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Abstract
We use the data of three papers “Statistical Inference on the Shape Parameter of Inverse Generalized Weibull 
Distribution” (Zhuang et al.), “Sequential Confidence Intervals for Comparing Two Proportions with Applications 
in A/B Testing” (Hu et al.) and “On Designing of Bayesian Shewhart-Type Control Charts for Maxwell Distributed 
Processes with Application of Boring Machine” (Alshahrani et al.) to compare the above authors findings with ours. 
From the analysis we get different results: the cause is that they use the Probability Limits of the PI (Probability 
Interval) as they were the Confidence Limits (Control Limits of the Control Charts, CCs). The Control Limits in the 
Shewhart CCs are based on the Normal Distribution (Central Limit Theorem, CLT) and are not valid for non-normal 
distributed data: consequently, the decisions about the “In Control” (IC) and “Out Of Control” (OOC) states of the 
process are wrong. The Control Limits of the CCs are wrongly computed, due to unsound knowledge of the fundamental 
concept of Confidence Interval. Minitab and other software (e.g. JMP, SAS) use the “T Charts”, claimed to be a good 
method for dealing with “rare events”, but their computed Control Limits of the CCs are wrong. The same happens for 
the Confidence Limits of the parameters of the distribution involved in the papers (Weibull, Inverse Weibull, Gamma, 
Binomial, Maxwell). We will show that the Reliability Integral Theory (RIT) is able to solve these problems and the 
Sequential way of dealing with data. 

Keywords: Control Charts, Exponential Distribution, TBE, T Charts, Minitab, JMP, Reliability Integral Theory

1. Introduction
Since 1989, the author (FG) tried to inform the Scientific Community about the flaws in the use of (“wrong”) quality methods for making 
Quality and in 1999 about the GIQA (Golden Integral Quality Approach) showing how to manage Quality during all the activities of 
the Product and Process Development in a Company, including the Process Management and Control Charts (CC) for Process Control. 
Control Charts (CC) use sequentially the collected data to assess if a Production or Service process output is to be considered In Control 
(IC) or Out Of Control (OOC); the decision is very important for taking Corrective Actions (CA), if needed. To show our Theory we will 
use some of the data found in the papers [1-5].

But before that we mention the very interesting the statements in the Excerpt 1:
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1. Introduction
Since 1989, the author (FG) tried to inform the Scientific Community about the flaws in the use of (“wrong”)

quality methods for making Quality [1] and in 1999 about the GIQA (Golden Integral Quality Approach) showing how
to manage Quality during all the activities of the Product and Process Development in a Company [2], including the
Process Management and Control Charts (CC) for Process Control. Control Charts (CC) use sequentially the collected
data to assess if a Production or Service process output is to be considered In Control (IC) or Out Of Control (OOC);
the decision is very important for taking Corrective Actions (CA), if needed.

To show our Theory we will use some of the data found in the papers [3-5].
But before that we mention the very interesting the statements in the Excerpt 1:

In the recent paper “Misguided Statistical Process Monitoring Approaches” by W. Woodall, N. Saleh, M. Mahmoud,
V. Tercero-Gómez, and S. Knoth, published in Advanced Statistical Methods in Process Monitoring, Finance, and
Environmental Science, 2023, We read in the Abstract: Hundreds of papers on flawed statistical process monitoring
(SPM) methods have appeared in the literature over the past decade or so. The presence of so many ill-advised methods,
and so much incorrect theory, adversely affects the SPM research field. Critiques of some of the various misguided,
and/or misrepresented, approaches have been published in the past 2 years in an effort to stem this tide. These critiques
are briefly reviewed here. References…

Excerpt 1. From the paper “Misguided Statistical Process Monitoring Approaches”

We agree with the authors in the excerpt 1, but, nevertheless, they did not realise the problem that we are giving here:
wrong Control Limits in CCs for Rare Events, with data exponentially or Weibull or Maxwell distributed. Several
papers compute “a-scientific” control limits… See References…

We will show that the Test of Hypotheses and the Confidence Intervals (CI) are intimately related and so equivalent
for decision making. Using the data in [3-5] with good statistical methods [6-33] we give our “reflections on Sequential
Methods and Control Charts (CCs)”.

We will try to state that several papers (that are not cited here, but you can find in the “Garden of flowers” [24] and
some in the Appendix C) compute in an a-scientific way (see the formulae in the Appendix C) the Control Limits of
CCs for “Individual Measures or Exponential, Weibull, Maxwell and Gamma distributed data”, indicated as I-CC
(Individual Control Charts); we dare to show, to the Scientific Community, how to compute the True Control Limits
(True Confidence Limits). If the author is right, then all the decisions, taken up today, have been very costly to the
Companies using those Control Limits; therefore, “Corrective Actions” are needed, according to the Quality Principles,
because NO “Preventive Actions” were taken [1-2, 27-36]: this is shown through the suggested published papers.
Humbly, given our strong commitment to Quality [34-57], we would dare to provide the “truth”: Truth makes you free
[hen (“hic et nunc”=here and now)].

On 22nd of February 2024, we found the paper “Publishing an applied statistics paper: Guidance and advice from
editors” published in Quality and Reliability Engineering International (QREI-2024, 1-17) [by C. M. Anderson-Cook,
Lu, R. B. Gramacy, L. A. Jones-Farmer, D. C. Montgomery, W. H. Woodall; the authors have important qualifications
and Awards]; since I-CC is a part of “applied statistics” we think that their hints will help: the authors’ sentence “Like
all decisions made in the face of uncertainty, Type I (good papers rejected) and Type II (flawed papers accepted) errors
happen since the peer review process is not infallible.” is very important for this paper: the interested readers can see
[34-57] and the Appendix B.

To let the reader follow our way of approaching the problem of estimation we will use various figures and data: this
is caused by the fact that there are wrong ideas in the literature.

By reading [24] and other papers, the readers are confronted with this type of practical problem: we have a
warehouse with two departments

a) in the 1st of them, we have a sample (the “The Garden of flowers… in [24]”) of “products (papers)” produced by
various production lines (authors)

b) while, in the other, we have some few products produced by the same production line (same author)
c) several inspectors (Peer Reviewers, PRs) analyse the “quality of the products” in the two departments; the PRs

can be the same (but we do not know) for both the departments
d) The final result, according to the judgment of the inspectors (PRs), is the following: the products stored in the 1st

dept. are good, while the products in the 2nd dept. are defective. It is a very clear situation, as one can guess by the
following statement of a PR: “Our limits [in the 1st dept.] are calculated using standard mathematical statistical
results/methods as is typical in the vast literature of similar papers [24].” See the standard mathematical statistical
results/methods in the Appendix C and meditate (see the formulae there)!

Hence, the problem becomes “…the standard … methods as is typical …”: are those standards typical methods (in
the “The Garden … in [24]” and in the Appendix C) scientific?

If  denotes the population parameter, the general form of the null hypothesis is H0:   0  versus the
alternative hypothesis H1: 1, where0 is a subset of the parameter space and1 a subset disjoint from0.;
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Hence, the problem becomes “…the standard … methods as is typical …”: are those standards typical methods (in
the “The Garden … in [24]” and in the Appendix C) scientific?

If  denotes the population parameter, the general form of the null hypothesis is H0:   0  versus the
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H1 we accept a probability of wrong decision 𝛽. We will use 𝛼 = 𝛽 in the following discussion. After the data
analysis, we can compute the Confidence Interval, LCL-------UCL, of the estimated value, with Confidence
Level 𝐶𝐿 = 1 − 𝛼 = 1 − 𝛼/2 + 𝛽/2 = 1 − 𝛼/2 + 𝛼/2 .

Using the Table 1 data (remission time of 128 bladder cancer patients) we will see that the practical problem becomes
hence a Theoretical one [1-57] (all references and figure 1). Since those data are well “exponentially distributed” we
anticipate here, immediately, the wrong formulae (either using the parameter 𝜃 = 𝜃0 or its estimate 𝒕̅𝟎, with 𝛼 =
0.0027) in the formula (1) (as you can find in [24])

𝐿𝐶𝐿 = 𝜃0𝑙𝑛 1− 𝛼/2 = 0.00135 𝒕̅𝟎 𝑈𝐶𝐿 = 𝜃0𝑙𝑛 𝛼/2 = 6.6077 𝒕̅𝟎 (1)
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Figure 1. Theoretical and Practical Difference between L------U and LCL------UCL.

The readers should understand clearly the Theoretical and Practical Difference between L------U (the
Probability Interval) and LCL------UCL (the Confidence Interval), pictorially shown in the figure 1: the two
lines L and U depends on the parameter  (to be estimated) and on the two probabilities  and , while the
two points L and U depends on the assumed value 0 of the parameter and on the two chosen probabilities 
and ; after the data analysis, we compute the estimate 𝒕̅𝟎 of the parameter  and from that the Confidence
Interval LCL------UCL, with Confidence Level 𝐶𝐿 = 1 − 𝛼. It is clear now the wrong ideas in the formukae (1).

In the formulae (1), for the interval LCL------UCL (named Control Interval, for the authors [24]), the LCL actually
must be L and the UCL actually must be U, vertical interval L------U (figure 1); the actual interval LCL------UCL is the
horizontal one in the figure 1, which is not that of the formulae (1). Since the errors have been continuing for at least 25
years, we dare to say that this paper is an Education Advance for all the Scholars, for the software sellers and the users:
they should study the books and papers in [1-57].

The readers could think that the I-CCs are well known and well dealt in the scientific literature about Quality. We
have some doubt about that: we will show that, at least in one field, the I-CC_TBE (with TBE, Time Between Event
data) usage, it is not so: there are several published papers, in “scientific magazines and Journals (well appreciated by
the Scholars)” with wrong Control Limits; a sample of the involved papers (from 1994 to January 2024) can be found in
[23-24]”. Therefore, those authors do not extract the maximum information from the data in the Process Control. “The
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The readers should understand clearly the Theoretical and Practical Difference between L------U (the
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they should study the books and papers in [1-57].

The readers could think that the I-CCs are well known and well dealt in the scientific literature about Quality. We
have some doubt about that: we will show that, at least in one field, the I-CC_TBE (with TBE, Time Between Event
data) usage, it is not so: there are several published papers, in “scientific magazines and Journals (well appreciated by
the Scholars)” with wrong Control Limits; a sample of the involved papers (from 1994 to January 2024) can be found in
[23-24]”. Therefore, those authors do not extract the maximum information from the data in the Process Control. “The
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Literature ReviewGarden…” [24] and the excerpts 1, with the Deming’s statements, constitute the Literature Review.

“Management need to grow-up their knowledge because experience alone, without theory, teaches 
nothing what to do to make Quality” “Experience alone, without theory, teaches management nothing 
about what to do to improve quality and competitive position, nor how to do it.), ... understanding of 
quality requires education. There is no substitute for knowledge. It is a hazard to copy. It is necessary 
to understand the theory of what one wishes to do or to make..... hundreds of people are learning 
what is wrong. .... I make this statement on the basis of experience, seeing every day the devastating 
effects of incompetent teaching and faulty applications. Again, teaching of beginners should be done 
by a master, not by a hack”. 

Excerpt 2. Some statements of Deming about Knowledge and Theory (Deming 1986, 1997)

We hope that the Deming statements about knowledge will interest the Readers (Excerpt 2).
A preliminary case is shown in Appendix A.
The statistical concepts in section 2 are very important for our purpose.

2. Materials and Methods
2.1 A reduced background of statistical concepts

This section is essential to understand the “problems related to I-CC and sequential estimation” as we
found in the literature. We suggest it for the formulae given and for the difference between the concepts of
PI (Probability Interval) and CI (Confidence Interval): this is overlooked in “The Garden … [24]” (a sample is in
the Appendix C).

See a first case in the appendix A. Therefore, we humbly ask the reader to carefully meditate on the
content.

Engineering Analysis is related to the investigation of phenomena underlying products and processes;
the analyst can communicate with the phenomena only through the observed data, collected with sound
experiments (designed for the purpose): any phenomenon, in an experiment, can be considered as a
measurement-generating process [MGP, a black box that we do not know] that provides us with information
about its behaviour through a measurement process [MP, known and managed by the experimenter], giving us
the observed data (the “message”).

It is a law of nature that the data are variable, even in conditions considered fixed, due to many unknown
causes.

MGP and MP form the Communication Channel from the phenomenon to the experimenter.
The information, necessarily incomplete, contained in the data, has to be extracted using sound statistical

methods (the best possible, if we can). To do that, we consider a statistical model F(x| ) associated with a
random variable (RV) X giving rise to the measurements, the “determinations” {x1, x2, …, xn}=D of the RV,
constituting the “observed sample” D; n is the sample size. Notice the function F(x| ) [a function of real
numbers, whose form we assume we know] with the symbol  accounting for an unknown quantity (or
some unknown quantities) that we want to estimate (assess) by suitably analysing the sample D.

We indicate by 𝑓 𝑥|𝜃 = 𝑑𝐹 𝑥|𝜃 /𝑑𝑥 the pdf (probability density function) and by 𝐹 𝑥|𝜃 the
Cumulative Function, where 𝜃 is the set of the parameters of the functions.

We state in the Table 1 a sample of models where  is a set of parameters.
Two important models are the Normal and the Exponential, but we consider also the others for

comparison. When 𝜃 = 𝜇,𝜎2 we have the Normal model, written as 𝑁 (x|𝜇,𝜎2 ), with (parameters) mean
E[X]= and variance Var[X]=2 with pdf

Excerpt 2: Some statements of Deming about Knowledge and Theory (Deming 1986, 1997)
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We hope that the Deming statements about knowledge will interest the Readers (Excerpt 2).
A preliminary case is shown in Appendix A. 
The statistical concepts in section 2 are very important for our purpose.

2. Materials and Methods
2.1. A reduced Background of Statistical Concepts
This section is essential to understand the “problems related to I-CC and sequential estimation” as we found in the literature. We suggest 
it for the formulae given and for the difference between the concepts of PI (Probability Interval) and CI (Confidence Interval): this is 
overlooked in “The Garden … [24]” (a sample is in the Appendix C). See a first case in the appendix A. Therefore, we humbly ask 
the reader to carefully meditate on the content. Engineering Analysis is related to the investigation of phenomena underlying products 
and processes; the analyst can communicate with the phenomena only through the observed data, collected with sound experiments 
(designed for the purpose): any phenomenon, in an experiment, can be considered as a measurement-generating process [MGP, a 
black box that we do not know] that provides us with information about its behaviour through a measurement process [MP, known 
and managed by the experimenter], giving us the observed data (the “message”). It is a law of nature that the data are variable, even in 
conditions considered fixed, due to many unknown causes. 

MGP and MP form the Communication Channel from the phenomenon to the experimenter. The information, necessarily incomplete, 
contained in the data, has to be extracted using sound statistical methods (the best possible, if we can). To do that, we consider a 
statistical model F(x|θ) associated with a random variable (RV) X giving rise to the measurements, the “determinations” {x1, x2, …, xn} 
= D of the RV, constituting the “observed sample” D; n is the sample size. Notice the function F(x|θ) [a function of real numbers, whose 
form we assume we know] with the symbol  accounting for an unknown quantity (or some unknown quantities) that we want to estimate 
(assess) by suitably analysing the sample D. We indicate by f(x|θ) =dF(x|θ)/ dx the pdf (probability density function) and by F(x|θ) the 
Cumulative Function, where θ is the set of the parameters of the functions. We state in the Table 1 a sample of models where θ is a set of 
parameters. Two important models are the Normal and the Exponential, but we consider also the others for comparison. When θ = {μ, 
σ2} we have the Normal model, written as N(x| μ, σ2), with (parameters) mean E[X]= μ and variance Var[X]= σ2 with pdf

𝑓(x|𝜇,𝜎2)= 𝑛 x 𝜇,𝜎2 = 1
2𝜋𝜎

𝑒− 𝑥−𝜇 2/(2𝜎2) (2)

When 𝜃 = 𝜃 we have Exponential model, with (the single parameter) mean E[X]=𝜃 = 1/𝜆 (variance
Var[X]=𝜃2= 1/𝜆2), whose pdf is written in two equivalent ways 𝑓 𝑥|𝜃 = 𝑒−𝑥/𝜃/𝜃 = 𝜆𝑒−𝜆𝑥 = 𝑓 𝑥|𝜆 .

Table 1. Some probability models for data analysis

Name 𝐹 𝑥|𝜃 parameters Symbol
Exponential 1 − 𝑒𝑥𝑝 ( − 𝑥/𝜃) 𝜃 E(x|)
Weibull 1 − 𝑒𝑥𝑝  −(𝑥/𝜂)𝛽 𝛽 𝜂 W(x|,)
Inverted

Weibull
1− 𝑒− 𝜂/𝑥 𝛽 𝛽 𝜂 IW(x|,)

General
Inverted W

[1− 𝑒− 𝜂/𝑥 𝛽]𝜔 𝛽 𝜂 𝜔 GIW(x|,,)

Maxwell 2/𝜋
𝜎3

0

𝑥
𝑡2� 𝑒−𝑡2/(2𝜎2)𝑑𝑡

2 MW(x|)

Normal 1
2𝜋𝜎 0

𝑥
𝑒− 𝑡−𝜇 2/(2𝜎2�

 2 N(x|, 2)

When we have the observed sample D={x1, x2, …, xn}, our general problem is to estimate the value of the
parameters of the model (representing the parent population) from the information given by the sample. We
define some criteria which we require a "good" estimate to satisfy and see whether there exist any "best"
estimates. We assume that the parent population is distributed in a form, the model, which is completely
determinate but for the value 0 of some parameter, e.g. unidimensional, , or bidimensional ={, 2}; we
consider only one or two parameters, for easiness.

We seek some function of , say (), named inference function, and we see if we can find a RV T which can
have the following properties: unbiasedness, sufficiency, efficiency. Statistical Theory allows us the analysis
of these properties of the estimators (RVs).

We use the symbols 𝑋� and 𝑆2 for the unbiased estimators T1 and T2 of the mean and the variance.
Luckily, we have that T1, in the Exponential model 𝑓 𝑥|𝜃 , is efficient [6-21, 25-33], and it extracts the

total available information from any random sample, while the couple T1 and T2, in the Normal model, are
jointly sufficient statistics for the inference function ()=(, 2), so extracting the maximum possible of the
total available information from any random sample. The estimators (which are RVs) have their own
“distribution” depending on the parent model F(x|) and on the sample D: we use the symbol 𝜑 𝑡, 𝜃, 𝑛 for
that “distribution”. It is used to assess their properties. For a given (collected) sample D the estimator
provides a value t (real number) named the estimate of (), unidimensional.

A way of finding the estimate is to compute the Likelihood Function 𝐿 𝜃 𝐷 [LF] and to maximise it: the
solution of the equation 𝜕𝐿 𝜃 𝐷 /𝜕𝜃 =0 is termed Maximum Likelihood Estimate [MLE]. Both are used for
sequential tests.

The LF is important because it allows us finding the MVB (Minimum Variance Bound, Cramer-Rao theorem)
[1-2, 6-16, 26-36] of an unbiased RV T [related to the inference function ()], such that

𝑉𝑎𝑟 𝑇 ≥
𝜏 𝜃 2

𝐸
𝜕𝑙𝑛𝐿 𝜃 𝐷

𝜕𝜃

2 = 𝑀𝑉𝐵 𝑇
(3)

The inverse of the MVB(T) provides a measure of the total available amount of information in D, relevant to

When θ = {θ} we have Exponential model, with (the single parameter) mean E[X]= θ = 1/ λ(variance Var[X]= θ2 = 1/ λ2), whose pdf is 
written in two equivalent ways 

𝑓(x|𝜇,𝜎2)= 𝑛 x 𝜇,𝜎2 = 1
2𝜋𝜎
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When 𝜃 = 𝜃 we have Exponential model, with (the single parameter) mean E[X]=𝜃 = 1/𝜆 (variance
Var[X]=𝜃2= 1/𝜆2), whose pdf is written in two equivalent ways 𝑓 𝑥|𝜃 = 𝑒−𝑥/𝜃/𝜃 = 𝜆𝑒−𝜆𝑥 = 𝑓 𝑥|𝜆 .

Table 1. Some probability models for data analysis

Name 𝐹 𝑥|𝜃 parameters Symbol
Exponential 1 − 𝑒𝑥𝑝 ( − 𝑥/𝜃) 𝜃 E(x|)
Weibull 1 − 𝑒𝑥𝑝  −(𝑥/𝜂)𝛽 𝛽 𝜂 W(x|,)
Inverted

Weibull
1− 𝑒− 𝜂/𝑥 𝛽 𝛽 𝜂 IW(x|,)

General
Inverted W
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When we have the observed sample D={x1, x2, …, xn}, our general problem is to estimate the value of the
parameters of the model (representing the parent population) from the information given by the sample. We
define some criteria which we require a "good" estimate to satisfy and see whether there exist any "best"
estimates. We assume that the parent population is distributed in a form, the model, which is completely
determinate but for the value 0 of some parameter, e.g. unidimensional, , or bidimensional ={, 2}; we
consider only one or two parameters, for easiness.

We seek some function of , say (), named inference function, and we see if we can find a RV T which can
have the following properties: unbiasedness, sufficiency, efficiency. Statistical Theory allows us the analysis
of these properties of the estimators (RVs).

We use the symbols 𝑋� and 𝑆2 for the unbiased estimators T1 and T2 of the mean and the variance.
Luckily, we have that T1, in the Exponential model 𝑓 𝑥|𝜃 , is efficient [6-21, 25-33], and it extracts the

total available information from any random sample, while the couple T1 and T2, in the Normal model, are
jointly sufficient statistics for the inference function ()=(, 2), so extracting the maximum possible of the
total available information from any random sample. The estimators (which are RVs) have their own
“distribution” depending on the parent model F(x|) and on the sample D: we use the symbol 𝜑 𝑡, 𝜃, 𝑛 for
that “distribution”. It is used to assess their properties. For a given (collected) sample D the estimator
provides a value t (real number) named the estimate of (), unidimensional.

A way of finding the estimate is to compute the Likelihood Function 𝐿 𝜃 𝐷 [LF] and to maximise it: the
solution of the equation 𝜕𝐿 𝜃 𝐷 /𝜕𝜃 =0 is termed Maximum Likelihood Estimate [MLE]. Both are used for
sequential tests.

The LF is important because it allows us finding the MVB (Minimum Variance Bound, Cramer-Rao theorem)
[1-2, 6-16, 26-36] of an unbiased RV T [related to the inference function ()], such that
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(3)

The inverse of the MVB(T) provides a measure of the total available amount of information in D, relevant to

.
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𝑒− 𝑥−𝜇 2/(2𝜎2) (2)

When 𝜃 = 𝜃 we have Exponential model, with (the single parameter) mean E[X]=𝜃 = 1/𝜆 (variance
Var[X]=𝜃2= 1/𝜆2), whose pdf is written in two equivalent ways 𝑓 𝑥|𝜃 = 𝑒−𝑥/𝜃/𝜃 = 𝜆𝑒−𝜆𝑥 = 𝑓 𝑥|𝜆 .

Table 1. Some probability models for data analysis

Name 𝐹 𝑥|𝜃 parameters Symbol
Exponential 1 − 𝑒𝑥𝑝 ( − 𝑥/𝜃) 𝜃 E(x|)
Weibull 1 − 𝑒𝑥𝑝  −(𝑥/𝜂)𝛽 𝛽 𝜂 W(x|,)
Inverted

Weibull
1− 𝑒− 𝜂/𝑥 𝛽 𝛽 𝜂 IW(x|,)

General
Inverted W

[1− 𝑒− 𝜂/𝑥 𝛽]𝜔 𝛽 𝜂 𝜔 GIW(x|,,)

Maxwell 2/𝜋
𝜎3

0

𝑥
𝑡2� 𝑒−𝑡2/(2𝜎2)𝑑𝑡

2 MW(x|)

Normal 1
2𝜋𝜎 0

𝑥
𝑒− 𝑡−𝜇 2/(2𝜎2�

 2 N(x|, 2)

When we have the observed sample D={x1, x2, …, xn}, our general problem is to estimate the value of the
parameters of the model (representing the parent population) from the information given by the sample. We
define some criteria which we require a "good" estimate to satisfy and see whether there exist any "best"
estimates. We assume that the parent population is distributed in a form, the model, which is completely
determinate but for the value 0 of some parameter, e.g. unidimensional, , or bidimensional ={, 2}; we
consider only one or two parameters, for easiness.

We seek some function of , say (), named inference function, and we see if we can find a RV T which can
have the following properties: unbiasedness, sufficiency, efficiency. Statistical Theory allows us the analysis
of these properties of the estimators (RVs).

We use the symbols 𝑋� and 𝑆2 for the unbiased estimators T1 and T2 of the mean and the variance.
Luckily, we have that T1, in the Exponential model 𝑓 𝑥|𝜃 , is efficient [6-21, 25-33], and it extracts the

total available information from any random sample, while the couple T1 and T2, in the Normal model, are
jointly sufficient statistics for the inference function ()=(, 2), so extracting the maximum possible of the
total available information from any random sample. The estimators (which are RVs) have their own
“distribution” depending on the parent model F(x|) and on the sample D: we use the symbol 𝜑 𝑡, 𝜃, 𝑛 for
that “distribution”. It is used to assess their properties. For a given (collected) sample D the estimator
provides a value t (real number) named the estimate of (), unidimensional.

A way of finding the estimate is to compute the Likelihood Function 𝐿 𝜃 𝐷 [LF] and to maximise it: the
solution of the equation 𝜕𝐿 𝜃 𝐷 /𝜕𝜃 =0 is termed Maximum Likelihood Estimate [MLE]. Both are used for
sequential tests.

The LF is important because it allows us finding the MVB (Minimum Variance Bound, Cramer-Rao theorem)
[1-2, 6-16, 26-36] of an unbiased RV T [related to the inference function ()], such that
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When 𝜃 = 𝜃 we have Exponential model, with (the single parameter) mean E[X]=𝜃 = 1/𝜆 (variance
Var[X]=𝜃2= 1/𝜆2), whose pdf is written in two equivalent ways 𝑓 𝑥|𝜃 = 𝑒−𝑥/𝜃/𝜃 = 𝜆𝑒−𝜆𝑥 = 𝑓 𝑥|𝜆 .

Table 1. Some probability models for data analysis

Name 𝐹 𝑥|𝜃 parameters Symbol
Exponential 1 − 𝑒𝑥𝑝 ( − 𝑥/𝜃) 𝜃 E(x|)
Weibull 1 − 𝑒𝑥𝑝  −(𝑥/𝜂)𝛽 𝛽 𝜂 W(x|,)
Inverted

Weibull
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General
Inverted W

[1− 𝑒− 𝜂/𝑥 𝛽]𝜔 𝛽 𝜂 𝜔 GIW(x|,,)

Maxwell 2/𝜋
𝜎3

0

𝑥
𝑡2� 𝑒−𝑡2/(2𝜎2)𝑑𝑡

2 MW(x|)

Normal 1
2𝜋𝜎 0

𝑥
𝑒− 𝑡−𝜇 2/(2𝜎2�

 2 N(x|, 2)

When we have the observed sample D={x1, x2, …, xn}, our general problem is to estimate the value of the
parameters of the model (representing the parent population) from the information given by the sample. We
define some criteria which we require a "good" estimate to satisfy and see whether there exist any "best"
estimates. We assume that the parent population is distributed in a form, the model, which is completely
determinate but for the value 0 of some parameter, e.g. unidimensional, , or bidimensional ={, 2}; we
consider only one or two parameters, for easiness.

We seek some function of , say (), named inference function, and we see if we can find a RV T which can
have the following properties: unbiasedness, sufficiency, efficiency. Statistical Theory allows us the analysis
of these properties of the estimators (RVs).

We use the symbols 𝑋� and 𝑆2 for the unbiased estimators T1 and T2 of the mean and the variance.
Luckily, we have that T1, in the Exponential model 𝑓 𝑥|𝜃 , is efficient [6-21, 25-33], and it extracts the

total available information from any random sample, while the couple T1 and T2, in the Normal model, are
jointly sufficient statistics for the inference function ()=(, 2), so extracting the maximum possible of the
total available information from any random sample. The estimators (which are RVs) have their own
“distribution” depending on the parent model F(x|) and on the sample D: we use the symbol 𝜑 𝑡, 𝜃, 𝑛 for
that “distribution”. It is used to assess their properties. For a given (collected) sample D the estimator
provides a value t (real number) named the estimate of (), unidimensional.

A way of finding the estimate is to compute the Likelihood Function 𝐿 𝜃 𝐷 [LF] and to maximise it: the
solution of the equation 𝜕𝐿 𝜃 𝐷 /𝜕𝜃 =0 is termed Maximum Likelihood Estimate [MLE]. Both are used for
sequential tests.

The LF is important because it allows us finding the MVB (Minimum Variance Bound, Cramer-Rao theorem)
[1-2, 6-16, 26-36] of an unbiased RV T [related to the inference function ()], such that
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The inverse of the MVB(T) provides a measure of the total available amount of information in D, relevant to

Table 1: Some probability models for data analysis

When we have the observed sample D ={x1, x2, …, xn}, our general problem is to estimate the value of the parameters of the model 
(representing the parent population) from the information given by the sample. We define some criteria which we require a "good" 
estimate to satisfy and see whether there exist any "best" estimates. We assume that the parent population is distributed in a form, the 
model, which is completely determinate but for the value θ0 of some parameter, e.g. unidimensional, θ, or bidimensional θ = {μ, σ2}; we 
consider only one or two parameters, for easiness.
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We seek some function of θ, say 
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𝑒− 𝑥−𝜇 2/(2𝜎2) (2)

When 𝜃 = 𝜃 we have Exponential model, with (the single parameter) mean E[X]=𝜃 = 1/𝜆 (variance
Var[X]=𝜃2= 1/𝜆2), whose pdf is written in two equivalent ways 𝑓 𝑥|𝜃 = 𝑒−𝑥/𝜃/𝜃 = 𝜆𝑒−𝜆𝑥 = 𝑓 𝑥|𝜆 .

Table 1. Some probability models for data analysis

Name 𝐹 𝑥|𝜃 parameters Symbol
Exponential 1 − 𝑒𝑥𝑝 ( − 𝑥/𝜃) 𝜃 E(x|)
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When we have the observed sample D={x1, x2, …, xn}, our general problem is to estimate the value of the
parameters of the model (representing the parent population) from the information given by the sample. We
define some criteria which we require a "good" estimate to satisfy and see whether there exist any "best"
estimates. We assume that the parent population is distributed in a form, the model, which is completely
determinate but for the value 0 of some parameter, e.g. unidimensional, , or bidimensional ={, 2}; we
consider only one or two parameters, for easiness.

We seek some function of , say (), named inference function, and we see if we can find a RV T which can
have the following properties: unbiasedness, sufficiency, efficiency. Statistical Theory allows us the analysis
of these properties of the estimators (RVs).

We use the symbols 𝑋� and 𝑆2 for the unbiased estimators T1 and T2 of the mean and the variance.
Luckily, we have that T1, in the Exponential model 𝑓 𝑥|𝜃 , is efficient [6-21, 25-33], and it extracts the

total available information from any random sample, while the couple T1 and T2, in the Normal model, are
jointly sufficient statistics for the inference function ()=(, 2), so extracting the maximum possible of the
total available information from any random sample. The estimators (which are RVs) have their own
“distribution” depending on the parent model F(x|) and on the sample D: we use the symbol 𝜑 𝑡, 𝜃, 𝑛 for
that “distribution”. It is used to assess their properties. For a given (collected) sample D the estimator
provides a value t (real number) named the estimate of (), unidimensional.

A way of finding the estimate is to compute the Likelihood Function 𝐿 𝜃 𝐷 [LF] and to maximise it: the
solution of the equation 𝜕𝐿 𝜃 𝐷 /𝜕𝜃 =0 is termed Maximum Likelihood Estimate [MLE]. Both are used for
sequential tests.

The LF is important because it allows us finding the MVB (Minimum Variance Bound, Cramer-Rao theorem)
[1-2, 6-16, 26-36] of an unbiased RV T [related to the inference function ()], such that

𝑉𝑎𝑟 𝑇 ≥
𝜏 𝜃 2

𝐸
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2 = 𝑀𝑉𝐵 𝑇
(3)

The inverse of the MVB(T) provides a measure of the total available amount of information in D, relevant to

, named inference function, and we see if we can find a RV T which can have the following 
properties: unbiasedness, sufficiency, efficiency. Statistical Theory allows us the analysis of these properties of the estimators (RVs).

We use the symbols 

𝑓(x|𝜇,𝜎2)= 𝑛 x 𝜇,𝜎2 = 1
2𝜋𝜎

𝑒− 𝑥−𝜇 2/(2𝜎2) (2)

When 𝜃 = 𝜃 we have Exponential model, with (the single parameter) mean E[X]=𝜃 = 1/𝜆 (variance
Var[X]=𝜃2= 1/𝜆2), whose pdf is written in two equivalent ways 𝑓 𝑥|𝜃 = 𝑒−𝑥/𝜃/𝜃 = 𝜆𝑒−𝜆𝑥 = 𝑓 𝑥|𝜆 .

Table 1. Some probability models for data analysis

Name 𝐹 𝑥|𝜃 parameters Symbol
Exponential 1 − 𝑒𝑥𝑝 ( − 𝑥/𝜃) 𝜃 E(x|)
Weibull 1 − 𝑒𝑥𝑝  −(𝑥/𝜂)𝛽 𝛽 𝜂 W(x|,)
Inverted

Weibull
1− 𝑒− 𝜂/𝑥 𝛽 𝛽 𝜂 IW(x|,)

General
Inverted W

[1− 𝑒− 𝜂/𝑥 𝛽]𝜔 𝛽 𝜂 𝜔 GIW(x|,,)

Maxwell 2/𝜋
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When we have the observed sample D={x1, x2, …, xn}, our general problem is to estimate the value of the
parameters of the model (representing the parent population) from the information given by the sample. We
define some criteria which we require a "good" estimate to satisfy and see whether there exist any "best"
estimates. We assume that the parent population is distributed in a form, the model, which is completely
determinate but for the value 0 of some parameter, e.g. unidimensional, , or bidimensional ={, 2}; we
consider only one or two parameters, for easiness.

We seek some function of , say (), named inference function, and we see if we can find a RV T which can
have the following properties: unbiasedness, sufficiency, efficiency. Statistical Theory allows us the analysis
of these properties of the estimators (RVs).

We use the symbols 𝑋� and 𝑆2 for the unbiased estimators T1 and T2 of the mean and the variance.
Luckily, we have that T1, in the Exponential model 𝑓 𝑥|𝜃 , is efficient [6-21, 25-33], and it extracts the

total available information from any random sample, while the couple T1 and T2, in the Normal model, are
jointly sufficient statistics for the inference function ()=(, 2), so extracting the maximum possible of the
total available information from any random sample. The estimators (which are RVs) have their own
“distribution” depending on the parent model F(x|) and on the sample D: we use the symbol 𝜑 𝑡, 𝜃, 𝑛 for
that “distribution”. It is used to assess their properties. For a given (collected) sample D the estimator
provides a value t (real number) named the estimate of (), unidimensional.

A way of finding the estimate is to compute the Likelihood Function 𝐿 𝜃 𝐷 [LF] and to maximise it: the
solution of the equation 𝜕𝐿 𝜃 𝐷 /𝜕𝜃 =0 is termed Maximum Likelihood Estimate [MLE]. Both are used for
sequential tests.

The LF is important because it allows us finding the MVB (Minimum Variance Bound, Cramer-Rao theorem)
[1-2, 6-16, 26-36] of an unbiased RV T [related to the inference function ()], such that

𝑉𝑎𝑟 𝑇 ≥
𝜏 𝜃 2

𝐸
𝜕𝑙𝑛𝐿 𝜃 𝐷

𝜕𝜃

2 = 𝑀𝑉𝐵 𝑇
(3)

The inverse of the MVB(T) provides a measure of the total available amount of information in D, relevant to

 and S2 for the unbiased estimators T1 and T2 of the mean and the variance.
Luckily, we have that T1, in the Exponential model f(x|θ), is efficient [6-21, 25-33], and it extracts the total available information from any 
random sample, while the couple T1 and T2, in the Normal model, are jointly sufficient statistics for the inference function 

𝑓(x|𝜇,𝜎2)= 𝑛 x 𝜇,𝜎2 = 1
2𝜋𝜎

𝑒− 𝑥−𝜇 2/(2𝜎2) (2)

When 𝜃 = 𝜃 we have Exponential model, with (the single parameter) mean E[X]=𝜃 = 1/𝜆 (variance
Var[X]=𝜃2= 1/𝜆2), whose pdf is written in two equivalent ways 𝑓 𝑥|𝜃 = 𝑒−𝑥/𝜃/𝜃 = 𝜆𝑒−𝜆𝑥 = 𝑓 𝑥|𝜆 .

