiting at the 
centers of galaxies at sub light velocities and an extremely close 
mutual distances, on the order of a few to several ten times the 
radius of the event horizon of the supermassive Kerr BH.

7.1 Case of Sgr A*
We have performed the confirmation of the existence of ECB- 
SMBH through a comparison of the constructed ECB-SMBH 
model, based on decameter radio wave pulse observations, 
with publicly released VLBI data observed by Event Horizon 

Telescope Collaboration (EHTC). The results revealed 1.3 mm 
radio wave emissions with a definitive periodic component at 
Sgr A*, where the observed EHT visibilities closely match the 
model visibilities with a period of 2193±27 s [29]. Using this 
period as a starting point, we aim to visualize ECB-SMBH 
from the observed visibilities provided by EHTC in the present 
work. Given the previous work’s conclusion [29] that the 
orbit plane of the possible ECB-SMBH is nearly parallel to 
the Galactic equator and observable as a one dimensional line 
inclined by 58°with respect to the right ascension line, we adopt 
an approximation method in our one dimensional analysis to 
construct the radio source structure along the orbiting line of 
interest. We then formed a one dimensional visibility, focusing 
on the orbital line from the EHT visibility data, termed the 
linearized visibility (LV), where EHT visibility data in the (u, 
v) plane are transformed into visibilities in the (ℓ,𝑡̃) coordinate; 
here, ℓ axis aligns with the ECB-SMBH orbiting line. The LVs 
are formed selecting visibility data along ℓ within a fan shaped 
zone with an open angle of ±39°along ℓ (the orbit line). Data 
with (ℓ,𝑡̃) coordinates outside the defined fan shape are discarded 
as unrelated to the orbital motion.

This LV is particularly characterized by time dependent data, 
unlike typical VLBI work where data are considered essentially 
static with only random noise oscillations. Therefore, we selected 
specific timings to collect visibility data at fixed phases in the 
orbiting period to track the periodic movement of radio wave 
sources. Since the radio wave sources from regions surrounding 
the black holes move along orbits observable as a line, these 
sources exhibit back and forth motions, crossing at the eclipse 
phase in the middle of the orbit. We set eight phases for half 
of the orbiting period of ECB-SMBH, assuming symmetry for 
simplicity; this assumption means the processes of the sources' 
back and forth movement are repeated within half of the orbiting 
period. The most significant parameter for accurately stacking 
data for each phase bin is the orbital period. Although we started 
with 2193±27 s as the orbiting period for data stacking, the results 
find a smooth continuation of the ECB-SMBH movement at 
2153 ±5 s. This period closely aligns with the value of 2150±2.5 
s from our previous study [28], which was deduced from the 
comparison of decameter radio wave pulse results with 1.3 mm 
VLBI observations reported by Fish et al. [27].

The linearized visibility of the EHT data, referred to as phase 
stacking data, has clearly indicated different functions of LV 
versus ℓ at a level significantly higher than the observational 
errors. This reveals the apparent feature of the periodic 
movement of the sources. The obtained LV, sorted into eight 
bins corresponding to the eight phases, is used to trace the 
movements of radio wave sources. These are compared with 
calculated visibilities formed via the Fourier transformation 
of binary sources moving back and forth along their orbital 
lines. This comparison shows sufficient accuracy to confirm 
coincidence in the ℓrange from 2.5 Gλ to 5.5 Gλ, corresponding 
to a visible angle of 10 to 34𝜇𝑎𝑠(equivalent to 1012~4×1012 cm 
at Sgr A∗), thus successfully confirming the existence of ECB 
-SMBH from the VLBI data provided by EHTC. We utilized the 
data of observation cases on April 6, 2017, for two data series: 
96 Hi CASA and 96 Lo HOPS. In cases of these series data 
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observed on April 7 (97 day), the original EHT visibility data do 
not provide a sufficient number of data points along the ℓ axis 
when transforming the visibility data from the original (u, v) 
plane to the (ℓ,𝑡̃) plane.

The results of the recovered image of the moving ECB-SMBH 
indicate that the BHs are surrounded by bright zones of radio 
wave radiation; radii of these zones are 3 to 4 times wider than 
the radii of the event horizons of the host BHs. To recover the 
moving images of ECB-SMBH, we identified the brightness and 
associated background emissions from the coincidence of the 
theoretical LV (T-LV) and detected LV (E-LV). Investigating 
the brightness variation of the image as a function of the data 
stacking phase sequence number, we noticed some portions 
suddenly appear darker than neighboring phases; we consider 
this effect an artifact caused by a slight mismatch in the selected 
period between the actual ECB-SMBH period. The correction 
of this discrepancy is deferred to future work to achieve higher 
accuracy in determining the ECB-SMBH orbiting period.

7.2 Case of M87*
Regarding the two published radio wave images of M87* 
resulting from millimeter wavelength VLBI observation data 
[20,31], we have concluded that the two bright spots indicated in 
each image are manifestations of ECB-SMBH at the center of the 
M87 galaxy. This conclusion is based on the criteria established 
by our study on ECB-SMBH at Sgr A*, although the authors of 
the original images did not consider these spots to represent BH. 
Furthermore, we consider the single image of EHTC [21] to be 
out of scope, although its relation is discussed in Lu et al.’s paper 
[31], due to previous indications [20] of erroneous procedures in 
forming the M87* image from the EHT data. A significant point 
of the criteria obtained from our study on ECB-SMBH at Sgr 
A* is that the radio image of the BH is a continuous bright zone 
without any shadow or associated with inhomogeneous rings. 
This is attributed to the plasma environment around the binary, 
where the accretion disk becomes thick due to the effective 
reduction of angular momentum in the region of counter streams 
pervading around the center region of the two orbiting BHs.

For the four bright spots in two images that are mutually 
identified as the same two spots, we have temporarily named 
them M87*-A and M87*-B, considering them as member BH 
of ECB-SMBH. By fitting assumed circular orbits (observed as 
ellipses because of the viewing angle of the orbital plane) to all 
four spots in the published image, it is concluded that M87*A 
and M87*B are on orbits with radii of 4.37+0.44 ×1015 cm and 
radius of 1.16+0.12 ×1016 cm, respectively, assuming the distance 
of M87* to be 16.8±0.8 Mpc. Considering the extent of the orbit 
sizes, we apply Keplerian orbits under Newtonian dynamics to 
this binary system, yielding a mass ratio of M87*A and M87*B 
as a function of the corresponding orbit radii; the masses are 
calculated to be 4.51+0.21 ×109𝑀⦿ and (1.68±0.08)×109𝑀⦿, 
respectively, for M87*A and M87*B. Given the time interval 
of 369 d between the two observations corresponding to the 
two images, which resulted in a 68° shift in the mutual orbital 
positions of each BH, the orbiting period of ECB-SMBH is 
decided to be 168.6± 2.0 d.

The orbital velocities deduced from the clarified angular 
velocity are (6.28±0.54)% of the speed of light for M87*-A 
and (16.7±1.5)% of the speed of light for M87*-B. These 
results reveal that M87* consists of an ECB- SMBH, scaling up 
approximately 1500 times in mass and 4000 times in orbit radii 
compared to the case of Sgr A*, where the binary BH Gaa and 
Gab are moving at speeds of 16% and 21% of the speed of light, 
respectively [14].

7.3 Case of OJ287
We have examined the blazar OJ287 from the perspective of 
gravitational wave radiation, addressing the critical issue of the 
potential negation of the existence of ECB-SMBH if the current 
description that the OJ287 binary system is already in the in 
spiral phase due to gravitational wave emission is accurate. To 
investigate the reality of gravitational wave effects, we have 
reviewed published historical records, as given in Subsection 
6.2.2, primarily referring to two works by Valtonen [47] and 
Britzen [48]. The results of the Fourier analysis of the historical 
records, of the V band light luminosity[47], which show flares 
coinciding with the secondary BH's encounter with the accreting 
disk in the peri primary BH zone, clarify that the orbiting 
periods of the secondary BH periodically vary with an about 
60 year cycle. We infer that the conclusion of shrinking orbital 
periods of the secondary BH, based on the last 30 yr of flare 
data, accidentally aligns with the orbiting period in the shrinking 
phase of its oscillating period.

From the perspective of ECB-SMBH, we postulate the existence 
of an ECB-SMBH that causes frequency modulation on the 
secondary BH’s orbiting period at the center of the OJ287 as 
an alternative to a single primary BH with a mass of 1.835×1010 
𝑀⦿. Although detailed numerical analyses are reserved for 
future work, we preliminarily consider that the 60 yr period 
modulation on the secondary BH's orbit occurs with a 58~60 
yr cycle repetition of the mutual configuration of the triple BH 
system (the secondary BH and two components of ECB-SMBH) 
in the region of the peri primary BH. To verify this concept, 
we have calculated the orbiting period of the proposed ECB- 
SMBH, consisting of member BH temporarily named A BH and 
B BH. From the constraint of the 58~60 yr repetition, 20 cases 
of possible periods ranging from 1.10 to 1.68 yr are identified. 
The results of Britzen et al., which indicated the existence of 
precession motion of the jet with a period of 27±5 yr, associated 
with clear nutation showing a period of 1.6±0.1 yr. This nutation 
could be generated in the source region of the jet, where intense 
electromagnetic processes actively accelerate the ambient 
plasma, drawing energy from the orbiting ECB-SMBH. We 
consider that the revealed nutation period is a manifestation of 
the orbiting period of the underlying ECB-SMBH in the core 
of OJ287. From the 20 candidates for the calculated period of 
ECB-SMBH for OJ287, we have selected a period of 1.59~1.60 
yr. Using this period, other related parameters are deduced as 
given in Subsection 6.2.2(b); we then recognize that the binary 
BH is highly likely to be the ECB-SMBH which we have studied 
starting from the cases of Sgr A* via the case of M87*.
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Appendix A 

We rewrite eqs.(3.4), (3.5), and (3.6) in the main text with an interpretation of the 

symbols used there in the form of a matrix as follows: 

:
−𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆              𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆                         0

 −𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆      − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆              𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆
𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆          𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆               𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆

;:
𝑥̂𝑥𝑒𝑒
𝑦̂𝑦𝑒𝑒
𝑧̂𝑧𝑒𝑒
; = (

𝑢̂𝑢
𝑣̂𝑣 
𝑤̂𝑤
) 

                                                                           (A1) 

By solving this linear equation with respect to 𝑥̂𝑥𝑒𝑒 , 𝑦̂𝑦𝑒𝑒 , and 𝑧̂𝑧𝑒𝑒 in terms of unit vectors 𝑢̂𝑢, 

𝑣̂𝑣, and 𝑤̂𝑤, we find the following relations, as follows: 

  𝑥̂𝑥𝑒𝑒 = −𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆 𝑢̂𝑢 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆𝑣̂𝑣 + 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆 𝑤̂𝑤,                                        (𝐴𝐴2) 

  𝑦̂𝑦𝑒𝑒 =   𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆 𝑢̂𝑢 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑖𝑖𝑛𝑛𝜙𝜙𝑆𝑆𝑆𝑆𝑣̂𝑣 + 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆 𝑤̂𝑤,                                         (𝐴𝐴3) 

and 

   

       𝑧̂𝑧𝑒𝑒 = 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑣̂𝑣 + 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆 𝑤̂𝑤.                                                                                             (𝐴𝐴4) 

By inserting the above eqs.(A2), (A3), and (A4) into eq.(3.2) in the main text, the unit 

vector 𝑦̂𝑦 that is parallel to the orbital motion of ECB-SMBH observed from Earth is 

112 

 

expressed by: 
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= [𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝐺𝐺𝐺𝐺 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙𝐺𝐺𝐺𝐺 − 𝜙𝜙𝑆𝑆𝑆𝑆)]𝑢̂𝑢 

                                                −[𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙𝐺𝐺𝐺𝐺 − 𝜙𝜙𝑆𝑆𝑆𝑆)]𝑣̂𝑣                                       (𝐴𝐴5)  
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expressed by: 

 

𝑦̂𝑦 = (𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝐺𝐺𝐺𝐺 − 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑛𝑛𝜙𝜙𝑆𝑆𝑆𝑆)(−𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆 𝑢̂𝑢 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆𝑣̂𝑣

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆 𝑤̂𝑤  )(𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆

− 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝐺𝐺𝐺𝐺)(𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆 𝑢̂𝑢 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆𝑣̂𝑣

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆 𝑤̂𝑤)

+ (𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝐺𝐺𝐺𝐺   

− 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝐺𝐺𝐺𝐺)(𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑣̂𝑣 + 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆 𝑤̂𝑤) 

= [𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝐺𝐺𝐺𝐺 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙𝐺𝐺𝐺𝐺 − 𝜙𝜙𝑆𝑆𝑆𝑆)]𝑢̂𝑢 

                                                −[𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙𝐺𝐺𝐺𝐺 − 𝜙𝜙𝑆𝑆𝑆𝑆)]𝑣̂𝑣                                       (𝐴𝐴5)  
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Appendix C 

Starting from the expression of the basic equation related to linearized visibility given in 

eq.(3.14) as follows: 

𝑆𝑆(p,𝜃𝜃0) = ∫∫𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0)𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖pℓ)𝑑𝑑ℓ  ,                   (𝐶𝐶1) 

we consider here the real component of the visibility restricted to pℓ = pℓ𝑖𝑖𝑖𝑖 rewriting 

the magnitude of wave vectors coming from the source position p by: 

p = 2𝜋𝜋
𝜆𝜆 𝑐𝑐𝑐𝑐𝑐𝑐𝛩𝛩.                                                         (𝐶𝐶2) 

 with the detection angle 𝛩𝛩 by VLBI of ℓ𝑖𝑖𝑖𝑖 baseline for wavelength 𝜆𝜆. Subsequently, the 

concerning linearized visibility 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 is expressed by, 

𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑖𝑖𝑖𝑖
∗𝑐𝑐𝑐𝑐𝑐𝑐 (2𝜋𝜋

𝜆𝜆 ℓ𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝛩𝛩) .                           (𝐶𝐶3) 

 where 𝑊𝑊𝑖𝑖𝑖𝑖
∗  is the visibility amplitude. We rewrite the observing angle 𝛩𝛩 by introducing 

the ∆𝛩𝛩 as the angle corresponding to the deviation of the source position due to the 

ECB-SMBH orbiting motion, as follows: 

𝛩𝛩 = 𝛩𝛩0 + ∆𝛩𝛩.                                         (𝐶𝐶4) 

 

 where 𝛩𝛩0 is the angle corresponding to the direction of the Galaxy center. By finding a 

correlation with the visibility toward the Galaxy center, then:  

𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑖𝑖𝑖𝑖
∗ 〈𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋𝜆𝜆 ℓ𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐(𝛩𝛩0 + ∆𝛩𝛩)] ∙  𝑐𝑐𝑐𝑐𝑐𝑐 (2𝜋𝜋

𝜆𝜆 ℓ𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝛩𝛩0)〉 

         = 𝑊𝑊𝑖𝑖𝑖𝑖
∗ 〈𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋𝜆𝜆 ℓ𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐(𝛩𝛩0 + ∆𝛩𝛩)] ∙  𝑐𝑐𝑐𝑐𝑐𝑐 (2𝜋𝜋

𝜆𝜆 ℓ𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝛩𝛩0)〉 

                                     =
𝑊𝑊𝑖𝑖𝑖𝑖

∗

2 𝑐𝑐𝑐𝑐𝑐𝑐 {2𝜋𝜋𝜆𝜆 ℓ𝑖𝑖𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐(𝛩𝛩0 + ∆𝛩𝛩) − 𝑐𝑐𝑐𝑐𝑐𝑐𝛩𝛩0-}  .            (𝐶𝐶5) 
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Assuming 𝛩𝛩0 ≫ ∆𝛩𝛩, and rewriting as 𝑊𝑊𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑖𝑖𝑖𝑖
∗ 2⁄ , it follows that: 

𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 (2𝜋𝜋
𝜆𝜆 𝑠𝑠𝑠𝑠𝑠𝑠𝛩𝛩0 ∙ ℓ𝑖𝑖𝑖𝑖∆𝛩𝛩)  ,                          (𝐶𝐶6) 

This expression is given as eq.(3.18) in the main text. 

 

Appendix D 

We repeat eq.(4.4) in the main text here as, 

𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚) = 1
2𝜋𝜋 8∫ 𝐴𝐴0 ∙ cos [𝜋𝜋(𝑝𝑝 − 𝑎𝑎)

2𝑏𝑏 ]  ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(−ℓp)𝑑𝑑p
𝑎𝑎:𝑏𝑏

𝑎𝑎;𝑏𝑏

+ ∫ 𝐴𝐴0 ∙ cos [𝜋𝜋(𝑝𝑝 + 𝑎𝑎)
2𝑏𝑏 ] ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(−ℓp)𝑑𝑑p

;𝑎𝑎:𝑏𝑏

;𝑎𝑎;𝑏𝑏
9  .                         (D − 1) 

Considering 𝑐𝑐𝑐𝑐𝑐𝑐(−ℓp) = 𝑐𝑐𝑐𝑐𝑐𝑐(ℓp), the second term on the right side of eq.(D-1) is 

rewritten by changing p to -p as follows: 

∫ 𝐴𝐴0 ∙ cos [𝜋𝜋(𝑝𝑝 + 𝑎𝑎)
2𝑏𝑏 ] ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(ℓp)𝑑𝑑p

;𝑎𝑎:𝑏𝑏

;𝑎𝑎;𝑏𝑏

= −∫ 𝐴𝐴 ∙ cos 6𝜋𝜋
(𝑝𝑝 − 𝑎𝑎)

2𝑏𝑏 7 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(ℓp)𝑑𝑑p
𝑎𝑎;𝑏𝑏

𝑎𝑎:𝑏𝑏
.             (D − 2) 

Therefore eq.(C-1) is expressed by: 

 

𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚) = 1
𝜋𝜋∫ 𝐴𝐴0 ∙ cos 6𝜋𝜋

(𝑝𝑝 − 𝑎𝑎)
2𝑏𝑏 7  ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(ℓp)𝑑𝑑p

𝑎𝑎:𝑏𝑏

𝑎𝑎;𝑏𝑏

= 1
2𝜋𝜋∫ 𝐴𝐴0 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 2cos 0.ℓ + 𝜋𝜋

2𝑏𝑏/ 𝑝𝑝1 + cos 0.ℓ − 𝜋𝜋
2𝑏𝑏/ 𝑝𝑝13  𝑑𝑑p

𝑎𝑎:𝑏𝑏

𝑎𝑎;𝑏𝑏
 

                   + 1
2𝜋𝜋∫ 𝐴𝐴0 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 2sin 0.ℓ + 𝜋𝜋

2𝑏𝑏/ 𝑝𝑝1 − sin 0.ℓ − 𝜋𝜋
2𝑏𝑏/ 𝑝𝑝13  𝑑𝑑p

𝑎𝑎:𝑏𝑏

𝑎𝑎;𝑏𝑏
.          (D

− 3) 

The integration of eq.(D-3) is then given by: 
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Assuming 𝛩𝛩0 ≫ ∆𝛩𝛩, and rewriting as 𝑊𝑊𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑖𝑖𝑖𝑖
∗ 2⁄ , it follows that: 

𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 (2𝜋𝜋
𝜆𝜆 𝑠𝑠𝑠𝑠𝑠𝑠𝛩𝛩0 ∙ ℓ𝑖𝑖𝑖𝑖∆𝛩𝛩)  ,                          (𝐶𝐶6) 

This expression is given as eq.(3.18) in the main text. 