Table 1. Some probability models for data analysis

Name 𝐹 𝑥|𝜃 parameters Symbol
Exponential 1 − 𝑒𝑥𝑝 ( − 𝑥/𝜃) 𝜃 E(x|)
Weibull 1 − 𝑒𝑥𝑝  −(𝑥/𝜂)𝛽 𝛽 𝜂 W(x|,)
Inverted

Weibull
1− 𝑒− 𝜂/𝑥 𝛽 𝛽 𝜂 IW(x|,)

General
Inverted W

[1− 𝑒− 𝜂/𝑥 𝛽]𝜔 𝛽 𝜂 𝜔 GIW(x|,,)

Maxwell 2/𝜋
𝜎3

0
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When we have the observed sample D={x1, x2, …, xn}, our general problem is to estimate the value of the
parameters of the model (representing the parent population) from the information given by the sample. We
define some criteria which we require a "good" estimate to satisfy and see whether there exist any "best"
estimates. We assume that the parent population is distributed in a form, the model, which is completely
determinate but for the value 0 of some parameter, e.g. unidimensional, , or bidimensional ={, 2}; we
consider only one or two parameters, for easiness.

We seek some function of , say (), named inference function, and we see if we can find a RV T which can
have the following properties: unbiasedness, sufficiency, efficiency. Statistical Theory allows us the analysis
of these properties of the estimators (RVs).

We use the symbols 𝑋� and 𝑆2 for the unbiased estimators T1 and T2 of the mean and the variance.
Luckily, we have that T1, in the Exponential model 𝑓 𝑥|𝜃 , is efficient [6-21, 25-33], and it extracts the

total available information from any random sample, while the couple T1 and T2, in the Normal model, are
jointly sufficient statistics for the inference function ()=(, 2), so extracting the maximum possible of the
total available information from any random sample. The estimators (which are RVs) have their own
“distribution” depending on the parent model F(x|) and on the sample D: we use the symbol 𝜑 𝑡, 𝜃, 𝑛 for
that “distribution”. It is used to assess their properties. For a given (collected) sample D the estimator
provides a value t (real number) named the estimate of (), unidimensional.

A way of finding the estimate is to compute the Likelihood Function 𝐿 𝜃 𝐷 [LF] and to maximise it: the
solution of the equation 𝜕𝐿 𝜃 𝐷 /𝜕𝜃 =0 is termed Maximum Likelihood Estimate [MLE]. Both are used for
sequential tests.

The LF is important because it allows us finding the MVB (Minimum Variance Bound, Cramer-Rao theorem)
[1-2, 6-16, 26-36] of an unbiased RV T [related to the inference function ()], such that

𝑉𝑎𝑟 𝑇 ≥
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2 = 𝑀𝑉𝐵 𝑇
(3)

The inverse of the MVB(T) provides a measure of the total available amount of information in D, relevant to

, so extracting the maximum possible of the total available information from any random sample. The estimators (which are RVs) have 
their own “distribution” depending on the parent model F(x|θ) and on the sample D: we use the symbol φ(t, θ, n) for that “distribution”. 
It is used to assess their properties. For a given (collected) sample D the estimator provides a value t (real number) named the estimate of 

𝑓(x|𝜇,𝜎2)= 𝑛 x 𝜇,𝜎2 = 1
2𝜋𝜎

𝑒− 𝑥−𝜇 2/(2𝜎2) (2)

When 𝜃 = 𝜃 we have Exponential model, with (the single parameter) mean E[X]=𝜃 = 1/𝜆 (variance
Var[X]=𝜃2= 1/𝜆2), whose pdf is written in two equivalent ways 𝑓 𝑥|𝜃 = 𝑒−𝑥/𝜃/𝜃 = 𝜆𝑒−𝜆𝑥 = 𝑓 𝑥|𝜆 .

Table 1. Some probability models for data analysis

Name 𝐹 𝑥|𝜃 parameters Symbol
Exponential 1 − 𝑒𝑥𝑝 ( − 𝑥/𝜃) 𝜃 E(x|)
Weibull 1 − 𝑒𝑥𝑝  −(𝑥/𝜂)𝛽 𝛽 𝜂 W(x|,)
Inverted

Weibull
1− 𝑒− 𝜂/𝑥 𝛽 𝛽 𝜂 IW(x|,)

General
Inverted W

[1− 𝑒− 𝜂/𝑥 𝛽]𝜔 𝛽 𝜂 𝜔 GIW(x|,,)

Maxwell 2/𝜋
𝜎3

0
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When we have the observed sample D={x1, x2, …, xn}, our general problem is to estimate the value of the
parameters of the model (representing the parent population) from the information given by the sample. We
define some criteria which we require a "good" estimate to satisfy and see whether there exist any "best"
estimates. We assume that the parent population is distributed in a form, the model, which is completely
determinate but for the value 0 of some parameter, e.g. unidimensional, , or bidimensional ={, 2}; we
consider only one or two parameters, for easiness.

We seek some function of , say (), named inference function, and we see if we can find a RV T which can
have the following properties: unbiasedness, sufficiency, efficiency. Statistical Theory allows us the analysis
of these properties of the estimators (RVs).

We use the symbols 𝑋� and 𝑆2 for the unbiased estimators T1 and T2 of the mean and the variance.
Luckily, we have that T1, in the Exponential model 𝑓 𝑥|𝜃 , is efficient [6-21, 25-33], and it extracts the

total available information from any random sample, while the couple T1 and T2, in the Normal model, are
jointly sufficient statistics for the inference function ()=(, 2), so extracting the maximum possible of the
total available information from any random sample. The estimators (which are RVs) have their own
“distribution” depending on the parent model F(x|) and on the sample D: we use the symbol 𝜑 𝑡, 𝜃, 𝑛 for
that “distribution”. It is used to assess their properties. For a given (collected) sample D the estimator
provides a value t (real number) named the estimate of (), unidimensional.

A way of finding the estimate is to compute the Likelihood Function 𝐿 𝜃 𝐷 [LF] and to maximise it: the
solution of the equation 𝜕𝐿 𝜃 𝐷 /𝜕𝜃 =0 is termed Maximum Likelihood Estimate [MLE]. Both are used for
sequential tests.

The LF is important because it allows us finding the MVB (Minimum Variance Bound, Cramer-Rao theorem)
[1-2, 6-16, 26-36] of an unbiased RV T [related to the inference function ()], such that

𝑉𝑎𝑟 𝑇 ≥
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(3)

The inverse of the MVB(T) provides a measure of the total available amount of information in D, relevant to

, unidimensional. A way of finding the estimate is to compute the Likelihood Function L(θ|D)  [LF] and to maximise it: the solution 
of the equation 

𝑓(x|𝜇,𝜎2)= 𝑛 x 𝜇,𝜎2 = 1
2𝜋𝜎

𝑒− 𝑥−𝜇 2/(2𝜎2) (2)

When 𝜃 = 𝜃 we have Exponential model, with (the single parameter) mean E[X]=𝜃 = 1/𝜆 (variance
Var[X]=𝜃2= 1/𝜆2), whose pdf is written in two equivalent ways 𝑓 𝑥|𝜃 = 𝑒−𝑥/𝜃/𝜃 = 𝜆𝑒−𝜆𝑥 = 𝑓 𝑥|𝜆 .

Table 1. Some probability models for data analysis

Name 𝐹 𝑥|𝜃 parameters Symbol
Exponential 1 − 𝑒𝑥𝑝 ( − 𝑥/𝜃) 𝜃 E(x|)
Weibull 1 − 𝑒𝑥𝑝  −(𝑥/𝜂)𝛽 𝛽 𝜂 W(x|,)
Inverted

Weibull
1− 𝑒− 𝜂/𝑥 𝛽 𝛽 𝜂 IW(x|,)

General
Inverted W

[1− 𝑒− 𝜂/𝑥 𝛽]𝜔 𝛽 𝜂 𝜔 GIW(x|,,)

Maxwell 2/𝜋
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When we have the observed sample D={x1, x2, …, xn}, our general problem is to estimate the value of the
parameters of the model (representing the parent population) from the information given by the sample. We
define some criteria which we require a "good" estimate to satisfy and see whether there exist any "best"
estimates. We assume that the parent population is distributed in a form, the model, which is completely
determinate but for the value 0 of some parameter, e.g. unidimensional, , or bidimensional ={, 2}; we
consider only one or two parameters, for easiness.

We seek some function of , say (), named inference function, and we see if we can find a RV T which can
have the following properties: unbiasedness, sufficiency, efficiency. Statistical Theory allows us the analysis
of these properties of the estimators (RVs).

We use the symbols 𝑋� and 𝑆2 for the unbiased estimators T1 and T2 of the mean and the variance.
Luckily, we have that T1, in the Exponential model 𝑓 𝑥|𝜃 , is efficient [6-21, 25-33], and it extracts the

total available information from any random sample, while the couple T1 and T2, in the Normal model, are
jointly sufficient statistics for the inference function ()=(, 2), so extracting the maximum possible of the
total available information from any random sample. The estimators (which are RVs) have their own
“distribution” depending on the parent model F(x|) and on the sample D: we use the symbol 𝜑 𝑡, 𝜃, 𝑛 for
that “distribution”. It is used to assess their properties. For a given (collected) sample D the estimator
provides a value t (real number) named the estimate of (), unidimensional.

A way of finding the estimate is to compute the Likelihood Function 𝐿 𝜃 𝐷 [LF] and to maximise it: the
solution of the equation 𝜕𝐿 𝜃 𝐷 /𝜕𝜃 =0 is termed Maximum Likelihood Estimate [MLE]. Both are used for
sequential tests.

The LF is important because it allows us finding the MVB (Minimum Variance Bound, Cramer-Rao theorem)
[1-2, 6-16, 26-36] of an unbiased RV T [related to the inference function ()], such that

𝑉𝑎𝑟 𝑇 ≥
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(3)

The inverse of the MVB(T) provides a measure of the total available amount of information in D, relevant to

 is termed Maximum Likelihood Estimate [MLE]. Both are used for sequential tests.

The LF is important because it allows us finding the MVB (Minimum Variance Bound, Cramer-Rao theorem) [1-2, 6-16, 26-36] of an 
unbiased RV T [related to the inference function 

𝑓(x|𝜇,𝜎2)= 𝑛 x 𝜇,𝜎2 = 1
2𝜋𝜎

𝑒− 𝑥−𝜇 2/(2𝜎2) (2)

When 𝜃 = 𝜃 we have Exponential model, with (the single parameter) mean E[X]=𝜃 = 1/𝜆 (variance
Var[X]=𝜃2= 1/𝜆2), whose pdf is written in two equivalent ways 𝑓 𝑥|𝜃 = 𝑒−𝑥/𝜃/𝜃 = 𝜆𝑒−𝜆𝑥 = 𝑓 𝑥|𝜆 .

Table 1. Some probability models for data analysis

Name 𝐹 𝑥|𝜃 parameters Symbol
Exponential 1 − 𝑒𝑥𝑝 ( − 𝑥/𝜃) 𝜃 E(x|)
Weibull 1 − 𝑒𝑥𝑝  −(𝑥/𝜂)𝛽 𝛽 𝜂 W(x|,)
Inverted

Weibull
1− 𝑒− 𝜂/𝑥 𝛽 𝛽 𝜂 IW(x|,)

General
Inverted W

[1− 𝑒− 𝜂/𝑥 𝛽]𝜔 𝛽 𝜂 𝜔 GIW(x|,,)

Maxwell 2/𝜋
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When we have the observed sample D={x1, x2, …, xn}, our general problem is to estimate the value of the
parameters of the model (representing the parent population) from the information given by the sample. We
define some criteria which we require a "good" estimate to satisfy and see whether there exist any "best"
estimates. We assume that the parent population is distributed in a form, the model, which is completely
determinate but for the value 0 of some parameter, e.g. unidimensional, , or bidimensional ={, 2}; we
consider only one or two parameters, for easiness.

We seek some function of , say (), named inference function, and we see if we can find a RV T which can
have the following properties: unbiasedness, sufficiency, efficiency. Statistical Theory allows us the analysis
of these properties of the estimators (RVs).

We use the symbols 𝑋� and 𝑆2 for the unbiased estimators T1 and T2 of the mean and the variance.
Luckily, we have that T1, in the Exponential model 𝑓 𝑥|𝜃 , is efficient [6-21, 25-33], and it extracts the

total available information from any random sample, while the couple T1 and T2, in the Normal model, are
jointly sufficient statistics for the inference function ()=(, 2), so extracting the maximum possible of the
total available information from any random sample. The estimators (which are RVs) have their own
“distribution” depending on the parent model F(x|) and on the sample D: we use the symbol 𝜑 𝑡, 𝜃, 𝑛 for
that “distribution”. It is used to assess their properties. For a given (collected) sample D the estimator
provides a value t (real number) named the estimate of (), unidimensional.

A way of finding the estimate is to compute the Likelihood Function 𝐿 𝜃 𝐷 [LF] and to maximise it: the
solution of the equation 𝜕𝐿 𝜃 𝐷 /𝜕𝜃 =0 is termed Maximum Likelihood Estimate [MLE]. Both are used for
sequential tests.

The LF is important because it allows us finding the MVB (Minimum Variance Bound, Cramer-Rao theorem)
[1-2, 6-16, 26-36] of an unbiased RV T [related to the inference function ()], such that
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The inverse of the MVB(T) provides a measure of the total available amount of information in D, relevant to

], such that

𝑓(x|𝜇,𝜎2)= 𝑛 x 𝜇,𝜎2 = 1
2𝜋𝜎

𝑒− 𝑥−𝜇 2/(2𝜎2) (2)

When 𝜃 = 𝜃 we have Exponential model, with (the single parameter) mean E[X]=𝜃 = 1/𝜆 (variance
Var[X]=𝜃2= 1/𝜆2), whose pdf is written in two equivalent ways 𝑓 𝑥|𝜃 = 𝑒−𝑥/𝜃/𝜃 = 𝜆𝑒−𝜆𝑥 = 𝑓 𝑥|𝜆 .

Table 1. Some probability models for data analysis

Name 𝐹 𝑥|𝜃 parameters Symbol
Exponential 1 − 𝑒𝑥𝑝 ( − 𝑥/𝜃) 𝜃 E(x|)
Weibull 1 − 𝑒𝑥𝑝  −(𝑥/𝜂)𝛽 𝛽 𝜂 W(x|,)
Inverted

Weibull
1− 𝑒− 𝜂/𝑥 𝛽 𝛽 𝜂 IW(x|,)

General
Inverted W

[1− 𝑒− 𝜂/𝑥 𝛽]𝜔 𝛽 𝜂 𝜔 GIW(x|,,)
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When we have the observed sample D={x1, x2, …, xn}, our general problem is to estimate the value of the
parameters of the model (representing the parent population) from the information given by the sample. We
define some criteria which we require a "good" estimate to satisfy and see whether there exist any "best"
estimates. We assume that the parent population is distributed in a form, the model, which is completely
determinate but for the value 0 of some parameter, e.g. unidimensional, , or bidimensional ={, 2}; we
consider only one or two parameters, for easiness.

We seek some function of , say (), named inference function, and we see if we can find a RV T which can
have the following properties: unbiasedness, sufficiency, efficiency. Statistical Theory allows us the analysis
of these properties of the estimators (RVs).

We use the symbols 𝑋� and 𝑆2 for the unbiased estimators T1 and T2 of the mean and the variance.
Luckily, we have that T1, in the Exponential model 𝑓 𝑥|𝜃 , is efficient [6-21, 25-33], and it extracts the

total available information from any random sample, while the couple T1 and T2, in the Normal model, are
jointly sufficient statistics for the inference function ()=(, 2), so extracting the maximum possible of the
total available information from any random sample. The estimators (which are RVs) have their own
“distribution” depending on the parent model F(x|) and on the sample D: we use the symbol 𝜑 𝑡, 𝜃, 𝑛 for
that “distribution”. It is used to assess their properties. For a given (collected) sample D the estimator
provides a value t (real number) named the estimate of (), unidimensional.

A way of finding the estimate is to compute the Likelihood Function 𝐿 𝜃 𝐷 [LF] and to maximise it: the
solution of the equation 𝜕𝐿 𝜃 𝐷 /𝜕𝜃 =0 is termed Maximum Likelihood Estimate [MLE]. Both are used for
sequential tests.

The LF is important because it allows us finding the MVB (Minimum Variance Bound, Cramer-Rao theorem)
[1-2, 6-16, 26-36] of an unbiased RV T [related to the inference function ()], such that
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When 𝜃 = 𝜃 we have Exponential model, with (the single parameter) mean E[X]=𝜃 = 1/𝜆 (variance
Var[X]=𝜃2= 1/𝜆2), whose pdf is written in two equivalent ways 𝑓 𝑥|𝜃 = 𝑒−𝑥/𝜃/𝜃 = 𝜆𝑒−𝜆𝑥 = 𝑓 𝑥|𝜆 .

Table 1. Some probability models for data analysis

Name 𝐹 𝑥|𝜃 parameters Symbol
Exponential 1 − 𝑒𝑥𝑝 ( − 𝑥/𝜃) 𝜃 E(x|)
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Inverted
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When we have the observed sample D={x1, x2, …, xn}, our general problem is to estimate the value of the
parameters of the model (representing the parent population) from the information given by the sample. We
define some criteria which we require a "good" estimate to satisfy and see whether there exist any "best"
estimates. We assume that the parent population is distributed in a form, the model, which is completely
determinate but for the value 0 of some parameter, e.g. unidimensional, , or bidimensional ={, 2}; we
consider only one or two parameters, for easiness.

We seek some function of , say (), named inference function, and we see if we can find a RV T which can
have the following properties: unbiasedness, sufficiency, efficiency. Statistical Theory allows us the analysis
of these properties of the estimators (RVs).

We use the symbols 𝑋� and 𝑆2 for the unbiased estimators T1 and T2 of the mean and the variance.
Luckily, we have that T1, in the Exponential model 𝑓 𝑥|𝜃 , is efficient [6-21, 25-33], and it extracts the

total available information from any random sample, while the couple T1 and T2, in the Normal model, are
jointly sufficient statistics for the inference function ()=(, 2), so extracting the maximum possible of the
total available information from any random sample. The estimators (which are RVs) have their own
“distribution” depending on the parent model F(x|) and on the sample D: we use the symbol 𝜑 𝑡, 𝜃, 𝑛 for
that “distribution”. It is used to assess their properties. For a given (collected) sample D the estimator
provides a value t (real number) named the estimate of (), unidimensional.

A way of finding the estimate is to compute the Likelihood Function 𝐿 𝜃 𝐷 [LF] and to maximise it: the
solution of the equation 𝜕𝐿 𝜃 𝐷 /𝜕𝜃 =0 is termed Maximum Likelihood Estimate [MLE]. Both are used for
sequential tests.

The LF is important because it allows us finding the MVB (Minimum Variance Bound, Cramer-Rao theorem)
[1-2, 6-16, 26-36] of an unbiased RV T [related to the inference function ()], such that
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The inverse of the MVB(T) provides a measure of the total available amount of information in D, relevant to

and to the statistical model F(x|θ).

Naming IT(T) the information extracted by the RV T we have that [6-21, 26-36]
IT(T)=1/MVB(T) 

the inference function () and to the statistical model F(x|).
Naming IT(T) the information extracted by the RV T we have that [6-21, 26-36]

IT(T)=1/MVB(T)  T is an Efficient Estimator.
If T is an Efficient Estimator there is no better estimator able to extract more information from D.
The estimates considered before were “point estimates” with their properties, looking for the “best” single

value of the inference function ().
We must now introduce the concept of Confidence Interval (CI) and Confidence Level (CL) [6-21, 26-36].
The “interval estimates” comprise all the values between  L (Lower confidence limit) and  U (Upper

confidence limit); the CI is defined by the numerical interval CI=L
-----U, where L and U are two quantities

computed from the observed sample D: when we make the statement that  ( )CI, we accept, before any
computation, that, doing that, we can be right, in a long run of applications, (1-)%=CL of the applications,
BUT we cannot know IF we are right in the single application (CL=Confidence Level).

We know, before any computation, that we can be wrong % of the times but we do not know when it
happens.

The reader must be very careful to distinguish between the Probability Interval PI= L-----U  , where the
endpoints L and U depends on the distribution 𝜑 𝑡, 𝜃, 𝑛 of the estimator T (that we decide to use, which
does not depend on the “observed sample” D) and, on the probability =1- (that we fix before any computation),
as follows by the probabilistic statement (4) [se the figure 1 for the exponential density, when n=1]

𝑃 𝐿 ≤ 𝑇 ≤ 𝑈 =
𝐿

𝑈
𝜑 𝑡, 𝜃, 𝑛 𝑑𝑡� = 1 − 𝛼 (4)

and Confidence Interval CI=L
-----U which depends on the “observed sample” D.

Notice that the Probability Interval PI=L-----U, given in the formula (4), does not depend on the data D, as
you can pictorially see in fig. 1: L and U are the Probability Limits. Notice that, on the contrary, the
Confidence Interval CI=L

-----U does depend on the data D, pictorially seen in fig. 1. This point is essential for
all the papers in the References.

Shewhart identified this approach, L and U, on page 275 of [19] where he states:

“For the most part, however, we never know 𝑓Θ Θ, 𝑛 [this is the symbols of Shewhart for our 𝜑 𝑡, 𝜃, 𝑛 ]
in sufficient detail to set up such limit… We usually chose a symmetrical range characterised by limits Θ� ±
𝑡𝜎Θ symmetrically spaced in reference to Θ . Tchebycheff’s Theorem tells us that the probability P that an
observed value of Θ will lie within these symmetric limits so long as the quality standard is maintained
satisfies the inequality P>1-1/t2. We are still faced with the choice of t. Experience indicated that t=3 seems to
be an acceptable economic value”. See the excerpts 3,…

The Tchebycheff Inequality: IF the RV X is arbitrary with density f(x) and finite variance 𝜎2 THEN we
have the probability 𝑃 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤ 1/𝑘2, where 𝜇 = 𝐸 𝑋 . This is a “Probabilistic Theorem”.

It can be transferred into Statistics. Let’s suppose that we want to determine experimentally the unknown
mean 𝜇 within a “stated error ”. From the above (Probabilistic) Inequality we have 𝑃 𝜇 − 𝜀 < 𝑋 < 𝜇 + 𝜀 ≥
1 − 𝜎2/𝜀2; IF 𝜎 ≪ 𝜀 THEN the event 𝑋 − 𝜇 < 𝜀 is “very probable” in an experiment: this means that the
observed value 𝑥 of the RV X can be written as 𝜇 − 𝜀 < 𝑥 < 𝜇 + 𝜀 and hence 𝑥 − 𝜀 < 𝜇 < 𝑥 + 𝜀 . In other
words, using 𝑥 as an estimate of 𝜇 we commit an error that “most likely” does not exceed 𝜀 . IF, on the
contrary, 𝜎 ≰≰ 𝜀, we need n data in order to write 𝑃 𝜇 − 𝜀 < 𝑋� < 𝜇 + 𝜀 ≥ 1− 𝜎2/(𝑛𝜀2), where 𝑋� is the RV
“mean”; hence we can derive 𝑥� − 𝜀 < 𝜇 < 𝑥� + 𝜀., where 𝑥� is the “empirical mean” computed from the data.
In other words, using 𝑥� as an estimate of 𝜇 we commit an error that “most likely” does not exceed 𝜀. See
the excerpts 3, 3a, 3b.
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When we have the observed sample D={x1, x2, …, xn}, our general problem is to estimate the value of the
parameters of the model (representing the parent population) from the information given by the sample. We
define some criteria which we require a "good" estimate to satisfy and see whether there exist any "best"
estimates. We assume that the parent population is distributed in a form, the model, which is completely
determinate but for the value 0 of some parameter, e.g. unidimensional, , or bidimensional ={, 2}; we
consider only one or two parameters, for easiness.

We seek some function of , say (), named inference function, and we see if we can find a RV T which can
have the following properties: unbiasedness, sufficiency, efficiency. Statistical Theory allows us the analysis
of these properties of the estimators (RVs).

We use the symbols 𝑋� and 𝑆2 for the unbiased estimators T1 and T2 of the mean and the variance.
Luckily, we have that T1, in the Exponential model 𝑓 𝑥|𝜃 , is efficient [6-21, 25-33], and it extracts the

total available information from any random sample, while the couple T1 and T2, in the Normal model, are
jointly sufficient statistics for the inference function ()=(, 2), so extracting the maximum possible of the
total available information from any random sample. The estimators (which are RVs) have their own
“distribution” depending on the parent model F(x|) and on the sample D: we use the symbol 𝜑 𝑡, 𝜃, 𝑛 for
that “distribution”. It is used to assess their properties. For a given (collected) sample D the estimator
provides a value t (real number) named the estimate of (), unidimensional.

A way of finding the estimate is to compute the Likelihood Function 𝐿 𝜃 𝐷 [LF] and to maximise it: the
solution of the equation 𝜕𝐿 𝜃 𝐷 /𝜕𝜃 =0 is termed Maximum Likelihood Estimate [MLE]. Both are used for
sequential tests.

The LF is important because it allows us finding the MVB (Minimum Variance Bound, Cramer-Rao theorem)
[1-2, 6-16, 26-36] of an unbiased RV T [related to the inference function ()], such that
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the inference function () and to the statistical model F(x|).
Naming IT(T) the information extracted by the RV T we have that [6-21, 26-36]

IT(T)=1/MVB(T)  T is an Efficient Estimator.
If T is an Efficient Estimator there is no better estimator able to extract more information from D.
The estimates considered before were “point estimates” with their properties, looking for the “best” single
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We must now introduce the concept of Confidence Interval (CI) and Confidence Level (CL) [6-21, 26-36].
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confidence limit); the CI is defined by the numerical interval CI=L
-----U, where L and U are two quantities

computed from the observed sample D: when we make the statement that  ( )CI, we accept, before any
computation, that, doing that, we can be right, in a long run of applications, (1-)%=CL of the applications,
BUT we cannot know IF we are right in the single application (CL=Confidence Level).

We know, before any computation, that we can be wrong % of the times but we do not know when it
happens.

The reader must be very careful to distinguish between the Probability Interval PI= L-----U  , where the
endpoints L and U depends on the distribution 𝜑 𝑡, 𝜃, 𝑛 of the estimator T (that we decide to use, which
does not depend on the “observed sample” D) and, on the probability =1- (that we fix before any computation),
as follows by the probabilistic statement (4) [se the figure 1 for the exponential density, when n=1]

𝑃 𝐿 ≤ 𝑇 ≤ 𝑈 =
𝐿

𝑈
𝜑 𝑡, 𝜃, 𝑛 𝑑𝑡� = 1 − 𝛼 (4)

and Confidence Interval CI=L
-----U which depends on the “observed sample” D.

Notice that the Probability Interval PI=L-----U, given in the formula (4), does not depend on the data D, as
you can pictorially see in fig. 1: L and U are the Probability Limits. Notice that, on the contrary, the
Confidence Interval CI=L

-----U does depend on the data D, pictorially seen in fig. 1. This point is essential for
all the papers in the References.

Shewhart identified this approach, L and U, on page 275 of [19] where he states:

“For the most part, however, we never know 𝑓Θ Θ, 𝑛 [this is the symbols of Shewhart for our 𝜑 𝑡, 𝜃, 𝑛 ]
in sufficient detail to set up such limit… We usually chose a symmetrical range characterised by limits Θ� ±
𝑡𝜎Θ symmetrically spaced in reference to Θ . Tchebycheff’s Theorem tells us that the probability P that an
observed value of Θ will lie within these symmetric limits so long as the quality standard is maintained
satisfies the inequality P>1-1/t2. We are still faced with the choice of t. Experience indicated that t=3 seems to
be an acceptable economic value”. See the excerpts 3,…

The Tchebycheff Inequality: IF the RV X is arbitrary with density f(x) and finite variance 𝜎2 THEN we
have the probability 𝑃 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤ 1/𝑘2, where 𝜇 = 𝐸 𝑋 . This is a “Probabilistic Theorem”.

It can be transferred into Statistics. Let’s suppose that we want to determine experimentally the unknown
mean 𝜇 within a “stated error ”. From the above (Probabilistic) Inequality we have 𝑃 𝜇 − 𝜀 < 𝑋 < 𝜇 + 𝜀 ≥
1 − 𝜎2/𝜀2; IF 𝜎 ≪ 𝜀 THEN the event 𝑋 − 𝜇 < 𝜀 is “very probable” in an experiment: this means that the
observed value 𝑥 of the RV X can be written as 𝜇 − 𝜀 < 𝑥 < 𝜇 + 𝜀 and hence 𝑥 − 𝜀 < 𝜇 < 𝑥 + 𝜀 . In other
words, using 𝑥 as an estimate of 𝜇 we commit an error that “most likely” does not exceed 𝜀 . IF, on the
contrary, 𝜎 ≰≰ 𝜀, we need n data in order to write 𝑃 𝜇 − 𝜀 < 𝑋� < 𝜇 + 𝜀 ≥ 1− 𝜎2/(𝑛𝜀2), where 𝑋� is the RV
“mean”; hence we can derive 𝑥� − 𝜀 < 𝜇 < 𝑥� + 𝜀., where 𝑥� is the “empirical mean” computed from the data.
In other words, using 𝑥� as an estimate of 𝜇 we commit an error that “most likely” does not exceed 𝜀. See
the excerpts 3, 3a, 3b.

 (Lower confidence limit) and 

the inference function () and to the statistical model F(x|).
Naming IT(T) the information extracted by the RV T we have that [6-21, 26-36]

IT(T)=1/MVB(T)  T is an Efficient Estimator.
If T is an Efficient Estimator there is no better estimator able to extract more information from D.
The estimates considered before were “point estimates” with their properties, looking for the “best” single

value of the inference function ().
We must now introduce the concept of Confidence Interval (CI) and Confidence Level (CL) [6-21, 26-36].
The “interval estimates” comprise all the values between  L (Lower confidence limit) and  U (Upper

confidence limit); the CI is defined by the numerical interval CI=L
-----U, where L and U are two quantities

computed from the observed sample D: when we make the statement that  ( )CI, we accept, before any
computation, that, doing that, we can be right, in a long run of applications, (1-)%=CL of the applications,
BUT we cannot know IF we are right in the single application (CL=Confidence Level).

We know, before any computation, that we can be wrong % of the times but we do not know when it
happens.

The reader must be very careful to distinguish between the Probability Interval PI= L-----U  , where the
endpoints L and U depends on the distribution 𝜑 𝑡, 𝜃, 𝑛 of the estimator T (that we decide to use, which
does not depend on the “observed sample” D) and, on the probability =1- (that we fix before any computation),
as follows by the probabilistic statement (4) [se the figure 1 for the exponential density, when n=1]

𝑃 𝐿 ≤ 𝑇 ≤ 𝑈 =
𝐿

𝑈
𝜑 𝑡, 𝜃, 𝑛 𝑑𝑡� = 1 − 𝛼 (4)

and Confidence Interval CI=L
-----U which depends on the “observed sample” D.

Notice that the Probability Interval PI=L-----U, given in the formula (4), does not depend on the data D, as
you can pictorially see in fig. 1: L and U are the Probability Limits. Notice that, on the contrary, the
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Shewhart identified this approach, L and U, on page 275 of [19] where he states:

“For the most part, however, we never know 𝑓Θ Θ, 𝑛 [this is the symbols of Shewhart for our 𝜑 𝑡, 𝜃, 𝑛 ]
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𝑡𝜎Θ symmetrically spaced in reference to Θ . Tchebycheff’s Theorem tells us that the probability P that an
observed value of Θ will lie within these symmetric limits so long as the quality standard is maintained
satisfies the inequality P>1-1/t2. We are still faced with the choice of t. Experience indicated that t=3 seems to
be an acceptable economic value”. See the excerpts 3,…

The Tchebycheff Inequality: IF the RV X is arbitrary with density f(x) and finite variance 𝜎2 THEN we
have the probability 𝑃 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤ 1/𝑘2, where 𝜇 = 𝐸 𝑋 . This is a “Probabilistic Theorem”.

It can be transferred into Statistics. Let’s suppose that we want to determine experimentally the unknown
mean 𝜇 within a “stated error ”. From the above (Probabilistic) Inequality we have 𝑃 𝜇 − 𝜀 < 𝑋 < 𝜇 + 𝜀 ≥
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observed value 𝑥 of the RV X can be written as 𝜇 − 𝜀 < 𝑥 < 𝜇 + 𝜀 and hence 𝑥 − 𝜀 < 𝜇 < 𝑥 + 𝜀 . In other
words, using 𝑥 as an estimate of 𝜇 we commit an error that “most likely” does not exceed 𝜀 . IF, on the
contrary, 𝜎 ≰≰ 𝜀, we need n data in order to write 𝑃 𝜇 − 𝜀 < 𝑋� < 𝜇 + 𝜀 ≥ 1− 𝜎2/(𝑛𝜀2), where 𝑋� is the RV
“mean”; hence we can derive 𝑥� − 𝜀 < 𝜇 < 𝑥� + 𝜀., where 𝑥� is the “empirical mean” computed from the data.
In other words, using 𝑥� as an estimate of 𝜇 we commit an error that “most likely” does not exceed 𝜀. See
the excerpts 3, 3a, 3b.

and Confidence Interval CI ={ 

the inference function () and to the statistical model F(x|).
Naming IT(T) the information extracted by the RV T we have that [6-21, 26-36]

IT(T)=1/MVB(T)  T is an Efficient Estimator.
If T is an Efficient Estimator there is no better estimator able to extract more information from D.
The estimates considered before were “point estimates” with their properties, looking for the “best” single

value of the inference function ().
We must now introduce the concept of Confidence Interval (CI) and Confidence Level (CL) [6-21, 26-36].
The “interval estimates” comprise all the values between  L (Lower confidence limit) and  U (Upper

confidence limit); the CI is defined by the numerical interval CI=L
-----U, where L and U are two quantities

computed from the observed sample D: when we make the statement that  ( )CI, we accept, before any
computation, that, doing that, we can be right, in a long run of applications, (1-)%=CL of the applications,
BUT we cannot know IF we are right in the single application (CL=Confidence Level).

We know, before any computation, that we can be wrong % of the times but we do not know when it
happens.

The reader must be very careful to distinguish between the Probability Interval PI= L-----U  , where the
endpoints L and U depends on the distribution 𝜑 𝑡, 𝜃, 𝑛 of the estimator T (that we decide to use, which
does not depend on the “observed sample” D) and, on the probability =1- (that we fix before any computation),
as follows by the probabilistic statement (4) [se the figure 1 for the exponential density, when n=1]

𝑃 𝐿 ≤ 𝑇 ≤ 𝑈 =
𝐿

𝑈
𝜑 𝑡, 𝜃, 𝑛 𝑑𝑡� = 1 − 𝛼 (4)

and Confidence Interval CI=L
-----U which depends on the “observed sample” D.

Notice that the Probability Interval PI=L-----U, given in the formula (4), does not depend on the data D, as
you can pictorially see in fig. 1: L and U are the Probability Limits. Notice that, on the contrary, the
Confidence Interval CI=L

-----U does depend on the data D, pictorially seen in fig. 1. This point is essential for
all the papers in the References.

Shewhart identified this approach, L and U, on page 275 of [19] where he states:

“For the most part, however, we never know 𝑓Θ Θ, 𝑛 [this is the symbols of Shewhart for our 𝜑 𝑡, 𝜃, 𝑛 ]
in sufficient detail to set up such limit… We usually chose a symmetrical range characterised by limits Θ� ±
𝑡𝜎Θ symmetrically spaced in reference to Θ . Tchebycheff’s Theorem tells us that the probability P that an
observed value of Θ will lie within these symmetric limits so long as the quality standard is maintained
satisfies the inequality P>1-1/t2. We are still faced with the choice of t. Experience indicated that t=3 seems to
be an acceptable economic value”. See the excerpts 3,…

The Tchebycheff Inequality: IF the RV X is arbitrary with density f(x) and finite variance 𝜎2 THEN we
have the probability 𝑃 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤ 1/𝑘2, where 𝜇 = 𝐸 𝑋 . This is a “Probabilistic Theorem”.

It can be transferred into Statistics. Let’s suppose that we want to determine experimentally the unknown
mean 𝜇 within a “stated error ”. From the above (Probabilistic) Inequality we have 𝑃 𝜇 − 𝜀 < 𝑋 < 𝜇 + 𝜀 ≥
1 − 𝜎2/𝜀2; IF 𝜎 ≪ 𝜀 THEN the event 𝑋 − 𝜇 < 𝜀 is “very probable” in an experiment: this means that the
observed value 𝑥 of the RV X can be written as 𝜇 − 𝜀 < 𝑥 < 𝜇 + 𝜀 and hence 𝑥 − 𝜀 < 𝜇 < 𝑥 + 𝜀 . In other
words, using 𝑥 as an estimate of 𝜇 we commit an error that “most likely” does not exceed 𝜀 . IF, on the
contrary, 𝜎 ≰≰ 𝜀, we need n data in order to write 𝑃 𝜇 − 𝜀 < 𝑋� < 𝜇 + 𝜀 ≥ 1− 𝜎2/(𝑛𝜀2), where 𝑋� is the RV
“mean”; hence we can derive 𝑥� − 𝜀 < 𝜇 < 𝑥� + 𝜀., where 𝑥� is the “empirical mean” computed from the data.
In other words, using 𝑥� as an estimate of 𝜇 we commit an error that “most likely” does not exceed 𝜀. See
the excerpts 3, 3a, 3b.
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-----U does depend on the data D, pictorially seen in fig. 1. This point is essential for
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Shewhart identified this approach, L and U, on page 275 of [19] where he states:

“For the most part, however, we never know 𝑓Θ Θ, 𝑛 [this is the symbols of Shewhart for our 𝜑 𝑡, 𝜃, 𝑛 ]
in sufficient detail to set up such limit… We usually chose a symmetrical range characterised by limits Θ� ±
𝑡𝜎Θ symmetrically spaced in reference to Θ . Tchebycheff’s Theorem tells us that the probability P that an
observed value of Θ will lie within these symmetric limits so long as the quality standard is maintained
satisfies the inequality P>1-1/t2. We are still faced with the choice of t. Experience indicated that t=3 seems to
be an acceptable economic value”. See the excerpts 3,…

The Tchebycheff Inequality: IF the RV X is arbitrary with density f(x) and finite variance 𝜎2 THEN we
have the probability 𝑃 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤ 1/𝑘2, where 𝜇 = 𝐸 𝑋 . This is a “Probabilistic Theorem”.
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} does depend on the data 
D, pictorially seen in fig. 1. This point is essential for all the papers in the References.