 

Appendix D 
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𝑎𝑎:𝑏𝑏

𝑎𝑎;𝑏𝑏

+ ∫ 𝐴𝐴0 ∙ cos [𝜋𝜋(𝑝𝑝 + 𝑎𝑎)
2𝑏𝑏 ] ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(−ℓp)𝑑𝑑p

;𝑎𝑎:𝑏𝑏

;𝑎𝑎;𝑏𝑏
9  .                         (D − 1) 

Considering 𝑐𝑐𝑐𝑐𝑐𝑐(−ℓp) = 𝑐𝑐𝑐𝑐𝑐𝑐(ℓp), the second term on the right side of eq.(D-1) is 

rewritten by changing p to -p as follows: 

∫ 𝐴𝐴0 ∙ cos [𝜋𝜋(𝑝𝑝 + 𝑎𝑎)
2𝑏𝑏 ] ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(ℓp)𝑑𝑑p

;𝑎𝑎:𝑏𝑏

;𝑎𝑎;𝑏𝑏

= −∫ 𝐴𝐴 ∙ cos 6𝜋𝜋
(𝑝𝑝 − 𝑎𝑎)

2𝑏𝑏 7 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(ℓp)𝑑𝑑p
𝑎𝑎;𝑏𝑏

𝑎𝑎:𝑏𝑏
.             (D − 2) 

Therefore eq.(C-1) is expressed by: 

 

𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚) = 1
𝜋𝜋∫ 𝐴𝐴0 ∙ cos 6𝜋𝜋

(𝑝𝑝 − 𝑎𝑎)
2𝑏𝑏 7  ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(ℓp)𝑑𝑑p

𝑎𝑎:𝑏𝑏

𝑎𝑎;𝑏𝑏

= 1
2𝜋𝜋∫ 𝐴𝐴0 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 2cos 0.ℓ + 𝜋𝜋

2𝑏𝑏/ 𝑝𝑝1 + cos 0.ℓ − 𝜋𝜋
2𝑏𝑏/ 𝑝𝑝13  𝑑𝑑p

𝑎𝑎:𝑏𝑏

𝑎𝑎;𝑏𝑏
 

                   + 1
2𝜋𝜋∫ 𝐴𝐴0 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 2sin 0.ℓ + 𝜋𝜋

2𝑏𝑏/ 𝑝𝑝1 − sin 0.ℓ − 𝜋𝜋
2𝑏𝑏/ 𝑝𝑝13  𝑑𝑑p

𝑎𝑎:𝑏𝑏

𝑎𝑎;𝑏𝑏
.          (D

− 3) 

The integration of eq.(D-3) is then given by: 
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Appendix C 

Starting from the expression of the basic equation related to linearized visibility given in 

eq.(3.14) as follows: 

𝑆𝑆(p,𝜃𝜃0) = ∫∫𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0)𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖pℓ)𝑑𝑑ℓ  ,                   (𝐶𝐶1) 

we consider here the real component of the visibility restricted to pℓ = pℓ𝑖𝑖𝑖𝑖 rewriting 

the magnitude of wave vectors coming from the source position p by: 

p = 2𝜋𝜋
𝜆𝜆 𝑐𝑐𝑐𝑐𝑐𝑐𝛩𝛩.                                                         (𝐶𝐶2) 

 with the detection angle 𝛩𝛩 by VLBI of ℓ𝑖𝑖𝑖𝑖 baseline for wavelength 𝜆𝜆. Subsequently, the 

concerning linearized visibility 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 is expressed by, 

𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑖𝑖𝑖𝑖
∗𝑐𝑐𝑐𝑐𝑐𝑐 (2𝜋𝜋

𝜆𝜆 ℓ𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝛩𝛩) .                           (𝐶𝐶3) 

 where 𝑊𝑊𝑖𝑖𝑖𝑖
∗  is the visibility amplitude. We rewrite the observing angle 𝛩𝛩 by introducing 

the ∆𝛩𝛩 as the angle corresponding to the deviation of the source position due to the 

ECB-SMBH orbiting motion, as follows: 

𝛩𝛩 = 𝛩𝛩0 + ∆𝛩𝛩.                                         (𝐶𝐶4) 

 

 where 𝛩𝛩0 is the angle corresponding to the direction of the Galaxy center. By finding a 

correlation with the visibility toward the Galaxy center, then:  

𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑖𝑖𝑖𝑖
∗ 〈𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋𝜆𝜆 ℓ𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐(𝛩𝛩0 + ∆𝛩𝛩)] ∙  𝑐𝑐𝑐𝑐𝑐𝑐 (2𝜋𝜋

𝜆𝜆 ℓ𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝛩𝛩0)〉 

         = 𝑊𝑊𝑖𝑖𝑖𝑖
∗ 〈𝑐𝑐𝑐𝑐𝑐𝑐 [2𝜋𝜋𝜆𝜆 ℓ𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐(𝛩𝛩0 + ∆𝛩𝛩)] ∙  𝑐𝑐𝑐𝑐𝑐𝑐 (2𝜋𝜋

𝜆𝜆 ℓ𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝛩𝛩0)〉 

                                     =
𝑊𝑊𝑖𝑖𝑖𝑖

∗

2 𝑐𝑐𝑐𝑐𝑐𝑐 {2𝜋𝜋𝜆𝜆 ℓ𝑖𝑖𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐(𝛩𝛩0 + ∆𝛩𝛩) − 𝑐𝑐𝑐𝑐𝑐𝑐𝛩𝛩0-}  .            (𝐶𝐶5) 
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Assuming 𝛩𝛩0 ≫ ∆𝛩𝛩, and rewriting as 𝑊𝑊𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑖𝑖𝑖𝑖
∗ 2⁄ , it follows that: 

𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 (2𝜋𝜋
𝜆𝜆 𝑠𝑠𝑠𝑠𝑠𝑠𝛩𝛩0 ∙ ℓ𝑖𝑖𝑖𝑖∆𝛩𝛩)  ,                          (𝐶𝐶6) 

This expression is given as eq.(3.18) in the main text. 

 

Appendix D 

We repeat eq.(4.4) in the main text here as, 

𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚) = 1
2𝜋𝜋 8∫ 𝐴𝐴0 ∙ cos [𝜋𝜋(𝑝𝑝 − 𝑎𝑎)

2𝑏𝑏 ]  ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(−ℓp)𝑑𝑑p
𝑎𝑎:𝑏𝑏

𝑎𝑎;𝑏𝑏

+ ∫ 𝐴𝐴0 ∙ cos [𝜋𝜋(𝑝𝑝 + 𝑎𝑎)
2𝑏𝑏 ] ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(−ℓp)𝑑𝑑p

;𝑎𝑎:𝑏𝑏

;𝑎𝑎;𝑏𝑏
9  .                         (D − 1) 

Considering 𝑐𝑐𝑐𝑐𝑐𝑐(−ℓp) = 𝑐𝑐𝑐𝑐𝑐𝑐(ℓp), the second term on the right side of eq.(D-1) is 

rewritten by changing p to -p as follows: 

∫ 𝐴𝐴0 ∙ cos [𝜋𝜋(𝑝𝑝 + 𝑎𝑎)
2𝑏𝑏 ] ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(ℓp)𝑑𝑑p

;𝑎𝑎:𝑏𝑏

;𝑎𝑎;𝑏𝑏

= −∫ 𝐴𝐴 ∙ cos 6𝜋𝜋
(𝑝𝑝 − 𝑎𝑎)

2𝑏𝑏 7 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(ℓp)𝑑𝑑p
𝑎𝑎;𝑏𝑏

𝑎𝑎:𝑏𝑏
.             (D − 2) 

Therefore eq.(C-1) is expressed by: 

 

𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚) = 1
𝜋𝜋∫ 𝐴𝐴0 ∙ cos 6𝜋𝜋

(𝑝𝑝 − 𝑎𝑎)
2𝑏𝑏 7  ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(ℓp)𝑑𝑑p

𝑎𝑎:𝑏𝑏

𝑎𝑎;𝑏𝑏

= 1
2𝜋𝜋∫ 𝐴𝐴0 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 2cos 0.ℓ + 𝜋𝜋

2𝑏𝑏/ 𝑝𝑝1 + cos 0.ℓ − 𝜋𝜋
2𝑏𝑏/ 𝑝𝑝13  𝑑𝑑p

𝑎𝑎:𝑏𝑏

𝑎𝑎;𝑏𝑏
 

                   + 1
2𝜋𝜋∫ 𝐴𝐴0 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 2sin 0.ℓ + 𝜋𝜋

2𝑏𝑏/ 𝑝𝑝1 − sin 0.ℓ − 𝜋𝜋
2𝑏𝑏/ 𝑝𝑝13  𝑑𝑑p

𝑎𝑎:𝑏𝑏

𝑎𝑎;𝑏𝑏
.          (D

− 3) 

The integration of eq.(D-3) is then given by: 
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𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚) = 𝐴𝐴
2𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/{|

1
ℓ + 𝜋𝜋

2𝑏𝑏
sin 0.ℓ + 𝜋𝜋

2𝑏𝑏/ 𝑝𝑝1|
𝑎𝑎;𝑏𝑏

𝑎𝑎:𝑏𝑏

+ | 1
ℓ − 𝜋𝜋

2𝑏𝑏
sin 0.ℓ − 𝜋𝜋

2𝑏𝑏/ 𝑝𝑝1|
𝑎𝑎;𝑏𝑏

𝑎𝑎:𝑏𝑏

} 

− 𝐴𝐴0
2𝜋𝜋 𝑠𝑠𝑠𝑠𝑠𝑠 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/{|

1
ℓ + 𝜋𝜋

2𝑏𝑏
cos 0.ℓ + 𝜋𝜋

2𝑏𝑏/ 𝑝𝑝1|
𝑎𝑎;𝑏𝑏

𝑎𝑎:𝑏𝑏

+ | 1
ℓ − 𝜋𝜋

2𝑏𝑏
cos 0.ℓ − 𝜋𝜋

2𝑏𝑏/ 𝑝𝑝1|
𝑎𝑎;𝑏𝑏

𝑎𝑎:𝑏𝑏

}  . 