Shewhart identified this approach, L and U, on page 275 of [19] where he states:

𝑓(x|𝜇,𝜎2)= 𝑛 x 𝜇,𝜎2 = 1
2𝜋𝜎

𝑒− 𝑥−𝜇 2/(2𝜎2) (2)

When 𝜃 = 𝜃 we have Exponential model, with (the single parameter) mean E[X]=𝜃 = 1/𝜆 (variance
Var[X]=𝜃2= 1/𝜆2), whose pdf is written in two equivalent ways 𝑓 𝑥|𝜃 = 𝑒−𝑥/𝜃/𝜃 = 𝜆𝑒−𝜆𝑥 = 𝑓 𝑥|𝜆 .

Table 1. Some probability models for data analysis

Name 𝐹 𝑥|𝜃 parameters Symbol
Exponential 1 − 𝑒𝑥𝑝 ( − 𝑥/𝜃) 𝜃 E(x|)
Weibull 1 − 𝑒𝑥𝑝  −(𝑥/𝜂)𝛽 𝛽 𝜂 W(x|,)
Inverted

Weibull
1− 𝑒− 𝜂/𝑥 𝛽 𝛽 𝜂 IW(x|,)

General
Inverted W

[1− 𝑒− 𝜂/𝑥 𝛽]𝜔 𝛽 𝜂 𝜔 GIW(x|,,)

Maxwell 2/𝜋
𝜎3

0

𝑥
𝑡2� 𝑒−𝑡2/(2𝜎2)𝑑𝑡

2 MW(x|)

Normal 1
2𝜋𝜎 0

𝑥
𝑒− 𝑡−𝜇 2/(2𝜎2�

 2 N(x|, 2)

When we have the observed sample D={x1, x2, …, xn}, our general problem is to estimate the value of the
parameters of the model (representing the parent population) from the information given by the sample. We
define some criteria which we require a "good" estimate to satisfy and see whether there exist any "best"
estimates. We assume that the parent population is distributed in a form, the model, which is completely
determinate but for the value 0 of some parameter, e.g. unidimensional, , or bidimensional ={, 2}; we
consider only one or two parameters, for easiness.

We seek some function of , say (), named inference function, and we see if we can find a RV T which can
have the following properties: unbiasedness, sufficiency, efficiency. Statistical Theory allows us the analysis
of these properties of the estimators (RVs).

We use the symbols 𝑋� and 𝑆2 for the unbiased estimators T1 and T2 of the mean and the variance.
Luckily, we have that T1, in the Exponential model 𝑓 𝑥|𝜃 , is efficient [6-21, 25-33], and it extracts the

total available information from any random sample, while the couple T1 and T2, in the Normal model, are
jointly sufficient statistics for the inference function ()=(, 2), so extracting the maximum possible of the
total available information from any random sample. The estimators (which are RVs) have their own
“distribution” depending on the parent model F(x|) and on the sample D: we use the symbol 𝜑 𝑡, 𝜃, 𝑛 for
that “distribution”. It is used to assess their properties. For a given (collected) sample D the estimator
provides a value t (real number) named the estimate of (), unidimensional.

A way of finding the estimate is to compute the Likelihood Function 𝐿 𝜃 𝐷 [LF] and to maximise it: the
solution of the equation 𝜕𝐿 𝜃 𝐷 /𝜕𝜃 =0 is termed Maximum Likelihood Estimate [MLE]. Both are used for
sequential tests.

The LF is important because it allows us finding the MVB (Minimum Variance Bound, Cramer-Rao theorem)
[1-2, 6-16, 26-36] of an unbiased RV T [related to the inference function ()], such that

𝑉𝑎𝑟 𝑇 ≥
𝜏 𝜃 2

𝐸
𝜕𝑙𝑛𝐿 𝜃 𝐷

𝜕𝜃

2 = 𝑀𝑉𝐵 𝑇
(3)

The inverse of the MVB(T) provides a measure of the total available amount of information in D, relevant to

the inference function () and to the statistical model F(x|).
Naming IT(T) the information extracted by the RV T we have that [6-21, 26-36]

IT(T)=1/MVB(T)  T is an Efficient Estimator.
If T is an Efficient Estimator there is no better estimator able to extract more information from D.
The estimates considered before were “point estimates” with their properties, looking for the “best” single

value of the inference function ().
We must now introduce the concept of Confidence Interval (CI) and Confidence Level (CL) [6-21, 26-36].
The “interval estimates” comprise all the values between  L (Lower confidence limit) and  U (Upper

confidence limit); the CI is defined by the numerical interval CI=L
-----U, where L and U are two quantities

computed from the observed sample D: when we make the statement that  ( )CI, we accept, before any
computation, that, doing that, we can be right, in a long run of applications, (1-)%=CL of the applications,
BUT we cannot know IF we are right in the single application (CL=Confidence Level).

We know, before any computation, that we can be wrong % of the times but we do not know when it
happens.

The reader must be very careful to distinguish between the Probability Interval PI= L-----U  , where the
endpoints L and U depends on the distribution 𝜑 𝑡, 𝜃, 𝑛 of the estimator T (that we decide to use, which
does not depend on the “observed sample” D) and, on the probability =1- (that we fix before any computation),
as follows by the probabilistic statement (4) [se the figure 1 for the exponential density, when n=1]

𝑃 𝐿 ≤ 𝑇 ≤ 𝑈 =
𝐿

𝑈
𝜑 𝑡, 𝜃, 𝑛 𝑑𝑡� = 1 − 𝛼 (4)

and Confidence Interval CI=L
-----U which depends on the “observed sample” D.

Notice that the Probability Interval PI=L-----U, given in the formula (4), does not depend on the data D, as
you can pictorially see in fig. 1: L and U are the Probability Limits. Notice that, on the contrary, the
Confidence Interval CI=L

-----U does depend on the data D, pictorially seen in fig. 1. This point is essential for
all the papers in the References.

Shewhart identified this approach, L and U, on page 275 of [19] where he states:

“For the most part, however, we never know 𝑓Θ Θ, 𝑛 [this is the symbols of Shewhart for our 𝜑 𝑡, 𝜃, 𝑛 ]
in sufficient detail to set up such limit… We usually chose a symmetrical range characterised by limits Θ� ±
𝑡𝜎Θ symmetrically spaced in reference to Θ . Tchebycheff’s Theorem tells us that the probability P that an
observed value of Θ will lie within these symmetric limits so long as the quality standard is maintained
satisfies the inequality P>1-1/t2. We are still faced with the choice of t. Experience indicated that t=3 seems to
be an acceptable economic value”. See the excerpts 3,…

The Tchebycheff Inequality: IF the RV X is arbitrary with density f(x) and finite variance 𝜎2 THEN we
have the probability 𝑃 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤ 1/𝑘2, where 𝜇 = 𝐸 𝑋 . This is a “Probabilistic Theorem”.

It can be transferred into Statistics. Let’s suppose that we want to determine experimentally the unknown
mean 𝜇 within a “stated error ”. From the above (Probabilistic) Inequality we have 𝑃 𝜇 − 𝜀 < 𝑋 < 𝜇 + 𝜀 ≥
1 − 𝜎2/𝜀2; IF 𝜎 ≪ 𝜀 THEN the event 𝑋 − 𝜇 < 𝜀 is “very probable” in an experiment: this means that the
observed value 𝑥 of the RV X can be written as 𝜇 − 𝜀 < 𝑥 < 𝜇 + 𝜀 and hence 𝑥 − 𝜀 < 𝜇 < 𝑥 + 𝜀 . In other
words, using 𝑥 as an estimate of 𝜇 we commit an error that “most likely” does not exceed 𝜀 . IF, on the
contrary, 𝜎 ≰≰ 𝜀, we need n data in order to write 𝑃 𝜇 − 𝜀 < 𝑋� < 𝜇 + 𝜀 ≥ 1− 𝜎2/(𝑛𝜀2), where 𝑋� is the RV
“mean”; hence we can derive 𝑥� − 𝜀 < 𝜇 < 𝑥� + 𝜀., where 𝑥� is the “empirical mean” computed from the data.
In other words, using 𝑥� as an estimate of 𝜇 we commit an error that “most likely” does not exceed 𝜀. See
the excerpts 3, 3a, 3b.
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computed from the observed sample D: when we make the statement that  ( )CI, we accept, before any
computation, that, doing that, we can be right, in a long run of applications, (1-)%=CL of the applications,
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We know, before any computation, that we can be wrong % of the times but we do not know when it
happens.

The reader must be very careful to distinguish between the Probability Interval PI= L-----U  , where the
endpoints L and U depends on the distribution 𝜑 𝑡, 𝜃, 𝑛 of the estimator T (that we decide to use, which
does not depend on the “observed sample” D) and, on the probability =1- (that we fix before any computation),
as follows by the probabilistic statement (4) [se the figure 1 for the exponential density, when n=1]
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and Confidence Interval CI=L
-----U which depends on the “observed sample” D.

Notice that the Probability Interval PI=L-----U, given in the formula (4), does not depend on the data D, as
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Confidence Interval CI=L
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Shewhart identified this approach, L and U, on page 275 of [19] where he states:

“For the most part, however, we never know 𝑓Θ Θ, 𝑛 [this is the symbols of Shewhart for our 𝜑 𝑡, 𝜃, 𝑛 ]
in sufficient detail to set up such limit… We usually chose a symmetrical range characterised by limits Θ� ±
𝑡𝜎Θ symmetrically spaced in reference to Θ . Tchebycheff’s Theorem tells us that the probability P that an
observed value of Θ will lie within these symmetric limits so long as the quality standard is maintained
satisfies the inequality P>1-1/t2. We are still faced with the choice of t. Experience indicated that t=3 seems to
be an acceptable economic value”. See the excerpts 3,…

The Tchebycheff Inequality: IF the RV X is arbitrary with density f(x) and finite variance 𝜎2 THEN we
have the probability 𝑃 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤ 1/𝑘2, where 𝜇 = 𝐸 𝑋 . This is a “Probabilistic Theorem”.

It can be transferred into Statistics. Let’s suppose that we want to determine experimentally the unknown
mean 𝜇 within a “stated error ”. From the above (Probabilistic) Inequality we have 𝑃 𝜇 − 𝜀 < 𝑋 < 𝜇 + 𝜀 ≥
1 − 𝜎2/𝜀2; IF 𝜎 ≪ 𝜀 THEN the event 𝑋 − 𝜇 < 𝜀 is “very probable” in an experiment: this means that the
observed value 𝑥 of the RV X can be written as 𝜇 − 𝜀 < 𝑥 < 𝜇 + 𝜀 and hence 𝑥 − 𝜀 < 𝜇 < 𝑥 + 𝜀 . In other
words, using 𝑥 as an estimate of 𝜇 we commit an error that “most likely” does not exceed 𝜀 . IF, on the
contrary, 𝜎 ≰≰ 𝜀, we need n data in order to write 𝑃 𝜇 − 𝜀 < 𝑋� < 𝜇 + 𝜀 ≥ 1− 𝜎2/(𝑛𝜀2), where 𝑋� is the RV
“mean”; hence we can derive 𝑥� − 𝜀 < 𝜇 < 𝑥� + 𝜀., where 𝑥� is the “empirical mean” computed from the data.
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The Tchebycheff Inequality: IF the RV X is arbitrary with density f(x) and finite variance σ2 THEN we have the probability P[|X ˗ μ| ≥ 1 
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Shewhart identified this approach, L and U, on page 275 of [19] where he states:

“For the most part, however, we never know 𝑓Θ Θ, 𝑛 [this is the symbols of Shewhart for our 𝜑 𝑡, 𝜃, 𝑛 ]
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In other words, using 𝑥� as an estimate of 𝜇 we commit an error that “most likely” does not exceed 𝜀. See
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The reader must be very careful to distinguish between the Probability Interval PI= L-----U  , where the
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as follows by the probabilistic statement (4) [se the figure 1 for the exponential density, when n=1]
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and Confidence Interval CI=L
-----U which depends on the “observed sample” D.

Notice that the Probability Interval PI=L-----U, given in the formula (4), does not depend on the data D, as
you can pictorially see in fig. 1: L and U are the Probability Limits. Notice that, on the contrary, the
Confidence Interval CI=L

-----U does depend on the data D, pictorially seen in fig. 1. This point is essential for
all the papers in the References.

Shewhart identified this approach, L and U, on page 275 of [19] where he states:

“For the most part, however, we never know 𝑓Θ Θ, 𝑛 [this is the symbols of Shewhart for our 𝜑 𝑡, 𝜃, 𝑛 ]
in sufficient detail to set up such limit… We usually chose a symmetrical range characterised by limits Θ� ±
𝑡𝜎Θ symmetrically spaced in reference to Θ . Tchebycheff’s Theorem tells us that the probability P that an
observed value of Θ will lie within these symmetric limits so long as the quality standard is maintained
satisfies the inequality P>1-1/t2. We are still faced with the choice of t. Experience indicated that t=3 seems to
be an acceptable economic value”. See the excerpts 3,…

The Tchebycheff Inequality: IF the RV X is arbitrary with density f(x) and finite variance 𝜎2 THEN we
have the probability 𝑃 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤ 1/𝑘2, where 𝜇 = 𝐸 𝑋 . This is a “Probabilistic Theorem”.

It can be transferred into Statistics. Let’s suppose that we want to determine experimentally the unknown
mean 𝜇 within a “stated error ”. From the above (Probabilistic) Inequality we have 𝑃 𝜇 − 𝜀 < 𝑋 < 𝜇 + 𝜀 ≥
1 − 𝜎2/𝜀2; IF 𝜎 ≪ 𝜀 THEN the event 𝑋 − 𝜇 < 𝜀 is “very probable” in an experiment: this means that the
observed value 𝑥 of the RV X can be written as 𝜇 − 𝜀 < 𝑥 < 𝜇 + 𝜀 and hence 𝑥 − 𝜀 < 𝜇 < 𝑥 + 𝜀 . In other
words, using 𝑥 as an estimate of 𝜇 we commit an error that “most likely” does not exceed 𝜀 . IF, on the
contrary, 𝜎 ≰≰ 𝜀, we need n data in order to write 𝑃 𝜇 − 𝜀 < 𝑋� < 𝜇 + 𝜀 ≥ 1− 𝜎2/(𝑛𝜀2), where 𝑋� is the RV
“mean”; hence we can derive 𝑥� − 𝜀 < 𝜇 < 𝑥� + 𝜀., where 𝑥� is the “empirical mean” computed from the data.
In other words, using 𝑥� as an estimate of 𝜇 we commit an error that “most likely” does not exceed 𝜀. See
the excerpts 3, 3a, 3b.
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 as an estimate of μ we 
commit an error that “most likely” does not exceed ε. See the excerpts 3, 3a, 3b.

Notice that, when we write Notice that, when we write 𝑥� − 𝜀 < 𝜇 < 𝑥� + 𝜀, we consider the Confidence Interval CI [6-21, 25-33], and no
longer the Probability Interval PI [6-21, 25-33].

These statistical concepts are very important for our purpose when we consider the Sequential tests and
the Control Charts, especially with Individual data.

Notice that the error made by several authors [4, 5, 24] is generated by lack of knowledge of the difference
between PI and CI [6-21, 25-33]: they think wrongly that CI=PI, a diffused disease [4, 5, 24]! They should
study some of the books/papers [6-21, 25-33] and remember the Deming statements (excerpt 2).

The Deming statements are important for Quality. Managers, scholars; the professors must learn Logic,
Design of Experiments and Statistical Thinking to draw good decisions. The authors must, as well. Quality
must be their number one objective: they must learn Quality methods as well, using Intellectual Honesty [1-2,
6-21, 25-33]. Using (4), those authors do not extract the maximum information from the data in the Process Control.
To extract the maximum information from the data one needs statistical valid Methods [1-2, 6-21, 25-33].

As you can find in any good book or paper [6-21, 25-33] there is a strict relationship between CI and Test
Of Hypothesis, known also as Null Hypothesis Significance Testing Procedure (NHSTP). In Hypothesis
Testing (see the Appendix B), the experimenter wants to assess if a “thought” value of a parameter of a
distribution is confirmed (or rejected) by the collected data: for example, for the mean  (parameter) of the
Normal 𝑛(x|𝜇,𝜎2) density, he sets the “null hypothesis” H0={=0} and the probability P= of being wrong if
he decides that the “null hypothesis” H0 is true, when actually it is opposite: H0 is wrong. When we analyse,
at once, the observed sample D={x1, x2, …, xn} and we compute the empirical (observed) mean 𝑥� and the
empirical (observed) standard deviation 𝑠 , we define the Acceptance interval, which is the CI

𝐿𝐶𝐿 = 𝑥� − 𝑡1−𝛼/2𝑠/ 𝑛 < 𝜇 < 𝑥� + 𝑡1−𝛼/2𝑠/ 𝑛 = 𝑈𝐶𝐿 (5)

Notice that the interval (for the Normal model, 𝜇''assumed) [see the appendix B]

𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 −−−−−− 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 (6)

is the Probability Interval such that 𝑃 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 < 𝑋� < 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 = 1 − 𝛼.
A fundamental reflection is in order: the formulae (5) and (6) tempt the unwise guy to think that he can get

the Acceptance interval, which is the CI [1-23], by substituting the assumed values 𝜇0,𝜎0 of the parameters
with the empirical (observed) mean 𝑥� and standard deviation 𝑠. This trick is valid only for the Normal distribution.

The formulae (5) can be used sequentially to test H0={=0} versus H1={=1<0}; for any value 2<kn; we
obtain n-2 CIs, decreasing in length; we can continue until either 1<LCL or UCL<0, or both (verify) 1<LCL
and UCL<0.

More ideas about these points can be found in [34-57].
In the field of Control Charts, with Shewhart, instead of the formula (5), we use (7)

𝒙� −
𝒛𝟏−𝜶/𝟐𝒔
𝒄𝟒 𝒏

< 𝝁 < 𝒙� +
𝒛𝟏−𝜶/𝟐𝒔
𝒄𝟒 𝒏 (7)

where the t distribution value 𝑡1−𝛼/2 is replaced by the value 𝑧1−𝛼/2 of the Normal distribution, actually
𝑧1−𝛼/2=3, and a coefficient 𝒄𝟒 is used to make “unbiased” the estimate of the standard deviation, computed
from the information given by the sample.

Actually, Shewhart does not use the coefficient 𝒄𝟒 is as you can see from page 294 of Shewhart book
(1931), where 𝑋� is the “Grand Mean”, computed from D [named here empirical (observed) mean 𝑥� ], 𝜎 is
“estimated standard of each sample” (named here s, with sample size n=20, in excerpt 3)

, we consider the Confidence Interval CI [6-21, 25-33], and no longer the Probability 
Interval PI [6-21, 25-33]. These statistical concepts are very important for our purpose when we consider the Sequential tests and the 
Control Charts, especially with Individual data. Notice that the error made by several authors [4, 5, 24] is generated by lack of knowledge 
of the difference between PI and CI [6-21, 25-33]: they think wrongly that CI=PI, a diffused disease [4, 5, 24]! They should study some 
of the books/papers [6-21, 25-33] and remember the Deming statements (excerpt 2). 

The Deming statements are important for Quality. Managers, scholars; the professors must learn Logic, Design of Experiments and 
Statistical Thinking to draw good decisions. The authors must, as well. Quality must be their number one objective: they must learn 
Quality methods as well, using Intellectual Honesty [1-2, 6-21, 25-33]. Using (4), those authors do not extract the maximum information 
from the data in the Process Control. To extract the maximum information from the data one needs statistical valid Methods [1-2, 6-21, 
25-33]. As you can find in any good book or paper [6-21, 25-33] there is a strict relationship between CI and Test Of Hypothesis, known 
also as Null Hypothesis Significance Testing Procedure (NHSTP). In Hypothesis Testing (see the Appendix B), the experimenter wants 
to assess if a “thought” value of a parameter of a distribution is confirmed (or rejected) by the collected data: for example, for the mean  
μ (parameter) of the Normal n(x| μ, σ2) density, he sets the “null hypothesis” H0={μ = μ0} and the probability P = α of being wrong if he 
decides that the “null hypothesis” H0 is true, when actually it is opposite: H0 is wrong. When we analyse, at once, the observed sample 
D = {x1, x2, …, xn} and we compute the empirical (observed) mean 

the inference function () and to the statistical model F(x|).
Naming IT(T) the information extracted by the RV T we have that [6-21, 26-36]

IT(T)=1/MVB(T)  T is an Efficient Estimator.
If T is an Efficient Estimator there is no better estimator able to extract more information from D.
The estimates considered before were “point estimates” with their properties, looking for the “best” single

value of the inference function ().
We must now introduce the concept of Confidence Interval (CI) and Confidence Level (CL) [6-21, 26-36].
The “interval estimates” comprise all the values between  L (Lower confidence limit) and  U (Upper

confidence limit); the CI is defined by the numerical interval CI=L
-----U, where L and U are two quantities

computed from the observed sample D: when we make the statement that  ( )CI, we accept, before any
computation, that, doing that, we can be right, in a long run of applications, (1-)%=CL of the applications,
BUT we cannot know IF we are right in the single application (CL=Confidence Level).

We know, before any computation, that we can be wrong % of the times but we do not know when it
happens.

The reader must be very careful to distinguish between the Probability Interval PI= L-----U  , where the
endpoints L and U depends on the distribution 𝜑 𝑡, 𝜃, 𝑛 of the estimator T (that we decide to use, which
does not depend on the “observed sample” D) and, on the probability =1- (that we fix before any computation),
as follows by the probabilistic statement (4) [se the figure 1 for the exponential density, when n=1]

𝑃 𝐿 ≤ 𝑇 ≤ 𝑈 =
𝐿

𝑈
𝜑 𝑡, 𝜃, 𝑛 𝑑𝑡� = 1 − 𝛼 (4)

and Confidence Interval CI=L
-----U which depends on the “observed sample” D.

Notice that the Probability Interval PI=L-----U, given in the formula (4), does not depend on the data D, as
you can pictorially see in fig. 1: L and U are the Probability Limits. Notice that, on the contrary, the
Confidence Interval CI=L

-----U does depend on the data D, pictorially seen in fig. 1. This point is essential for
all the papers in the References.

Shewhart identified this approach, L and U, on page 275 of [19] where he states:

“For the most part, however, we never know 𝑓Θ Θ, 𝑛 [this is the symbols of Shewhart for our 𝜑 𝑡, 𝜃, 𝑛 ]
in sufficient detail to set up such limit… We usually chose a symmetrical range characterised by limits Θ� ±
𝑡𝜎Θ symmetrically spaced in reference to Θ . Tchebycheff’s Theorem tells us that the probability P that an
observed value of Θ will lie within these symmetric limits so long as the quality standard is maintained
satisfies the inequality P>1-1/t2. We are still faced with the choice of t. Experience indicated that t=3 seems to
be an acceptable economic value”. See the excerpts 3,…

The Tchebycheff Inequality: IF the RV X is arbitrary with density f(x) and finite variance 𝜎2 THEN we
have the probability 𝑃 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤ 1/𝑘2, where 𝜇 = 𝐸 𝑋 . This is a “Probabilistic Theorem”.

It can be transferred into Statistics. Let’s suppose that we want to determine experimentally the unknown
mean 𝜇 within a “stated error ”. From the above (Probabilistic) Inequality we have 𝑃 𝜇 − 𝜀 < 𝑋 < 𝜇 + 𝜀 ≥
1 − 𝜎2/𝜀2; IF 𝜎 ≪ 𝜀 THEN the event 𝑋 − 𝜇 < 𝜀 is “very probable” in an experiment: this means that the
observed value 𝑥 of the RV X can be written as 𝜇 − 𝜀 < 𝑥 < 𝜇 + 𝜀 and hence 𝑥 − 𝜀 < 𝜇 < 𝑥 + 𝜀 . In other
words, using 𝑥 as an estimate of 𝜇 we commit an error that “most likely” does not exceed 𝜀 . IF, on the
contrary, 𝜎 ≰≰ 𝜀, we need n data in order to write 𝑃 𝜇 − 𝜀 < 𝑋� < 𝜇 + 𝜀 ≥ 1− 𝜎2/(𝑛𝜀2), where 𝑋� is the RV
“mean”; hence we can derive 𝑥� − 𝜀 < 𝜇 < 𝑥� + 𝜀., where 𝑥� is the “empirical mean” computed from the data.
In other words, using 𝑥� as an estimate of 𝜇 we commit an error that “most likely” does not exceed 𝜀. See
the excerpts 3, 3a, 3b.

 and the empirical (observed) standard deviation s, we define the 
Acceptance interval, which is the CI

Notice that, when we write 𝑥� − 𝜀 < 𝜇 < 𝑥� + 𝜀, we consider the Confidence Interval CI [6-21, 25-33], and no
longer the Probability Interval PI [6-21, 25-33].

These statistical concepts are very important for our purpose when we consider the Sequential tests and
the Control Charts, especially with Individual data.

Notice that the error made by several authors [4, 5, 24] is generated by lack of knowledge of the difference
between PI and CI [6-21, 25-33]: they think wrongly that CI=PI, a diffused disease [4, 5, 24]! They should
study some of the books/papers [6-21, 25-33] and remember the Deming statements (excerpt 2).

The Deming statements are important for Quality. Managers, scholars; the professors must learn Logic,
Design of Experiments and Statistical Thinking to draw good decisions. The authors must, as well. Quality
must be their number one objective: they must learn Quality methods as well, using Intellectual Honesty [1-2,
6-21, 25-33]. Using (4), those authors do not extract the maximum information from the data in the Process Control.
To extract the maximum information from the data one needs statistical valid Methods [1-2, 6-21, 25-33].

As you can find in any good book or paper [6-21, 25-33] there is a strict relationship between CI and Test
Of Hypothesis, known also as Null Hypothesis Significance Testing Procedure (NHSTP). In Hypothesis
Testing (see the Appendix B), the experimenter wants to assess if a “thought” value of a parameter of a
distribution is confirmed (or rejected) by the collected data: for example, for the mean  (parameter) of the
Normal 𝑛(x|𝜇,𝜎2) density, he sets the “null hypothesis” H0={=0} and the probability P= of being wrong if
he decides that the “null hypothesis” H0 is true, when actually it is opposite: H0 is wrong. When we analyse,
at once, the observed sample D={x1, x2, …, xn} and we compute the empirical (observed) mean 𝑥� and the
empirical (observed) standard deviation 𝑠 , we define the Acceptance interval, which is the CI

𝐿𝐶𝐿 = 𝑥� − 𝑡1−𝛼/2𝑠/ 𝑛 < 𝜇 < 𝑥� + 𝑡1−𝛼/2𝑠/ 𝑛 = 𝑈𝐶𝐿 (5)

Notice that the interval (for the Normal model, 𝜇''assumed) [see the appendix B]

𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 −−−−−− 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 (6)

is the Probability Interval such that 𝑃 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 < 𝑋� < 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 = 1 − 𝛼.
A fundamental reflection is in order: the formulae (5) and (6) tempt the unwise guy to think that he can get

the Acceptance interval, which is the CI [1-23], by substituting the assumed values 𝜇0,𝜎0 of the parameters
with the empirical (observed) mean 𝑥� and standard deviation 𝑠. This trick is valid only for the Normal distribution.

The formulae (5) can be used sequentially to test H0={=0} versus H1={=1<0}; for any value 2<kn; we
obtain n-2 CIs, decreasing in length; we can continue until either 1<LCL or UCL<0, or both (verify) 1<LCL
and UCL<0.

More ideas about these points can be found in [34-57].
In the field of Control Charts, with Shewhart, instead of the formula (5), we use (7)

𝒙� −
𝒛𝟏−𝜶/𝟐𝒔
𝒄𝟒 𝒏

< 𝝁 < 𝒙� +
𝒛𝟏−𝜶/𝟐𝒔
𝒄𝟒 𝒏 (7)

where the t distribution value 𝑡1−𝛼/2 is replaced by the value 𝑧1−𝛼/2 of the Normal distribution, actually
𝑧1−𝛼/2=3, and a coefficient 𝒄𝟒 is used to make “unbiased” the estimate of the standard deviation, computed
from the information given by the sample.

Actually, Shewhart does not use the coefficient 𝒄𝟒 is as you can see from page 294 of Shewhart book
(1931), where 𝑋� is the “Grand Mean”, computed from D [named here empirical (observed) mean 𝑥� ], 𝜎 is
“estimated standard of each sample” (named here s, with sample size n=20, in excerpt 3)

Notice that the interval (for the Normal model, μ" assumed) [see the appendix B]

Notice that, when we write 𝑥� − 𝜀 < 𝜇 < 𝑥� + 𝜀, we consider the Confidence Interval CI [6-21, 25-33], and no
longer the Probability Interval PI [6-21, 25-33].

These statistical concepts are very important for our purpose when we consider the Sequential tests and
the Control Charts, especially with Individual data.

Notice that the error made by several authors [4, 5, 24] is generated by lack of knowledge of the difference
between PI and CI [6-21, 25-33]: they think wrongly that CI=PI, a diffused disease [4, 5, 24]! They should
study some of the books/papers [6-21, 25-33] and remember the Deming statements (excerpt 2).

The Deming statements are important for Quality. Managers, scholars; the professors must learn Logic,
Design of Experiments and Statistical Thinking to draw good decisions. The authors must, as well. Quality
must be their number one objective: they must learn Quality methods as well, using Intellectual Honesty [1-2,
6-21, 25-33]. Using (4), those authors do not extract the maximum information from the data in the Process Control.
To extract the maximum information from the data one needs statistical valid Methods [1-2, 6-21, 25-33].

As you can find in any good book or paper [6-21, 25-33] there is a strict relationship between CI and Test
Of Hypothesis, known also as Null Hypothesis Significance Testing Procedure (NHSTP). In Hypothesis
Testing (see the Appendix B), the experimenter wants to assess if a “thought” value of a parameter of a
distribution is confirmed (or rejected) by the collected data: for example, for the mean  (parameter) of the
Normal 𝑛(x|𝜇,𝜎2) density, he sets the “null hypothesis” H0={=0} and the probability P= of being wrong if
he decides that the “null hypothesis” H0 is true, when actually it is opposite: H0 is wrong. When we analyse,
at once, the observed sample D={x1, x2, …, xn} and we compute the empirical (observed) mean 𝑥� and the
empirical (observed) standard deviation 𝑠 , we define the Acceptance interval, which is the CI

𝐿𝐶𝐿 = 𝑥� − 𝑡1−𝛼/2𝑠/ 𝑛 < 𝜇 < 𝑥� + 𝑡1−𝛼/2𝑠/ 𝑛 = 𝑈𝐶𝐿 (5)

Notice that the interval (for the Normal model, 𝜇''assumed) [see the appendix B]

𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 −−−−−− 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 (6)

is the Probability Interval such that 𝑃 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 < 𝑋� < 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 = 1 − 𝛼.
A fundamental reflection is in order: the formulae (5) and (6) tempt the unwise guy to think that he can get

the Acceptance interval, which is the CI [1-23], by substituting the assumed values 𝜇0,𝜎0 of the parameters
with the empirical (observed) mean 𝑥� and standard deviation 𝑠. This trick is valid only for the Normal distribution.

The formulae (5) can be used sequentially to test H0={=0} versus H1={=1<0}; for any value 2<kn; we
obtain n-2 CIs, decreasing in length; we can continue until either 1<LCL or UCL<0, or both (verify) 1<LCL
and UCL<0.

More ideas about these points can be found in [34-57].
In the field of Control Charts, with Shewhart, instead of the formula (5), we use (7)

𝒙� −
𝒛𝟏−𝜶/𝟐𝒔
𝒄𝟒 𝒏

< 𝝁 < 𝒙� +
𝒛𝟏−𝜶/𝟐𝒔
𝒄𝟒 𝒏 (7)

where the t distribution value 𝑡1−𝛼/2 is replaced by the value 𝑧1−𝛼/2 of the Normal distribution, actually
𝑧1−𝛼/2=3, and a coefficient 𝒄𝟒 is used to make “unbiased” the estimate of the standard deviation, computed
from the information given by the sample.

Actually, Shewhart does not use the coefficient 𝒄𝟒 is as you can see from page 294 of Shewhart book
(1931), where 𝑋� is the “Grand Mean”, computed from D [named here empirical (observed) mean 𝑥� ], 𝜎 is
“estimated standard of each sample” (named here s, with sample size n=20, in excerpt 3)

	

is the Probability Interval such that 

Notice that, when we write 𝑥� − 𝜀 < 𝜇 < 𝑥� + 𝜀, we consider the Confidence Interval CI [6-21, 25-33], and no
longer the Probability Interval PI [6-21, 25-33].

These statistical concepts are very important for our purpose when we consider the Sequential tests and
the Control Charts, especially with Individual data.

Notice that the error made by several authors [4, 5, 24] is generated by lack of knowledge of the difference
between PI and CI [6-21, 25-33]: they think wrongly that CI=PI, a diffused disease [4, 5, 24]! They should
study some of the books/papers [6-21, 25-33] and remember the Deming statements (excerpt 2).

The Deming statements are important for Quality. Managers, scholars; the professors must learn Logic,
Design of Experiments and Statistical Thinking to draw good decisions. The authors must, as well. Quality
must be their number one objective: they must learn Quality methods as well, using Intellectual Honesty [1-2,
6-21, 25-33]. Using (4), those authors do not extract the maximum information from the data in the Process Control.
To extract the maximum information from the data one needs statistical valid Methods [1-2, 6-21, 25-33].

As you can find in any good book or paper [6-21, 25-33] there is a strict relationship between CI and Test
Of Hypothesis, known also as Null Hypothesis Significance Testing Procedure (NHSTP). In Hypothesis
Testing (see the Appendix B), the experimenter wants to assess if a “thought” value of a parameter of a
distribution is confirmed (or rejected) by the collected data: for example, for the mean  (parameter) of the
Normal 𝑛(x|𝜇,𝜎2) density, he sets the “null hypothesis” H0={=0} and the probability P= of being wrong if
he decides that the “null hypothesis” H0 is true, when actually it is opposite: H0 is wrong. When we analyse,
at once, the observed sample D={x1, x2, …, xn} and we compute the empirical (observed) mean 𝑥� and the
empirical (observed) standard deviation 𝑠 , we define the Acceptance interval, which is the CI

𝐿𝐶𝐿 = 𝑥� − 𝑡1−𝛼/2𝑠/ 𝑛 < 𝜇 < 𝑥� + 𝑡1−𝛼/2𝑠/ 𝑛 = 𝑈𝐶𝐿 (5)

Notice that the interval (for the Normal model, 𝜇''assumed) [see the appendix B]

𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 −−−−−− 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 (6)

is the Probability Interval such that 𝑃 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 < 𝑋� < 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 = 1 − 𝛼.
A fundamental reflection is in order: the formulae (5) and (6) tempt the unwise guy to think that he can get

the Acceptance interval, which is the CI [1-23], by substituting the assumed values 𝜇0,𝜎0 of the parameters
with the empirical (observed) mean 𝑥� and standard deviation 𝑠. This trick is valid only for the Normal distribution.

The formulae (5) can be used sequentially to test H0={=0} versus H1={=1<0}; for any value 2<kn; we
obtain n-2 CIs, decreasing in length; we can continue until either 1<LCL or UCL<0, or both (verify) 1<LCL
and UCL<0.

More ideas about these points can be found in [34-57].
In the field of Control Charts, with Shewhart, instead of the formula (5), we use (7)

𝒙� −
𝒛𝟏−𝜶/𝟐𝒔
𝒄𝟒 𝒏

< 𝝁 < 𝒙� +
𝒛𝟏−𝜶/𝟐𝒔
𝒄𝟒 𝒏 (7)

where the t distribution value 𝑡1−𝛼/2 is replaced by the value 𝑧1−𝛼/2 of the Normal distribution, actually
𝑧1−𝛼/2=3, and a coefficient 𝒄𝟒 is used to make “unbiased” the estimate of the standard deviation, computed
from the information given by the sample.

Actually, Shewhart does not use the coefficient 𝒄𝟒 is as you can see from page 294 of Shewhart book
(1931), where 𝑋� is the “Grand Mean”, computed from D [named here empirical (observed) mean 𝑥� ], 𝜎 is
“estimated standard of each sample” (named here s, with sample size n=20, in excerpt 3)

.