                                                                                                                            (D-4) 

Furthermore, we continue the mathematical manipulations for the expression of 

𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚) with given 𝜃𝜃0,𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑚𝑚 as follows: 

𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚) = 𝐴𝐴0
2𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/{

1
ℓ + 𝜋𝜋

2𝑏𝑏
∙ sin 0.ℓ + 𝜋𝜋

2𝑏𝑏/ (𝑎𝑎 + 𝑏𝑏)1

− 1
ℓ + 𝜋𝜋

2𝑏𝑏
𝑠𝑠𝑠𝑠𝑠𝑠 0.ℓ + 𝜋𝜋

2𝑏𝑏/ (𝑎𝑎 − 𝑏𝑏)1+ 1
ℓ − 𝜋𝜋

2𝑏𝑏
∙ sin 0.ℓ − 𝜋𝜋

2𝑏𝑏/ (𝑎𝑎 + 𝑏𝑏)1

− 1
ℓ − 𝜋𝜋

2𝑏𝑏
𝑠𝑠𝑠𝑠𝑠𝑠 0.ℓ − 𝜋𝜋

2𝑏𝑏/ (𝑎𝑎 − 𝑏𝑏)1} 

− 𝐴𝐴0
2𝜋𝜋 𝑠𝑠𝑠𝑠𝑠𝑠 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/{

1
ℓ + 𝜋𝜋

2𝑏𝑏
cos 0.ℓ + 𝜋𝜋

2𝑏𝑏/ (𝑎𝑎 + 𝑏𝑏)1 − 1
ℓ + 𝜋𝜋

2𝑏𝑏
cos 0.ℓ + 𝜋𝜋

2𝑏𝑏/ (𝑎𝑎 − 𝑏𝑏)1

+ 1
ℓ − 𝜋𝜋

2𝑏𝑏
cos 0.ℓ − 𝜋𝜋

2𝑏𝑏/ (𝑎𝑎 + 𝑏𝑏)1 − 1
ℓ − 𝜋𝜋

2𝑏𝑏
∙ cos 0.ℓ − 𝜋𝜋

2𝑏𝑏/ (𝑎𝑎 − 𝑏𝑏)1} 

                                                                                                                                           

= 𝐴𝐴0
𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐 .𝜋𝜋𝜋𝜋2𝑏𝑏/{

1
ℓ + 𝜋𝜋

2𝑏𝑏
∙ cos 0.ℓ + 𝜋𝜋

2𝑏𝑏/ 𝑎𝑎1 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ)− 1
ℓ − 𝜋𝜋

2𝑏𝑏
∙ cos 0.ℓ − 𝜋𝜋

2𝑏𝑏/ 𝑎𝑎1

∙ 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ)} 

−

− +
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−𝐴𝐴0
𝜋𝜋 𝑠𝑠𝑠𝑠𝑠𝑠 .𝜋𝜋𝜋𝜋2𝑏𝑏/{

−1
ℓ + 𝜋𝜋

2𝑏𝑏
sin 0.ℓ + 𝜋𝜋

2𝑏𝑏/ 𝑎𝑎1 ∙ cos (bℓ) + −1
ℓ − 𝜋𝜋

2𝑏𝑏
sin 0.ℓ − 𝜋𝜋

2𝑏𝑏/ 𝑎𝑎1

∙ cos (bℓ)} 

                                                                                                                                (D.5) 

Further we rewrite eq.(D5), as 

𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚) = 𝐴𝐴0
𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐 .𝜋𝜋𝜋𝜋2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ){ 1

ℓ + 𝜋𝜋
2𝑏𝑏

∙ cos 0.ℓ + 𝜋𝜋
2𝑏𝑏/ 𝑎𝑎1−

1
ℓ − 𝜋𝜋

2𝑏𝑏

∙ cos 0.ℓ − 𝜋𝜋
2𝑏𝑏/ 𝑎𝑎1} 

+𝐴𝐴0
𝜋𝜋 𝑠𝑠𝑠𝑠𝑠𝑠 .𝜋𝜋𝜋𝜋2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ){ 1

ℓ + 𝜋𝜋
2𝑏𝑏

∙ sin 0.ℓ + 𝜋𝜋
2𝑏𝑏/ 𝑎𝑎1+ 1

ℓ − 𝜋𝜋
2𝑏𝑏

∙ sin 0.ℓ − 𝜋𝜋
2𝑏𝑏/ 𝑎𝑎1} .           (𝐷𝐷6) 

 

Regarding eq.(D.6), we have two following relations: 

1
ℓ + 𝜋𝜋

2𝑏𝑏
∙ cos 0.ℓ + 𝜋𝜋

2𝑏𝑏/ 𝑎𝑎1 −
1

ℓ − 𝜋𝜋
2𝑏𝑏

∙ cos 0.ℓ − 𝜋𝜋
2𝑏𝑏/ 𝑎𝑎1                                                                 

= −𝜋𝜋 𝑏𝑏⁄
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ) − 2ℓ

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑠𝑠𝑠𝑠𝑠𝑠 .
𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ)  , (𝐷𝐷. 7) 

and 
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−𝐴𝐴0
𝜋𝜋 𝑠𝑠𝑠𝑠𝑠𝑠 .𝜋𝜋𝜋𝜋2𝑏𝑏/{

−1
ℓ + 𝜋𝜋

2𝑏𝑏
sin 0.ℓ + 𝜋𝜋

2𝑏𝑏/ 𝑎𝑎1 ∙ cos (bℓ) + −1
ℓ − 𝜋𝜋

2𝑏𝑏
sin 0.ℓ − 𝜋𝜋

2𝑏𝑏/ 𝑎𝑎1

∙ cos (bℓ)} 

                                                                                                                                (D.5) 

Further we rewrite eq.(D5), as 

𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚) = 𝐴𝐴0
𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐 .𝜋𝜋𝜋𝜋2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ){ 1

ℓ + 𝜋𝜋
2𝑏𝑏

∙ cos 0.ℓ + 𝜋𝜋
2𝑏𝑏/ 𝑎𝑎1−

1
ℓ − 𝜋𝜋

2𝑏𝑏

∙ cos 0.ℓ − 𝜋𝜋
2𝑏𝑏/ 𝑎𝑎1} 

+𝐴𝐴0
𝜋𝜋 𝑠𝑠𝑠𝑠𝑠𝑠 .𝜋𝜋𝜋𝜋2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ){ 1

ℓ + 𝜋𝜋
2𝑏𝑏

∙ sin 0.ℓ + 𝜋𝜋
2𝑏𝑏/ 𝑎𝑎1+ 1

ℓ − 𝜋𝜋
2𝑏𝑏

∙ sin 0.ℓ − 𝜋𝜋
2𝑏𝑏/ 𝑎𝑎1} .           (𝐷𝐷6) 

 

Regarding eq.(D.6), we have two following relations: 

1
ℓ + 𝜋𝜋

2𝑏𝑏
∙ cos 0.ℓ + 𝜋𝜋

2𝑏𝑏/ 𝑎𝑎1 −
1

ℓ − 𝜋𝜋
2𝑏𝑏

∙ cos 0.ℓ − 𝜋𝜋
2𝑏𝑏/ 𝑎𝑎1                                                                 

= −𝜋𝜋 𝑏𝑏⁄
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ) − 2ℓ

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑠𝑠𝑠𝑠𝑠𝑠 .
𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ)  , (𝐷𝐷. 7) 

and 
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−𝐴𝐴0
𝜋𝜋 𝑠𝑠𝑠𝑠𝑠𝑠 .𝜋𝜋𝜋𝜋2𝑏𝑏/{

−1
ℓ + 𝜋𝜋

2𝑏𝑏
sin 0.ℓ + 𝜋𝜋

2𝑏𝑏/ 𝑎𝑎1 ∙ cos (bℓ) + −1
ℓ − 𝜋𝜋

2𝑏𝑏
sin 0.ℓ − 𝜋𝜋

2𝑏𝑏/ 𝑎𝑎1

∙ cos (bℓ)} 

                                                                                                                                (D.5) 

Further we rewrite eq.(D5), as 

𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚) = 𝐴𝐴0
𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐 .𝜋𝜋𝜋𝜋2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ){ 1

ℓ + 𝜋𝜋
2𝑏𝑏

∙ cos 0.ℓ + 𝜋𝜋
2𝑏𝑏/ 𝑎𝑎1−

1
ℓ − 𝜋𝜋

2𝑏𝑏

∙ cos 0.ℓ − 𝜋𝜋
2𝑏𝑏/ 𝑎𝑎1} 

+𝐴𝐴0
𝜋𝜋 𝑠𝑠𝑠𝑠𝑠𝑠 .𝜋𝜋𝜋𝜋2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ){ 1

ℓ + 𝜋𝜋
2𝑏𝑏

∙ sin 0.ℓ + 𝜋𝜋
2𝑏𝑏/ 𝑎𝑎1+ 1

ℓ − 𝜋𝜋
2𝑏𝑏

∙ sin 0.ℓ − 𝜋𝜋
2𝑏𝑏/ 𝑎𝑎1} .           (𝐷𝐷6) 

 

Regarding eq.(D.6), we have two following relations: 

1
ℓ + 𝜋𝜋

2𝑏𝑏
∙ cos 0.ℓ + 𝜋𝜋

2𝑏𝑏/ 𝑎𝑎1 −
1

ℓ − 𝜋𝜋
2𝑏𝑏

∙ cos 0.ℓ − 𝜋𝜋
2𝑏𝑏/ 𝑎𝑎1                                                                 

= −𝜋𝜋 𝑏𝑏⁄
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ) − 2ℓ

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑠𝑠𝑠𝑠𝑠𝑠 .
𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ)  , (𝐷𝐷. 7) 

and 
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1
ℓ + 𝜋𝜋

2𝑏𝑏
∙ sin 0.ℓ + 𝜋𝜋

2𝑏𝑏/ 𝑎𝑎1 + 1
ℓ − 𝜋𝜋

2𝑏𝑏

∙ sin 0.ℓ − 𝜋𝜋
2𝑏𝑏/ 𝑎𝑎1                                                                 

= 2ℓ
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ) − 𝜋𝜋 𝑏𝑏⁄

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑠𝑠𝑠𝑠𝑠𝑠 .
𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ)  , (𝐷𝐷. 8) 

By inserting eqs.(D.7) and (D.8) into eq.(D.6), we obtain the final expression for LN as 

follows: 

𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚)

=                                                                                                                                                  
𝐴𝐴0
𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ) 6 −𝜋𝜋 𝑏𝑏⁄

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐
2 .𝜋𝜋𝜋𝜋2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ)

− 2ℓ
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ) 7 

+𝐴𝐴0
𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ) 6 2ℓ

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .
𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ)

− 𝜋𝜋 𝑏𝑏⁄
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑠𝑠𝑠𝑠𝑠𝑠

2 .𝜋𝜋𝜋𝜋2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ)7 

= 𝐴𝐴0 𝑏𝑏⁄
(𝜋𝜋 2𝑏𝑏⁄ )2 − ℓ2 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ) .                                                           (𝐷𝐷. 9) 

 

 

 

Appendix E 

Corresponding to the expression of the modulated period given in eq.(6.7), which we 

repeat here: 

𝑇𝑇𝑜𝑜𝑜𝑜 ≈ 𝑇𝑇0 [1 − 𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁 (2𝜋𝜋
60) 𝑡𝑡] .                              (𝐸𝐸1) 

we can set the combination of sinusoidal functions 𝑓𝑓(𝑡𝑡) that give spectra peaks by the 
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1
ℓ + 𝜋𝜋