A fundamental reflection is in order: the formulae (5) and (6) tempt the unwise guy to think that he can get the Acceptance interval, which 
is the CI [1-23], by substituting the assumed values μ0, σ0 of the parameters with the empirical (observed) mean 

the inference function () and to the statistical model F(x|).
Naming IT(T) the information extracted by the RV T we have that [6-21, 26-36]

IT(T)=1/MVB(T)  T is an Efficient Estimator.
If T is an Efficient Estimator there is no better estimator able to extract more information from D.
The estimates considered before were “point estimates” with their properties, looking for the “best” single

value of the inference function ().
We must now introduce the concept of Confidence Interval (CI) and Confidence Level (CL) [6-21, 26-36].
The “interval estimates” comprise all the values between  L (Lower confidence limit) and  U (Upper

confidence limit); the CI is defined by the numerical interval CI=L
-----U, where L and U are two quantities

computed from the observed sample D: when we make the statement that  ( )CI, we accept, before any
computation, that, doing that, we can be right, in a long run of applications, (1-)%=CL of the applications,
BUT we cannot know IF we are right in the single application (CL=Confidence Level).

We know, before any computation, that we can be wrong % of the times but we do not know when it
happens.

The reader must be very careful to distinguish between the Probability Interval PI= L-----U  , where the
endpoints L and U depends on the distribution 𝜑 𝑡, 𝜃, 𝑛 of the estimator T (that we decide to use, which
does not depend on the “observed sample” D) and, on the probability =1- (that we fix before any computation),
as follows by the probabilistic statement (4) [se the figure 1 for the exponential density, when n=1]

𝑃 𝐿 ≤ 𝑇 ≤ 𝑈 =
𝐿

𝑈
𝜑 𝑡, 𝜃, 𝑛 𝑑𝑡� = 1 − 𝛼 (4)

and Confidence Interval CI=L
-----U which depends on the “observed sample” D.

Notice that the Probability Interval PI=L-----U, given in the formula (4), does not depend on the data D, as
you can pictorially see in fig. 1: L and U are the Probability Limits. Notice that, on the contrary, the
Confidence Interval CI=L

-----U does depend on the data D, pictorially seen in fig. 1. This point is essential for
all the papers in the References.

Shewhart identified this approach, L and U, on page 275 of [19] where he states:

“For the most part, however, we never know 𝑓Θ Θ, 𝑛 [this is the symbols of Shewhart for our 𝜑 𝑡, 𝜃, 𝑛 ]
in sufficient detail to set up such limit… We usually chose a symmetrical range characterised by limits Θ� ±
𝑡𝜎Θ symmetrically spaced in reference to Θ . Tchebycheff’s Theorem tells us that the probability P that an
observed value of Θ will lie within these symmetric limits so long as the quality standard is maintained
satisfies the inequality P>1-1/t2. We are still faced with the choice of t. Experience indicated that t=3 seems to
be an acceptable economic value”. See the excerpts 3,…

The Tchebycheff Inequality: IF the RV X is arbitrary with density f(x) and finite variance 𝜎2 THEN we
have the probability 𝑃 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤ 1/𝑘2, where 𝜇 = 𝐸 𝑋 . This is a “Probabilistic Theorem”.

It can be transferred into Statistics. Let’s suppose that we want to determine experimentally the unknown
mean 𝜇 within a “stated error ”. From the above (Probabilistic) Inequality we have 𝑃 𝜇 − 𝜀 < 𝑋 < 𝜇 + 𝜀 ≥
1 − 𝜎2/𝜀2; IF 𝜎 ≪ 𝜀 THEN the event 𝑋 − 𝜇 < 𝜀 is “very probable” in an experiment: this means that the
observed value 𝑥 of the RV X can be written as 𝜇 − 𝜀 < 𝑥 < 𝜇 + 𝜀 and hence 𝑥 − 𝜀 < 𝜇 < 𝑥 + 𝜀 . In other
words, using 𝑥 as an estimate of 𝜇 we commit an error that “most likely” does not exceed 𝜀 . IF, on the
contrary, 𝜎 ≰≰ 𝜀, we need n data in order to write 𝑃 𝜇 − 𝜀 < 𝑋� < 𝜇 + 𝜀 ≥ 1− 𝜎2/(𝑛𝜀2), where 𝑋� is the RV
“mean”; hence we can derive 𝑥� − 𝜀 < 𝜇 < 𝑥� + 𝜀., where 𝑥� is the “empirical mean” computed from the data.
In other words, using 𝑥� as an estimate of 𝜇 we commit an error that “most likely” does not exceed 𝜀. See
the excerpts 3, 3a, 3b.

 and standard deviation 
s . This trick is valid only for the Normal distribution.

The formulae (5) can be used sequentially to test H0={μ = μ0} versus H1={μ = μ1 < μ 0}; for any value 2 < k ≤ n; we obtain n-2 CIs, 
decreasing in length; we can continue until either μ1 < LCL or UCL < μ0, or both (verify) μ1 < LCL and UCL < μ0.
More ideas about these points can be found in [34-57].

In the field of Control Charts, with Shewhart, instead of the formula (5), we use (7)

the inference function () and to the statistical model F(x|).
Naming IT(T) the information extracted by the RV T we have that [6-21, 26-36]

IT(T)=1/MVB(T)  T is an Efficient Estimator.
If T is an Efficient Estimator there is no better estimator able to extract more information from D.
The estimates considered before were “point estimates” with their properties, looking for the “best” single

value of the inference function ().
We must now introduce the concept of Confidence Interval (CI) and Confidence Level (CL) [6-21, 26-36].
The “interval estimates” comprise all the values between  L (Lower confidence limit) and  U (Upper

confidence limit); the CI is defined by the numerical interval CI=L
-----U, where L and U are two quantities

computed from the observed sample D: when we make the statement that  ( )CI, we accept, before any
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The reader must be very careful to distinguish between the Probability Interval PI= L-----U  , where the
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does not depend on the “observed sample” D) and, on the probability =1- (that we fix before any computation),
as follows by the probabilistic statement (4) [se the figure 1 for the exponential density, when n=1]

𝑃 𝐿 ≤ 𝑇 ≤ 𝑈 =
𝐿

𝑈
𝜑 𝑡, 𝜃, 𝑛 𝑑𝑡� = 1 − 𝛼 (4)

and Confidence Interval CI=L
-----U which depends on the “observed sample” D.

Notice that the Probability Interval PI=L-----U, given in the formula (4), does not depend on the data D, as
you can pictorially see in fig. 1: L and U are the Probability Limits. Notice that, on the contrary, the
Confidence Interval CI=L

-----U does depend on the data D, pictorially seen in fig. 1. This point is essential for
all the papers in the References.

Shewhart identified this approach, L and U, on page 275 of [19] where he states:

“For the most part, however, we never know 𝑓Θ Θ, 𝑛 [this is the symbols of Shewhart for our 𝜑 𝑡, 𝜃, 𝑛 ]
in sufficient detail to set up such limit… We usually chose a symmetrical range characterised by limits Θ� ±
𝑡𝜎Θ symmetrically spaced in reference to Θ . Tchebycheff’s Theorem tells us that the probability P that an
observed value of Θ will lie within these symmetric limits so long as the quality standard is maintained
satisfies the inequality P>1-1/t2. We are still faced with the choice of t. Experience indicated that t=3 seems to
be an acceptable economic value”. See the excerpts 3,…

The Tchebycheff Inequality: IF the RV X is arbitrary with density f(x) and finite variance 𝜎2 THEN we
have the probability 𝑃 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤ 1/𝑘2, where 𝜇 = 𝐸 𝑋 . This is a “Probabilistic Theorem”.

It can be transferred into Statistics. Let’s suppose that we want to determine experimentally the unknown
mean 𝜇 within a “stated error ”. From the above (Probabilistic) Inequality we have 𝑃 𝜇 − 𝜀 < 𝑋 < 𝜇 + 𝜀 ≥
1 − 𝜎2/𝜀2; IF 𝜎 ≪ 𝜀 THEN the event 𝑋 − 𝜇 < 𝜀 is “very probable” in an experiment: this means that the
observed value 𝑥 of the RV X can be written as 𝜇 − 𝜀 < 𝑥 < 𝜇 + 𝜀 and hence 𝑥 − 𝜀 < 𝜇 < 𝑥 + 𝜀 . In other
words, using 𝑥 as an estimate of 𝜇 we commit an error that “most likely” does not exceed 𝜀 . IF, on the
contrary, 𝜎 ≰≰ 𝜀, we need n data in order to write 𝑃 𝜇 − 𝜀 < 𝑋� < 𝜇 + 𝜀 ≥ 1− 𝜎2/(𝑛𝜀2), where 𝑋� is the RV
“mean”; hence we can derive 𝑥� − 𝜀 < 𝜇 < 𝑥� + 𝜀., where 𝑥� is the “empirical mean” computed from the data.
In other words, using 𝑥� as an estimate of 𝜇 we commit an error that “most likely” does not exceed 𝜀. See
the excerpts 3, 3a, 3b.

Notice that, when we write 𝑥� − 𝜀 < 𝜇 < 𝑥� + 𝜀, we consider the Confidence Interval CI [6-21, 25-33], and no
longer the Probability Interval PI [6-21, 25-33].

These statistical concepts are very important for our purpose when we consider the Sequential tests and
the Control Charts, especially with Individual data.

Notice that the error made by several authors [4, 5, 24] is generated by lack of knowledge of the difference
between PI and CI [6-21, 25-33]: they think wrongly that CI=PI, a diffused disease [4, 5, 24]! They should
study some of the books/papers [6-21, 25-33] and remember the Deming statements (excerpt 2).

The Deming statements are important for Quality. Managers, scholars; the professors must learn Logic,
Design of Experiments and Statistical Thinking to draw good decisions. The authors must, as well. Quality
must be their number one objective: they must learn Quality methods as well, using Intellectual Honesty [1-2,
6-21, 25-33]. Using (4), those authors do not extract the maximum information from the data in the Process Control.
To extract the maximum information from the data one needs statistical valid Methods [1-2, 6-21, 25-33].

As you can find in any good book or paper [6-21, 25-33] there is a strict relationship between CI and Test
Of Hypothesis, known also as Null Hypothesis Significance Testing Procedure (NHSTP). In Hypothesis
Testing (see the Appendix B), the experimenter wants to assess if a “thought” value of a parameter of a
distribution is confirmed (or rejected) by the collected data: for example, for the mean  (parameter) of the
Normal 𝑛(x|𝜇,𝜎2) density, he sets the “null hypothesis” H0={=0} and the probability P= of being wrong if
he decides that the “null hypothesis” H0 is true, when actually it is opposite: H0 is wrong. When we analyse,
at once, the observed sample D={x1, x2, …, xn} and we compute the empirical (observed) mean 𝑥� and the
empirical (observed) standard deviation 𝑠 , we define the Acceptance interval, which is the CI

𝐿𝐶𝐿 = 𝑥� − 𝑡1−𝛼/2𝑠/ 𝑛 < 𝜇 < 𝑥� + 𝑡1−𝛼/2𝑠/ 𝑛 = 𝑈𝐶𝐿 (5)

Notice that the interval (for the Normal model, 𝜇''assumed) [see the appendix B]

𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 −−−−−− 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 (6)

is the Probability Interval such that 𝑃 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 < 𝑋� < 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 = 1 − 𝛼.
A fundamental reflection is in order: the formulae (5) and (6) tempt the unwise guy to think that he can get

the Acceptance interval, which is the CI [1-23], by substituting the assumed values 𝜇0,𝜎0 of the parameters
with the empirical (observed) mean 𝑥� and standard deviation 𝑠. This trick is valid only for the Normal distribution.

The formulae (5) can be used sequentially to test H0={=0} versus H1={=1<0}; for any value 2<kn; we
obtain n-2 CIs, decreasing in length; we can continue until either 1<LCL or UCL<0, or both (verify) 1<LCL
and UCL<0.

More ideas about these points can be found in [34-57].
In the field of Control Charts, with Shewhart, instead of the formula (5), we use (7)

𝒙� −
𝒛𝟏−𝜶/𝟐𝒔
𝒄𝟒 𝒏

< 𝝁 < 𝒙� +
𝒛𝟏−𝜶/𝟐𝒔
𝒄𝟒 𝒏 (7)

where the t distribution value 𝑡1−𝛼/2 is replaced by the value 𝑧1−𝛼/2 of the Normal distribution, actually
𝑧1−𝛼/2=3, and a coefficient 𝒄𝟒 is used to make “unbiased” the estimate of the standard deviation, computed
from the information given by the sample.

Actually, Shewhart does not use the coefficient 𝒄𝟒 is as you can see from page 294 of Shewhart book
(1931), where 𝑋� is the “Grand Mean”, computed from D [named here empirical (observed) mean 𝑥� ], 𝜎 is
“estimated standard of each sample” (named here s, with sample size n=20, in excerpt 3)

Notice that, when we write 𝑥� − 𝜀 < 𝜇 < 𝑥� + 𝜀, we consider the Confidence Interval CI [6-21, 25-33], and no
longer the Probability Interval PI [6-21, 25-33].

These statistical concepts are very important for our purpose when we consider the Sequential tests and
the Control Charts, especially with Individual data.

Notice that the error made by several authors [4, 5, 24] is generated by lack of knowledge of the difference
between PI and CI [6-21, 25-33]: they think wrongly that CI=PI, a diffused disease [4, 5, 24]! They should
study some of the books/papers [6-21, 25-33] and remember the Deming statements (excerpt 2).

The Deming statements are important for Quality. Managers, scholars; the professors must learn Logic,
Design of Experiments and Statistical Thinking to draw good decisions. The authors must, as well. Quality
must be their number one objective: they must learn Quality methods as well, using Intellectual Honesty [1-2,
6-21, 25-33]. Using (4), those authors do not extract the maximum information from the data in the Process Control.
To extract the maximum information from the data one needs statistical valid Methods [1-2, 6-21, 25-33].

As you can find in any good book or paper [6-21, 25-33] there is a strict relationship between CI and Test
Of Hypothesis, known also as Null Hypothesis Significance Testing Procedure (NHSTP). In Hypothesis
Testing (see the Appendix B), the experimenter wants to assess if a “thought” value of a parameter of a
distribution is confirmed (or rejected) by the collected data: for example, for the mean  (parameter) of the
Normal 𝑛(x|𝜇,𝜎2) density, he sets the “null hypothesis” H0={=0} and the probability P= of being wrong if
he decides that the “null hypothesis” H0 is true, when actually it is opposite: H0 is wrong. When we analyse,
at once, the observed sample D={x1, x2, …, xn} and we compute the empirical (observed) mean 𝑥� and the
empirical (observed) standard deviation 𝑠 , we define the Acceptance interval, which is the CI

𝐿𝐶𝐿 = 𝑥� − 𝑡1−𝛼/2𝑠/ 𝑛 < 𝜇 < 𝑥� + 𝑡1−𝛼/2𝑠/ 𝑛 = 𝑈𝐶𝐿 (5)

Notice that the interval (for the Normal model, 𝜇''assumed) [see the appendix B]

𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 −−−−−− 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 (6)

is the Probability Interval such that 𝑃 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 < 𝑋� < 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 = 1 − 𝛼.
A fundamental reflection is in order: the formulae (5) and (6) tempt the unwise guy to think that he can get

the Acceptance interval, which is the CI [1-23], by substituting the assumed values 𝜇0,𝜎0 of the parameters
with the empirical (observed) mean 𝑥� and standard deviation 𝑠. This trick is valid only for the Normal distribution.

The formulae (5) can be used sequentially to test H0={=0} versus H1={=1<0}; for any value 2<kn; we
obtain n-2 CIs, decreasing in length; we can continue until either 1<LCL or UCL<0, or both (verify) 1<LCL
and UCL<0.

More ideas about these points can be found in [34-57].
In the field of Control Charts, with Shewhart, instead of the formula (5), we use (7)

𝒙� −
𝒛𝟏−𝜶/𝟐𝒔
𝒄𝟒 𝒏

< 𝝁 < 𝒙� +
𝒛𝟏−𝜶/𝟐𝒔
𝒄𝟒 𝒏 (7)

where the t distribution value 𝑡1−𝛼/2 is replaced by the value 𝑧1−𝛼/2 of the Normal distribution, actually
𝑧1−𝛼/2=3, and a coefficient 𝒄𝟒 is used to make “unbiased” the estimate of the standard deviation, computed
from the information given by the sample.

Actually, Shewhart does not use the coefficient 𝒄𝟒 is as you can see from page 294 of Shewhart book
(1931), where 𝑋� is the “Grand Mean”, computed from D [named here empirical (observed) mean 𝑥� ], 𝜎 is
“estimated standard of each sample” (named here s, with sample size n=20, in excerpt 3)
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Notice that, when we write 𝑥� − 𝜀 < 𝜇 < 𝑥� + 𝜀, we consider the Confidence Interval CI [6-21, 25-33], and no
longer the Probability Interval PI [6-21, 25-33].

These statistical concepts are very important for our purpose when we consider the Sequential tests and
the Control Charts, especially with Individual data.

Notice that the error made by several authors [4, 5, 24] is generated by lack of knowledge of the difference
between PI and CI [6-21, 25-33]: they think wrongly that CI=PI, a diffused disease [4, 5, 24]! They should
study some of the books/papers [6-21, 25-33] and remember the Deming statements (excerpt 2).

The Deming statements are important for Quality. Managers, scholars; the professors must learn Logic,
Design of Experiments and Statistical Thinking to draw good decisions. The authors must, as well. Quality
must be their number one objective: they must learn Quality methods as well, using Intellectual Honesty [1-2,
6-21, 25-33]. Using (4), those authors do not extract the maximum information from the data in the Process Control.
To extract the maximum information from the data one needs statistical valid Methods [1-2, 6-21, 25-33].

As you can find in any good book or paper [6-21, 25-33] there is a strict relationship between CI and Test
Of Hypothesis, known also as Null Hypothesis Significance Testing Procedure (NHSTP). In Hypothesis
Testing (see the Appendix B), the experimenter wants to assess if a “thought” value of a parameter of a
distribution is confirmed (or rejected) by the collected data: for example, for the mean  (parameter) of the
Normal 𝑛(x|𝜇,𝜎2) density, he sets the “null hypothesis” H0={=0} and the probability P= of being wrong if
he decides that the “null hypothesis” H0 is true, when actually it is opposite: H0 is wrong. When we analyse,
at once, the observed sample D={x1, x2, …, xn} and we compute the empirical (observed) mean 𝑥� and the
empirical (observed) standard deviation 𝑠 , we define the Acceptance interval, which is the CI

𝐿𝐶𝐿 = 𝑥� − 𝑡1−𝛼/2𝑠/ 𝑛 < 𝜇 < 𝑥� + 𝑡1−𝛼/2𝑠/ 𝑛 = 𝑈𝐶𝐿 (5)

Notice that the interval (for the Normal model, 𝜇''assumed) [see the appendix B]

𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 −−−−−− 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 (6)

is the Probability Interval such that 𝑃 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 < 𝑋� < 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 = 1 − 𝛼.
A fundamental reflection is in order: the formulae (5) and (6) tempt the unwise guy to think that he can get

the Acceptance interval, which is the CI [1-23], by substituting the assumed values 𝜇0,𝜎0 of the parameters
with the empirical (observed) mean 𝑥� and standard deviation 𝑠. This trick is valid only for the Normal distribution.

The formulae (5) can be used sequentially to test H0={=0} versus H1={=1<0}; for any value 2<kn; we
obtain n-2 CIs, decreasing in length; we can continue until either 1<LCL or UCL<0, or both (verify) 1<LCL
and UCL<0.

More ideas about these points can be found in [34-57].
In the field of Control Charts, with Shewhart, instead of the formula (5), we use (7)

𝒙� −
𝒛𝟏−𝜶/𝟐𝒔
𝒄𝟒 𝒏

< 𝝁 < 𝒙� +
𝒛𝟏−𝜶/𝟐𝒔
𝒄𝟒 𝒏 (7)

where the t distribution value 𝑡1−𝛼/2 is replaced by the value 𝑧1−𝛼/2 of the Normal distribution, actually
𝑧1−𝛼/2=3, and a coefficient 𝒄𝟒 is used to make “unbiased” the estimate of the standard deviation, computed
from the information given by the sample.

Actually, Shewhart does not use the coefficient 𝒄𝟒 is as you can see from page 294 of Shewhart book
(1931), where 𝑋� is the “Grand Mean”, computed from D [named here empirical (observed) mean 𝑥� ], 𝜎 is
“estimated standard of each sample” (named here s, with sample size n=20, in excerpt 3)

	

where the t distribution value t1 -  α/2 is replaced by the value z1 -  α/2 of the Normal distribution, actually z1 -  α/2 = 3, and a coefficient c4 is 
used to make “unbiased” the estimate of the standard deviation, computed from the information given by the sample.

Actually, Shewhart does not use the coefficient c4 is as you can see from page 294 of Shewhart book (1931), where 

Notice that, when we write 𝑥� − 𝜀 < 𝜇 < 𝑥� + 𝜀, we consider the Confidence Interval CI [6-21, 25-33], and no
longer the Probability Interval PI [6-21, 25-33].

These statistical concepts are very important for our purpose when we consider the Sequential tests and
the Control Charts, especially with Individual data.

Notice that the error made by several authors [4, 5, 24] is generated by lack of knowledge of the difference
between PI and CI [6-21, 25-33]: they think wrongly that CI=PI, a diffused disease [4, 5, 24]! They should
study some of the books/papers [6-21, 25-33] and remember the Deming statements (excerpt 2).

The Deming statements are important for Quality. Managers, scholars; the professors must learn Logic,
Design of Experiments and Statistical Thinking to draw good decisions. The authors must, as well. Quality
must be their number one objective: they must learn Quality methods as well, using Intellectual Honesty [1-2,
6-21, 25-33]. Using (4), those authors do not extract the maximum information from the data in the Process Control.
To extract the maximum information from the data one needs statistical valid Methods [1-2, 6-21, 25-33].

As you can find in any good book or paper [6-21, 25-33] there is a strict relationship between CI and Test
Of Hypothesis, known also as Null Hypothesis Significance Testing Procedure (NHSTP). In Hypothesis
Testing (see the Appendix B), the experimenter wants to assess if a “thought” value of a parameter of a
distribution is confirmed (or rejected) by the collected data: for example, for the mean  (parameter) of the
Normal 𝑛(x|𝜇,𝜎2) density, he sets the “null hypothesis” H0={=0} and the probability P= of being wrong if
he decides that the “null hypothesis” H0 is true, when actually it is opposite: H0 is wrong. When we analyse,
at once, the observed sample D={x1, x2, …, xn} and we compute the empirical (observed) mean 𝑥� and the
empirical (observed) standard deviation 𝑠 , we define the Acceptance interval, which is the CI

𝐿𝐶𝐿 = 𝑥� − 𝑡1−𝛼/2𝑠/ 𝑛 < 𝜇 < 𝑥� + 𝑡1−𝛼/2𝑠/ 𝑛 = 𝑈𝐶𝐿 (5)

Notice that the interval (for the Normal model, 𝜇''assumed) [see the appendix B]

𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 −−−−−− 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 (6)

is the Probability Interval such that 𝑃 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 < 𝑋� < 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 = 1 − 𝛼.
A fundamental reflection is in order: the formulae (5) and (6) tempt the unwise guy to think that he can get

the Acceptance interval, which is the CI [1-23], by substituting the assumed values 𝜇0,𝜎0 of the parameters
with the empirical (observed) mean 𝑥� and standard deviation 𝑠. This trick is valid only for the Normal distribution.

The formulae (5) can be used sequentially to test H0={=0} versus H1={=1<0}; for any value 2<kn; we
obtain n-2 CIs, decreasing in length; we can continue until either 1<LCL or UCL<0, or both (verify) 1<LCL
and UCL<0.

More ideas about these points can be found in [34-57].
In the field of Control Charts, with Shewhart, instead of the formula (5), we use (7)

𝒙� −
𝒛𝟏−𝜶/𝟐𝒔
𝒄𝟒 𝒏

< 𝝁 < 𝒙� +
𝒛𝟏−𝜶/𝟐𝒔
𝒄𝟒 𝒏 (7)

where the t distribution value 𝑡1−𝛼/2 is replaced by the value 𝑧1−𝛼/2 of the Normal distribution, actually
𝑧1−𝛼/2=3, and a coefficient 𝒄𝟒 is used to make “unbiased” the estimate of the standard deviation, computed
from the information given by the sample.

Actually, Shewhart does not use the coefficient 𝒄𝟒 is as you can see from page 294 of Shewhart book
(1931), where 𝑋� is the “Grand Mean”, computed from D [named here empirical (observed) mean 𝑥� ], 𝜎 is
“estimated standard of each sample” (named here s, with sample size n=20, in excerpt 3)

 is the “Grand 
Mean”, computed from D [named here empirical (observed) mean 

the inference function () and to the statistical model F(x|).
Naming IT(T) the information extracted by the RV T we have that [6-21, 26-36]

IT(T)=1/MVB(T)  T is an Efficient Estimator.
If T is an Efficient Estimator there is no better estimator able to extract more information from D.
The estimates considered before were “point estimates” with their properties, looking for the “best” single

value of the inference function ().
We must now introduce the concept of Confidence Interval (CI) and Confidence Level (CL) [6-21, 26-36].
The “interval estimates” comprise all the values between  L (Lower confidence limit) and  U (Upper

confidence limit); the CI is defined by the numerical interval CI=L
-----U, where L and U are two quantities

computed from the observed sample D: when we make the statement that  ( )CI, we accept, before any
computation, that, doing that, we can be right, in a long run of applications, (1-)%=CL of the applications,
BUT we cannot know IF we are right in the single application (CL=Confidence Level).

We know, before any computation, that we can be wrong % of the times but we do not know when it
happens.

The reader must be very careful to distinguish between the Probability Interval PI= L-----U  , where the
endpoints L and U depends on the distribution 𝜑 𝑡, 𝜃, 𝑛 of the estimator T (that we decide to use, which
does not depend on the “observed sample” D) and, on the probability =1- (that we fix before any computation),
as follows by the probabilistic statement (4) [se the figure 1 for the exponential density, when n=1]

𝑃 𝐿 ≤ 𝑇 ≤ 𝑈 =
𝐿

𝑈
𝜑 𝑡, 𝜃, 𝑛 𝑑𝑡� = 1 − 𝛼 (4)

and Confidence Interval CI=L
-----U which depends on the “observed sample” D.

Notice that the Probability Interval PI=L-----U, given in the formula (4), does not depend on the data D, as
you can pictorially see in fig. 1: L and U are the Probability Limits. Notice that, on the contrary, the
Confidence Interval CI=L

-----U does depend on the data D, pictorially seen in fig. 1. This point is essential for
all the papers in the References.

Shewhart identified this approach, L and U, on page 275 of [19] where he states:

“For the most part, however, we never know 𝑓Θ Θ, 𝑛 [this is the symbols of Shewhart for our 𝜑 𝑡, 𝜃, 𝑛 ]
in sufficient detail to set up such limit… We usually chose a symmetrical range characterised by limits Θ� ±
𝑡𝜎Θ symmetrically spaced in reference to Θ . Tchebycheff’s Theorem tells us that the probability P that an
observed value of Θ will lie within these symmetric limits so long as the quality standard is maintained
satisfies the inequality P>1-1/t2. We are still faced with the choice of t. Experience indicated that t=3 seems to
be an acceptable economic value”. See the excerpts 3,…

The Tchebycheff Inequality: IF the RV X is arbitrary with density f(x) and finite variance 𝜎2 THEN we
have the probability 𝑃 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤ 1/𝑘2, where 𝜇 = 𝐸 𝑋 . This is a “Probabilistic Theorem”.

It can be transferred into Statistics. Let’s suppose that we want to determine experimentally the unknown
mean 𝜇 within a “stated error ”. From the above (Probabilistic) Inequality we have 𝑃 𝜇 − 𝜀 < 𝑋 < 𝜇 + 𝜀 ≥
1 − 𝜎2/𝜀2; IF 𝜎 ≪ 𝜀 THEN the event 𝑋 − 𝜇 < 𝜀 is “very probable” in an experiment: this means that the
observed value 𝑥 of the RV X can be written as 𝜇 − 𝜀 < 𝑥 < 𝜇 + 𝜀 and hence 𝑥 − 𝜀 < 𝜇 < 𝑥 + 𝜀 . In other
words, using 𝑥 as an estimate of 𝜇 we commit an error that “most likely” does not exceed 𝜀 . IF, on the
contrary, 𝜎 ≰≰ 𝜀, we need n data in order to write 𝑃 𝜇 − 𝜀 < 𝑋� < 𝜇 + 𝜀 ≥ 1− 𝜎2/(𝑛𝜀2), where 𝑋� is the RV
“mean”; hence we can derive 𝑥� − 𝜀 < 𝜇 < 𝑥� + 𝜀., where 𝑥� is the “empirical mean” computed from the data.
In other words, using 𝑥� as an estimate of 𝜇 we commit an error that “most likely” does not exceed 𝜀. See
the excerpts 3, 3a, 3b.

],  is “estimated standard of each sample” (named here s, with 
sample size n=20, in excerpt 3)

Excerpt 3. From Shewhart book (1931), on page 294

The application of these ideas in the Individual CCs can be seen in the Appendix A, in the figure A1: the
standard deviation is derived from the Mobile Range (which is exponentially distributed as the original UTI
data). The formula in the excerpt 3 tells us that the process is OOC (Out Of Control).

2.2 Control Charts for Process Management
Statistical Process Management (SPM) entails Statistical Theory and tools used for monitoring any type of

processes, industrial or not. The Control Charts (CCs) are the tool used for monitoring a process, to assess its
two states: the first, when the process, named IC (In Control), operates under the common causes of
variation (variation is always naturally present in any phenomenon) and the second, named OOC (Out Of
Control), when the process operates under some assignable causes of variation. The CCs, using the observed
data, allow us to decide if the process is IC or OOC. CCs are a statistical test of hypothesis for the process
null hypothesis H0={IC} versus the alternative hypothesis H1={OOC}. Control Charts were very considered
by Deming [9-10] and Juran [12] after Shewhart invention [19-20].

We start with Shewhart ideas (see the excerpts 3, 3a and 3b).
In the excerpts, 𝑋� is the (experimental) “Grand Mean”, computed from D (we, on the contrary, use the

symbol 𝑥� ), 𝜎 is the (experimental) “estimated standard of each sample” (we, on the contrary, use the
symbol s, with sample size n=20, in excerpts 3a, 3b), 𝜎� is the “estimated mean standard deviation of all the
samples” (we, on the contrary, use the symbol 𝑠�).

Excerpt 3a. From Shewhart book (1931), on page 89

On page 95, he also states that
“even when nothing is known about the condition under which the distribution was observed, we find that the 
average and the standard deviation enable us to estimate … the number of observations lying within any 
symmetrical range 𝑋� ± 𝑧𝜎, where z>1. In fact, the proportion of the total number of observed values within 
any such limits is always greater than 1-1/z2. This follows from … Tchebycheff’s Theorem.” He then adds 
“we see that no matter what set of n observed values we may have, the number of these values Nz lying within 
the closed range 𝑋� ± 𝑧𝜎 is greater than n(1-1/z2)”. 

Excerpt 3: From Shewhart book (1931), on page 294

The application of these ideas in the Individual CCs can be seen in the Appendix A, in the figure A1: the standard deviation is derived 
from the Mobile Range (which is exponentially distributed as the original UTI data). The formula in the excerpt 3 tells us that the process 
is OOC (Out Of Control).

2.2. Control Charts for Process Management
Statistical Process Management (SPM) entails Statistical Theory and tools used for monitoring any type of processes, industrial or not. 
The Control Charts (CCs) are the tool used for monitoring a process, to assess its two states: the first, when the process, named IC (In 
Control), operates under the common causes of variation (variation is always naturally present in any phenomenon) and the second, 
named OOC (Out Of Control), when the process operates under some assignable causes of variation. The CCs, using the observed data, 
allow us to decide if the process is IC or OOC. CCs are a statistical test of hypothesis for the process null hypothesis H0 = {IC} versus 
the alternative hypothesis H1 = {OOC}. Control Charts were very considered by Deming [9-10] and Juran [12] after Shewhart invention 
[19-20].  We start with Shewhart ideas (see the excerpts 3, 3a and 3b).

In the excerpts, 

Notice that, when we write 𝑥� − 𝜀 < 𝜇 < 𝑥� + 𝜀, we consider the Confidence Interval CI [6-21, 25-33], and no
longer the Probability Interval PI [6-21, 25-33].

These statistical concepts are very important for our purpose when we consider the Sequential tests and
the Control Charts, especially with Individual data.

Notice that the error made by several authors [4, 5, 24] is generated by lack of knowledge of the difference
between PI and CI [6-21, 25-33]: they think wrongly that CI=PI, a diffused disease [4, 5, 24]! They should
study some of the books/papers [6-21, 25-33] and remember the Deming statements (excerpt 2).

The Deming statements are important for Quality. Managers, scholars; the professors must learn Logic,
Design of Experiments and Statistical Thinking to draw good decisions. The authors must, as well. Quality
must be their number one objective: they must learn Quality methods as well, using Intellectual Honesty [1-2,
6-21, 25-33]. Using (4), those authors do not extract the maximum information from the data in the Process Control.
To extract the maximum information from the data one needs statistical valid Methods [1-2, 6-21, 25-33].

As you can find in any good book or paper [6-21, 25-33] there is a strict relationship between CI and Test
Of Hypothesis, known also as Null Hypothesis Significance Testing Procedure (NHSTP). In Hypothesis
Testing (see the Appendix B), the experimenter wants to assess if a “thought” value of a parameter of a
distribution is confirmed (or rejected) by the collected data: for example, for the mean  (parameter) of the
Normal 𝑛(x|𝜇,𝜎2) density, he sets the “null hypothesis” H0={=0} and the probability P= of being wrong if
he decides that the “null hypothesis” H0 is true, when actually it is opposite: H0 is wrong. When we analyse,
at once, the observed sample D={x1, x2, …, xn} and we compute the empirical (observed) mean 𝑥� and the
empirical (observed) standard deviation 𝑠 , we define the Acceptance interval, which is the CI

𝐿𝐶𝐿 = 𝑥� − 𝑡1−𝛼/2𝑠/ 𝑛 < 𝜇 < 𝑥� + 𝑡1−𝛼/2𝑠/ 𝑛 = 𝑈𝐶𝐿 (5)

Notice that the interval (for the Normal model, 𝜇''assumed) [see the appendix B]

𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 −−−−−− 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 (6)

is the Probability Interval such that 𝑃 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 < 𝑋� < 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 = 1 − 𝛼.
A fundamental reflection is in order: the formulae (5) and (6) tempt the unwise guy to think that he can get

the Acceptance interval, which is the CI [1-23], by substituting the assumed values 𝜇0,𝜎0 of the parameters
with the empirical (observed) mean 𝑥� and standard deviation 𝑠. This trick is valid only for the Normal distribution.

The formulae (5) can be used sequentially to test H0={=0} versus H1={=1<0}; for any value 2<kn; we
obtain n-2 CIs, decreasing in length; we can continue until either 1<LCL or UCL<0, or both (verify) 1<LCL
and UCL<0.

More ideas about these points can be found in [34-57].
In the field of Control Charts, with Shewhart, instead of the formula (5), we use (7)

𝒙� −
𝒛𝟏−𝜶/𝟐𝒔
𝒄𝟒 𝒏

< 𝝁 < 𝒙� +
𝒛𝟏−𝜶/𝟐𝒔
𝒄𝟒 𝒏 (7)

where the t distribution value 𝑡1−𝛼/2 is replaced by the value 𝑧1−𝛼/2 of the Normal distribution, actually
𝑧1−𝛼/2=3, and a coefficient 𝒄𝟒 is used to make “unbiased” the estimate of the standard deviation, computed
from the information given by the sample.

Actually, Shewhart does not use the coefficient 𝒄𝟒 is as you can see from page 294 of Shewhart book
(1931), where 𝑋� is the “Grand Mean”, computed from D [named here empirical (observed) mean 𝑥� ], 𝜎 is
“estimated standard of each sample” (named here s, with sample size n=20, in excerpt 3)

 is the (experimental) “Grand Mean”, computed from D (we, on the contrary, use the symbol 

the inference function () and to the statistical model F(x|).
Naming IT(T) the information extracted by the RV T we have that [6-21, 26-36]

IT(T)=1/MVB(T)  T is an Efficient Estimator.
If T is an Efficient Estimator there is no better estimator able to extract more information from D.
The estimates considered before were “point estimates” with their properties, looking for the “best” single

value of the inference function ().
We must now introduce the concept of Confidence Interval (CI) and Confidence Level (CL) [6-21, 26-36].
The “interval estimates” comprise all the values between  L (Lower confidence limit) and  U (Upper

confidence limit); the CI is defined by the numerical interval CI=L
-----U, where L and U are two quantities

computed from the observed sample D: when we make the statement that  ( )CI, we accept, before any
computation, that, doing that, we can be right, in a long run of applications, (1-)%=CL of the applications,
BUT we cannot know IF we are right in the single application (CL=Confidence Level).

We know, before any computation, that we can be wrong % of the times but we do not know when it
happens.

The reader must be very careful to distinguish between the Probability Interval PI= L-----U  , where the
endpoints L and U depends on the distribution 𝜑 𝑡, 𝜃, 𝑛 of the estimator T (that we decide to use, which
does not depend on the “observed sample” D) and, on the probability =1- (that we fix before any computation),
as follows by the probabilistic statement (4) [se the figure 1 for the exponential density, when n=1]

𝑃 𝐿 ≤ 𝑇 ≤ 𝑈 =
𝐿

𝑈
𝜑 𝑡, 𝜃, 𝑛 𝑑𝑡� = 1 − 𝛼 (4)

and Confidence Interval CI=L
-----U which depends on the “observed sample” D.