2𝑏𝑏
∙ sin 0.ℓ + 𝜋𝜋

2𝑏𝑏/ 𝑎𝑎1 + 1
ℓ − 𝜋𝜋

2𝑏𝑏

∙ sin 0.ℓ − 𝜋𝜋
2𝑏𝑏/ 𝑎𝑎1                                                                 

= 2ℓ
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ) − 𝜋𝜋 𝑏𝑏⁄

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑠𝑠𝑠𝑠𝑠𝑠 .
𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ)  , (𝐷𝐷. 8) 

By inserting eqs.(D.7) and (D.8) into eq.(D.6), we obtain the final expression for LN as 

follows: 

𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚)

=                                                                                                                                                  
𝐴𝐴0
𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ) 6 −𝜋𝜋 𝑏𝑏⁄

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐
2 .𝜋𝜋𝜋𝜋2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ)

− 2ℓ
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ) 7 

+𝐴𝐴0
𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ) 6 2ℓ

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .
𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ)

− 𝜋𝜋 𝑏𝑏⁄
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑠𝑠𝑠𝑠𝑠𝑠

2 .𝜋𝜋𝜋𝜋2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ)7 

= 𝐴𝐴0 𝑏𝑏⁄
(𝜋𝜋 2𝑏𝑏⁄ )2 − ℓ2 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ) .                                                           (𝐷𝐷. 9) 

 

 

 

Appendix E 

Corresponding to the expression of the modulated period given in eq.(6.7), which we 

repeat here: 

𝑇𝑇𝑜𝑜𝑜𝑜 ≈ 𝑇𝑇0 [1 − 𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁 (2𝜋𝜋
60) 𝑡𝑡] .                              (𝐸𝐸1) 

we can set the combination of sinusoidal functions 𝑓𝑓(𝑡𝑡) that give spectra peaks by the 
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1
ℓ + 𝜋𝜋

2𝑏𝑏
∙ sin 0.ℓ + 𝜋𝜋

2𝑏𝑏/ 𝑎𝑎1 + 1
ℓ − 𝜋𝜋

2𝑏𝑏

∙ sin 0.ℓ − 𝜋𝜋
2𝑏𝑏/ 𝑎𝑎1                                                                 

= 2ℓ
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ) − 𝜋𝜋 𝑏𝑏⁄

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑠𝑠𝑠𝑠𝑠𝑠 .
𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ)  , (𝐷𝐷. 8) 

By inserting eqs.(D.7) and (D.8) into eq.(D.6), we obtain the final expression for LN as 

follows: 

𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚)

=                                                                                                                                                  
𝐴𝐴0
𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ) 6 −𝜋𝜋 𝑏𝑏⁄

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐
2 .𝜋𝜋𝜋𝜋2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ)

− 2ℓ
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ) 7 

+𝐴𝐴0
𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ) 6 2ℓ

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .
𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ)

− 𝜋𝜋 𝑏𝑏⁄
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑠𝑠𝑠𝑠𝑠𝑠

2 .𝜋𝜋𝜋𝜋2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ)7 

= 𝐴𝐴0 𝑏𝑏⁄
(𝜋𝜋 2𝑏𝑏⁄ )2 − ℓ2 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ) .                                                           (𝐷𝐷. 9) 

 

 

 

Appendix E 

Corresponding to the expression of the modulated period given in eq.(6.7), which we 

repeat here: 

𝑇𝑇𝑜𝑜𝑜𝑜 ≈ 𝑇𝑇0 [1 − 𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁 (2𝜋𝜋
60) 𝑡𝑡] .                              (𝐸𝐸1) 

we can set the combination of sinusoidal functions 𝑓𝑓(𝑡𝑡) that give spectra peaks by the 
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1
ℓ + 𝜋𝜋

2𝑏𝑏
∙ sin 0.ℓ + 𝜋𝜋

2𝑏𝑏/ 𝑎𝑎1 + 1
ℓ − 𝜋𝜋

2𝑏𝑏

∙ sin 0.ℓ − 𝜋𝜋
2𝑏𝑏/ 𝑎𝑎1                                                                 

= 2ℓ
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ) − 𝜋𝜋 𝑏𝑏⁄

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑠𝑠𝑠𝑠𝑠𝑠 .
𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ)  , (𝐷𝐷. 8) 

By inserting eqs.(D.7) and (D.8) into eq.(D.6), we obtain the final expression for LN as 

follows: 

𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚)

=                                                                                                                                                  
𝐴𝐴0
𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ) 6 −𝜋𝜋 𝑏𝑏⁄

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐
2 .𝜋𝜋𝜋𝜋2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ)

− 2ℓ
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ) 7 

+𝐴𝐴0
𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ) 6 2ℓ

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .
𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ)

− 𝜋𝜋 𝑏𝑏⁄
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑠𝑠𝑠𝑠𝑠𝑠

2 .𝜋𝜋𝜋𝜋2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ)7 

= 𝐴𝐴0 𝑏𝑏⁄
(𝜋𝜋 2𝑏𝑏⁄ )2 − ℓ2 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ) .                                                           (𝐷𝐷. 9) 

 

 

 

Appendix E 

Corresponding to the expression of the modulated period given in eq.(6.7), which we 

repeat here: 

𝑇𝑇𝑜𝑜𝑜𝑜 ≈ 𝑇𝑇0 [1 − 𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁 (2𝜋𝜋
60) 𝑡𝑡] .                              (𝐸𝐸1) 

we can set the combination of sinusoidal functions 𝑓𝑓(𝑡𝑡) that give spectra peaks by the 
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1
ℓ + 𝜋𝜋

2𝑏𝑏
∙ sin 0.ℓ + 𝜋𝜋

2𝑏𝑏/ 𝑎𝑎1 + 1
ℓ − 𝜋𝜋

2𝑏𝑏

∙ sin 0.ℓ − 𝜋𝜋
2𝑏𝑏/ 𝑎𝑎1                                                                 

= 2ℓ
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ) − 𝜋𝜋 𝑏𝑏⁄

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑠𝑠𝑠𝑠𝑠𝑠 .
𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ)  , (𝐷𝐷. 8) 

By inserting eqs.(D.7) and (D.8) into eq.(D.6), we obtain the final expression for LN as 

follows: 

𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚)

=                                                                                                                                                  
𝐴𝐴0
𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ) 6 −𝜋𝜋 𝑏𝑏⁄

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐
2 .𝜋𝜋𝜋𝜋2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ)

− 2ℓ
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ) 7 

+𝐴𝐴0
𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ) 6 2ℓ

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .
𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ)

− 𝜋𝜋 𝑏𝑏⁄
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑠𝑠𝑠𝑠𝑠𝑠

2 .𝜋𝜋𝜋𝜋2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ)7 

= 𝐴𝐴0 𝑏𝑏⁄
(𝜋𝜋 2𝑏𝑏⁄ )2 − ℓ2 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ) .                                                           (𝐷𝐷. 9) 

 

 

 

Appendix E 

Corresponding to the expression of the modulated period given in eq.(6.7), which we 

repeat here: 

𝑇𝑇𝑜𝑜𝑜𝑜 ≈ 𝑇𝑇0 [1 − 𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁 (2𝜋𝜋
60) 𝑡𝑡] .                              (𝐸𝐸1) 

we can set the combination of sinusoidal functions 𝑓𝑓(𝑡𝑡) that give spectra peaks by the 
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1
ℓ + 𝜋𝜋

2𝑏𝑏
∙ sin 0.ℓ + 𝜋𝜋

2𝑏𝑏/ 𝑎𝑎1 + 1
ℓ − 𝜋𝜋

2𝑏𝑏

∙ sin 0.ℓ − 𝜋𝜋
2𝑏𝑏/ 𝑎𝑎1                                                                 

= 2ℓ
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ) − 𝜋𝜋 𝑏𝑏⁄

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑠𝑠𝑠𝑠𝑠𝑠 .
𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ)  , (𝐷𝐷. 8) 

By inserting eqs.(D.7) and (D.8) into eq.(D.6), we obtain the final expression for LN as 

follows: 

𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚)

=                                                                                                                                                  
𝐴𝐴0
𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ) 6 −𝜋𝜋 𝑏𝑏⁄

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐
2 .𝜋𝜋𝜋𝜋2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ)

− 2ℓ
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ) 7 

+𝐴𝐴0
𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ) 6 2ℓ

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .
𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ)

− 𝜋𝜋 𝑏𝑏⁄
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑠𝑠𝑠𝑠𝑠𝑠

2 .𝜋𝜋𝜋𝜋2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ)7 

= 𝐴𝐴0 𝑏𝑏⁄
(𝜋𝜋 2𝑏𝑏⁄ )2 − ℓ2 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ) .                                                           (𝐷𝐷. 9) 
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Corresponding to the expression of the modulated period given in eq.(6.7), which we 

repeat here: 

𝑇𝑇𝑜𝑜𝑜𝑜 ≈ 𝑇𝑇0 [1 − 𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁 (2𝜋𝜋
60) 𝑡𝑡] .                              (𝐸𝐸1) 

we can set the combination of sinusoidal functions 𝑓𝑓(𝑡𝑡) that give spectra peaks by the 

117 

 

1
ℓ + 𝜋𝜋

2𝑏𝑏
∙ sin 0.ℓ + 𝜋𝜋

2𝑏𝑏/ 𝑎𝑎1 + 1
ℓ − 𝜋𝜋

2𝑏𝑏

∙ sin 0.ℓ − 𝜋𝜋
2𝑏𝑏/ 𝑎𝑎1                                                                 

= 2ℓ
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ) − 𝜋𝜋 𝑏𝑏⁄

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑠𝑠𝑠𝑠𝑠𝑠 .
𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ)  , (𝐷𝐷. 8) 

By inserting eqs.(D.7) and (D.8) into eq.(D.6), we obtain the final expression for LN as 

follows: 

𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚)

=                                                                                                                                                  
𝐴𝐴0
𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ) 6 −𝜋𝜋 𝑏𝑏⁄

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐
2 .𝜋𝜋𝜋𝜋2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ)

− 2ℓ
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ) 7 

+𝐴𝐴0
𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ) 6 2ℓ

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .
𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ)

− 𝜋𝜋 𝑏𝑏⁄
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑠𝑠𝑠𝑠𝑠𝑠

2 .𝜋𝜋𝜋𝜋2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ)7 

= 𝐴𝐴0 𝑏𝑏⁄
(𝜋𝜋 2𝑏𝑏⁄ )2 − ℓ2 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ) .                                                           (𝐷𝐷. 9) 

 

 

 

Appendix E 

Corresponding to the expression of the modulated period given in eq.(6.7), which we 

repeat here: 

𝑇𝑇𝑜𝑜𝑜𝑜 ≈ 𝑇𝑇0 [1 − 𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁 (2𝜋𝜋
60) 𝑡𝑡] .                              (𝐸𝐸1) 
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1
ℓ + 𝜋𝜋

2𝑏𝑏
∙ sin 0.ℓ + 𝜋𝜋

2𝑏𝑏/ 𝑎𝑎1 + 1
ℓ − 𝜋𝜋

2𝑏𝑏

∙ sin 0.ℓ − 𝜋𝜋
2𝑏𝑏/ 𝑎𝑎1                                                                 

= 2ℓ
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ) − 𝜋𝜋 𝑏𝑏⁄

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑠𝑠𝑠𝑠𝑠𝑠 .
𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ)  , (𝐷𝐷. 8) 

By inserting eqs.(D.7) and (D.8) into eq.(D.6), we obtain the final expression for LN as 

follows: 

𝑉𝑉𝐿𝐿(ℓ,𝜃𝜃0,𝑇𝑇𝑚𝑚)

=                                                                                                                                                  
𝐴𝐴0
𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ) 6 −𝜋𝜋 𝑏𝑏⁄

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐
2 .𝜋𝜋𝜋𝜋2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ)

− 2ℓ
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ) 7 

+𝐴𝐴0
𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ) 6 2ℓ

ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑐𝑐𝑐𝑐𝑐𝑐 .
𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠 .

𝜋𝜋𝜋𝜋
2𝑏𝑏/ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎ℓ)

− 𝜋𝜋 𝑏𝑏⁄
ℓ2 − (𝜋𝜋 2𝑏𝑏⁄ )2 𝑠𝑠𝑠𝑠𝑠𝑠

2 .𝜋𝜋𝜋𝜋2𝑏𝑏/ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ)7 

= 𝐴𝐴0 𝑏𝑏⁄
(𝜋𝜋 2𝑏𝑏⁄ )2 − ℓ2 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎ℓ) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(bℓ) .                                                           (𝐷𝐷. 9) 
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Corresponding to the expression of the modulated period given in eq.(6.7), which we 

repeat here: 

𝑇𝑇𝑜𝑜𝑜𝑜 ≈ 𝑇𝑇0 [1 − 𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁 (2𝜋𝜋
60) 𝑡𝑡] .                              (𝐸𝐸1) 
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Fourier transformation, applying the WKB approximation, with arbitrary constant A, as 

follows: 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 4∫ 2𝜋𝜋
𝑇𝑇𝑜𝑜𝑜𝑜

𝑡𝑡

𝑡𝑡0
𝑑𝑑𝑑𝑑5 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 6∫ 2𝜋𝜋

𝑇𝑇0
(1 + 𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁 (2𝜋𝜋

60) 𝑡𝑡)
𝑡𝑡

𝑡𝑡0
𝑑𝑑𝑑𝑑7   .               (𝐸𝐸2) 

To make the mathematical manipulation tractable, we rewrite the symbols of eq.(E2) 

here, as follows: 

𝜔𝜔0𝑆𝑆 ≡ 2𝜋𝜋 𝑇𝑇0𝑆𝑆⁄  ,      𝑝𝑝0𝑆𝑆 ≡ 2𝜋𝜋 60,   𝑎𝑎𝑎𝑎𝑎𝑎 𝜉𝜉0𝑆𝑆 ≡ (2𝜋𝜋 𝑇𝑇0⁄ ) ∙ 𝜁𝜁⁄ .                   (𝐸𝐸3) 

Subsequently, eq.(E2) is further written by: 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 [𝜔𝜔0𝑆𝑆𝑡𝑡 + 𝜉𝜉0𝑆𝑆
𝑝𝑝0𝑆𝑆

𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡) − 𝜃𝜃0𝑆𝑆]  .                                     (𝐸𝐸4) 

where 𝜃𝜃0𝑆𝑆 is a constant phase angle given as values at the starting time 𝑡𝑡0 as follows: 

𝜃𝜃0𝑆𝑆 = 𝜔𝜔0𝑆𝑆𝑡𝑡0 + 𝜉𝜉0𝑆𝑆
𝑝𝑝0𝑆𝑆

𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)𝑡𝑡0.                                                     (𝐸𝐸5) 

To see the sinusoidal components as elements of peaks in the resulting Fourier 

transformation, we rewrite eq.(E4) further, as follows: 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆)𝑐𝑐𝑐𝑐𝑐𝑐 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)] − 𝐴𝐴

∙ 𝑠𝑠𝑖𝑖𝑖𝑖(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆)𝑠𝑠𝑠𝑠𝑠𝑠 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)]  .      (𝐸𝐸6) 

Then, using the first kind Bessel functions 𝐽𝐽𝑛𝑛(𝑧𝑧) for order n with argument 𝑧𝑧  that 

provide: 

𝑐𝑐𝑐𝑐𝑐𝑐 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)]

=  𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ ) + 2𝐽𝐽2(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐(2𝑝𝑝0𝑆𝑆𝑡𝑡) + ⋯⋯⋯ ,                (𝐸𝐸7) 

and 

𝑠𝑠𝑠𝑠𝑠𝑠 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)]

=  2𝐽𝐽1(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡) + 2𝐽𝐽3(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(3𝑝𝑝0𝑆𝑆𝑡𝑡)

+ ⋯⋯⋯ ,                (𝐸𝐸8) 

as

,
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Fourier transformation, applying the WKB approximation, with arbitrary constant A, as 

follows: 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 4∫ 2𝜋𝜋
𝑇𝑇𝑜𝑜𝑜𝑜

𝑡𝑡

𝑡𝑡0
𝑑𝑑𝑑𝑑5 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 6∫ 2𝜋𝜋

𝑇𝑇0
(1 + 𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁 (2𝜋𝜋

60) 𝑡𝑡)
𝑡𝑡

𝑡𝑡0
𝑑𝑑𝑑𝑑7   .               (𝐸𝐸2) 

To make the mathematical manipulation tractable, we rewrite the symbols of eq.(E2) 

here, as follows: 

𝜔𝜔0𝑆𝑆 ≡ 2𝜋𝜋 𝑇𝑇0𝑆𝑆⁄  ,      𝑝𝑝0𝑆𝑆 ≡ 2𝜋𝜋 60,   𝑎𝑎𝑎𝑎𝑎𝑎 𝜉𝜉0𝑆𝑆 ≡ (2𝜋𝜋 𝑇𝑇0⁄ ) ∙ 𝜁𝜁⁄ .                   (𝐸𝐸3) 

Subsequently, eq.(E2) is further written by: 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 [𝜔𝜔0𝑆𝑆𝑡𝑡 + 𝜉𝜉0𝑆𝑆
𝑝𝑝0𝑆𝑆

𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡) − 𝜃𝜃0𝑆𝑆]  .                                     (𝐸𝐸4) 

where 𝜃𝜃0𝑆𝑆 is a constant phase angle given as values at the starting time 𝑡𝑡0 as follows: 

𝜃𝜃0𝑆𝑆 = 𝜔𝜔0𝑆𝑆𝑡𝑡0 + 𝜉𝜉0𝑆𝑆
𝑝𝑝0𝑆𝑆

𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)𝑡𝑡0.                                                     (𝐸𝐸5) 

To see the sinusoidal components as elements of peaks in the resulting Fourier 

transformation, we rewrite eq.(E4) further, as follows: 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆)𝑐𝑐𝑐𝑐𝑐𝑐 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)] − 𝐴𝐴

∙ 𝑠𝑠𝑖𝑖𝑖𝑖(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆)𝑠𝑠𝑠𝑠𝑠𝑠 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)]  .      (𝐸𝐸6) 

Then, using the first kind Bessel functions 𝐽𝐽𝑛𝑛(𝑧𝑧) for order n with argument 𝑧𝑧  that 

provide: 

𝑐𝑐𝑐𝑐𝑐𝑐 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)]

=  𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ ) + 2𝐽𝐽2(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐(2𝑝𝑝0𝑆𝑆𝑡𝑡) + ⋯⋯⋯ ,                (𝐸𝐸7) 

and 

𝑠𝑠𝑠𝑠𝑠𝑠 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)]

=  2𝐽𝐽1(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡) + 2𝐽𝐽3(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(3𝑝𝑝0𝑆𝑆𝑡𝑡)

+ ⋯⋯⋯ ,                (𝐸𝐸8) 

118 

 

Fourier transformation, applying the WKB approximation, with arbitrary constant A, as 

follows: 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 4∫ 2𝜋𝜋
𝑇𝑇𝑜𝑜𝑜𝑜

𝑡𝑡

𝑡𝑡0
𝑑𝑑𝑑𝑑5 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 6∫ 2𝜋𝜋

𝑇𝑇0
(1 + 𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁 (2𝜋𝜋

60) 𝑡𝑡)
𝑡𝑡

𝑡𝑡0
𝑑𝑑𝑑𝑑7   .               (𝐸𝐸2) 

To make the mathematical manipulation tractable, we rewrite the symbols of eq.(E2) 

here, as follows: 

𝜔𝜔0𝑆𝑆 ≡ 2𝜋𝜋 𝑇𝑇0𝑆𝑆⁄  ,      𝑝𝑝0𝑆𝑆 ≡ 2𝜋𝜋 60,   𝑎𝑎𝑎𝑎𝑎𝑎 𝜉𝜉0𝑆𝑆 ≡ (2𝜋𝜋 𝑇𝑇0⁄ ) ∙ 𝜁𝜁⁄ .                   (𝐸𝐸3) 

Subsequently, eq.(E2) is further written by: 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 [𝜔𝜔0𝑆𝑆𝑡𝑡 + 𝜉𝜉0𝑆𝑆
𝑝𝑝0𝑆𝑆

𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡) − 𝜃𝜃0𝑆𝑆]  .                                     (𝐸𝐸4) 

where 𝜃𝜃0𝑆𝑆 is a constant phase angle given as values at the starting time 𝑡𝑡0 as follows: 

𝜃𝜃0𝑆𝑆 = 𝜔𝜔0𝑆𝑆𝑡𝑡0 + 𝜉𝜉0𝑆𝑆
𝑝𝑝0𝑆𝑆

𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)𝑡𝑡0.                                                     (𝐸𝐸5) 

To see the sinusoidal components as elements of peaks in the resulting Fourier 

transformation, we rewrite eq.(E4) further, as follows: 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆)𝑐𝑐𝑐𝑐𝑐𝑐 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)] − 𝐴𝐴

∙ 𝑠𝑠𝑖𝑖𝑖𝑖(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆)𝑠𝑠𝑠𝑠𝑠𝑠 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)]  .      (𝐸𝐸6) 

Then, using the first kind Bessel functions 𝐽𝐽𝑛𝑛(𝑧𝑧) for order n with argument 𝑧𝑧  that 

provide: 

𝑐𝑐𝑐𝑐𝑐𝑐 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)]

=  𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ ) + 2𝐽𝐽2(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐(2𝑝𝑝0𝑆𝑆𝑡𝑡) + ⋯⋯⋯ ,                (𝐸𝐸7) 

and 

𝑠𝑠𝑠𝑠𝑠𝑠 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)]

=  2𝐽𝐽1(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡) + 2𝐽𝐽3(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(3𝑝𝑝0𝑆𝑆𝑡𝑡)

+ ⋯⋯⋯ ,                (𝐸𝐸8) 

118 

 

Fourier transformation, applying the WKB approximation, with arbitrary constant A, as 

follows: 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 4∫ 2𝜋𝜋
𝑇𝑇𝑜𝑜𝑜𝑜

𝑡𝑡

𝑡𝑡0
𝑑𝑑𝑑𝑑5 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 6∫ 2𝜋𝜋

𝑇𝑇0
(1 + 𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁 (2𝜋𝜋

60) 𝑡𝑡)
𝑡𝑡

𝑡𝑡0
𝑑𝑑𝑑𝑑7   .               (𝐸𝐸2) 

To make the mathematical manipulation tractable, we rewrite the symbols of eq.(E2) 

here, as follows: 

𝜔𝜔0𝑆𝑆 ≡ 2𝜋𝜋 𝑇𝑇0𝑆𝑆⁄  ,      𝑝𝑝0𝑆𝑆 ≡ 2𝜋𝜋 60,   𝑎𝑎𝑎𝑎𝑎𝑎 𝜉𝜉0𝑆𝑆 ≡ (2𝜋𝜋 𝑇𝑇0⁄ ) ∙ 𝜁𝜁⁄ .                   (𝐸𝐸3) 

Subsequently, eq.(E2) is further written by: 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 [𝜔𝜔0𝑆𝑆𝑡𝑡 + 𝜉𝜉0𝑆𝑆
𝑝𝑝0𝑆𝑆

𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡) − 𝜃𝜃0𝑆𝑆]  .                                     (𝐸𝐸4) 

where 𝜃𝜃0𝑆𝑆 is a constant phase angle given as values at the starting time 𝑡𝑡0 as follows: 

𝜃𝜃0𝑆𝑆 = 𝜔𝜔0𝑆𝑆𝑡𝑡0 + 𝜉𝜉0𝑆𝑆
𝑝𝑝0𝑆𝑆

𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)𝑡𝑡0.                                                     (𝐸𝐸5) 

To see the sinusoidal components as elements of peaks in the resulting Fourier 

transformation, we rewrite eq.(E4) further, as follows: 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆)𝑐𝑐𝑐𝑐𝑐𝑐 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)] − 𝐴𝐴

∙ 𝑠𝑠𝑖𝑖𝑖𝑖(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆)𝑠𝑠𝑠𝑠𝑠𝑠 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)]  .      (𝐸𝐸6) 

Then, using the first kind Bessel functions 𝐽𝐽𝑛𝑛(𝑧𝑧) for order n with argument 𝑧𝑧  that 

provide: 

𝑐𝑐𝑐𝑐𝑐𝑐 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)]

=  𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ ) + 2𝐽𝐽2(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐(2𝑝𝑝0𝑆𝑆𝑡𝑡) + ⋯⋯⋯ ,                (𝐸𝐸7) 

and 

𝑠𝑠𝑠𝑠𝑠𝑠 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)]

=  2𝐽𝐽1(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡) + 2𝐽𝐽3(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(3𝑝𝑝0𝑆𝑆𝑡𝑡)

+ ⋯⋯⋯ ,                (𝐸𝐸8) 
118 

 

Fourier transformation, applying the WKB approximation, with arbitrary constant A, as 

follows: 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 4∫ 2𝜋𝜋
𝑇𝑇𝑜𝑜𝑜𝑜

𝑡𝑡

𝑡𝑡0
𝑑𝑑𝑑𝑑5 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 6∫ 2𝜋𝜋

𝑇𝑇0
(1 + 𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁 (2𝜋𝜋

60) 𝑡𝑡)
𝑡𝑡

𝑡𝑡0
𝑑𝑑𝑑𝑑7   .               (𝐸𝐸2) 

To make the mathematical manipulation tractable, we rewrite the symbols of eq.(E2) 

here, as follows: 

𝜔𝜔0𝑆𝑆 ≡ 2𝜋𝜋 𝑇𝑇0𝑆𝑆⁄  ,      𝑝𝑝0𝑆𝑆 ≡ 2𝜋𝜋 60,   𝑎𝑎𝑎𝑎𝑎𝑎 𝜉𝜉0𝑆𝑆 ≡ (2𝜋𝜋 𝑇𝑇0⁄ ) ∙ 𝜁𝜁⁄ .                   (𝐸𝐸3) 

Subsequently, eq.(E2) is further written by: 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 [𝜔𝜔0𝑆𝑆𝑡𝑡 + 𝜉𝜉0𝑆𝑆
𝑝𝑝0𝑆𝑆

𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡) − 𝜃𝜃0𝑆𝑆]  .                                     (𝐸𝐸4) 

where 𝜃𝜃0𝑆𝑆 is a constant phase angle given as values at the starting time 𝑡𝑡0 as follows: 

𝜃𝜃0𝑆𝑆 = 𝜔𝜔0𝑆𝑆𝑡𝑡0 + 𝜉𝜉0𝑆𝑆
𝑝𝑝0𝑆𝑆

𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)𝑡𝑡0.                                                     (𝐸𝐸5) 

To see the sinusoidal components as elements of peaks in the resulting Fourier 

transformation, we rewrite eq.(E4) further, as follows: 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆)𝑐𝑐𝑐𝑐𝑐𝑐 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)] − 𝐴𝐴

∙ 𝑠𝑠𝑖𝑖𝑖𝑖(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆)𝑠𝑠𝑠𝑠𝑠𝑠 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)]  .      (𝐸𝐸6) 

Then, using the first kind Bessel functions 𝐽𝐽𝑛𝑛(𝑧𝑧) for order n with argument 𝑧𝑧  that 

provide: 

𝑐𝑐𝑐𝑐𝑐𝑐 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)]

=  𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ ) + 2𝐽𝐽2(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐(2𝑝𝑝0𝑆𝑆𝑡𝑡) + ⋯⋯⋯ ,                (𝐸𝐸7) 

and 

𝑠𝑠𝑠𝑠𝑠𝑠 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)]

=  2𝐽𝐽1(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡) + 2𝐽𝐽3(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(3𝑝𝑝0𝑆𝑆𝑡𝑡)

+ ⋯⋯⋯ ,                (𝐸𝐸8) 
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Fourier transformation, applying the WKB approximation, with arbitrary constant A, as 

follows: 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 4∫ 2𝜋𝜋
𝑇𝑇𝑜𝑜𝑜𝑜

𝑡𝑡

𝑡𝑡0
𝑑𝑑𝑑𝑑5 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 6∫ 2𝜋𝜋

𝑇𝑇0
(1 + 𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁 (2𝜋𝜋

60) 𝑡𝑡)
𝑡𝑡

𝑡𝑡0
𝑑𝑑𝑑𝑑7   .               (𝐸𝐸2) 

To make the mathematical manipulation tractable, we rewrite the symbols of eq.(E2) 

here, as follows: 

𝜔𝜔0𝑆𝑆 ≡ 2𝜋𝜋 𝑇𝑇0𝑆𝑆⁄  ,      𝑝𝑝0𝑆𝑆 ≡ 2𝜋𝜋 60,   𝑎𝑎𝑎𝑎𝑎𝑎 𝜉𝜉0𝑆𝑆 ≡ (2𝜋𝜋 𝑇𝑇0⁄ ) ∙ 𝜁𝜁⁄ .                   (𝐸𝐸3) 

Subsequently, eq.(E2) is further written by: 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 [𝜔𝜔0𝑆𝑆𝑡𝑡 + 𝜉𝜉0𝑆𝑆
𝑝𝑝0𝑆𝑆

𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡) − 𝜃𝜃0𝑆𝑆]  .                                     (𝐸𝐸4) 

where 𝜃𝜃0𝑆𝑆 is a constant phase angle given as values at the starting time 𝑡𝑡0 as follows: 

𝜃𝜃0𝑆𝑆 = 𝜔𝜔0𝑆𝑆𝑡𝑡0 + 𝜉𝜉0𝑆𝑆
𝑝𝑝0𝑆𝑆

𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)𝑡𝑡0.                                                     (𝐸𝐸5) 

To see the sinusoidal components as elements of peaks in the resulting Fourier 

transformation, we rewrite eq.(E4) further, as follows: 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆)𝑐𝑐𝑐𝑐𝑐𝑐 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)] − 𝐴𝐴

∙ 𝑠𝑠𝑖𝑖𝑖𝑖(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆)𝑠𝑠𝑠𝑠𝑠𝑠 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)]  .      (𝐸𝐸6) 

Then, using the first kind Bessel functions 𝐽𝐽𝑛𝑛(𝑧𝑧) for order n with argument 𝑧𝑧  that 

provide: 

𝑐𝑐𝑐𝑐𝑐𝑐 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)]

=  𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ ) + 2𝐽𝐽2(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐(2𝑝𝑝0𝑆𝑆𝑡𝑡) + ⋯⋯⋯ ,                (𝐸𝐸7) 

and 

𝑠𝑠𝑠𝑠𝑠𝑠 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)]

=  2𝐽𝐽1(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡) + 2𝐽𝐽3(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(3𝑝𝑝0𝑆𝑆𝑡𝑡)

+ ⋯⋯⋯ ,                (𝐸𝐸8) 

119 

 

eq.(E6) is rewritten by 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴*𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆) − 2𝐽𝐽1(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆)𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)

+ 2𝐽𝐽2(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆)𝑐𝑐𝑐𝑐𝑐𝑐(2𝑝𝑝0𝑆𝑆𝑡𝑡)