Notice that the Probability Interval PI=L-----U, given in the formula (4), does not depend on the data D, as
you can pictorially see in fig. 1: L and U are the Probability Limits. Notice that, on the contrary, the
Confidence Interval CI=L

-----U does depend on the data D, pictorially seen in fig. 1. This point is essential for
all the papers in the References.

Shewhart identified this approach, L and U, on page 275 of [19] where he states:

“For the most part, however, we never know 𝑓Θ Θ, 𝑛 [this is the symbols of Shewhart for our 𝜑 𝑡, 𝜃, 𝑛 ]
in sufficient detail to set up such limit… We usually chose a symmetrical range characterised by limits Θ� ±
𝑡𝜎Θ symmetrically spaced in reference to Θ . Tchebycheff’s Theorem tells us that the probability P that an
observed value of Θ will lie within these symmetric limits so long as the quality standard is maintained
satisfies the inequality P>1-1/t2. We are still faced with the choice of t. Experience indicated that t=3 seems to
be an acceptable economic value”. See the excerpts 3,…

The Tchebycheff Inequality: IF the RV X is arbitrary with density f(x) and finite variance 𝜎2 THEN we
have the probability 𝑃 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤ 1/𝑘2, where 𝜇 = 𝐸 𝑋 . This is a “Probabilistic Theorem”.

It can be transferred into Statistics. Let’s suppose that we want to determine experimentally the unknown
mean 𝜇 within a “stated error ”. From the above (Probabilistic) Inequality we have 𝑃 𝜇 − 𝜀 < 𝑋 < 𝜇 + 𝜀 ≥
1 − 𝜎2/𝜀2; IF 𝜎 ≪ 𝜀 THEN the event 𝑋 − 𝜇 < 𝜀 is “very probable” in an experiment: this means that the
observed value 𝑥 of the RV X can be written as 𝜇 − 𝜀 < 𝑥 < 𝜇 + 𝜀 and hence 𝑥 − 𝜀 < 𝜇 < 𝑥 + 𝜀 . In other
words, using 𝑥 as an estimate of 𝜇 we commit an error that “most likely” does not exceed 𝜀 . IF, on the
contrary, 𝜎 ≰≰ 𝜀, we need n data in order to write 𝑃 𝜇 − 𝜀 < 𝑋� < 𝜇 + 𝜀 ≥ 1− 𝜎2/(𝑛𝜀2), where 𝑋� is the RV
“mean”; hence we can derive 𝑥� − 𝜀 < 𝜇 < 𝑥� + 𝜀., where 𝑥� is the “empirical mean” computed from the data.
In other words, using 𝑥� as an estimate of 𝜇 we commit an error that “most likely” does not exceed 𝜀. See
the excerpts 3, 3a, 3b.

), σ is the (experimental) 
“estimated standard of each sample” (we, on the contrary, use the symbol s, with sample size n = 20, in excerpts 3a, 3b), 

Excerpt 3. From Shewhart book (1931), on page 294

The application of these ideas in the Individual CCs can be seen in the Appendix A, in the figure A1: the
standard deviation is derived from the Mobile Range (which is exponentially distributed as the original UTI
data). The formula in the excerpt 3 tells us that the process is OOC (Out Of Control).

2.2 Control Charts for Process Management
Statistical Process Management (SPM) entails Statistical Theory and tools used for monitoring any type of

processes, industrial or not. The Control Charts (CCs) are the tool used for monitoring a process, to assess its
two states: the first, when the process, named IC (In Control), operates under the common causes of
variation (variation is always naturally present in any phenomenon) and the second, named OOC (Out Of
Control), when the process operates under some assignable causes of variation. The CCs, using the observed
data, allow us to decide if the process is IC or OOC. CCs are a statistical test of hypothesis for the process
null hypothesis H0={IC} versus the alternative hypothesis H1={OOC}. Control Charts were very considered
by Deming [9-10] and Juran [12] after Shewhart invention [19-20].

We start with Shewhart ideas (see the excerpts 3, 3a and 3b).
In the excerpts, 𝑋� is the (experimental) “Grand Mean”, computed from D (we, on the contrary, use the

symbol 𝑥� ), 𝜎 is the (experimental) “estimated standard of each sample” (we, on the contrary, use the
symbol s, with sample size n=20, in excerpts 3a, 3b), 𝜎� is the “estimated mean standard deviation of all the
samples” (we, on the contrary, use the symbol 𝑠�).

Excerpt 3a. From Shewhart book (1931), on page 89

On page 95, he also states that
“even when nothing is known about the condition under which the distribution was observed, we find that the 
average and the standard deviation enable us to estimate … the number of observations lying within any 
symmetrical range 𝑋� ± 𝑧𝜎, where z>1. In fact, the proportion of the total number of observed values within 
any such limits is always greater than 1-1/z2. This follows from … Tchebycheff’s Theorem.” He then adds 
“we see that no matter what set of n observed values we may have, the number of these values Nz lying within 
the closed range 𝑋� ± 𝑧𝜎 is greater than n(1-1/z2)”. 

 is the 
“estimated mean standard deviation of all the samples” (we, on the contrary, use the symbol 

Excerpt 3. From Shewhart book (1931), on page 294

The application of these ideas in the Individual CCs can be seen in the Appendix A, in the figure A1: the
standard deviation is derived from the Mobile Range (which is exponentially distributed as the original UTI
data). The formula in the excerpt 3 tells us that the process is OOC (Out Of Control).

2.2 Control Charts for Process Management
Statistical Process Management (SPM) entails Statistical Theory and tools used for monitoring any type of

processes, industrial or not. The Control Charts (CCs) are the tool used for monitoring a process, to assess its
two states: the first, when the process, named IC (In Control), operates under the common causes of
variation (variation is always naturally present in any phenomenon) and the second, named OOC (Out Of
Control), when the process operates under some assignable causes of variation. The CCs, using the observed
data, allow us to decide if the process is IC or OOC. CCs are a statistical test of hypothesis for the process
null hypothesis H0={IC} versus the alternative hypothesis H1={OOC}. Control Charts were very considered
by Deming [9-10] and Juran [12] after Shewhart invention [19-20].

We start with Shewhart ideas (see the excerpts 3, 3a and 3b).
In the excerpts, 𝑋� is the (experimental) “Grand Mean”, computed from D (we, on the contrary, use the

symbol 𝑥� ), 𝜎 is the (experimental) “estimated standard of each sample” (we, on the contrary, use the
symbol s, with sample size n=20, in excerpts 3a, 3b), 𝜎� is the “estimated mean standard deviation of all the
samples” (we, on the contrary, use the symbol 𝑠�).

Excerpt 3a. From Shewhart book (1931), on page 89

On page 95, he also states that
“even when nothing is known about the condition under which the distribution was observed, we find that the 
average and the standard deviation enable us to estimate … the number of observations lying within any 
symmetrical range 𝑋� ± 𝑧𝜎, where z>1. In fact, the proportion of the total number of observed values within 
any such limits is always greater than 1-1/z2. This follows from … Tchebycheff’s Theorem.” He then adds 
“we see that no matter what set of n observed values we may have, the number of these values Nz lying within 
the closed range 𝑋� ± 𝑧𝜎 is greater than n(1-1/z2)”. 

).

Notice that, when we write 𝑥� − 𝜀 < 𝜇 < 𝑥� + 𝜀, we consider the Confidence Interval CI [6-21, 25-33], and no
longer the Probability Interval PI [6-21, 25-33].

These statistical concepts are very important for our purpose when we consider the Sequential tests and
the Control Charts, especially with Individual data.

Notice that the error made by several authors [4, 5, 24] is generated by lack of knowledge of the difference
between PI and CI [6-21, 25-33]: they think wrongly that CI=PI, a diffused disease [4, 5, 24]! They should
study some of the books/papers [6-21, 25-33] and remember the Deming statements (excerpt 2).

The Deming statements are important for Quality. Managers, scholars; the professors must learn Logic,
Design of Experiments and Statistical Thinking to draw good decisions. The authors must, as well. Quality
must be their number one objective: they must learn Quality methods as well, using Intellectual Honesty [1-2,
6-21, 25-33]. Using (4), those authors do not extract the maximum information from the data in the Process Control.
To extract the maximum information from the data one needs statistical valid Methods [1-2, 6-21, 25-33].

As you can find in any good book or paper [6-21, 25-33] there is a strict relationship between CI and Test
Of Hypothesis, known also as Null Hypothesis Significance Testing Procedure (NHSTP). In Hypothesis
Testing (see the Appendix B), the experimenter wants to assess if a “thought” value of a parameter of a
distribution is confirmed (or rejected) by the collected data: for example, for the mean  (parameter) of the
Normal 𝑛(x|𝜇,𝜎2) density, he sets the “null hypothesis” H0={=0} and the probability P= of being wrong if
he decides that the “null hypothesis” H0 is true, when actually it is opposite: H0 is wrong. When we analyse,
at once, the observed sample D={x1, x2, …, xn} and we compute the empirical (observed) mean 𝑥� and the
empirical (observed) standard deviation 𝑠 , we define the Acceptance interval, which is the CI

𝐿𝐶𝐿 = 𝑥� − 𝑡1−𝛼/2𝑠/ 𝑛 < 𝜇 < 𝑥� + 𝑡1−𝛼/2𝑠/ 𝑛 = 𝑈𝐶𝐿 (5)

Notice that the interval (for the Normal model, 𝜇''assumed) [see the appendix B]

𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 −−−−−− 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 (6)

is the Probability Interval such that 𝑃 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 < 𝑋� < 𝜇'' − 𝑡1−𝛼/2𝜎/ 𝑛 = 1 − 𝛼.
A fundamental reflection is in order: the formulae (5) and (6) tempt the unwise guy to think that he can get

the Acceptance interval, which is the CI [1-23], by substituting the assumed values 𝜇0,𝜎0 of the parameters
with the empirical (observed) mean 𝑥� and standard deviation 𝑠. This trick is valid only for the Normal distribution.

The formulae (5) can be used sequentially to test H0={=0} versus H1={=1<0}; for any value 2<kn; we
obtain n-2 CIs, decreasing in length; we can continue until either 1<LCL or UCL<0, or both (verify) 1<LCL
and UCL<0.

More ideas about these points can be found in [34-57].
In the field of Control Charts, with Shewhart, instead of the formula (5), we use (7)

𝒙� −
𝒛𝟏−𝜶/𝟐𝒔
𝒄𝟒 𝒏

< 𝝁 < 𝒙� +
𝒛𝟏−𝜶/𝟐𝒔
𝒄𝟒 𝒏 (7)

where the t distribution value 𝑡1−𝛼/2 is replaced by the value 𝑧1−𝛼/2 of the Normal distribution, actually
𝑧1−𝛼/2=3, and a coefficient 𝒄𝟒 is used to make “unbiased” the estimate of the standard deviation, computed
from the information given by the sample.

Actually, Shewhart does not use the coefficient 𝒄𝟒 is as you can see from page 294 of Shewhart book
(1931), where 𝑋� is the “Grand Mean”, computed from D [named here empirical (observed) mean 𝑥� ], 𝜎 is
“estimated standard of each sample” (named here s, with sample size n=20, in excerpt 3)Excerpt 3. From Shewhart book (1931), on page 294

The application of these ideas in the Individual CCs can be seen in the Appendix A, in the figure A1: the
standard deviation is derived from the Mobile Range (which is exponentially distributed as the original UTI
data). The formula in the excerpt 3 tells us that the process is OOC (Out Of Control).

2.2 Control Charts for Process Management
Statistical Process Management (SPM) entails Statistical Theory and tools used for monitoring any type of

processes, industrial or not. The Control Charts (CCs) are the tool used for monitoring a process, to assess its
two states: the first, when the process, named IC (In Control), operates under the common causes of
variation (variation is always naturally present in any phenomenon) and the second, named OOC (Out Of
Control), when the process operates under some assignable causes of variation. The CCs, using the observed
data, allow us to decide if the process is IC or OOC. CCs are a statistical test of hypothesis for the process
null hypothesis H0={IC} versus the alternative hypothesis H1={OOC}. Control Charts were very considered
by Deming [9-10] and Juran [12] after Shewhart invention [19-20].

We start with Shewhart ideas (see the excerpts 3, 3a and 3b).
In the excerpts, 𝑋� is the (experimental) “Grand Mean”, computed from D (we, on the contrary, use the

symbol 𝑥� ), 𝜎 is the (experimental) “estimated standard of each sample” (we, on the contrary, use the
symbol s, with sample size n=20, in excerpts 3a, 3b), 𝜎� is the “estimated mean standard deviation of all the
samples” (we, on the contrary, use the symbol 𝑠�).

Excerpt 3a. From Shewhart book (1931), on page 89

On page 95, he also states that
“even when nothing is known about the condition under which the distribution was observed, we find that the 
average and the standard deviation enable us to estimate … the number of observations lying within any 
symmetrical range 𝑋� ± 𝑧𝜎, where z>1. In fact, the proportion of the total number of observed values within 
any such limits is always greater than 1-1/z2. This follows from … Tchebycheff’s Theorem.” He then adds 
“we see that no matter what set of n observed values we may have, the number of these values Nz lying within 
the closed range 𝑋� ± 𝑧𝜎 is greater than n(1-1/z2)”. 

Excerpt 3a. From Shewhart book (1931), on page 89
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Excerpt 3. From Shewhart book (1931), on page 294

The application of these ideas in the Individual CCs can be seen in the Appendix A, in the figure A1: the
standard deviation is derived from the Mobile Range (which is exponentially distributed as the original UTI
data). The formula in the excerpt 3 tells us that the process is OOC (Out Of Control).

2.2 Control Charts for Process Management
Statistical Process Management (SPM) entails Statistical Theory and tools used for monitoring any type of

processes, industrial or not. The Control Charts (CCs) are the tool used for monitoring a process, to assess its
two states: the first, when the process, named IC (In Control), operates under the common causes of
variation (variation is always naturally present in any phenomenon) and the second, named OOC (Out Of
Control), when the process operates under some assignable causes of variation. The CCs, using the observed
data, allow us to decide if the process is IC or OOC. CCs are a statistical test of hypothesis for the process
null hypothesis H0={IC} versus the alternative hypothesis H1={OOC}. Control Charts were very considered
by Deming [9-10] and Juran [12] after Shewhart invention [19-20].

We start with Shewhart ideas (see the excerpts 3, 3a and 3b).
In the excerpts, 𝑋� is the (experimental) “Grand Mean”, computed from D (we, on the contrary, use the

symbol 𝑥� ), 𝜎 is the (experimental) “estimated standard of each sample” (we, on the contrary, use the
symbol s, with sample size n=20, in excerpts 3a, 3b), 𝜎� is the “estimated mean standard deviation of all the
samples” (we, on the contrary, use the symbol 𝑠�).

Excerpt 3a. From Shewhart book (1931), on page 89

On page 95, he also states that
“even when nothing is known about the condition under which the distribution was observed, we find that the 
average and the standard deviation enable us to estimate … the number of observations lying within any 
symmetrical range 𝑋� ± 𝑧𝜎, where z>1. In fact, the proportion of the total number of observed values within 
any such limits is always greater than 1-1/z2. This follows from … Tchebycheff’s Theorem.” He then adds 
“we see that no matter what set of n observed values we may have, the number of these values Nz lying within 
the closed range 𝑋� ± 𝑧𝜎 is greater than n(1-1/z2)”. 

Excerpt 3b. From Shewhart book (1931), on page 294

So, we clearly see that Shewhart, the inventor of the CCs, used the data to compute the Control Limits, LCL
(Lower Control Limit, which is the Lower Confidence Limit) and UCL (Upper Control Limit, the Upper
Confidence Limit) both for the mean 𝜇𝑋 (1st parameter of the Normal pdf) and for 𝜎𝑋 (2nd parameter of the
Normal pdf). They are considered the limits comprising 0.9973n of the observed data. Similar ideas can be
found in [5-21, 25-42] (with Rozanov, 1975, we see the idea that CCs can be viewed as a Stochastic Process).

We invite the readers to consider that if one assumes that the process is In Control (IC) and if he knows
the parameters of the distribution he can test if the assumed known values of the parameters are confirmed
or disproved by the data, then he does not need the Control Charts; it is sufficient to use NHSTP! (see App.
B)

Remember the ideas in the previous section and compare Excerpts 3, 3a, 3b (where LCL, UCL depend on
the data) with the following Excerpt 4 (where LCL, UCL depend on the Random Variables) and appreciate the
profound “logic” difference: this is the cause of the many errors in the CCs for TBE [Time Between Events
(see [4, 5, 24]).

Let Xij, i=1, 2, …, j =1, 2, …, n be independent and identically distributed (IID) normal N(𝜇0, 𝜎2
0) r.v.’s, where 

𝜇0 and 𝜎2
0 are the specified IC mean and variance, respectively. The Xij represents the jth observation from 

the ith rational subgroup (sample) obtained at the i-th sampling stage, and Yi denotes the i-th charting statistic 
based on the i-th sample. When n≥2, at sampling stage i, 𝑌𝑖 = 𝑋𝑖�  the subgroup mean, is typically used for 
monitoring the process mean, while in case of individual observations (i.e., n=1) Yi=Xi1≡Xi. The control limits 
of the standard Shewhart chart (X chart or the 𝑋� chart) are given by UCL1=𝜇𝜇Y+k𝜎𝜎Y and LCL1=𝜇𝜇Y-k𝜎𝜎Y (1) 
where 𝜇Y and 𝜎Y are the specified IC mean and standard deviation of the charting statistic Yi, and k denotes 
the distance of the control limits from the center line (CL) in the units of the standard deviation of the charting 
statistic. An OOC signal is triggered when for the first time Yi ∉[LCL1, UCL1]. It should be mentioned that in 
the above setup, the control charts are used to monitor the process in real time, by comparing the value of the 
i-th charting statistic (𝑋𝑖�  or Xi) to the control limits. Therefore, as long as an OOC signal is not triggered, 
samples are continued to be drawn from the process. 

The same type of arguments are used in another paper [4] JQT, 2017 where the data are Erlang
distributed with 0 is the scale parameter and the Control Limits LCL and UCL are defined [copying Xie et
al.] erroneously as

Excerpt 4. From a paper in the “Garden… [24]”. Notice that one of the authors wrote several papers…

The formulae, in the excerpt 4, LCL1 and UCL1 are actually the Probability Limits (L and U) of the
Probability Interval PI in the formula (4), when 𝜑 𝑡, 𝜃, 𝑛 is the pdf of the Estimator T, related to the Normal
model F(x;  ,  2). Using (4), those authors do not extract the maximum information from the data in the Process
Control. From the Theory [6-36] we derive that the interval L=𝜇Y-3𝜎Y

------𝜇Y+3𝜎Y=U is the PI such that the RV
Y=𝑋�

𝑃[µ𝑌 −3𝜎𝑌≤Y=𝑋�≤µ𝑌 +3𝜎𝑌]= 0.9973 (7a)

and it is not the CI of the mean 𝜇=𝜇Y [as wrongly said in the Excerpt 4, where actually (LCL1
-----UCL1)=PI].
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So, we clearly see that Shewhart, the inventor of the CCs, used the data to compute the Control Limits, LCL
(Lower Control Limit, which is the Lower Confidence Limit) and UCL (Upper Control Limit, the Upper
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Normal pdf). They are considered the limits comprising 0.9973n of the observed data. Similar ideas can be
found in [5-21, 25-42] (with Rozanov, 1975, we see the idea that CCs can be viewed as a Stochastic Process).

We invite the readers to consider that if one assumes that the process is In Control (IC) and if he knows
the parameters of the distribution he can test if the assumed known values of the parameters are confirmed
or disproved by the data, then he does not need the Control Charts; it is sufficient to use NHSTP! (see App.
B)

Remember the ideas in the previous section and compare Excerpts 3, 3a, 3b (where LCL, UCL depend on
the data) with the following Excerpt 4 (where LCL, UCL depend on the Random Variables) and appreciate the
profound “logic” difference: this is the cause of the many errors in the CCs for TBE [Time Between Events
(see [4, 5, 24]).

Let Xij, i=1, 2, …, j =1, 2, …, n be independent and identically distributed (IID) normal N(𝜇0, 𝜎2
0) r.v.’s, where 

𝜇0 and 𝜎2
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where 𝜇Y and 𝜎Y are the specified IC mean and standard deviation of the charting statistic Yi, and k denotes 
the distance of the control limits from the center line (CL) in the units of the standard deviation of the charting 
statistic. An OOC signal is triggered when for the first time Yi ∉[LCL1, UCL1]. It should be mentioned that in 
the above setup, the control charts are used to monitor the process in real time, by comparing the value of the 
i-th charting statistic (𝑋𝑖�  or Xi) to the control limits. Therefore, as long as an OOC signal is not triggered, 
samples are continued to be drawn from the process. 

The same type of arguments are used in another paper [4] JQT, 2017 where the data are Erlang
distributed with 0 is the scale parameter and the Control Limits LCL and UCL are defined [copying Xie et
al.] erroneously as

Excerpt 4. From a paper in the “Garden… [24]”. Notice that one of the authors wrote several papers…

The formulae, in the excerpt 4, LCL1 and UCL1 are actually the Probability Limits (L and U) of the
Probability Interval PI in the formula (4), when 𝜑 𝑡, 𝜃, 𝑛 is the pdf of the Estimator T, related to the Normal
model F(x;  ,  2). Using (4), those authors do not extract the maximum information from the data in the Process
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Excerpt 3b: From Shewhart book (1931), on page 294

So, we clearly see that Shewhart, the inventor of the CCs, used the data to compute the Control Limits, LCL (Lower Control Limit, 
which is the Lower Confidence Limit) and UCL (Upper Control Limit, the Upper Confidence Limit) both for the mean μX (1st parameter 
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Similar ideas can be found in [5-21, 25-42] (with Rozanov, 1975, we see the idea that CCs can be viewed as a Stochastic Process). We 
invite the readers to consider that if one assumes that the process is In Control (IC) and if he knows the parameters of the distribution he 
can test if the assumed known values of the parameters are confirmed or disproved by the data, then he does not need the Control Charts; 
it is sufficient to use NHSTP! (see App. B) Remember the ideas in the previous section and compare Excerpts 3, 3a, 3b (where LCL, 
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0) r.v.’s, where 

𝜇0 and 𝜎2
0 are the specified IC mean and variance, respectively. The Xij represents the jth observation from 

the ith rational subgroup (sample) obtained at the i-th sampling stage, and Yi denotes the i-th charting statistic 
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the above setup, the control charts are used to monitor the process in real time, by comparing the value of the 
i-th charting statistic (𝑋𝑖�  or Xi) to the control limits. Therefore, as long as an OOC signal is not triggered, 
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and it is not the CI of the mean 𝜇=𝜇Y [as wrongly said in the Excerpt 4, where actually (LCL1-----UCL1)=PI].
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The data plotted in the CCs [6-21, 25-36] (see the fig. 2) are the means x̅(ti ), determinations of the RVs X̅(ti ), i=1, 2, ..., n (n=number of 
the samples) computed from the sequentially collected data of the i-th sample Di={xij, j=1, 2, ..., k} (k=sample size)}, determinations of 
the RVs X(tij ) at very close instants tij, j=1, 2, ..., k. In other applications I-CC (see the fig. 3), the data plotted are the Individual Data x(ti 
), determinations of the Individual Random Variables X(ti ), i=1, 2, ..., n (n=number of the collected data), modelling the measurement 
process (MP) of the “Quality Characteristic” of the product: this model is very general because it is able to consider every distribution 
of the Random Process X(t), as we can see in the next section. From the excerpts 3, 3a, 3b and formula (5) it is clear that Shewhart was 
using the Normal distribution, as a consequence of the Central Limit Theorem (CLT) [6-20, 26-36]. In fact, he wrote on page 289 of his 
book (1931) “… we saw that, no matter what the nature of the distribution function of the quality is, the distribution of the arithmetic 
mean approaches normality rapidly with increase in n (his n is our k), and in all cases the expected value of means of samples of n (our 
k) is the same as the expected value of the universe” (CLT in Excerpt 3, 3a, 3b).

The same error is in other books and papers (not shown here but the reader can see in [21-24]).
The data plotted in the CCs [6-21, 25-36] (see the fig. 2) are the means 𝑥� 𝑡𝑖 , determinations of the RVs

𝑋� 𝑡𝑖 , i=1, 2, ..., n (n=number of the samples) computed from the sequentially collected data of the i-th sample
Di={xij, j=1, 2, ..., k} (k=sample size)}, determinations of the RVs 𝑋 𝑡𝑖𝑗 at very close instants tij, j=1, 2, ..., k. In
other applications I-CC (see the fig. 3), the data plotted are the Individual Data 𝑥 𝑡𝑖 , determinations of the
Individual Random Variables 𝑋 𝑡𝑖 , i=1, 2, ..., n (n=number of the collected data), modelling the
measurement process (MP) of the “Quality Characteristic” of the product: this model is very general because
it is able to consider every distribution of the Random Process 𝑋 𝑡 , as we can see in the next section. From
the excerpts 3, 3a, 3b and formula (5) it is clear that Shewhart was using the Normal distribution, as a
consequence of the Central Limit Theorem (CLT) [6-20, 26-36]. In fact, he wrote on page 289 of his book (1931)
“… we saw that, no matter what the nature of the distribution function of the quality is, the distribution of the
arithmetic mean approaches normality rapidly with increase in n (his n is our k), and in all cases the expected value of
means of samples of n (our k) is the same as the expected value of the universe” (CLT in Excerpt 3, 3a, 3b).
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Figure 3: Individual Control Chart (sample size k=1). Control Limits LCL----UCL=L----U (Probability interval), for Normal data 
(Individuals xi) and “grand mean” x̅

Let k be the sample size; the RVs X̅ (ti ) are assumed to follow a normal distribution and uncorrelated; X̅(ti ) [i
th rational subgroup] is the 

mean of RVs IID X(tij ) j=1, 2, ..., k, (k data sampled, at very near times tij).
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To show our way of dealing with CCs we consider the process as a “stand-by system whose transition times from a state to the subsequent 
one” are the collected data. The lifetime of “stand-by system” is the sum of the lifetimes of each unit. The process (modelled by a “stand-
by …”) behaves as a Stochastic Process X(t) [25-33], that we can manage by the Reliability Integral Theory (RIT): see the next section; 
this method is very general because it is able to consider every distribution of X(t).

If we assume that X(t) is distributed as f(x) [probability density function (pdf) of “transitions from a state to the subsequent state” 
of a stand-by subsystem] the pdf of the (RV) mean X̅(ti ) is, due the CLT (page 289 of 1931 Shewhart book), 
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𝑋� 𝑡𝑖 [ith rational subgroup] is the mean of RVs IID 𝑋 𝑡𝑖𝑗 j=1, 2, ..., k, (k data sampled, at very near times tij).
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times from a state to the subsequent one” are the collected data. The lifetime of “stand-by system” is the sum
of the lifetimes of each unit. The process (modelled by a “stand-by …”) behaves as a Stochastic Process 𝑋 𝑡
[25-33], that we can manage by the Reliability Integral Theory (RIT): see the next section; this method is very
general because it is able to consider every distribution of 𝑋 𝑡 .

If we assume that 𝑋 𝑡 is distributed as f(x) [probability density function (pdf) of “transitions from a
state to the subsequent state” of a stand-by subsystem] the pdf of the (RV) mean 𝑋� 𝑡𝑖 is, due the CLT (page
289 of 1931 Shewhart book), 𝑋� 𝑡𝑖 ~𝑁 𝜇𝑋� 𝑡𝑖 , 𝜎𝑋� 𝑡𝑖

2 [experimental mean 𝑥� 𝑡𝑖 ] with mean 𝜇𝑋� 𝑡𝑖 and variance
𝜎𝑋� 𝑡𝑖

2 . 𝑋� is the “grand” mean and 𝜎𝑋�
2 is the “grand” variance: the pdf of the (RV) grand mean 𝑋�~𝑁 𝜇𝑋�, 𝜎𝑋�

2

[experimental “grand” mean 𝑥�]. In fig. 2 we show the determinations of the RVs 𝑋� 𝑡𝑖 and of 𝑋�.
When the process is Out Of Control (OOC, assignable causes of variation, some of the means 𝜇𝑋� 𝑡𝑖 ,

estimated by the experimental means 𝑥�𝑖 = 𝑥� 𝑡𝑖 , are “statistically different)” from the others [6-21, 25-36].
We can assess the OOC state of the process via the Confidence Intervals (provided by the Control Limits)
with CL=0.9973; see the Appendix B. Remember the trick valid only for the Normal Distribution ….; consider
the PI, L=𝜇Y-3𝜎Y

------𝜇Y+3𝜎Y=U; putting 𝑥� in place of 𝜇𝑌 and 𝑠�/ 𝑘 in place of 𝜎𝑌 we get the CI of 𝜇𝑋� when
the sample size k is considered for each 𝑋� 𝑡𝑖 , with CL=0.9973. The quantity 𝑠� is the mean of the standard
deviations of each sample. This allows us to compare each (subsystem) mean 𝜇𝑋� 𝑡𝑞 , q=1,2, …, n, to any other

(subsystem) mean 𝜇𝑋� 𝑡𝑟 r=1,2, …, n, and to the (Stand-by system) grand mean 𝜇𝑋� = 𝜇. If two of them are
different, the process is classified as OOC. The quantities 𝐿𝐶𝐿𝑋 = 𝑥�� − 3𝑠�/ 𝑘 and 𝑈𝐶𝐿𝑋 = 𝑥�� + 3𝑠�/ 𝑘 are the
Control Limits of the CC, which are the Confidence Limits. When the Ranges Ri=max(xij)-min(xij) are
considered for each sample we have 𝐿𝐶𝐿𝑋 = 𝑥�� − 𝐴2𝑅� , 𝑈𝐶𝐿𝑋 = 𝑥�� + 𝐴2𝑅� and 𝐿𝐶𝐿𝑅 = 𝐷3𝑅� , U 𝐶𝐿𝑅 = 𝐷4𝑅� ,
where 𝑅� is the “mean range” and the coefficients A2, D3, D4 are tabulated and depend on the sample size k
[6-21, 25-36].

See the Appendix B: it is important for understanding our ideas.
We stress that the interval LCLX

-------UCLX is the “Confidence Interval” with “Confidence Level”
CL=1-  =0.9973 for the unknown mean 𝜇𝑋 𝑡 of the Stochastic Process X(t) [25-36]. The interval
LCLR

----------UCLR is the “Confidence Interval” with “Confidence Level” CL=1-  =0.9973 for the unknown
Range of the Stochastic Process X(t) [25-36].

Notice that, ONLY for normally distributed data, the length of the Control Interval (UCLX-LCLX, which is
the Confidence Interval) equals the length of the Probability Interval, PI (U-L): UCLX-LCLX=U-L.

The error highlighted, i.e. the confusion between the Probability Interval and the Control Limits
(Confidence Interval!) has no consequences for decisions when the data are Normally distributed, as considered
by Shewhart. On the contrary, it has BIG consequences for decisions WHEN the data are Non-Normally
distributed [4, 5,24].

We think that the paper “Quality of Methods for Quality is important”, [1] appreciated and mentioned by
J. Juran at the plenary session of the EOQC (European Organization for Quality Control) Conference (1989),
should be considered and meditated.
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[25-33], that we can manage by the Reliability Integral Theory (RIT): see the next section; this method is very
general because it is able to consider every distribution of 𝑋 𝑡 .

If we assume that 𝑋 𝑡 is distributed as f(x) [probability density function (pdf) of “transitions from a
state to the subsequent state” of a stand-by subsystem] the pdf of the (RV) mean 𝑋� 𝑡𝑖 is, due the CLT (page
289 of 1931 Shewhart book), 𝑋� 𝑡𝑖 ~𝑁 𝜇𝑋� 𝑡𝑖 , 𝜎𝑋� 𝑡𝑖

2 [experimental mean 𝑥� 𝑡𝑖 ] with mean 𝜇𝑋� 𝑡𝑖 and variance
𝜎𝑋� 𝑡𝑖

2 . 𝑋� is the “grand” mean and 𝜎𝑋�
2 is the “grand” variance: the pdf of the (RV) grand mean 𝑋�~𝑁 𝜇𝑋�, 𝜎𝑋�

2

[experimental “grand” mean 𝑥�]. In fig. 2 we show the determinations of the RVs 𝑋� 𝑡𝑖 and of 𝑋�.
When the process is Out Of Control (OOC, assignable causes of variation, some of the means 𝜇𝑋� 𝑡𝑖 ,

estimated by the experimental means 𝑥�𝑖 = 𝑥� 𝑡𝑖 , are “statistically different)” from the others [6-21, 25-36].
We can assess the OOC state of the process via the Confidence Intervals (provided by the Control Limits)
with CL=0.9973; see the Appendix B. Remember the trick valid only for the Normal Distribution ….; consider
the PI, L=𝜇Y-3𝜎Y

------𝜇Y+3𝜎Y=U; putting 𝑥� in place of 𝜇𝑌 and 𝑠�/ 𝑘 in place of 𝜎𝑌 we get the CI of 𝜇𝑋� when
the sample size k is considered for each 𝑋� 𝑡𝑖 , with CL=0.9973. The quantity 𝑠� is the mean of the standard
deviations of each sample. This allows us to compare each (subsystem) mean 𝜇𝑋� 𝑡𝑞 , q=1,2, …, n, to any other

(subsystem) mean 𝜇𝑋� 𝑡𝑟 r=1,2, …, n, and to the (Stand-by system) grand mean 𝜇𝑋� = 𝜇. If two of them are
different, the process is classified as OOC. The quantities 𝐿𝐶𝐿𝑋 = 𝑥�� − 3𝑠�/ 𝑘 and 𝑈𝐶𝐿𝑋 = 𝑥�� + 3𝑠�/ 𝑘 are the
Control Limits of the CC, which are the Confidence Limits. When the Ranges Ri=max(xij)-min(xij) are
considered for each sample we have 𝐿𝐶𝐿𝑋 = 𝑥�� − 𝐴2𝑅� , 𝑈𝐶𝐿𝑋 = 𝑥�� + 𝐴2𝑅� and 𝐿𝐶𝐿𝑅 = 𝐷3𝑅� , U 𝐶𝐿𝑅 = 𝐷4𝑅� ,
where 𝑅� is the “mean range” and the coefficients A2, D3, D4 are tabulated and depend on the sample size k
[6-21, 25-36].

See the Appendix B: it is important for understanding our ideas.
We stress that the interval LCLX

-------UCLX is the “Confidence Interval” with “Confidence Level”
CL=1-  =0.9973 for the unknown mean 𝜇𝑋 𝑡 of the Stochastic Process X(t) [25-36]. The interval
LCLR

----------UCLR is the “Confidence Interval” with “Confidence Level” CL=1-  =0.9973 for the unknown
Range of the Stochastic Process X(t) [25-36].

Notice that, ONLY for normally distributed data, the length of the Control Interval (UCLX-LCLX, which is
the Confidence Interval) equals the length of the Probability Interval, PI (U-L): UCLX-LCLX=U-L.

The error highlighted, i.e. the confusion between the Probability Interval and the Control Limits
(Confidence Interval!) has no consequences for decisions when the data are Normally distributed, as considered
by Shewhart. On the contrary, it has BIG consequences for decisions WHEN the data are Non-Normally
distributed [4, 5,24].

We think that the paper “Quality of Methods for Quality is important”, [1] appreciated and mentioned by
J. Juran at the plenary session of the EOQC (European Organization for Quality Control) Conference (1989),
should be considered and meditated.
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Normal data (Individuals xi) and “grand mean” x�

Let k be the sample size; the RVs 𝑋� 𝑡𝑖 are assumed to follow a normal distribution and uncorrelated;
𝑋� 𝑡𝑖 [ith rational subgroup] is the mean of RVs IID 𝑋 𝑡𝑖𝑗 j=1, 2, ..., k, (k data sampled, at very near times tij).

To show our way of dealing with CCs we consider the process as a “stand-by system whose transition
times from a state to the subsequent one” are the collected data. The lifetime of “stand-by system” is the sum
of the lifetimes of each unit. The process (modelled by a “stand-by …”) behaves as a Stochastic Process 𝑋 𝑡
[25-33], that we can manage by the Reliability Integral Theory (RIT): see the next section; this method is very
general because it is able to consider every distribution of 𝑋 𝑡 .