− 2𝐽𝐽3(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆)𝑠𝑠𝑠𝑠𝑠𝑠(3𝑝𝑝0𝑆𝑆𝑡𝑡) +  ⋯⋯⋯ +   (𝐸𝐸9) 

This gives the final expression, as follows: 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴*𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆) + 𝐽𝐽1(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐,(𝜔𝜔0𝑆𝑆 + 𝑝𝑝0𝑆𝑆)𝑡𝑡 − 𝜃𝜃0𝑆𝑆-

− 𝐽𝐽1(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐,(𝜔𝜔0𝑆𝑆 − 𝑝𝑝0𝑆𝑆)𝑡𝑡 − 𝜃𝜃0𝑆𝑆-

+ 𝐽𝐽2(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐,(𝜔𝜔0𝑆𝑆 + 2𝑝𝑝0𝑆𝑆)𝑡𝑡 − 𝜃𝜃0𝑆𝑆-

+ 𝐽𝐽2(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐,(𝜔𝜔0𝑆𝑆 − 2𝑝𝑝0𝑆𝑆)𝑡𝑡 − 𝜃𝜃0𝑆𝑆-

+  ⋯⋯⋯ +  .                      (𝐸𝐸10) 

In the Fourier transformation, we calculate the absolute value of the results without 

phase information. That is, for the case of the term 𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆) of 

function 𝑓𝑓(𝑡𝑡), it follows that: 

𝐹𝐹𝑐𝑐(𝜔𝜔) = ∫  𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆)𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔)𝑑𝑑𝑑𝑑
∞

;∞
 

= ∫  𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ ),cos(𝜔𝜔0𝑆𝑆𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0𝑆𝑆 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔0𝑆𝑆𝑡𝑡)𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0𝑆𝑆-𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔)𝑑𝑑𝑑𝑑
∞

;∞
 

=  (1 2⁄ )𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0𝑆𝑆         𝑎𝑎𝑎𝑎  𝜔𝜔 = 𝜔𝜔0𝑆𝑆 .                                          (𝐸𝐸11) 

Similarly, we have: 

𝐹𝐹𝑠𝑠(𝜔𝜔) = ∫  𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆)𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔)𝑑𝑑𝑑𝑑
∞

;∞
 

= ∫  𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ ),cos(𝜔𝜔0𝑆𝑆𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0𝑆𝑆 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔0𝑆𝑆𝑡𝑡)𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0𝑆𝑆-𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔)𝑑𝑑𝑑𝑑
∞

;∞
 

= (1 2⁄ ) 𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0𝑆𝑆         𝑎𝑎𝑎𝑎  𝜔𝜔 = 𝜔𝜔0𝑆𝑆 .                                          (𝐸𝐸12) 

We obtain the absolute value of the Fourier-transformed function as: 

𝐹𝐹(𝜔𝜔0𝑆𝑆) = √𝐹𝐹𝑐𝑐(𝜔𝜔)2 + 𝐹𝐹𝑆𝑆(𝜔𝜔)2 = (1 2⁄ )𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ ) .                  (𝐸𝐸13) 

Thus, we can find the spectra peaks at angular frequencies 𝜔𝜔0𝑆𝑆 − 2𝑝𝑝0𝑆𝑆 , 𝜔𝜔0𝑆𝑆 − 𝑝𝑝0𝑆𝑆 , 
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Fourier transformation, applying the WKB approximation, with arbitrary constant A, as 

follows: 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 4∫ 2𝜋𝜋
𝑇𝑇𝑜𝑜𝑜𝑜

𝑡𝑡

𝑡𝑡0
𝑑𝑑𝑑𝑑5 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 6∫ 2𝜋𝜋

𝑇𝑇0
(1 + 𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁 (2𝜋𝜋

60) 𝑡𝑡)
𝑡𝑡

𝑡𝑡0
𝑑𝑑𝑑𝑑7   .               (𝐸𝐸2) 

To make the mathematical manipulation tractable, we rewrite the symbols of eq.(E2) 

here, as follows: 

𝜔𝜔0𝑆𝑆 ≡ 2𝜋𝜋 𝑇𝑇0𝑆𝑆⁄  ,      𝑝𝑝0𝑆𝑆 ≡ 2𝜋𝜋 60,   𝑎𝑎𝑎𝑎𝑎𝑎 𝜉𝜉0𝑆𝑆 ≡ (2𝜋𝜋 𝑇𝑇0⁄ ) ∙ 𝜁𝜁⁄ .                   (𝐸𝐸3) 

Subsequently, eq.(E2) is further written by: 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 [𝜔𝜔0𝑆𝑆𝑡𝑡 + 𝜉𝜉0𝑆𝑆
𝑝𝑝0𝑆𝑆

𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡) − 𝜃𝜃0𝑆𝑆]  .                                     (𝐸𝐸4) 

where 𝜃𝜃0𝑆𝑆 is a constant phase angle given as values at the starting time 𝑡𝑡0 as follows: 

𝜃𝜃0𝑆𝑆 = 𝜔𝜔0𝑆𝑆𝑡𝑡0 + 𝜉𝜉0𝑆𝑆
𝑝𝑝0𝑆𝑆

𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)𝑡𝑡0.                                                     (𝐸𝐸5) 

To see the sinusoidal components as elements of peaks in the resulting Fourier 

transformation, we rewrite eq.(E4) further, as follows: 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆)𝑐𝑐𝑐𝑐𝑐𝑐 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)] − 𝐴𝐴

∙ 𝑠𝑠𝑖𝑖𝑖𝑖(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆)𝑠𝑠𝑠𝑠𝑠𝑠 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)]  .      (𝐸𝐸6) 

Then, using the first kind Bessel functions 𝐽𝐽𝑛𝑛(𝑧𝑧) for order n with argument 𝑧𝑧  that 

provide: 

𝑐𝑐𝑐𝑐𝑐𝑐 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)]

=  𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ ) + 2𝐽𝐽2(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐(2𝑝𝑝0𝑆𝑆𝑡𝑡) + ⋯⋯⋯ ,                (𝐸𝐸7) 

and 

𝑠𝑠𝑠𝑠𝑠𝑠 [𝜉𝜉0𝑆𝑆𝑝𝑝0𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)]

=  2𝐽𝐽1(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡) + 2𝐽𝐽3(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(3𝑝𝑝0𝑆𝑆𝑡𝑡)

+ ⋯⋯⋯ ,                (𝐸𝐸8) 

.
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eq.(E6) is rewritten by 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴*𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆) − 2𝐽𝐽1(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆)𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝0𝑆𝑆𝑡𝑡)

+ 2𝐽𝐽2(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆)𝑐𝑐𝑐𝑐𝑐𝑐(2𝑝𝑝0𝑆𝑆𝑡𝑡)

− 2𝐽𝐽3(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆)𝑠𝑠𝑠𝑠𝑠𝑠(3𝑝𝑝0𝑆𝑆𝑡𝑡) +  ⋯⋯⋯ +   (𝐸𝐸9) 

This gives the final expression, as follows: 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴*𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆) + 𝐽𝐽1(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐,(𝜔𝜔0𝑆𝑆 + 𝑝𝑝0𝑆𝑆)𝑡𝑡 − 𝜃𝜃0𝑆𝑆-

− 𝐽𝐽1(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐,(𝜔𝜔0𝑆𝑆 − 𝑝𝑝0𝑆𝑆)𝑡𝑡 − 𝜃𝜃0𝑆𝑆-

+ 𝐽𝐽2(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐,(𝜔𝜔0𝑆𝑆 + 2𝑝𝑝0𝑆𝑆)𝑡𝑡 − 𝜃𝜃0𝑆𝑆-

+ 𝐽𝐽2(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐,(𝜔𝜔0𝑆𝑆 − 2𝑝𝑝0𝑆𝑆)𝑡𝑡 − 𝜃𝜃0𝑆𝑆-

+  ⋯⋯⋯ +  .                      (𝐸𝐸10) 

In the Fourier transformation, we calculate the absolute value of the results without 

phase information. That is, for the case of the term 𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆) of 

function 𝑓𝑓(𝑡𝑡), it follows that: 

𝐹𝐹𝑐𝑐(𝜔𝜔) = ∫  𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆)𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔)𝑑𝑑𝑑𝑑
∞

;∞
 

= ∫  𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ ),cos(𝜔𝜔0𝑆𝑆𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0𝑆𝑆 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔0𝑆𝑆𝑡𝑡)𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0𝑆𝑆-𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔)𝑑𝑑𝑑𝑑
∞

;∞
 

=  (1 2⁄ )𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0𝑆𝑆         𝑎𝑎𝑎𝑎  𝜔𝜔 = 𝜔𝜔0𝑆𝑆 .                                          (𝐸𝐸11) 

Similarly, we have: 

𝐹𝐹𝑠𝑠(𝜔𝜔) = ∫  𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑆𝑆𝑡𝑡 − 𝜃𝜃0𝑆𝑆)𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔)𝑑𝑑𝑑𝑑
∞

;∞
 

= ∫  𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ ),cos(𝜔𝜔0𝑆𝑆𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0𝑆𝑆 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔0𝑆𝑆𝑡𝑡)𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0𝑆𝑆-𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔)𝑑𝑑𝑑𝑑
∞

;∞
 

= (1 2⁄ ) 𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ )𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0𝑆𝑆         𝑎𝑎𝑎𝑎  𝜔𝜔 = 𝜔𝜔0𝑆𝑆 .                                          (𝐸𝐸12) 

We obtain the absolute value of the Fourier-transformed function as: 

𝐹𝐹(𝜔𝜔0𝑆𝑆) = √𝐹𝐹𝑐𝑐(𝜔𝜔)2 + 𝐹𝐹𝑆𝑆(𝜔𝜔)2 = (1 2⁄ )𝐽𝐽0(𝜉𝜉0𝑆𝑆 𝑝𝑝0𝑆𝑆⁄ ) .                  (𝐸𝐸13) 

Thus, we can find the spectra peaks at angular frequencies 𝜔𝜔0𝑆𝑆 − 2𝑝𝑝0𝑆𝑆 , 𝜔𝜔0𝑆𝑆 − 𝑝𝑝0𝑆𝑆 , 
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𝜔𝜔0𝑆𝑆,𝜔𝜔0𝑆𝑆 + 𝑝𝑝0𝑆𝑆, 𝜔𝜔0𝑆𝑆 + 2𝑝𝑝0𝑆𝑆  by calculating the absolute values of Fourier-transformed 

functions. 
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