If we assume that 𝑋 𝑡 is distributed as f(x) [probability density function (pdf) of “transitions from a
state to the subsequent state” of a stand-by subsystem] the pdf of the (RV) mean 𝑋� 𝑡𝑖 is, due the CLT (page
289 of 1931 Shewhart book), 𝑋� 𝑡𝑖 ~𝑁 𝜇𝑋� 𝑡𝑖 , 𝜎𝑋� 𝑡𝑖

2 [experimental mean 𝑥� 𝑡𝑖 ] with mean 𝜇𝑋� 𝑡𝑖 and variance
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[experimental “grand” mean 𝑥�]. In fig. 2 we show the determinations of the RVs 𝑋� 𝑡𝑖 and of 𝑋�.
When the process is Out Of Control (OOC, assignable causes of variation, some of the means 𝜇𝑋� 𝑡𝑖 ,

estimated by the experimental means 𝑥�𝑖 = 𝑥� 𝑡𝑖 , are “statistically different)” from the others [6-21, 25-36].
We can assess the OOC state of the process via the Confidence Intervals (provided by the Control Limits)
with CL=0.9973; see the Appendix B. Remember the trick valid only for the Normal Distribution ….; consider
the PI, L=𝜇Y-3𝜎Y

------𝜇Y+3𝜎Y=U; putting 𝑥� in place of 𝜇𝑌 and 𝑠�/ 𝑘 in place of 𝜎𝑌 we get the CI of 𝜇𝑋� when
the sample size k is considered for each 𝑋� 𝑡𝑖 , with CL=0.9973. The quantity 𝑠� is the mean of the standard
deviations of each sample. This allows us to compare each (subsystem) mean 𝜇𝑋� 𝑡𝑞 , q=1,2, …, n, to any other

(subsystem) mean 𝜇𝑋� 𝑡𝑟 r=1,2, …, n, and to the (Stand-by system) grand mean 𝜇𝑋� = 𝜇. If two of them are
different, the process is classified as OOC. The quantities 𝐿𝐶𝐿𝑋 = 𝑥�� − 3𝑠�/ 𝑘 and 𝑈𝐶𝐿𝑋 = 𝑥�� + 3𝑠�/ 𝑘 are the
Control Limits of the CC, which are the Confidence Limits. When the Ranges Ri=max(xij)-min(xij) are
considered for each sample we have 𝐿𝐶𝐿𝑋 = 𝑥�� − 𝐴2𝑅� , 𝑈𝐶𝐿𝑋 = 𝑥�� + 𝐴2𝑅� and 𝐿𝐶𝐿𝑅 = 𝐷3𝑅� , U 𝐶𝐿𝑅 = 𝐷4𝑅� ,
where 𝑅� is the “mean range” and the coefficients A2, D3, D4 are tabulated and depend on the sample size k
[6-21, 25-36].

See the Appendix B: it is important for understanding our ideas.
We stress that the interval LCLX

-------UCLX is the “Confidence Interval” with “Confidence Level”
CL=1-  =0.9973 for the unknown mean 𝜇𝑋 𝑡 of the Stochastic Process X(t) [25-36]. The interval
LCLR

----------UCLR is the “Confidence Interval” with “Confidence Level” CL=1-  =0.9973 for the unknown
Range of the Stochastic Process X(t) [25-36].

Notice that, ONLY for normally distributed data, the length of the Control Interval (UCLX-LCLX, which is
the Confidence Interval) equals the length of the Probability Interval, PI (U-L): UCLX-LCLX=U-L.

The error highlighted, i.e. the confusion between the Probability Interval and the Control Limits
(Confidence Interval!) has no consequences for decisions when the data are Normally distributed, as considered
by Shewhart. On the contrary, it has BIG consequences for decisions WHEN the data are Non-Normally
distributed [4, 5,24].

We think that the paper “Quality of Methods for Quality is important”, [1] appreciated and mentioned by
J. Juran at the plenary session of the EOQC (European Organization for Quality Control) Conference (1989),
should be considered and meditated.
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Normal data (Individuals xi) and “grand mean” x�

Let k be the sample size; the RVs 𝑋� 𝑡𝑖 are assumed to follow a normal distribution and uncorrelated;
𝑋� 𝑡𝑖 [ith rational subgroup] is the mean of RVs IID 𝑋 𝑡𝑖𝑗 j=1, 2, ..., k, (k data sampled, at very near times tij).

To show our way of dealing with CCs we consider the process as a “stand-by system whose transition
times from a state to the subsequent one” are the collected data. The lifetime of “stand-by system” is the sum
of the lifetimes of each unit. The process (modelled by a “stand-by …”) behaves as a Stochastic Process 𝑋 𝑡
[25-33], that we can manage by the Reliability Integral Theory (RIT): see the next section; this method is very
general because it is able to consider every distribution of 𝑋 𝑡 .

If we assume that 𝑋 𝑡 is distributed as f(x) [probability density function (pdf) of “transitions from a
state to the subsequent state” of a stand-by subsystem] the pdf of the (RV) mean 𝑋� 𝑡𝑖 is, due the CLT (page
289 of 1931 Shewhart book), 𝑋� 𝑡𝑖 ~𝑁 𝜇𝑋� 𝑡𝑖 , 𝜎𝑋� 𝑡𝑖

2 [experimental mean 𝑥� 𝑡𝑖 ] with mean 𝜇𝑋� 𝑡𝑖 and variance
𝜎𝑋� 𝑡𝑖
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[experimental “grand” mean 𝑥�]. In fig. 2 we show the determinations of the RVs 𝑋� 𝑡𝑖 and of 𝑋�.
When the process is Out Of Control (OOC, assignable causes of variation, some of the means 𝜇𝑋� 𝑡𝑖 ,

estimated by the experimental means 𝑥�𝑖 = 𝑥� 𝑡𝑖 , are “statistically different)” from the others [6-21, 25-36].
We can assess the OOC state of the process via the Confidence Intervals (provided by the Control Limits)
with CL=0.9973; see the Appendix B. Remember the trick valid only for the Normal Distribution ….; consider
the PI, L=𝜇Y-3𝜎Y

------𝜇Y+3𝜎Y=U; putting 𝑥� in place of 𝜇𝑌 and 𝑠�/ 𝑘 in place of 𝜎𝑌 we get the CI of 𝜇𝑋� when
the sample size k is considered for each 𝑋� 𝑡𝑖 , with CL=0.9973. The quantity 𝑠� is the mean of the standard
deviations of each sample. This allows us to compare each (subsystem) mean 𝜇𝑋� 𝑡𝑞 , q=1,2, …, n, to any other

(subsystem) mean 𝜇𝑋� 𝑡𝑟 r=1,2, …, n, and to the (Stand-by system) grand mean 𝜇𝑋� = 𝜇. If two of them are
different, the process is classified as OOC. The quantities 𝐿𝐶𝐿𝑋 = 𝑥�� − 3𝑠�/ 𝑘 and 𝑈𝐶𝐿𝑋 = 𝑥�� + 3𝑠�/ 𝑘 are the
Control Limits of the CC, which are the Confidence Limits. When the Ranges Ri=max(xij)-min(xij) are
considered for each sample we have 𝐿𝐶𝐿𝑋 = 𝑥�� − 𝐴2𝑅� , 𝑈𝐶𝐿𝑋 = 𝑥�� + 𝐴2𝑅� and 𝐿𝐶𝐿𝑅 = 𝐷3𝑅� , U 𝐶𝐿𝑅 = 𝐷4𝑅� ,
where 𝑅� is the “mean range” and the coefficients A2, D3, D4 are tabulated and depend on the sample size k
[6-21, 25-36].

See the Appendix B: it is important for understanding our ideas.
We stress that the interval LCLX

-------UCLX is the “Confidence Interval” with “Confidence Level”
CL=1-  =0.9973 for the unknown mean 𝜇𝑋 𝑡 of the Stochastic Process X(t) [25-36]. The interval
LCLR

----------UCLR is the “Confidence Interval” with “Confidence Level” CL=1-  =0.9973 for the unknown
Range of the Stochastic Process X(t) [25-36].

Notice that, ONLY for normally distributed data, the length of the Control Interval (UCLX-LCLX, which is
the Confidence Interval) equals the length of the Probability Interval, PI (U-L): UCLX-LCLX=U-L.

The error highlighted, i.e. the confusion between the Probability Interval and the Control Limits
(Confidence Interval!) has no consequences for decisions when the data are Normally distributed, as considered
by Shewhart. On the contrary, it has BIG consequences for decisions WHEN the data are Non-Normally
distributed [4, 5,24].

We think that the paper “Quality of Methods for Quality is important”, [1] appreciated and mentioned by
J. Juran at the plenary session of the EOQC (European Organization for Quality Control) Conference (1989),
should be considered and meditated.
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Figure 3. Individual Control Chart (sample size k=1). Control Limits LCL----UCL=L----U (Probability interval), for

Normal data (Individuals xi) and “grand mean” x�

Let k be the sample size; the RVs 𝑋� 𝑡𝑖 are assumed to follow a normal distribution and uncorrelated;
𝑋� 𝑡𝑖 [ith rational subgroup] is the mean of RVs IID 𝑋 𝑡𝑖𝑗 j=1, 2, ..., k, (k data sampled, at very near times tij).

To show our way of dealing with CCs we consider the process as a “stand-by system whose transition
times from a state to the subsequent one” are the collected data. The lifetime of “stand-by system” is the sum
of the lifetimes of each unit. The process (modelled by a “stand-by …”) behaves as a Stochastic Process 𝑋 𝑡
[25-33], that we can manage by the Reliability Integral Theory (RIT): see the next section; this method is very
general because it is able to consider every distribution of 𝑋 𝑡 .

If we assume that 𝑋 𝑡 is distributed as f(x) [probability density function (pdf) of “transitions from a
state to the subsequent state” of a stand-by subsystem] the pdf of the (RV) mean 𝑋� 𝑡𝑖 is, due the CLT (page
289 of 1931 Shewhart book), 𝑋� 𝑡𝑖 ~𝑁 𝜇𝑋� 𝑡𝑖 , 𝜎𝑋� 𝑡𝑖

2 [experimental mean 𝑥� 𝑡𝑖 ] with mean 𝜇𝑋� 𝑡𝑖 and variance
𝜎𝑋� 𝑡𝑖
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2 is the “grand” variance: the pdf of the (RV) grand mean 𝑋�~𝑁 𝜇𝑋�, 𝜎𝑋�
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[experimental “grand” mean 𝑥�]. In fig. 2 we show the determinations of the RVs 𝑋� 𝑡𝑖 and of 𝑋�.
When the process is Out Of Control (OOC, assignable causes of variation, some of the means 𝜇𝑋� 𝑡𝑖 ,

estimated by the experimental means 𝑥�𝑖 = 𝑥� 𝑡𝑖 , are “statistically different)” from the others [6-21, 25-36].
We can assess the OOC state of the process via the Confidence Intervals (provided by the Control Limits)
with CL=0.9973; see the Appendix B. Remember the trick valid only for the Normal Distribution ….; consider
the PI, L=𝜇Y-3𝜎Y

------𝜇Y+3𝜎Y=U; putting 𝑥� in place of 𝜇𝑌 and 𝑠�/ 𝑘 in place of 𝜎𝑌 we get the CI of 𝜇𝑋� when
the sample size k is considered for each 𝑋� 𝑡𝑖 , with CL=0.9973. The quantity 𝑠� is the mean of the standard
deviations of each sample. This allows us to compare each (subsystem) mean 𝜇𝑋� 𝑡𝑞 , q=1,2, …, n, to any other

(subsystem) mean 𝜇𝑋� 𝑡𝑟 r=1,2, …, n, and to the (Stand-by system) grand mean 𝜇𝑋� = 𝜇. If two of them are
different, the process is classified as OOC. The quantities 𝐿𝐶𝐿𝑋 = 𝑥�� − 3𝑠�/ 𝑘 and 𝑈𝐶𝐿𝑋 = 𝑥�� + 3𝑠�/ 𝑘 are the
Control Limits of the CC, which are the Confidence Limits. When the Ranges Ri=max(xij)-min(xij) are
considered for each sample we have 𝐿𝐶𝐿𝑋 = 𝑥�� − 𝐴2𝑅� , 𝑈𝐶𝐿𝑋 = 𝑥�� + 𝐴2𝑅� and 𝐿𝐶𝐿𝑅 = 𝐷3𝑅� , U 𝐶𝐿𝑅 = 𝐷4𝑅� ,
where 𝑅� is the “mean range” and the coefficients A2, D3, D4 are tabulated and depend on the sample size k
[6-21, 25-36].

See the Appendix B: it is important for understanding our ideas.
We stress that the interval LCLX

-------UCLX is the “Confidence Interval” with “Confidence Level”
CL=1-  =0.9973 for the unknown mean 𝜇𝑋 𝑡 of the Stochastic Process X(t) [25-36]. The interval
LCLR

----------UCLR is the “Confidence Interval” with “Confidence Level” CL=1-  =0.9973 for the unknown
Range of the Stochastic Process X(t) [25-36].

Notice that, ONLY for normally distributed data, the length of the Control Interval (UCLX-LCLX, which is
the Confidence Interval) equals the length of the Probability Interval, PI (U-L): UCLX-LCLX=U-L.

The error highlighted, i.e. the confusion between the Probability Interval and the Control Limits
(Confidence Interval!) has no consequences for decisions when the data are Normally distributed, as considered
by Shewhart. On the contrary, it has BIG consequences for decisions WHEN the data are Non-Normally
distributed [4, 5,24].

We think that the paper “Quality of Methods for Quality is important”, [1] appreciated and mentioned by
J. Juran at the plenary session of the EOQC (European Organization for Quality Control) Conference (1989),
should be considered and meditated.
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Let k be the sample size; the RVs 𝑋� 𝑡𝑖 are assumed to follow a normal distribution and uncorrelated;
𝑋� 𝑡𝑖 [ith rational subgroup] is the mean of RVs IID 𝑋 𝑡𝑖𝑗 j=1, 2, ..., k, (k data sampled, at very near times tij).

To show our way of dealing with CCs we consider the process as a “stand-by system whose transition
times from a state to the subsequent one” are the collected data. The lifetime of “stand-by system” is the sum
of the lifetimes of each unit. The process (modelled by a “stand-by …”) behaves as a Stochastic Process 𝑋 𝑡
[25-33], that we can manage by the Reliability Integral Theory (RIT): see the next section; this method is very
general because it is able to consider every distribution of 𝑋 𝑡 .

If we assume that 𝑋 𝑡 is distributed as f(x) [probability density function (pdf) of “transitions from a
state to the subsequent state” of a stand-by subsystem] the pdf of the (RV) mean 𝑋� 𝑡𝑖 is, due the CLT (page
289 of 1931 Shewhart book), 𝑋� 𝑡𝑖 ~𝑁 𝜇𝑋� 𝑡𝑖 , 𝜎𝑋� 𝑡𝑖
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[experimental “grand” mean 𝑥�]. In fig. 2 we show the determinations of the RVs 𝑋� 𝑡𝑖 and of 𝑋�.
When the process is Out Of Control (OOC, assignable causes of variation, some of the means 𝜇𝑋� 𝑡𝑖 ,

estimated by the experimental means 𝑥�𝑖 = 𝑥� 𝑡𝑖 , are “statistically different)” from the others [6-21, 25-36].
We can assess the OOC state of the process via the Confidence Intervals (provided by the Control Limits)
with CL=0.9973; see the Appendix B. Remember the trick valid only for the Normal Distribution ….; consider
the PI, L=𝜇Y-3𝜎Y

------𝜇Y+3𝜎Y=U; putting 𝑥� in place of 𝜇𝑌 and 𝑠�/ 𝑘 in place of 𝜎𝑌 we get the CI of 𝜇𝑋� when
the sample size k is considered for each 𝑋� 𝑡𝑖 , with CL=0.9973. The quantity 𝑠� is the mean of the standard
deviations of each sample. This allows us to compare each (subsystem) mean 𝜇𝑋� 𝑡𝑞 , q=1,2, …, n, to any other

(subsystem) mean 𝜇𝑋� 𝑡𝑟 r=1,2, …, n, and to the (Stand-by system) grand mean 𝜇𝑋� = 𝜇. If two of them are
different, the process is classified as OOC. The quantities 𝐿𝐶𝐿𝑋 = 𝑥�� − 3𝑠�/ 𝑘 and 𝑈𝐶𝐿𝑋 = 𝑥�� + 3𝑠�/ 𝑘 are the
Control Limits of the CC, which are the Confidence Limits. When the Ranges Ri=max(xij)-min(xij) are
considered for each sample we have 𝐿𝐶𝐿𝑋 = 𝑥�� − 𝐴2𝑅� , 𝑈𝐶𝐿𝑋 = 𝑥�� + 𝐴2𝑅� and 𝐿𝐶𝐿𝑅 = 𝐷3𝑅� , U 𝐶𝐿𝑅 = 𝐷4𝑅� ,
where 𝑅� is the “mean range” and the coefficients A2, D3, D4 are tabulated and depend on the sample size k
[6-21, 25-36].

See the Appendix B: it is important for understanding our ideas.
We stress that the interval LCLX

-------UCLX is the “Confidence Interval” with “Confidence Level”
CL=1-  =0.9973 for the unknown mean 𝜇𝑋 𝑡 of the Stochastic Process X(t) [25-36]. The interval
LCLR

----------UCLR is the “Confidence Interval” with “Confidence Level” CL=1-  =0.9973 for the unknown
Range of the Stochastic Process X(t) [25-36].

Notice that, ONLY for normally distributed data, the length of the Control Interval (UCLX-LCLX, which is
the Confidence Interval) equals the length of the Probability Interval, PI (U-L): UCLX-LCLX=U-L.

The error highlighted, i.e. the confusion between the Probability Interval and the Control Limits
(Confidence Interval!) has no consequences for decisions when the data are Normally distributed, as considered
by Shewhart. On the contrary, it has BIG consequences for decisions WHEN the data are Non-Normally
distributed [4, 5,24].

We think that the paper “Quality of Methods for Quality is important”, [1] appreciated and mentioned by
J. Juran at the plenary session of the EOQC (European Organization for Quality Control) Conference (1989),
should be considered and meditated.

 
where R̅ is the “mean range” and the coefficients A2, D3, D4 are tabulated and depend on the sample size k [6-21, 25-36].

See the Appendix B: it is important for understanding our ideas.

We stress that the interval LCLX
-------UCLX is the “Confidence Interval” with “Confidence Level” CL=1- α =0.9973 for the unknown 

mean μX (t)  of the Stochastic Process X(t) [25-36].  The interval LCLR
----------UCLR is the “Confidence Interval” with “Confidence Level” 

CL=1-α=0.9973 for the unknown Range of the Stochastic Process X(t) [25-36].

Notice that, ONLY for normally distributed data, the length of the Control Interval (UCLX-LCLX, which is the Confidence Interval) 
equals the length of the Probability Interval, PI (U-L): UCLX-LCLX=U-L.
The error highlighted, i.e. the confusion between the Probability Interval and the Control Limits (Confidence Interval!) has no consequences 
for decisions when the data are Normally distributed, as considered by Shewhart. On the contrary, it has BIG consequences for decisions 
WHEN the data are Non-Normally distributed [4, 5,24].

We think that the paper “Quality of Methods for Quality is important”, [1] appreciated and mentioned by J. Juran at the plenary session 
of the EOQC (European Organization for Quality Control) Conference (1989), should be considered and meditated.

2.3. Statistics and RIT
We are going to present the fundamental concepts about RIT (Reliability Integral Theory) that we use for computing the Control Limits 
(Confidence Limits) of CCs. RIT is the natural way for Sequential Tests, because the transitions happen sequentially; to provide the 
ideas, we use a “4 units Stand-by system”, depicted by 5 states (figure 4): 0 is the state with all units not-failed; 1 is the state with the first 
unit failed; 2 is the state with the second unit failed; and so on, until the system enters the state 5 where all the 4 units are failed (down 
state, in yellow): any transition provides a datum to be used for the computations. RIT can be found in the author’s books…
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Figure 4. A “4 units Stand-by system” and its states

RIT can be used for parameters estimation and Confidence Intervals (CI), (Galetto 1981, 1982, 1995, 2010,
2015, 2016), in particular for Control Charts (Deming, 1986, 1997, Shewhart 1931, 1936, Galetto 2004, 2006,
2015). In fact, any Statistical or Reliability Test can be depicted by an “Associated Stand-by System” [25-36]
whose transitions are ruled by the kernels bk,j(s); we write the fundamental system of integral equations for the
reliability tests, whose duration t is related to interval 0-----t; the collected data tj can be viewed as the times of
the various failures (of the units comprising the System) [t0=0 is the start of the test, t is the end of the test
and g is the number of the data (4 in the figure 4)]

Firstly, we assume that the kernel 𝑏𝑗,𝑗+1 𝑠 − 𝑡𝑗 is the pdf of the exponential distribution
𝑓(𝑠 − 𝑡𝑗|𝜇,𝜎2)= 𝜆𝑒−𝜆 𝑠−𝑡𝑗 , where 𝜆 is the failure rate of each unit and 𝜆 = 1/𝜃: 𝜃 is the MTTF of each unit.
We state that 𝑅𝑗 𝑡 − 𝑡𝑗 is the probability that the stand-by system does not enter the state g (5 in fig. 4), at
time t, when it starts in the state j (0, 1, …, 4) at time tj, 𝑊��� 𝑗 𝑡 − 𝑡𝑗 is the probability that the system does not
leave the state j, 𝑏𝑗,𝑗+1 𝑠 − 𝑡𝑗 𝑑𝑠 is the probability that the system makes the transition jj+1, in the interval
s-----s+ds.

The system reliability 𝑅0 𝑡 is the solution of the mathematical system of the Integral Equations (8)

𝑅𝑗 𝑡 − 𝑡𝑗 = 𝑊��� 𝑗 𝑡 − 𝑡𝑗 +
𝑡𝑗

𝑡
𝑏𝑗,𝑗+1 𝑡 − 𝑡𝑗 𝑅𝑗+1 𝑡 − 𝑠 𝑑𝑠�

for j = 0, 1, …, , g − 1, 𝑅𝑔 𝑡|𝑡𝑔 = 𝑊��� 𝑔 𝑡 𝑡𝑔
(8)

With 𝜆𝑒−𝜆 𝑠−𝑡𝑗 we obtain the solution (see fig. 5, putting the Mean Time To Failure MTTF of each unit=,
𝜆 = 1/𝜃) (see the figure 5)
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The reliability system (8) can be written in matrix form,
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Figure 5. Example of Reliability R0 λ𝐭𝟎 of a “4 units Stand-by system” with MTTF==123 days; 𝐭𝟎 is the total time

on test of the 4 units. To compute the CI (with CL=0.8), find the abscissas of the intersections at R0 λL𝐭𝟎 = 0.9 and

R0 λU𝐭𝟎 = 0.1 …

At the end of the reliability test, at time t, we know the data (the times of the transitions tj) and the
“observed” empirical sample D={x1, x2, …, xg}, where xj=tj – tj-1 is the length between the transitions; the
transition instants are tj = tj-1 + xj giving the “observed” transition sample D*=t1, t2, …, tg-1, tg, t=end of the test
(times of the transitions tj).

We consider now that we want to estimate the unknown MTTF=  =1/ of each item comprising the
“associated” stand-by system [24-30]: each datum is a measurement from the exponential pdf; we compute
the determinant det𝐵 𝑠 𝑟; 𝜃, 𝐷∗ = 1/𝜃 𝑔 exp −𝑇 𝑡 of the integral system (9), where 𝑇 𝑡 is the “Total
Time on Test” 𝑇 𝑡 = 1

𝑔 𝑥𝑖∑ [𝒕𝟎 in the figure 5]: the “Associated Stand-by System” [25-33] in the Statistics
books provides the pdf of the sum of the RV Xi of the “observed” empirical sample D={x1, x2, …, xg}. At the end
time t of the test, the integral equations, constrained by the constraint D*, provide the equation

𝜕𝑙𝑛𝑑𝑒𝑡𝐵 𝑠 𝑟; 𝜃, 𝐷∗ /𝜕𝜃 = 𝜃/𝑔 − 𝑇 𝑡 = 0 (10)

It is important to notice that, in the case of exponential distribution [11-16, 25-36], it is exactly the same
result as the one provided by the MLM Maximum Likelihood Method.

If the kernel 𝑏𝑗,𝑗+1 𝑠 − 𝑡𝑗 is the pdf 𝑓 ( 𝑠 − 𝑡𝑗 |𝜇,𝜎2 ) = 1/ 2𝜋𝜎 𝑒− 𝑠−𝑡𝑗−𝜇
2

/(2𝜎2) the data are normally

distributed, 𝑋~𝑁 𝜇𝑋, 𝜎𝑋2 = 1/ 2𝜋𝜎𝑋 𝑒− 𝑥−𝜇𝑋 2/(2 𝜎𝑋
2 ) , with sample size n, then we get the usual estimator

𝑋� = 𝑋𝑖∑ /𝑛 such that 𝐸 𝑋� = 𝜇𝑋.
The same happens with any other distribution (e.g. see the Table 1) provided that we write the kernel

𝑏𝑖,𝑖+1 𝑠 .
The reliability function 𝑅0 𝑡|𝜃 , [formula (8)], with the parameter 𝜃, of the “Associated Stand-by System”

provides the Operating Characteristic Curve (OC Curve, reliability of the system) [6-36] and allows to find the
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At the end of the reliability test, at time t, we know the data (the times of the transitions tj) and the
“observed” empirical sample D={x1, x2, …, xg}, where xj=tj – tj-1 is the length between the transitions; the
transition instants are tj = tj-1 + xj giving the “observed” transition sample D*=t1, t2, …, tg-1, tg, t=end of the test
(times of the transitions tj).

We consider now that we want to estimate the unknown MTTF=  =1/ of each item comprising the
“associated” stand-by system [24-30]: each datum is a measurement from the exponential pdf; we compute
the determinant det𝐵 𝑠 𝑟; 𝜃, 𝐷∗ = 1/𝜃 𝑔 exp −𝑇 𝑡 of the integral system (9), where 𝑇 𝑡 is the “Total
Time on Test” 𝑇 𝑡 = 1

𝑔 𝑥𝑖∑ [𝒕𝟎 in the figure 5]: the “Associated Stand-by System” [25-33] in the Statistics
books provides the pdf of the sum of the RV Xi of the “observed” empirical sample D={x1, x2, …, xg}. At the end
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𝜕𝑙𝑛𝑑𝑒𝑡𝐵 𝑠 𝑟; 𝜃, 𝐷∗ /𝜕𝜃 = 𝜃/𝑔 − 𝑇 𝑡 = 0 (10)

It is important to notice that, in the case of exponential distribution [11-16, 25-36], it is exactly the same
result as the one provided by the MLM Maximum Likelihood Method.
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𝑋� = 𝑋𝑖∑ /𝑛 such that 𝐸 𝑋� = 𝜇𝑋.
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provides the Operating Characteristic Curve (OC Curve, reliability of the system) [6-36] and allows to find the

The same happens with any other distribution (e.g. see the Table 1) provided that we write the kernel bi,i+1 (s).

The reliability function R0 (t | θ), [formula (8)], with the parameter θ, of the “Associated Stand-by System” provides the Operating 
Characteristic Curve (OC Curve, reliability of the system) [6-36] and allows to find the Confidence Limits (θL Lower and θU  Upper) of 
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(t0│θ) = α / 2; we get the two values (θL, θU) such that
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𝑅0 𝒕𝒐|𝜃𝐿 = 𝛼/2 𝑎𝑛𝑑 𝑅0 𝒕𝒐|𝜃𝑈 = 1 − 𝛼/2 (11)

where 𝒕𝒐 is the (computed) “total of the length of the transitions xi=tj - tj-1 data of the empirical sample D”
and CL=1− 𝛼 is the Confidence Level. CI=𝜃𝐿--------𝜃𝑈 is the Confidence Interval: 𝜃𝐿 = 1/𝜆𝑈 and 𝜃𝑈 = 1/𝜆𝐿.

For example, with figure 5, we can derive 𝜃𝐿 = 62.5 𝑑𝑎𝑦𝑠 = 1/𝜆𝑈 and 𝜃𝑈 = 200 𝑑𝑎𝑦𝑠 = 1/𝜆𝐿 , with
CL=0.8. It is quite interesting that the book [14] Meeker et al., “Statistical Intervals: A Guide for Practitioners and
Researchers”, John Wiley & Sons (2017) use the same ideas of FG (shown in the formula 11) for computing the
CI; the only difference is that the author FG defined the procedure in 1982 [26], 35 years before Meeker et al.

As said before, we can use RIT for the Sequential Tests; we have only to consider the various transitions
and the Total Time on Test to the last transition we want to consider.

2.4 Control Charts for TBE data. Some ideas for Phase I Analysis
Let’s consider now TBE (Time Between Event, time between transitions) data, exponentially or Weibull

distributed. Quite a lot of authors (in the “Garden … [24]”) compute wrongly the Control Limits (which are the
Confidence Limits) of these CCs.

The formulae, shown in the section “Control Charts for Process Management”, are based on the Normal
distribution (thanks to the CLT; see the excerpts 3, 3a and 3b); unfortunately, they are used also for
NON_normal data (e.g. see formulae (1)): for that, sometimes, the NON_normal data are transformed “with
suitable transformations” in order to “produce Normal data” and to apply those formulae (above) [e.g.
Montgomery in his book].

Sometimes we have few data and then we use the so called “Individual Control Charts” I-CC. The I-CCs are
very much used for exponentially (or Weibull) distributed data: they are also named “rare events Control Charts
for TBE (Time Between Events) data”, I-CC_TBE.

In the previous section, we computed the CI= 𝜃𝐿 -------- 𝜃𝑈 of the parameter 𝜃 , using the (subsample)
“transition times durations”: 𝒕𝑶=“total of the transition times durations (length of the transitions xi=tj - tj-1 data)
in the empirical sample (subsample with n=4 only, as an example)” and Confidence Level CL=1− 𝛼.

When we deal with a I-CC_TBE we compute the LCL and UCL of the mean  through the empirical mean
𝒕̅𝑶 = 𝒕𝑶/n of each transition, for the… ; we solve the two following equations (12) for the two unknown
values LCL and UCL, for 𝑅 𝒕̅𝑶 𝜃 of each item in the sample, similar to (11)

𝑅 𝒕̅𝑶|𝐿𝐶𝐿 = 𝛼/2, 𝑅 𝒕̅𝑶|𝑈𝐶𝐿 = 1 − 𝛼/2 (12)

where now 𝒕̅𝑶 = 𝒕𝑶/n is the “mean, to be attributed, to the single lengths of the single transitions xi=tj-tj-1

data in the empirical sample D with the Confidence Level CL=1− 𝛼: 𝐿𝐶𝐿 = 1/𝜆𝑈 and 𝑈𝐶𝐿 = 1/𝜆𝐿.
In the next sections we can see the Scientific Results found by a Scientific Theory (we anticipate them: the

Control Limits are LCL=18.0 days and UCL=88039.3 days).

3. Results
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years before Meeker et al.
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the transition times durations (length of the transitions xi=tj - tj-1 data) in the empirical sample (subsample with n=4 only, as an example)” 
and Confidence Level CL=1-α. 
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3. Results
In this section we provide the scientific analysis of the “remission time” data [3] and compare our result with those of the authors: the 
findings are completely different and the decisions, consequently, should be different, with different costs of wrong decisions.

3.1. Control Charts for TBE Data. Phase I Analysis
The “remission time of 128 bladder cancer patients” data are in the table 2. The authors write:
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It is reasonable to assume that the remission times of bladder cancer patients follow an GIW distribution. Based on
the given data for the 128 patients, as well as the information from …, we further assume the distribution is
GIW(𝜔�=61.38, 𝛽�=0.51, 𝜂�=8.19).

Excerpt 5. Zhuang et al., Statistical Inference on … Generalized Weibull Distribution. 2024

Table 2. Data “of remission time of 128 bladder cancer patients” from “Statistical Inference on the Shape Parameter

of Inverse Generalized Weibull Distribution”, Mathematics (2024) [3]

They add also:

Figure 3 (our Excerpt 7) displays the Q-Q plot for the observed data versus the theoretical IGW distribution, given
that 𝜔�=61.38, 𝛽�=0.51, 𝜂�=8.19, which confirms that this data set would be suitable for the proposed methodologies.

We have also included the histogram of the observed data, and the density curve, to provide further insight.

Excerpt 6. Zhuang et al., Statistical Inference on … Generalized Weibull Distribution. 2024

So, the authors decided to “assume” (use) the GIW(x|, , ): [1− 𝑒− 𝜂/𝑥 𝛽]𝜔 to analyse all the 128 data
in table 2; their estimates are in Excerpts 5 ,6. Looking at Q-Q Plot and Histogram (in Excerpt 7) the readers
can have some doubts about the use. of GIW.

Excerpt 7. QQ plot of remission time of 128 bladder cancer patients with IGW histogram of the real data and

probability density GIW (estimates of the parameters 𝜔�=61.38, 𝛽�=0.51, 𝜂�=8.19), from [3]

As a matter of fact, we can draw the figure 6, TTOT (of the data xi) versus i/n (n=128); from the graph it is
evident that the exponential distribution is suitable for the data analysis. Therefore, we will compare the
models Exponential, Inverted W and GIW.

We divide the data in two sets: the first based on the first 32 data and the second considering the others.
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The figure 8 shows that the first 32 data do not allow to assess if the “null hypothesis” H0={θ=10}, with α=0.025 is to be accepted or 
rejected in favour of the H1={θ=5.75} with β=0.025. The Sequential Test (Wald) is inefficient for the first 32 data. Compare with figure 9.

The last CI={6.08, 12.23}, figure 9, shows that the first 32 data allows to assess that the “null hypothesis” H0={θ=10}, with α=0.025 is to 
be accepted but H1={θ=5.75} rejected with β>0.025: {5.75<6.08<10<12.23}. The Sequential CIs are not more efficient than Wald Test.
Fitting the Inverse Weibull distribution, on the first 32 data (1/xi), one finds β=1.0422 and η=0.281, with -2lnL=18.59; since the 1ϵCI of 
β, with CL=80% we are allowed to use the exponential distribution, as we could do for the data xi. The conclusion, the first 32 data (1/
xi), about the sequential CIs would be the same as for the data xi.
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Figure 7. CC of the first 32 Cancer data (Exponential distribution): process OOC (1 point)
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Figure 7: CC of the first 32 Cancer data (Exponential distribution): process OOC (1 point)
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Figure 9: Sequential Confidence Intervals (α=β=0.025) for the Exponential distribution
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Figure 10. Sequential Confidence Intervals (==0.025) for the Inverse Weibull distribution

In the next session we consider all the 128 data and compare our results with the authors of [3].
For exponentially distributed data (12) becomes (13) [6-33], k=1, with CL=1− 𝛼

𝑒− 𝒕̅𝑶/𝑳𝐶𝐿 = 1 − 𝛼/2 and 𝑒− 𝒕̅𝑶/𝑼𝐶𝐿 = 𝛼/2 (13)

The endpoints of the CI=𝐿𝐶𝐿--------𝑈𝐶𝐿 are the Control Limits of the I-CC_TBE.
This is the right method to extract the “true” complete information contained in the sample (see the figs. 7, 8, 9).

The figures are justified by the Theory [6-33] and are related to the formulae [(12), (13) for k=1], for the
I-CC_TBE charts.

Remember the book Meeker et al., “Statistical Intervals: A Guide for Practitioners and Researchers”, John
Wiley & Sons (2017): the authors use the same ideas of FG; the only difference is that FG invented 30 years
before, at least.

Compare the formulae [(13), for k=1], theoretically derived with a sound Theory [6-33], with the ones in
the Excerpt [in the Appendix C (a small sample from the “Garden … [24]”)] and notice that the two Minitab
authors (Santiago&Smith) use the “empirical mean 𝒕̅𝑶” in place of the 𝜃0 in the figure 1: it is the same trick
of replacing 𝑥� to the mean 𝜇 which is valid for the Normal distributed data only; e.g., see the formulae (1)!

3.2 Control Charts for TBE data. Phase II Analysis
We saw in the previous section what usually it is done during the Phase I of the application of CCs:

estimation of the mean and standard deviation; later, their values are assumed as “true known” parameters
of the data distribution, in view of the Phase II.

We considered the first 32 (out of 128 remission times of bladder) Cancer data; using all the 128 data the

authors found (Excerpts 5, 6) the distribution GIW(x|, , ): 1− [1− e− η/x β]ω with estimated parameters
β�=0.51, η�=8.19, ω�=61.38; on the contrary we found that the exponential distribution (after fitting the Weibull
and the Inverse Weibull) was suitable: that allowed us to make many considerations about the use of
sequential sampling.

Now we consider all the 128 data and see new considerations.
In particular, for TBE individual data the exponential distribution is assumed with a known parameter 0

or 0.

Figure 10: Sequential Confidence Intervals (α=β=0.025) for the Inverse Weibull distribution In the next session we consider all the 128 
data and compare our results with the authors of [3].

For exponentially distributed data (12) becomes (13) [6-33], k=1, with CL=1-α
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In the next session we consider all the 128 data and compare our results with the authors of [3].
For exponentially distributed data (12) becomes (13) [6-33], k=1, with CL=1− 𝛼

𝑒− 𝒕̅𝑶/𝑳𝐶𝐿 = 1 − 𝛼/2 and 𝑒− 𝒕̅𝑶/𝑼𝐶𝐿 = 𝛼/2 (13)

The endpoints of the CI=𝐿𝐶𝐿--------𝑈𝐶𝐿 are the Control Limits of the I-CC_TBE.
This is the right method to extract the “true” complete information contained in the sample (see the figs. 7, 8, 9).

The figures are justified by the Theory [6-33] and are related to the formulae [(12), (13) for k=1], for the
I-CC_TBE charts.

Remember the book Meeker et al., “Statistical Intervals: A Guide for Practitioners and Researchers”, John
Wiley & Sons (2017): the authors use the same ideas of FG; the only difference is that FG invented 30 years
before, at least.

Compare the formulae [(13), for k=1], theoretically derived with a sound Theory [6-33], with the ones in
the Excerpt [in the Appendix C (a small sample from the “Garden … [24]”)] and notice that the two Minitab
authors (Santiago&Smith) use the “empirical mean 𝒕̅𝑶” in place of the 𝜃0 in the figure 1: it is the same trick
of replacing 𝑥� to the mean 𝜇 which is valid for the Normal distributed data only; e.g., see the formulae (1)!

3.2 Control Charts for TBE data. Phase II Analysis
We saw in the previous section what usually it is done during the Phase I of the application of CCs:

estimation of the mean and standard deviation; later, their values are assumed as “true known” parameters
of the data distribution, in view of the Phase II.

We considered the first 32 (out of 128 remission times of bladder) Cancer data; using all the 128 data the

authors found (Excerpts 5, 6) the distribution GIW(x|, , ): 1− [1− e− η/x β]ω with estimated parameters
β�=0.51, η�=8.19, ω�=61.38; on the contrary we found that the exponential distribution (after fitting the Weibull
and the Inverse Weibull) was suitable: that allowed us to make many considerations about the use of
sequential sampling.

Now we consider all the 128 data and see new considerations.
In particular, for TBE individual data the exponential distribution is assumed with a known parameter 0

or 0.

The endpoints of the CI=LCL--------UCL are the Control Limits of the I-CC_TBE.

This is the right method to extract the “true” complete information contained in the sample (see the figs. 7, 8, 9). The figures are justified 
by the Theory [6-33] and are related to the formulae [(12), (13) for k=1], for the I-CC_TBE charts. 

Remember the book Meeker et al., “Statistical Intervals: A Guide for Practitioners and Researchers”, John Wiley & Sons (2017): the 
authors use the same ideas of FG; the only difference is that FG invented 30 years before, at least. Compare the formulae [(13), for k=1], 
theoretically derived with a sound Theory [6-33], with the ones in the Excerpt [in the Appendix C (a small sample from the “Garden … 
[24]”)] and notice that the two Minitab authors (Santiago&Smith) use the “empirical mean t̅O” in place of the θ0 in the figure 1: it is the 
same trick of replacing x̿ to the mean μ which is valid for the Normal distributed data only; e.g., see the formulae (1)! 

3.2. Control Charts for TBE Data. Phase II Analysis
We saw in the previous section what usually it is done during the Phase I of the application of CCs: estimation of the mean and standard 
deviation; later, their values are assumed as “true known” parameters of the data distribution, in view of the Phase II. We considered the 
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In the next session we consider all the 128 data and compare our results with the authors of [3].
For exponentially distributed data (12) becomes (13) [6-33], k=1, with CL=1− 𝛼

𝑒− 𝒕̅𝑶/𝑳𝐶𝐿 = 1 − 𝛼/2 and 𝑒− 𝒕̅𝑶/𝑼𝐶𝐿 = 𝛼/2 (13)

The endpoints of the CI=𝐿𝐶𝐿--------𝑈𝐶𝐿 are the Control Limits of the I-CC_TBE.
This is the right method to extract the “true” complete information contained in the sample (see the figs. 7, 8, 9).

The figures are justified by the Theory [6-33] and are related to the formulae [(12), (13) for k=1], for the
I-CC_TBE charts.

Remember the book Meeker et al., “Statistical Intervals: A Guide for Practitioners and Researchers”, John
Wiley & Sons (2017): the authors use the same ideas of FG; the only difference is that FG invented 30 years
before, at least.

Compare the formulae [(13), for k=1], theoretically derived with a sound Theory [6-33], with the ones in
the Excerpt [in the Appendix C (a small sample from the “Garden … [24]”)] and notice that the two Minitab
authors (Santiago&Smith) use the “empirical mean 𝒕̅𝑶” in place of the 𝜃0 in the figure 1: it is the same trick
of replacing 𝑥� to the mean 𝜇 which is valid for the Normal distributed data only; e.g., see the formulae (1)!

3.2 Control Charts for TBE data. Phase II Analysis
We saw in the previous section what usually it is done during the Phase I of the application of CCs:

estimation of the mean and standard deviation; later, their values are assumed as “true known” parameters
of the data distribution, in view of the Phase II.

We considered the first 32 (out of 128 remission times of bladder) Cancer data; using all the 128 data the

authors found (Excerpts 5, 6) the distribution GIW(x|, , ): 1− [1− e− η/x β]ω with estimated parameters
β�=0.51, η�=8.19, ω�=61.38; on the contrary we found that the exponential distribution (after fitting the Weibull
and the Inverse Weibull) was suitable: that allowed us to make many considerations about the use of
sequential sampling.

Now we consider all the 128 data and see new considerations.
In particular, for TBE individual data the exponential distribution is assumed with a known parameter 0

or 0.

 with estimated parameters β =0.51, η =8.19, ω  =61.38; on the contrary we found that the exponential 
distribution (after fitting the Weibull and the Inverse Weibull) was suitable: that allowed us to make many considerations about the use of 
sequential sampling. Now we consider all the 128 data and see new considerations. In particular, for TBE individual data the exponential 
distribution is assumed with a known parameter λ0 or θ0.
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Figure 11. TTOT (Total Time On Test transform) of the 128 Cancer data. Exponential distribution is suitable
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Figure 12. Sequential Confidence Intervals (==0.025) of the 128 Cancer data with hypotheses H0={=10} versus
H1={=5.75}. Exponential distribution is suitable

We consider now what it is done during the Phase II of the application of CCs for TBE data individual
exponentially distributed.

As previously we find that the Exponential distribution is well fitting the data, figure 11, opposite to the
distribution GIW(x|, , ): 1 − [1− e− η/x β]ω.

The last CI={9.36, 11.22}, figure 12, shows that the 128 data allows to assess that the “null hypothesis”
H0={=10}, with =0.025 is to be accepted but H1={=5.75} rejected with >0.025: {5.75<9.36<10<11.22}. The
Sequential CIs are less efficient than Wald Test.

Figure 11: TTOT (Total Time On Test transform) of the 128 Cancer data. Exponential distribution is suitable
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We consider now what it is done during the Phase II of the application of CCs for TBE data individual
exponentially distributed.

As previously we find that the Exponential distribution is well fitting the data, figure 11, opposite to the
distribution GIW(x|, , ): 1 − [1− e− η/x β]ω.

The last CI={9.36, 11.22}, figure 12, shows that the 128 data allows to assess that the “null hypothesis”
H0={=10}, with =0.025 is to be accepted but H1={=5.75} rejected with >0.025: {5.75<9.36<10<11.22}. The
Sequential CIs are less efficient than Wald Test.
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We consider now what it is done during the Phase II of the application of CCs for TBE data individual
exponentially distributed.

As previously we find that the Exponential distribution is well fitting the data, figure 11, opposite to the
distribution GIW(x|, , ): 1 − [1− e− η/x β]ω.

The last CI={9.36, 11.22}, figure 12, shows that the 128 data allows to assess that the “null hypothesis”
H0={=10}, with =0.025 is to be accepted but H1={=5.75} rejected with >0.025: {5.75<9.36<10<11.22}. The
Sequential CIs are less efficient than Wald Test.
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Figure 13. Sequential Test (Wald) of the 128 Cancer data; the decision to Accept H0={=10} happens at the 42nd

point

As it happened previously, we find that the CC provides much more information to the Manager to allow
him to take sound decisions.

Since the CCs are “sequential tests” we think that it is wise to use them.
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Figure 14. Control Chart of the 128 Cancer data: the process is OOC

3.3 Sequential Test by the authors of [3]

Now we see what the authors of [3] did about their distribution GIW(x|, , ): 1− [1− e− η/x β]ω (in the
paper they use  in place of our ; we introduced  because  is the type I probability risk, associated to H0).

They found the MLE (Maximum Likelihood Estimate 𝜔�𝑛 and Estimator Ω𝑛) of the parameter , with n
the number of the data considered, H and B estimators of  and 

𝜔�𝑛 =− 𝑛/ 1
𝑛 𝑙𝑛 1− e− η/x𝑖 β∑ and Ω𝑛 =− 𝑛/ 1

𝑛 𝑙𝑛 1− e− H/x𝑖 B∑ = 𝑛/𝑌

and computed 𝜔�128 = 61.38 ; from that they computed the 95% Confidence Interval as (59.82, 63.07),

Figure 13: Sequential Test (Wald) of the 128 Cancer data; the decision to Accept H0={θ=10} happens at the 42nd point

As it happened previously, we find that the CC provides much more information to the Manager to allow him to take sound decisions.
Since the CCs are “sequential tests” we think that it is wise to use them.
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paper they use  in place of our ; we introduced  because  is the type I probability risk, associated to H0).

They found the MLE (Maximum Likelihood Estimate 𝜔�𝑛 and Estimator Ω𝑛) of the parameter , with n
the number of the data considered, H and B estimators of  and 
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As it happened previously, we find that the CC provides much more information to the Manager to allow
him to take sound decisions.

Since the CCs are “sequential tests” we think that it is wise to use them.
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the distribution GIW(x|  ,  ,  ) depends only on n, the number of data considered, and not on the
parameters of GIW(x|, , ) of the Random Variable 𝑇 = 𝜔𝑌/𝑛~𝐺𝑎𝑚𝑚𝑎(𝑛, 1/𝑛).

Notice that the Confidence Interval (59.82, 63.07) is actually a Probability Interval, showing the same
error mentioned in [24].

The authors state (in Excerpt 8)

Now, using this real data set (our table 2), we illustrate the procedures we discussed for constructing a
fixed-accuracy confidence interval for  (our symbol for the one of the authors). Suppose a group of researchers has
decided to create a 95% confidence interval for α with d = 1.2. According to …, we search for the sample size that is
needed under such requirements. The smallest sample size that is needed turns out to be 73. Figure 4 (our Excerpt 7)
shows the relationship between the coverage probability and the required sample size. It is clear that, as we increase the
sample size N, the coverage probability goes up for fixed values of d and  . Thus, sample size 73 is the minimum
number of observations that we need to achieve the targeted level, 95%

Excerpt 8. Zhuang et al., Statistical Inference on … Generalized Weibull Distribution. 2024

We tried to draw a “TTOT (Total Time On Test transform) of the 128 Cancer data” (similar to Figure 11)

with GIW(x|0.51, 8.19, 61.38): 1− [1− e− 8.19/x 0.51]61.38 ; it is impossible to draw such a graph with data in
table 2. To understand the reader can see the figure 15:

It is evident from table 2 that only the smallest nine data 0.08, 0.20, 0.40, 0.50, 0.51 0.81, 0.90, 1.05, 1,19
could be shown in the figure 15; the other 119 data are all near the ordinate 1 (in the figure 15).

How could GIW(x|0.51, 8.19, 61.38) fit suitably the 128 Cancer data?
So, the Excerpt 8 is quite doubtful.
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1
𝑛−𝑙𝑛 1− e− η/x𝑖 β∑ from the Distribution GIW(x|0.51, 8.19, 61.38), with their interpolating formulae
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We see that the “Tot_inverse_B” We see that the “Tot_inverse_B” 1
𝑛−𝑙𝑛 1− e− η/x𝑖 β∑ , from the Distribution GIW(x|0.51, 8.19, 61.38), does

not fit well the successive sums of the Inverse data (of those in Table 2).
What is the consequence? We leave it to the readers…
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Figure 16. Inverse data (of those in Table 2), sum of the inverse of collected data named “Tot_inverse” and

“Tot_inverse_B” 1
𝑛−𝑙𝑛 1 − e− η/x𝑖 β∑ from the Distribution GIW(x|0.51, 8.19, 61.38). x in the interpolating formulae is

the number of counts, not the collected data.

Computing the quantity “Tot_inverse_B”= 1
𝑛−𝑙𝑛 1− e− 8.19/x𝑖 0.51 = 1.99∑ 26 , we find the estimate

𝜔�128_𝐹𝐺 = 64.2391 , that is different from the estimate of the authors 𝜔�128 = 61.38; so getting the Distribution

GIW(x|0.51, 8.19, 61.38). Their 95% Confidence Interval, 𝐶𝐼 = 𝜔�𝑛/𝑑, 𝑑𝜔�𝑛 , where d is the “accuracy” of the CI,
was (59.82, 63.07): notice that the “named” CI_Zhuang=(59.82, 63.07) is actually a Probability Interval, showing
the same error mentioned in [24].

It is important to notice that 𝜔�128_𝐹𝐺 > 63.07 (the upper limit of the “named” CI_Zhuang=(59.82, 63.07). We
leave to the readers to say what that means!
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𝑔 −𝑙𝑛 1− 𝑒− 𝜂/𝑥𝑖 𝛽 /𝑔∑ ; we have that 𝑇 ~𝐺𝑎𝑚𝑚𝑎(𝑔, 1/𝑔) ,

with density 𝑓(𝑡;𝛽,𝜃) = 𝑡𝛽−1𝑒−𝑡/𝜃/ 𝜃𝛽𝛤(𝛽) where 𝜃 is the scale parameter and 𝛽 is the shape parameter
(𝛽 = 𝑔 = 1/𝜃).

We can write the Probability statement, for any value chosen g,

𝑃 G𝐿 = 𝐿 < 𝑇 = 𝛺
1

𝑔
−𝑙𝑛 1− 𝑒− 𝜂/𝑥𝑖 𝛽 /𝑔� < 𝑈 = G𝑈 = 1 − 𝛼 (14)

where L------U is the interval that comprises the RV T with probability 1- and G is the Cumulative Gamma
Distribution.

From (14) can derive the “equivalent” Probability statement, for any value chosen g,

𝑃 G𝐿/𝛺 = 𝐿/𝛺 <
1

𝑔
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where L/𝛺 ------U/𝛺 is the random interval that comprises the parameter  with probability 1-.
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Figure 17. OC Curve and pdf (multiplied by 40) versus  (omega), given “Tot_inverse_B” 1
𝑛−𝑙𝑛 1 − e− η/x𝑖 β∑ from

the Distribution GIW(x|0.51, 8.19, 61.38). The intersections of the OC with the two horizontal lines y=0.025 and y=0.975,

provide the limits of the CI.

After the estimation of 𝜔�𝑛 we have the Confidence Interval, 𝐶𝐼 = G𝐿/𝜔�𝑛, G𝑈/𝜔�𝑛 surely different from
the “named” CI=(59.82, 63.07).

By taking advantage of the fact [3] that 𝑌 =− 1
𝑛 −𝑙𝑛 1− 𝑒− 𝐻/𝑥𝑖 𝐵∑ , follows a Gamma distribution with

parameters n and 1/, we can compute directly the CI by computing the OC Curve (Operating Characteristic
Curve) OC(%)=1 - Gamma(1.956|128, 1/); we show it in figure 17:

It is clear that the intersections of the OC Curve (fig. 17) with the two horizontal lines y=0.025 and y=0.975,
provide the limits of the CI, which are different from the “named” CI_Zhuang=(59.82, 63.07).

The Confidence limits are the values of the “unknown” variable  satisfying next two equations, with D=
Tot_inverse_B, computed with all the 128 data

0

𝐷
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Putting Dg= 1
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�
∑ computed with g data, we can get the successive Confidence Intervals

CIg; two of them can be seen in the figure 18 with their OC Curves, for g=128and g=73.
Our CI73 (figure 18) is CI73(83, 131); notice the big difference with the one given in the Excerpt 9. Notice

that the value 61.38, estimated by all the 128 data, is named as “true value” (which is unknown).

Now, using the data that we setup from Table5, we just take the first 73 observations and construct the confidence
interval for  . These observations give us a 95% confidence interval as (59.84, 63.07). This interval covers the true
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Excerpt 9. Zhuang et al., Statistical Inference on … Generalized Weibull Distribution. 2024
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Figure 18. Two OC Curves versus  (omega). The intersections of each OC with the two horizontal lines y=0.025 and

y=0.975, provide the limits of the CIs. The curve “on the right” is for g=73 (the sample size “optimum” for decision,

according to Excerpt 9); the other is for g=128.

Notice that  128=64.24 while  73=104.07, quite a big difference with the “true value” 61.38, as in the
Excerpt 9.

Obviously the CIs are different from the ones in [3].
3.4 Other cases
Now we consider the paper [4] by Hu et al. “Sequential Confidence Intervals for Comparing Two

Proportions with Applications in A/B Testing. Mathematics 2025, 13, 161.”
The authors say:

Suppose we are interested in some common characteristic, referred to as success, possessed by two independent
dichotomous populations, say X and Y. The success probabilities are denoted by p1 and p2, respectively, where 0 < pi < 1,
i = 1,2. Our goal is to compare their magnitudes and determine whether one is significantly greater than the other.
Assume that we have collected random samples X1,...,Xn1 and Y1,...,Yn2 from X and Y, respectively, where the sample
sizes n1 and n2 are not necessarily the same. Then, the Xi’s are independent and identically distributed (i.i.d.) Bernoulli
(p1) random variables, … Omissis … To compare the magnitudes of p1 and p2, we construct a confidence interval for
the ratio p1/p2 … As p1/p2 is always positive, we apply the log transformation on it and the resulting quantity log(p1/p2)
takes values on (−∞,∞). According to the central limit theorem and the delta method, we find that for i = 1,2,
𝑛𝑖 𝑙𝑜𝑔(𝑝�𝑖,𝑛𝑖)− 𝑙𝑜𝑔(𝑝𝑖) ' 𝑑 → ' 𝑁(0,𝜎𝑖2) as ni → ∞, where ' 𝑑 → ' represents convergence in distribution and 𝜎𝑖2 =

(1 − 𝑝𝑖)/𝑝𝑖 . For sufficiently large n1 and n2, we have the approximate normality of the difference in 𝑙𝑜𝑔(𝑝�1,𝑛1) −
𝑙𝑜𝑔(𝑝�2,𝑛2)…

Excerpt 10. Hu et al. “Sequential Confidence Intervals for … A/B Testing. Mathematics 2025”

Everything is based on the CLT (Central Limit Theorem) and “simulation studies”…
The authors consider two real cases:
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Everything is based on the CLT (Central Limit Theorem) and “simulation studies”.

The Authors Consider two Real Cases

a) To illustrate the application, we analyse a dataset collected from the Kaggle platform accessed on 3 March 2024
(https://www.kaggle.com/code/yufengsui/datacamp-project-mobile-games-a-b-testing/notebook), referred to as the
Cookie Cats data. The dataset contains information on over90,000 users of the mobile puzzle game Cookie Cats,
developed by Tactile Entertainment.

b) a large company seeks to increase sales through advertisements and has substantial user base plans. To assess the
effectiveness of advertisements in boosting sales, an A/B testing experiment was conducted using a dataset collected
from the Kaggle platform accessed on 11 May 2024 (https://www.kaggle.com/datasets/
farhadzeynalli/online-advertising-effectiveness-study-ab-testing/data), referred to as the Online Advertising data.

Excerpt 11. Hu et al. “Sequential Confidence Intervals for … A/B Testing. Mathematics 2025”

We did not consider the datasets in Excerpt 11.
Here we want to say that there is no need to consider asymptotic results, because we can apply the

Theory we provided before: it is enough to consider the that the logarithm transformation satisfy the relation
𝑒𝑥𝑝 𝑙𝑛(𝑝) = 𝑝.

Another case we want to consider is in the paper [5] by Alshahrani et al., “On Designing of Bayesian
Shewhart-Type Control Charts for Maxwell Distributed Processes with Application of Boring Machine.
Mathematics 2023, 11, 1126”

The authors say:

The assumptions of normality for the quality characteristic may not be achieved in practice… Therefore, using the
normal distribution for non-normal data may result in a false alarm in process monitoring or may allow for the later
detection of changes. In the literature, several researchers suggested control charts for quality characteristic which
follows a skewed distribution. … The Maxwell (or Maxwell–Boltzmann) distribution is a familiar positively skewed
distribution. The Maxwell distribution has a smoothly increasing hazard risk; therefore, it is commonly used in
life-testing experiments and reliability analysis where the assumption of constant hazard risk, such as in exponential
distribution, is not practical. The Maxwell distribution is widely used in statistical machines, physics, chemistry, and
life testing experiment, but it is recently has been applied in the SPC techniques.

Excerpt 12. Alshahrani et al., “On Designing … of Boring Machine. Mathematics 2023”

If X is a RV having the Maxwell distribution with scale parameter 𝜎2, then its pdf is as follows: 𝑓(𝑥|𝜎2) =
2/𝜋𝜎−3𝑥2𝑒−𝑥2/(2𝜎2) 𝑤𝑖𝑡ℎ 𝑥, 𝜎2 > 0.

The ML Estimator (which is a RV) of the parameter 𝜎2 is 𝛴2 = 1
𝑛 𝑋𝑗2/(3𝑛)∑ ; the transformation 𝑇 = 𝑋2/

(2𝜎2) shows that 𝑇~𝐺(3/2,1), the Gamma distribution, and 𝑈 = 3𝑛𝛴2/(2𝜎2)~𝐺(3𝑛/2,1). It is interesting to
note that if x is interpreted as the velocity of a particle of unit mass (m=1), the quantity 𝑤 = 𝑚𝑥2/2 is the
energy of the particle and the two components X1 and X2 can be considered as independent RVs normally
distributed with mean E[X]=0 and variance Var[X]=𝜎2.

The authors consider correctly the Probability Limits, But, unfortunately, they wrote “Practically, the
parameter 𝜎2 may be known or unknown then the probability control limits of the control chart are defined as
follows:….”.

Notice that in Control Charts (CCs) we use the Control Limits, LCL and UCL, NOT the “probability control
limits of the control chart”!.

The authors made a lot of simulation and eventually applied their ideas to

Real Data Analysis. A boring machine is a tool used for making a wide hole in a fixed workpiece. These machines
make use of a single steel cutting edge, carbide or diamond, or a small grinding wheel to make the hole cleaner, more

Excerpt 11: Hu et al. “Sequential Confidence Intervals for … A/B Testing. Mathematics 2025”

We did not consider the datasets in Excerpt 11.

Here we want to say that there is no need to consider asymptotic results, because we can apply the Theory we provided before: it is 
enough to consider the that the logarithm transformation satisfy the relation exp[ln(p)] = p.
Another case we want to consider is in the paper [5] by Alshahrani et al., “On Designing of Bayesian Shewhart-Type Control Charts for 
Maxwell Distributed Processes with Application of Boring Machine. Mathematics 2023, 11, 1126”.
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farhadzeynalli/online-advertising-effectiveness-study-ab-testing/data), referred to as the Online Advertising data.

Excerpt 11. Hu et al. “Sequential Confidence Intervals for … A/B Testing. Mathematics 2025”

We did not consider the datasets in Excerpt 11.
Here we want to say that there is no need to consider asymptotic results, because we can apply the

Theory we provided before: it is enough to consider the that the logarithm transformation satisfy the relation
𝑒𝑥𝑝 𝑙𝑛(𝑝) = 𝑝.

Another case we want to consider is in the paper [5] by Alshahrani et al., “On Designing of Bayesian
Shewhart-Type Control Charts for Maxwell Distributed Processes with Application of Boring Machine.
Mathematics 2023, 11, 1126”

The authors say:

The assumptions of normality for the quality characteristic may not be achieved in practice… Therefore, using the
normal distribution for non-normal data may result in a false alarm in process monitoring or may allow for the later
detection of changes. In the literature, several researchers suggested control charts for quality characteristic which
follows a skewed distribution. … The Maxwell (or Maxwell–Boltzmann) distribution is a familiar positively skewed
distribution. The Maxwell distribution has a smoothly increasing hazard risk; therefore, it is commonly used in
life-testing experiments and reliability analysis where the assumption of constant hazard risk, such as in exponential
distribution, is not practical. The Maxwell distribution is widely used in statistical machines, physics, chemistry, and
life testing experiment, but it is recently has been applied in the SPC techniques.

Excerpt 12. Alshahrani et al., “On Designing … of Boring Machine. Mathematics 2023”

If X is a RV having the Maxwell distribution with scale parameter 𝜎2, then its pdf is as follows: 𝑓(𝑥|𝜎2) =
2/𝜋𝜎−3𝑥2𝑒−𝑥2/(2𝜎2) 𝑤𝑖𝑡ℎ 𝑥, 𝜎2 > 0.

The ML Estimator (which is a RV) of the parameter 𝜎2 is 𝛴2 = 1
𝑛 𝑋𝑗2/(3𝑛)∑ ; the transformation 𝑇 = 𝑋2/

(2𝜎2) shows that 𝑇~𝐺(3/2,1), the Gamma distribution, and 𝑈 = 3𝑛𝛴2/(2𝜎2)~𝐺(3𝑛/2,1). It is interesting to
note that if x is interpreted as the velocity of a particle of unit mass (m=1), the quantity 𝑤 = 𝑚𝑥2/2 is the
energy of the particle and the two components X1 and X2 can be considered as independent RVs normally
distributed with mean E[X]=0 and variance Var[X]=𝜎2.

The authors consider correctly the Probability Limits, But, unfortunately, they wrote “Practically, the
parameter 𝜎2 may be known or unknown then the probability control limits of the control chart are defined as
follows:….”.

Notice that in Control Charts (CCs) we use the Control Limits, LCL and UCL, NOT the “probability control
limits of the control chart”!.

The authors made a lot of simulation and eventually applied their ideas to

Real Data Analysis. A boring machine is a tool used for making a wide hole in a fixed workpiece. These machines
make use of a single steel cutting edge, carbide or diamond, or a small grinding wheel to make the hole cleaner, more

a) To illustrate the application, we analyse a dataset collected from the Kaggle platform accessed on 3 March 2024
(https://www.kaggle.com/code/yufengsui/datacamp-project-mobile-games-a-b-testing/notebook), referred to as the
Cookie Cats data. The dataset contains information on over90,000 users of the mobile puzzle game Cookie Cats,
developed by Tactile Entertainment.

b) a large company seeks to increase sales through advertisements and has substantial user base plans. To assess the
effectiveness of advertisements in boosting sales, an A/B testing experiment was conducted using a dataset collected
from the Kaggle platform accessed on 11 May 2024 (https://www.kaggle.com/datasets/
farhadzeynalli/online-advertising-effectiveness-study-ab-testing/data), referred to as the Online Advertising data.
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We did not consider the datasets in Excerpt 11.
Here we want to say that there is no need to consider asymptotic results, because we can apply the

Theory we provided before: it is enough to consider the that the logarithm transformation satisfy the relation
𝑒𝑥𝑝 𝑙𝑛(𝑝) = 𝑝.

Another case we want to consider is in the paper [5] by Alshahrani et al., “On Designing of Bayesian
Shewhart-Type Control Charts for Maxwell Distributed Processes with Application of Boring Machine.
Mathematics 2023, 11, 1126”

The authors say:

The assumptions of normality for the quality characteristic may not be achieved in practice… Therefore, using the
normal distribution for non-normal data may result in a false alarm in process monitoring or may allow for the later
detection of changes. In the literature, several researchers suggested control charts for quality characteristic which
follows a skewed distribution. … The Maxwell (or Maxwell–Boltzmann) distribution is a familiar positively skewed
distribution. The Maxwell distribution has a smoothly increasing hazard risk; therefore, it is commonly used in
life-testing experiments and reliability analysis where the assumption of constant hazard risk, such as in exponential
distribution, is not practical. The Maxwell distribution is widely used in statistical machines, physics, chemistry, and
life testing experiment, but it is recently has been applied in the SPC techniques.
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𝑛 𝑋𝑗2/(3𝑛)∑ ; the transformation 𝑇 = 𝑋2/

(2𝜎2) shows that 𝑇~𝐺(3/2,1), the Gamma distribution, and 𝑈 = 3𝑛𝛴2/(2𝜎2)~𝐺(3𝑛/2,1). It is interesting to
note that if x is interpreted as the velocity of a particle of unit mass (m=1), the quantity 𝑤 = 𝑚𝑥2/2 is the
energy of the particle and the two components X1 and X2 can be considered as independent RVs normally
distributed with mean E[X]=0 and variance Var[X]=𝜎2.

The authors consider correctly the Probability Limits, But, unfortunately, they wrote “Practically, the
parameter 𝜎2 may be known or unknown then the probability control limits of the control chart are defined as
follows:….”.

Notice that in Control Charts (CCs) we use the Control Limits, LCL and UCL, NOT the “probability control
limits of the control chart”!.

The authors made a lot of simulation and eventually applied their ideas to

Real Data Analysis. A boring machine is a tool used for making a wide hole in a fixed workpiece. These machines
make use of a single steel cutting edge, carbide or diamond, or a small grinding wheel to make the hole cleaner, more

The authors say

Excerpt 12: Alshahrani et al., “On Designing … of Boring Machine. Mathematics 2023”

If X is a RV having the Maxwell distribution with scale parameter σ2, then its pdf is as follows: f (x|σ2) = 

a) To illustrate the application, we analyse a dataset collected from the Kaggle platform accessed on 3 March 2024
(https://www.kaggle.com/code/yufengsui/datacamp-project-mobile-games-a-b-testing/notebook), referred to as the
Cookie Cats data. The dataset contains information on over90,000 users of the mobile puzzle game Cookie Cats,
developed by Tactile Entertainment.

b) a large company seeks to increase sales through advertisements and has substantial user base plans. To assess the
effectiveness of advertisements in boosting sales, an A/B testing experiment was conducted using a dataset collected
from the Kaggle platform accessed on 11 May 2024 (https://www.kaggle.com/datasets/
farhadzeynalli/online-advertising-effectiveness-study-ab-testing/data), referred to as the Online Advertising data.

Excerpt 11. Hu et al. “Sequential Confidence Intervals for … A/B Testing. Mathematics 2025”

We did not consider the datasets in Excerpt 11.
Here we want to say that there is no need to consider asymptotic results, because we can apply the

Theory we provided before: it is enough to consider the that the logarithm transformation satisfy the relation
𝑒𝑥𝑝 𝑙𝑛(𝑝) = 𝑝.

Another case we want to consider is in the paper [5] by Alshahrani et al., “On Designing of Bayesian
Shewhart-Type Control Charts for Maxwell Distributed Processes with Application of Boring Machine.
Mathematics 2023, 11, 1126”
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follows a skewed distribution. … The Maxwell (or Maxwell–Boltzmann) distribution is a familiar positively skewed
distribution. The Maxwell distribution has a smoothly increasing hazard risk; therefore, it is commonly used in
life-testing experiments and reliability analysis where the assumption of constant hazard risk, such as in exponential
distribution, is not practical. The Maxwell distribution is widely used in statistical machines, physics, chemistry, and
life testing experiment, but it is recently has been applied in the SPC techniques.
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The ML Estimator (which is a RV) of the parameter 𝜎2 is 𝛴2 = 1
𝑛 𝑋𝑗2/(3𝑛)∑ ; the transformation 𝑇 = 𝑋2/

(2𝜎2) shows that 𝑇~𝐺(3/2,1), the Gamma distribution, and 𝑈 = 3𝑛𝛴2/(2𝜎2)~𝐺(3𝑛/2,1). It is interesting to
note that if x is interpreted as the velocity of a particle of unit mass (m=1), the quantity 𝑤 = 𝑚𝑥2/2 is the
energy of the particle and the two components X1 and X2 can be considered as independent RVs normally
distributed with mean E[X]=0 and variance Var[X]=𝜎2.

The authors consider correctly the Probability Limits, But, unfortunately, they wrote “Practically, the
parameter 𝜎2 may be known or unknown then the probability control limits of the control chart are defined as
follows:….”.

Notice that in Control Charts (CCs) we use the Control Limits, LCL and UCL, NOT the “probability control
limits of the control chart”!.

The authors made a lot of simulation and eventually applied their ideas to

Real Data Analysis. A boring machine is a tool used for making a wide hole in a fixed workpiece. These machines
make use of a single steel cutting edge, carbide or diamond, or a small grinding wheel to make the hole cleaner, more

The ML Estimator (which is a RV) of the parameter σ2 is 

a) To illustrate the application, we analyse a dataset collected from the Kaggle platform accessed on 3 March 2024
(https://www.kaggle.com/code/yufengsui/datacamp-project-mobile-games-a-b-testing/notebook), referred to as the
Cookie Cats data. The dataset contains information on over90,000 users of the mobile puzzle game Cookie Cats,
developed by Tactile Entertainment.

b) a large company seeks to increase sales through advertisements and has substantial user base plans. To assess the
effectiveness of advertisements in boosting sales, an A/B testing experiment was conducted using a dataset collected
from the Kaggle platform accessed on 11 May 2024 (https://www.kaggle.com/datasets/
farhadzeynalli/online-advertising-effectiveness-study-ab-testing/data), referred to as the Online Advertising data.

Excerpt 11. Hu et al. “Sequential Confidence Intervals for … A/B Testing. Mathematics 2025”

We did not consider the datasets in Excerpt 11.
Here we want to say that there is no need to consider asymptotic results, because we can apply the

Theory we provided before: it is enough to consider the that the logarithm transformation satisfy the relation
𝑒𝑥𝑝 𝑙𝑛(𝑝) = 𝑝.

Another case we want to consider is in the paper [5] by Alshahrani et al., “On Designing of Bayesian
Shewhart-Type Control Charts for Maxwell Distributed Processes with Application of Boring Machine.
Mathematics 2023, 11, 1126”

The authors say:

The assumptions of normality for the quality characteristic may not be achieved in practice… Therefore, using the
normal distribution for non-normal data may result in a false alarm in process monitoring or may allow for the later
detection of changes. In the literature, several researchers suggested control charts for quality characteristic which
follows a skewed distribution. … The Maxwell (or Maxwell–Boltzmann) distribution is a familiar positively skewed
distribution. The Maxwell distribution has a smoothly increasing hazard risk; therefore, it is commonly used in
life-testing experiments and reliability analysis where the assumption of constant hazard risk, such as in exponential
distribution, is not practical. The Maxwell distribution is widely used in statistical machines, physics, chemistry, and
life testing experiment, but it is recently has been applied in the SPC techniques.

Excerpt 12. Alshahrani et al., “On Designing … of Boring Machine. Mathematics 2023”

If X is a RV having the Maxwell distribution with scale parameter 𝜎2, then its pdf is as follows: 𝑓(𝑥|𝜎2) =
2/𝜋𝜎−3𝑥2𝑒−𝑥2/(2𝜎2) 𝑤𝑖𝑡ℎ 𝑥, 𝜎2 > 0.

The ML Estimator (which is a RV) of the parameter 𝜎2 is 𝛴2 = 1
𝑛 𝑋𝑗2/(3𝑛)∑ ; the transformation 𝑇 = 𝑋2/

(2𝜎2) shows that 𝑇~𝐺(3/2,1), the Gamma distribution, and 𝑈 = 3𝑛𝛴2/(2𝜎2)~𝐺(3𝑛/2,1). It is interesting to
note that if x is interpreted as the velocity of a particle of unit mass (m=1), the quantity 𝑤 = 𝑚𝑥2/2 is the
energy of the particle and the two components X1 and X2 can be considered as independent RVs normally
distributed with mean E[X]=0 and variance Var[X]=𝜎2.

The authors consider correctly the Probability Limits, But, unfortunately, they wrote “Practically, the
parameter 𝜎2 may be known or unknown then the probability control limits of the control chart are defined as
follows:….”.

Notice that in Control Charts (CCs) we use the Control Limits, LCL and UCL, NOT the “probability control
limits of the control chart”!.

The authors made a lot of simulation and eventually applied their ideas to

Real Data Analysis. A boring machine is a tool used for making a wide hole in a fixed workpiece. These machines
make use of a single steel cutting edge, carbide or diamond, or a small grinding wheel to make the hole cleaner, more

 the transformation T = X2 / (2σ2) shows that T ~ G (3/2,1), the 
Gamma distribution, and U = 3nΣ2 / (2σ2) ~ G (3n/2,1). It is interesting to note that if x is interpreted as the velocity of a particle of unit 
mass (m=1), the quantity w = mx2 / 2 is the energy of the particle and the two components X1 and X2 can be considered as independent 
RVs normally distributed with mean E[X]=0 and variance Var[X] = σ2.

The authors consider correctly the Probability Limits, But, unfortunately, they wrote “Practically, the parameter σ2 may be known or 
unknown then the probability control limits of the control chart are defined as follows:….”.
Notice that in Control Charts (CCs) we use the Control Limits, LCL and UCL, NOT the “probability control limits of the control chart”!.

The authors made a lot of simulation and eventually applied their ideas to

accurate, and more specific. Boring machines with multiple spindles are typically used in a manufacturing plant where
production is on a large scale. This study uses a real dataset by Hossain et al. that addressed the failure rate of the
vertical boring machine. This data set was also considered … to review the optimum maintenance approach for the
vertical boring machine. Subsequently, … conducted a detailed statistical investigation to evaluate the distributions,
which best fit this data set. They examined models such as exponential, gamma, Maxwell, lognormal, Weibull, and
estimated the parameters of these models with the maximum likelihood method. In addition, various information criteria
such as Akaike, second-order, Bayesian, and the Kolmogorov–Smirnov test have shown that the Maxwell distribution is
the best fitted to this data set: the data set followed the Maxwell distribution (p-value 0.4775) with=1777.86. The failure
time data for a vertical boring machine are specified as follows: 2802, 2937, 2136, 4359, 4020, 1781, 2816, 2655, 3886,
2296, 3158, 3695, 4155, 3811, 2380, 376, 2172, 3705, 2848, 4339, 2076, 2672, 3632, 1976, 1700, 1596, 1701, 3575,
3802, 4351, 4291, and 808.

Excerpt 13. Alshahrani et al., “On Designing … of Boring Machine. Mathematics 2023”

Using JMP for the Individual Control Chart on x2 data we found figure 19

Figure 19. ICC by JMP on x2 data; the LCL and UCL are not the Control Limits but the Probability Limits

This can be compared to figure 20

Excerpt 13: Alshahrani et al., “On Designing … of Boring Machine. Mathematics 2023”
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accurate, and more specific. Boring machines with multiple spindles are typically used in a manufacturing plant where
production is on a large scale. This study uses a real dataset by Hossain et al. that addressed the failure rate of the
vertical boring machine. This data set was also considered … to review the optimum maintenance approach for the
vertical boring machine. Subsequently, … conducted a detailed statistical investigation to evaluate the distributions,
which best fit this data set. They examined models such as exponential, gamma, Maxwell, lognormal, Weibull, and
estimated the parameters of these models with the maximum likelihood method. In addition, various information criteria
such as Akaike, second-order, Bayesian, and the Kolmogorov–Smirnov test have shown that the Maxwell distribution is
the best fitted to this data set: the data set followed the Maxwell distribution (p-value 0.4775) with=1777.86. The failure
time data for a vertical boring machine are specified as follows: 2802, 2937, 2136, 4359, 4020, 1781, 2816, 2655, 3886,
2296, 3158, 3695, 4155, 3811, 2380, 376, 2172, 3705, 2848, 4339, 2076, 2672, 3632, 1976, 1700, 1596, 1701, 3575,
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Using JMP for the Individual Control Chart on x2 data we found figure 19

Figure 19. ICC by JMP on x2 data; the LCL and UCL are not the Control Limits but the Probability Limits

This can be compared to figure 20

Using JMP for the Individual Control Chart on x2 data we found figure 19

Figure 19: ICC by JMP on x2 data; the LCL and UCL are not the Control Limits but the Probability Limits

This can be compared to figure 20

Figure 20. ICC by Alshahrani et al., “On Designing … of Boring Machine. Mathematics 2023”; you see the Probability

Limits (LPL, UPL) …

To understand the difference between the Control Limits (LCL and UCL) and the Probability Limits (L
and U) you have to analyse the figure 21.

Figure 21. Difference between the Control Limits (LCL and UCL) and the Probability Limits (L and U) by the Theory

[6-57]

The application of the Theory [6-57] to the Boring data (Excerpt 13) is in the figure 22.

Figure 20: ICC by Alshahrani et al., “On Designing … of Boring Machine. Mathematics 2023”; you see the Probability Limits (LPL, 
UPL) …

To understand the difference between the Control Limits (LCL and UCL) and the Probability Limits (L and U) you have to analyse the 
figure 21.
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Figure 21. Difference between the Control Limits (LCL and UCL) and the Probability Limits (L and U) by the Theory

[6-57]

The application of the Theory [6-57] to the Boring data (Excerpt 13) is in the figure 22.

Figure 21: Difference between the Control Limits (LCL and UCL) and the Probability Limits (L and U) by the Theory [6-57]

The application of the Theory [6-57] to the Boring data (Excerpt 13) is in the figure 22.
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Figure 22. Difference between the Control Limits (LCL and UCL) and the Probability Limits (L and U) of the Boring

data, according to the Theory [6-57], with CL=0.95; the vertical lines (red, green) intersect the horizontal line at the points

LCL and UCL

The “scientific” Control Chart for the Boring data (Excerpt 13) is in the figure 23: the process is OOC,
contrary to the findings in the figure 20; the cause is the use of the Probability Limits (LPL, UPL) instead of
the Control Limits (LCL, UCL).
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Figure 23. The “scientific” Control Limits (LCL and UCL) of the Boring data, according to the Theory [6-57], with

CL=0.9973

The figure 24 shows the sequential Confidence Intervals for the Boring data (Excerpt 13); 13 data are
necessary for a Confidence Interval=(2333350, 5733177)

The figure 25 shows the Sequential (Wald) Test Confidence for the Boring data (Excerpt 13); one sees that

Figure 22: Difference between the Control Limits (LCL and UCL) and the Probability Limits (L and U) of the Boring data, according to 
the Theory [6-57], with CL=0.95; the vertical lines (red, green) intersect the horizontal line at the points LCL and UCL

The “scientific” Control Chart for the Boring data (Excerpt 13) is in the figure 23: the process is OOC, contrary to the findings in the 
figure 20; the cause is the use of the Probability Limits (LPL, UPL) instead of the Control Limits (LCL, UCL).
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Figure 22. Difference between the Control Limits (LCL and UCL) and the Probability Limits (L and U) of the Boring

data, according to the Theory [6-57], with CL=0.95; the vertical lines (red, green) intersect the horizontal line at the points

LCL and UCL

The “scientific” Control Chart for the Boring data (Excerpt 13) is in the figure 23: the process is OOC,
contrary to the findings in the figure 20; the cause is the use of the Probability Limits (LPL, UPL) instead of
the Control Limits (LCL, UCL).
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Figure 23. The “scientific” Control Limits (LCL and UCL) of the Boring data, according to the Theory [6-57], with

CL=0.9973

The figure 24 shows the sequential Confidence Intervals for the Boring data (Excerpt 13); 13 data are
necessary for a Confidence Interval=(2333350, 5733177)

The figure 25 shows the Sequential (Wald) Test Confidence for the Boring data (Excerpt 13); one sees that

Figure 23: The “scientific” Control Limits (LCL and UCL) of the Boring data, according to the Theory [6-57], with CL=0.9973

The figure 24 shows the sequential Confidence Intervals for the Boring data (Excerpt 13); 13 data are necessary for a Confidence 
Interval=(2333350, 5733177)

The figure 25 shows the Sequential (Wald) Test Confidence for the Boring data (Excerpt 13); one sees that at the 13rd datum the “step-
line” at the 13rd datum the “step-line” 𝐺( 𝑥𝑖2),∑ number of failures versus the total of squared times, intersects

the Acceptance line; the competing Hypotheses are 𝐻0 = 3160782 𝑤𝑖𝑡ℎ 𝛼 = 0.025 versus 𝐻1 =
1359136 𝑤𝑖𝑡ℎ 𝛽 = 0.025.
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Figure 24. The sequential Confidence Limits of the Boring data, with CL=0.95
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Figure 25. Sequential Test (Wald) for the Boring data, with =0.025 and =0.025

It is important to remember that the CI=(2427479, 4286847) is computed from all the data with CL=0.95.
All the results are found via RIT (Reliability Integral Theory) [25-33].

4. Discussion
We decided to use the data from the papers [3-5] and the analysis by the authors.
We got different results from those authors: the cause is that they use the Probability Limits of the PI

(Probability Interval) as they were the Confidence Limits (Control Limits of the Control Charts).
The proof of the confusion between the intervals L-------U (Probability Interval) and LCL-------UCL

(Confidence Interval) in the domain of Control Charts (for Process Management) highlight the importance
and novelty of these ideas in the Statistical Theory and in the applications.

For the “location” parameter in the CCs, from the Theory, we know that two mean 𝜇𝑋� 𝑡𝑞 (parameter),

 number of failures versus the total of squared times, intersects the Acceptance line; the competing Hypotheses are H0 = 
{3160782}  with α=0.025 versus H1 = {1359136}  with β=0.025.

at the 13rd datum the “step-line” 𝐺( 𝑥𝑖2),∑ number of failures versus the total of squared times, intersects
the Acceptance line; the competing Hypotheses are 𝐻0 = 3160782 𝑤𝑖𝑡ℎ 𝛼 = 0.025 versus 𝐻1 =
1359136 𝑤𝑖𝑡ℎ 𝛽 = 0.025.
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It is important to remember that the CI=(2427479, 4286847) is computed from all the data with CL=0.95.
All the results are found via RIT (Reliability Integral Theory) [25-33].

4. Discussion
We decided to use the data from the papers [3-5] and the analysis by the authors.
We got different results from those authors: the cause is that they use the Probability Limits of the PI

(Probability Interval) as they were the Confidence Limits (Control Limits of the Control Charts).
The proof of the confusion between the intervals L-------U (Probability Interval) and LCL-------UCL

(Confidence Interval) in the domain of Control Charts (for Process Management) highlight the importance
and novelty of these ideas in the Statistical Theory and in the applications.

For the “location” parameter in the CCs, from the Theory, we know that two mean 𝜇𝑋� 𝑡𝑞 (parameter),
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at the 13rd datum the “step-line” 𝐺( 𝑥𝑖2),∑ number of failures versus the total of squared times, intersects
the Acceptance line; the competing Hypotheses are 𝐻0 = 3160782 𝑤𝑖𝑡ℎ 𝛼 = 0.025 versus 𝐻1 =
1359136 𝑤𝑖𝑡ℎ 𝛽 = 0.025.
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For the “location” parameter in the CCs, from the Theory, we know that two mean 𝜇𝑋� 𝑡𝑞 (parameter), (parameter), q=1,2, …, n, and any other mean 
q=1,2, …, n, and any other mean 𝜇𝑋� 𝑡𝑟 (parameter), r=1,2, …, n, are different, with risk , if their estimates
are not both included in their common Confidence Interval as the CI of the grand mean 𝜇𝑋� = 𝜇 (parameter)
is.

Let’s consider the formula (4) and apply it to a “Normal model” (due to CLT, and assuming known
variance), sequentially we can write the “real” fixed interval L----U comprising the RV 𝑋� (vertical interval)
and the Random Interval comprising the unknown mean 𝜇 (horizontal interval) (fig. 14)

𝑃 𝐿 = 𝜇 −
𝜎𝑧1−𝛼2

𝑘
≤ 𝑋� ≤ 𝜇 +
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𝑘
= 𝑈 = 𝑃 𝑋� −

𝜎𝑧1−𝛼2

𝑘
≤ 𝜇 ≤ 𝑋� + (14)

When the RV 𝑋� assume its determination (numerical value) 𝑥� (grand mean) the Random Interval
becomes the Confidence Interval for the parameter , with CL=1- : risk  that the horizontal line does not
comprise the “mean” .

This is particularly important for the Individual Control Charts for Exponential, Weibull, Inverted
Weibull, General Inverted Weibull, Maxwell and Gamma distributed data: this is what Deming calls
“Profound Knowledge (understanding variation)” [9-10]. In this case, the figures 21, 22, 26 look like the figure 1,
where you see the Confidence Interval, the realisation of the horizontal Random Interval.

The case we considered shows clearly that the analyses, in the Process Management, taken so far have
been wrong and the decisions have been misleading, when the collected data follow a Non-Normal
distribution [24].

Since a lot of papers (related to Exponential, Weibull, Inverted Weibull, General Inverted Weibull,
Maxwell and Gamma distributions), with the same problem as that of “The garden of flowers” [24], are published
in reputed Journals we think that the “alternative” title “History is written by the winners. Reflections on Control
Charts for Process Control” is suitable for this paper: the authors of the wrong papers [24] are the winners.

Figure 26. Probability Interval L---U (vertical line) versus Random Intervals comprising the “mean”  (horizontal

random variable lines), for Normally distributed RVs X�~N µ, σ2 .

Further studies should consider other distributions which cannot be transformed into the above
distributions considered before.
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This is particularly important for the Individual Control Charts for Exponential, Weibull, Inverted Weibull, General Inverted Weibull, 
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of flowers” [24], are published in reputed Journals we think that the “alternative” title “History is written by the winners. Reflections on 
Control Charts for Process Control” is suitable for this paper: the authors of the wrong papers [24] are the winners.

Figure 26: Probability Interval L---U (vertical line) versus Random Intervals comprising the “mean” μ (horizontal random variable 
lines), for Normally distributed RVs X̅~N(μ,σ2 ).



J Chem Edu Res Prac, 2025 Volume 9 | Issue 1 | 29

Further studies should consider other distributions which cannot be transformed into the above distributions considered before.

5. Conclusions
With our figures (and the Appendix C, that is a short extract from the “Garden … [24]”) we humbly ask the readers to look at the 
references [1-57] and find how much the author has been fond of Quality and Scientificness in the Quality (Statistics, Mathematics, 
Thermodynamics, …) Fields.
The errors, in the “Garden … [24]”, are caused by the lack of knowledge of sound statistical concepts about the properties of the 
parameters of the parent distribution generating the data, and the related Confidence Intervals. For the I-CC_TBE the computed Control 
Limits (which are actually the Confidence Intervals), in the literature are wrong due to lack of knowledge of the difference between 
Probability Intervals (PI) and Confidence Intervals (CI); see the figures 22, 23, 26 and 1). Therefore, the consequent decisions about 
Process IC and OOC are wrong.  We saw that RIT is able to solve various problems in the estimation (and Confidence Interval evaluation) 
of the parameters of distributions. The basics of RIT have been given. 

We could have shown many other cases (from papers not mentioned here, that you can find in [22-24]) where errors were present due to 
the lack of knowledge of RIT and sound statistical ideas.
Following the scientific ideas of Galileo Galilei, the author many times tried to compel several scholars to be scientific (Galetto 1981-
2025). Only Juran appreciated the author’s ideas when he mentioned the paper “Quality of methods for quality is important” at the 
plenary session of EOQC Conference, Vienna [1]. For the control charts, it came out that RIT proved that the T Charts, for rare events 
and TBE (Time Between Events), used in the software Minitab, SixPack, JMP or SAS are wrong [56, 57]. So doing the author increased 
the h-index of the mentioned authors who published wrong papers. RIT allows the scholars (managers, students, professors) to find 
sound methods also for the ideas shown by Wheeler in Quality Digest documents.

We informed the authors and the Journals who published wrong papers by writing various letters to the Editors…: no “Corrective 
Action”, a basic activity for Quality has been carried out by them so far. The same happened for Minitab Management. We attended 
a JMP forum in the JMP User Community and informed them that their “Control Charts for Rare Events” were wrong: they preferred 
to stop the discussion, instead to acknowledge the JMP faults [56-57]. So, dis-quality continues to be diffused people and people 
continue taking wrong decisions.  Deficiencies in products and methods generate huge cost of Dis-quality (poor quality) as highlighted 
by Deming and Juran. Any book and paper are products (providing methods): their wrong ideas and methods generate huge cost for 
the Companies using them. The methods given here provide the way to avoid such costs, especially when RIT gives the right way to 
deal with Preventive Maintenance (risks and costs), Spare Parts Management (cost of unavailability of systems and production losses), 
Inventory Management, cost of wrong analyses and decisions. We think that we provided the readers with the belief that Quality of 
Methods for Quality is important. The reader should remember the Deming’s statements and the ideas in [6-57]. Unfortunately, many 
authors do not know Scientifically the role (concept) of Confidence Intervals (Appendix B) for Hypothesis Testing. Therefore, they do 
not extract the maximum information form the data in the Process Control. Control Charts are a means to test the hypothesis about the 
process states, H0={Process In Control} versus H1={Process Out Of Control}, with stated risk α=0.0027.

We have a big problem about Knowledge: sound Education is needed.
We think that the figure 28 conveys the fundamental ideas about the need of Theory for devising sound Methods, to be used in real 
applications in order to avoid the Dis-quality Vicious Circle.

Methods, to be used in real applications in order to avoid the Dis-quality Vicious Circle.
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Humbly, given our commitment to Quality and our long-life love for it [1-57], we would venture to
quote Voltaire:

“It is dangerous to be right in matters on which the established men are wrong.” because “Many are destined to
reason wrongly; others, not to reason at all; and others, to persecute those who do reason.” So, “The more often a
stupidity is repeated, the more it gets the appearance of wisdom.” and “It is difficult to free fools from the chains
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Humbly, given our commitment to Quality and our long-life love for it [1-57], we would venture to quote Voltaire: 
“It is dangerous to be right in matters on which the established men are wrong.” because “Many are destined to reason wrongly; others, 
not to reason at all; and others, to persecute those who do reason.” So, “The more often a stupidity is repeated, the more it gets the 
appearance of wisdom.” and “It is difficult to free fools from the chains they revere.”
Let’s hope that Logic and Truth prevail and allow our message to be understood (figs. 27, 28).
The objective of collecting and analysing data is to take the right action. The computations are merely a means to characterize the 
process behaviour. However, it is important to use the right Control Limits take the right action about the process states, i.e., In Control 
versus Out Of Control. 
On July-December 2024 we again verified (through several new downloaded papers, not shown here) that the Pandemic Disease about 
the (wrong) Control Limits, that are actually the Probability Limits of the PI is still present …
There will be any chance that the Pandemic Disease ends? See the Excerpt 14: notice the (ignorant) words “plugging into …”. The only 
way out is Knowledge… (fig. 28): Deming’s [7-8] Profound Knowledge, Metanoia, Theory
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Excerpt 14. From “Conditional analysis of Phase II exponential chart… an event”, Q. Tech. & Quantitative Mgt, ’19

We think that we provided the readers with several ideas and methods to be meditated in view of the
applications, generating wealth for the companies using them.

There is no “free lunch”: metanoia and study are needed and necessary.
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A very illuminating case
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We think that we provided the readers with several ideas and methods to be meditated in view of the applications, generating wealth for 
the companies using them.

There is no “free lunch”: metanoia and study are needed and necessary.
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Appendix A
A very illuminating case
We consider a case found in the paper (with 148 mentions) “Control Charts based on the Exponential distribution”, Quality Engineering, 
March 2013, of Santiago&Smith, two experts of Minitab Inc. at that time. You find it mentioned in the “Garden…” [24] and in the 
Appendix C.
This is important because we analysed the data with Minitab software and JMP software and we found astonishing results: the cause are 
the formulae
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𝐿𝐶𝐿 = 𝜃0𝑙𝑛 1 − 𝛼
2

= . 00135 𝑡̅0, 𝑈𝐶𝐿 = 𝜃0𝑙𝑛
𝛼
2

= 6.6077 𝑡̅0 .

The author knew that Minitab computes wrongly the Control Limits of the Individual Control Chart. He
wanted to assess how the JMP Student Version would deal with them using the following 54 data analysed
by Santiago&Smith in their paper; they are “Urinary Tract Infection (UTI) data collected in a hospital”; the
distribution of the data is the Exponential.

Table A1. UTI data (“Control Charts based on the Exponential distribution”)

UTI UTI UTI UTI UTI UTI
1 0.57014 11 0.46530 21 0.00347 31 0.22222 41 0.40347 51 0.02778

2 0.07431 12 0.29514 22 0.12014 32 0.29514 42 0.12639 52 0.03472

3 0.15278 13 0.11944 23 0.04861 33 0.53472 43 0.18403 53 0.23611

4 0.14583 14 0.05208 24 0.02778 34 0.15139 44 0.70833 54 0.35972

5 0.13889 15 0.12500 25 0.32639 35 0.52569 45 0.15625

6 0.14931 16 0.25000 26 0.64931 36 0.07986 46 0.24653

7 0.03333 17 0.40069 27 0.14931 37 0.27083 47 0.04514

8 0.08681 18 0.02500 28 0.01389 38 0.04514 48 0.01736

9 0.33681 19 0.12014 29 0.03819 39 0.13542 49 1.08889

10 0.03819 20 0.11458 30 0.46806 40 0.08681 50 0.05208

The analysis with JMP software, using the Rare Events Profiler, is in the figure A1.
NOTICE that JMP, for Rare Events, Exponentially distributed, in the figure A1, uses the Normal distribution!

NONSENSE
It finds the UTI process OOC: both the charts, Individuals and Mobile Range are OOC.
The author informed the JMP User Community.
After various discussions, a member of the Staff (using the Exponential Distribution) provided the figure A2.
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Figure A1. First Control Chart by JMP
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Figure A2. Second Control Chart by a member of the Staff of JMP. Notice the numbers (LCL and UCL)!

You see that, now (figure A2), the UTI process is IC: both the charts, Individuals and Mobile Range are IC;
opposite decision than before (figure A1), by the same JMP software (but with two different methods: the first is the
standard method, while the second was devised by a JMP Staff member).Notice the LCL, the Mean and the UCL of
both charts.

Compute the mean of all the data and you find a different value: therefore, the mean in the charts is not the mean
of the process!

If one analyses the data with Minitab, he finds the figure A3.
You see that now the UTI process is IC: notice the LCL, Mean and UCL.
A natural question arises: which of the three figures is correct?
Actually, they all are wrong, as you can see from the figure A4:
The figure A5 confirms that the data are exponentially distributed; TTOT is the Total Time On Test and

i/n is the proportion of counts data.
We see that the Sequential Test cannot asses in any way if a process is IC or OOC.

Figure A3. Individual Control Chart by Minitab.

Figure A2: Second Control Chart by a member of the Staff of JMP. Notice the numbers (LCL and UCL)!

You see that, now (figure A2), the UTI process is IC: both the charts, Individuals and Mobile Range are IC; opposite decision than before 
(figure A1), by the same JMP software (but with two different methods: the first is the standard method, while the second was devised 
by a JMP Staff member).Notice the LCL, the Mean and the UCL of both charts.
Compute the mean of all the data and you find a different value: therefore, the mean in the charts is not the mean of the process!
If one analyses the data with Minitab, he finds the figure A3.
You see that now the UTI process is IC: notice the LCL, Mean and UCL.
A natural question arises: which of the three figures is correct?
Actually, they all are wrong, as you can see from the figure A4:
The figure A5 confirms that the data are exponentially distributed; TTOT is the Total Time On Test and i/n is the proportion of counts 
data.

We see that the Sequential Test cannot asses in any way if a process is IC or OOC.



J Chem Edu Res Prac, 2025 Volume 9 | Issue 1 | 33

Individuals

UCL=1.389

Mean=0.146

LCL=0.001

Mobile
Range

UCL=1.389

Mean=0.146

LCL=0.001

Figure A2. Second Control Chart by a member of the Staff of JMP. Notice the numbers (LCL and UCL)!

You see that, now (figure A2), the UTI process is IC: both the charts, Individuals and Mobile Range are IC;
opposite decision than before (figure A1), by the same JMP software (but with two different methods: the first is the
standard method, while the second was devised by a JMP Staff member).Notice the LCL, the Mean and the UCL of
both charts.

Compute the mean of all the data and you find a different value: therefore, the mean in the charts is not the mean
of the process!

If one analyses the data with Minitab, he finds the figure A3.
You see that now the UTI process is IC: notice the LCL, Mean and UCL.
A natural question arises: which of the three figures is correct?
Actually, they all are wrong, as you can see from the figure A4:
The figure A5 confirms that the data are exponentially distributed; TTOT is the Total Time On Test and

i/n is the proportion of counts data.
We see that the Sequential Test cannot asses in any way if a process is IC or OOC.

Figure A3. Individual Control Chart by Minitab.
Figure A3: Individual Control Chart by Minitab.

0,001

0,01

0,1

0 10 20 30 40 50 60

days

LCL

UCL

Figure A4. Individual Control Chart by FG, using RIT: UTI process OOC.
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Figure A5. TTOT (Total Time On Test) versus the proportion of counts data: UTI process.
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Figure A6. UTI data. Sequential Test of Hypothesis: 𝐻0 = 𝜃 = 0.21 with=0.025 versus 𝐻1 = 𝜃 = 0.13 with =0.025

0,001

0,01

0,1

0 10 20 30 40 50 60

days

LCL

UCL

Figure A4. Individual Control Chart by FG, using RIT: UTI process OOC.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

TTOT i/n

Figure A5. TTOT (Total Time On Test) versus the proportion of counts data: UTI process.

y = 5,046x
R² = 0,9945

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11

count Acceptance Rejection Lineare (count)

Figure A6. UTI data. Sequential Test of Hypothesis: 𝐻0 = 𝜃 = 0.21 with=0.025 versus 𝐻1 = 𝜃 = 0.13 with =0.025

Figure A4: Individual Control Chart by FG, using RIT: UTI process OOC.

Figure A5: TTOT (Total Time On Test) versus the proportion of counts data: UTI process.



J Chem Edu Res Prac, 2025 Volume 9 | Issue 1 | 34

0,001

0,01

0,1

0 10 20 30 40 50 60

days

LCL

UCL

Figure A4. Individual Control Chart by FG, using RIT: UTI process OOC.
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Figure A6: UTI data. Sequential Test of Hypothesis: H0={θ=0.21} with α=0.025 versus H1={θ=0.13} with β=0.025

The author offered JMP to become a better statistical software provider by solving the flaw according to JMP advertising
The author offered JMP to become a better statistical software provider by solving the flaw according to

JMP advertising:

Our Purpose
Our purpose is to empower scientists and engineers via our statistical discovery software. That’s pretty

straightforward, and it’s never wavered. Sometimes we work directly with the data explorers themselves, sometimes
with their companies, and other times with colleges and universities so that the next generation of scientists and
engineers will count on JMP by the time they enter the workforce.

Although our purpose is clearly connected to our software, it doesn’t end there. As an employer, JMP purposefully
creates and maintains a culture of camaraderie that allows the personalities of our diverse and inclusive employee base
to shine through. JMP is an equal opportunity employer.

And as inhabitants of this planet, we intentionally measure and work to mitigate our impact on the world. Explore
our Data for Green program to see how we’re working to empower other organizations to make a difference too.

The catchphrase “corporate social responsibility” could be used for a lot of what we do for our employees,
communities, education and the Earth. But starting with JMP founder John Sall, we just try to do the right thing.

No reaction … and therefore NO Corrective Action.

Appendix B
The Statistical Hypotheses and the related risks
We define as statistical hypothesis a statement about a population parameter (e.g. the true mean, the true shape,

the true variance, the true reliability, the true failure rate, …n that we assume to exists and has a value even
though it is unknown to us). The set of all the possible values of the parameter is called the parameter space . The
goal of a hypothesis test is to decide, based on a sample drawn from the population, which value hypothesized for the
population parameter of the parameter space can be accepted as true. Remember: nobody knows the truth…

Generally, two competitive hypotheses are defined, the null hypothesis H0 and the alternative hypothesis H1.
If  denotes the population parameter, the general form of the null hypothesis is H0:   0  versus the

alternative hypothesis H1: 1, where0 is a subset of the parameter space and1 a subset disjoint from0.;
01=  and01=. If the set0=0, a single value the null hypothesis H0 is called simple; on the contrary, the
null hypothesis H0 is called composite. If the set1=1, a single value the alternative hypothesis H1 is called simple; on
the contrary, the alternative hypothesis H1 is called composite.

In a hypothesis testing problem, after observing the sample (and getting the empirical sample of the data D) the
experimenter (the Manager, the Researcher, the Scholar) must decide either to «accept» H0 as true or to reject H0 as
false andthen decide, on the opposite, that H1 is true.

Let’s make an example: let the reliability goal be 0 [ being the MTTF]; we ask the data D, from the
reliability test to confirm the goal we set. Nobody knows the reality; otherwise, there would be no need of any
test.

The test data D are the determinations of the random variables related to the items under test; it can happen then
that the data, after their elaboration, provide us with an estimate far from 0 (and therefore they induce us to
decide that the goal has not been achieved).

Generally, in the case of reliability test, the reliability goal to be achieved is called null hypothesis 𝐻0 = 𝜃 =
𝜃0 .

The hypotheses are classified in various manners, such as (and some suitable combinations)
1. Simple Hypothesis: it specifies completely the distribution (probabilistic model) and the values of the

parameters of the distribution of the Random Variable under consideration
2. Composite Hypothesis: it specifies completely the distribution (probabilistic model) BUT NOT the values of
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Generally, in the case of reliability test, the reliability goal to be achieved is called null hypothesis 𝐻0 = 𝜃 =
𝜃0 .

The hypotheses are classified in various manners, such as (and some suitable combinations)
1. Simple Hypothesis: it specifies completely the distribution (probabilistic model) and the values of the

parameters of the distributionof the Random Variable under consideration
2. Composite Hypothesis: it specifies completely the distribution (probabilistic model) BUT NOT the values of

, where Θ0 is a subset of the parameter space Θ and Θ1 a subset disjoint from Θ0.; 

The author offered JMP to become a better statistical software provider by solving the flaw according to
JMP advertising:

Our Purpose
Our purpose is to empower scientists and engineers via our statistical discovery software. That’s pretty

straightforward, and it’s never wavered. Sometimes we work directly with the data explorers themselves, sometimes
with their companies, and other times with colleges and universities so that the next generation of scientists and
engineers will count on JMP by the time they enter the workforce.

Although our purpose is clearly connected to our software, it doesn’t end there. As an employer, JMP purposefully
creates and maintains a culture of camaraderie that allows the personalities of our diverse and inclusive employee base
to shine through. JMP is an equal opportunity employer.

And as inhabitants of this planet, we intentionally measure and work to mitigate our impact on the world. Explore
our Data for Green program to see how we’re working to empower other organizations to make a difference too.

The catchphrase “corporate social responsibility” could be used for a lot of what we do for our employees,
communities, education and the Earth. But starting with JMP founder John Sall, we just try to do the right thing.

No reaction … and therefore NO Corrective Action.

Appendix B
The Statistical Hypotheses and the related risks
We define as statistical hypothesis a statement about a population parameter (e.g. the true mean, the true shape,

the true variance, the true reliability, the true failure rate, …n that we assume to exists and has a value even
though it is unknown to us). The set of all the possible values of the parameter is called the parameter space . The
goal of a hypothesis test is to decide, based on a sample drawn from the population, which value hypothesized for the
population parameter of the parameter space can be accepted as true. Remember: nobody knows the truth…

Generally, two competitive hypotheses are defined, the null hypothesis H0 and the alternative hypothesis H1.
If  denotes the population parameter, the general form of the null hypothesis is H0:   0  versus the

alternative hypothesis H1: 1, where0 is a subset of the parameter space and1 a subset disjoint from0.;
01=  and01=. If the set0=0, a single value the null hypothesis H0 is called simple; on the contrary, the
null hypothesis H0 is called composite. If the set1=1, a single value the alternative hypothesis H1 is called simple; on
the contrary, the alternative hypothesis H1 is called composite.

In a hypothesis testing problem, after observing the sample (and getting the empirical sample of the data D) the
experimenter (the Manager, the Researcher, the Scholar) must decide either to «accept» H0 as true or to reject H0 as
false andthen decide, on the opposite, that H1 is true.

Let’s make an example: let the reliability goal be 0 [ being the MTTF]; we ask the data D, from the
reliability test to confirm the goal we set. Nobody knows the reality; otherwise, there would be no need of any
test.

The test data D are the determinations of the random variables related to the items under test; it can happen then
that the data, after their elaboration, provide us with an estimate far from 0 (and therefore they induce us to
decide that the goal has not been achieved).

Generally, in the case of reliability test, the reliability goal to be achieved is called null hypothesis 𝐻0 = 𝜃 =
𝜃0 .

The hypotheses are classified in various manners, such as (and some suitable combinations)
1. Simple Hypothesis: it specifies completely the distribution (probabilistic model) and the values of the

parameters of the distributionof the Random Variable under consideration
2. Composite Hypothesis: it specifies completely the distribution (probabilistic model) BUT NOT the values of

. If the set 
Θ0={Θ0, a single value} the null hypothesis H0 is called simple; on the contrary, the null hypothesis H0 is called composite. If the set 
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Θ1={Θ1, a single value} the alternative hypothesis H1 is called simple; on the contrary, the alternative hypothesis H1 is called composite.

In a hypothesis testing problem, after observing the sample (and getting the empirical sample of the data D) the experimenter (the 
Manager, the Researcher, the Scholar) must decide either to «accept» H0 as true or to reject H0 as false and then decide, on the opposite, 
that H1 is true. Let’s make an example: let the reliability goal be θ0  [θ being the MTTF]; we ask the data D, from the reliability test to 
confirm the goal we set. Nobody knows the reality; otherwise, there would be no need of any test.
	
The test data D are the determinations of the random variables related to the items under test; it can happen then that the data, after their 
elaboration, provide us with an estimate far from  θ0 (and therefore they induce us to decide that the goal has not been achieved).
Generally, in the case of reliability test, the reliability goal to be achieved is called null hypothesis H0 = {θ = θ0 }.

The hypotheses are classified in various manners, such as (and some suitable combinations)
1. Simple Hypothesis: it specifies completely the distribution (probabilistic model) and the values of the parameters of the distribution 
of the Random Variable under consideration
2. Composite Hypothesis: it specifies completely the distribution (probabilistic model) BUT NOT the values of the parameters of the 
distribution of the Random Variable under consideration
a. Parametric Hypothesis: it specifies completely the distribution (probabilistic model) and the values (some or all) of the parameters of 
the distribution of the Random Variable under consideration
b. Non-parametric Hypothesis: it does not specify the distribution (probabilistic model) of the Random Variable under consideration

A hypothesis testing procedure (or simply a hypothesis test) is a rule (decision criterion) that specifies
1. for which sample values the decision is made to «accept» H0 as true,
2. for which sample values H0 is rejected and then H1 is accepted as true.
Based On Managerial/Statistics Which Defines 
• The Test Statistic (a formula to analyse the data)
• The Critical Region R (rejection region)
to be used for decisions, with the stated risks: decision criterion.
The subset of the sample space for which H0 will be rejected is called rejection region (or critical region). The complement of the 
rejection region is called the acceptance region.
A hypothesis test of H0: {θϵΘ0}versus the alternative hypothesis H1: {θϵΘ1}, (Θ0∩Θ1=

the parameters of the distribution of the Random Variable under consideration
a. Parametric Hypothesis: it specifies completely the distribution (probabilistic model) and the values (some or all) of the

parameters of the distribution of the Random Variable under consideration
b. Non-parametric Hypothesis: it does not specify the distribution (probabilistic model) of the Random Variable under

consideration
A hypothesis testing procedure (or simply a hypothesis test) is a rule (decision criterion) that specifies
1. for which sample values the decision is made to «accept» H0 as true,
2. for which sample values H0 is rejected and then H1 is accepted as true.
based on managerial/Statistics which defines

the test statistic (a formula to analyse the data)
the critical region R (rejection region)

to be used for decisions, with the stated risks: decision criterion.
The subset of the sample space for which H0 will be rejected is called rejection region (or critical region). The

complement of the rejection region is called the acceptance region.
A hypothesis test of H0: 0 versus the alternative hypothesis H1: 1, (01=) might make one of

two types of errors, traditionally named Type I Error and Type II Error; their probabilities are indicated as and.

Table B1. Statistical Hypotheses and risks

  Decision taken 
due the Reliability test data (sample) 

  Accept Reject 
 UNKNOWN 

REALITY 
H0  H0  

 H0    True 
correct decision 
probability 1- 

Type I error 
risk   

 H0  False, i.e. 1H  True 
Type II error  
risk  

correct decision 
probability 1-  

 

If «actually» H0: 0 is true and the hypothesis test (the rule), due to the collected data, incorrectly decides to
reject H0 then the test (and the Experimenter, the Manager, the Researcher, the Scholar who follow the rule) makes a
Type I Error, whose probability is . If, on the other hand, «actually» 1 but the test (the rule), due to the collected
data, incorrectly decides to accept H0 then the test (and the Experimenter, the Manager, the Researcher, the Scholar
who follow the rule) makes a Type II Error, whose probability is .

These two different situations are depicted in the table B1 (for simple parametric hypotheses).
Notice that when we decide to “accept the null hypothesis” in reality we use a short-hand statement saying that we do

not have enough elements to state the contrary.
It is evident that

𝛼 = 𝑃 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻0 𝑡𝑟𝑢𝑒 and 𝛽 = 𝑃 𝑎𝑐𝑐𝑒𝑝𝑡 𝐻0|𝐻0 𝑓𝑎𝑙𝑠𝑒 (B1)

Suppose R is the rejection region for a test, based on a «statistic s(D)» (the formula to elaborate the sampled data
D).

Then for H0: 0, the test makes a mistake if «s(D)R», so that the probability of a Type I Error is=P(S(D)R)
[S(D) is the random variable giving the result s(D)].

It is important the power of the test 1-, which is the probability of rejecting H0 when in reality H0 is false

) might make one of two types of errors, 
traditionally named Type I Error and Type II Error; their probabilities are indicated as α and β.

the parameters of the distribution of the Random Variable under consideration
a. Parametric Hypothesis: it specifies completely the distribution (probabilistic model) and the values (some or all) of the

parameters of the distribution of the Random Variable under consideration
b. Non-parametric Hypothesis: it does not specify the distribution (probabilistic model) of the Random Variable under

consideration
A hypothesis testing procedure (or simply a hypothesis test) is a rule (decision criterion) that specifies
1. for which sample values the decision is made to «accept» H0 as true,
2. for which sample values H0 is rejected and then H1 is accepted as true.
based on managerial/Statistics which defines

the test statistic (a formula to analyse the data)
the critical region R (rejection region)

to be used for decisions, with the stated risks: decision criterion.
The subset of the sample space for which H0 will be rejected is called rejection region (or critical region). The

complement of the rejection region is called the acceptance region.
A hypothesis test of H0: 0 versus the alternative hypothesis H1: 1, (01=) might make one of

two types of errors, traditionally named Type I Error and Type II Error; their probabilities are indicated as and.

Table B1. Statistical Hypotheses and risks

  Decision taken 
due the Reliability test data (sample) 

  Accept Reject 
 UNKNOWN 

REALITY 
H0  H0  

 H0    True 
correct decision 
probability 1- 

Type I error 
risk   

 H0  False, i.e. 1H  True 
Type II error  
risk  

correct decision 
probability 1-  

 

If «actually» H0: 0 is true and the hypothesis test (the rule), due to the collected data, incorrectly decides to
reject H0 then the test (and the Experimenter, the Manager, the Researcher, the Scholar who follow the rule) makes a
Type I Error, whose probability is . If, on the other hand, «actually» 1 but the test (the rule), due to the collected
data, incorrectly decides to accept H0 then the test (and the Experimenter, the Manager, the Researcher, the Scholar
who follow the rule) makes a Type II Error, whose probability is .

These two different situations are depicted in the table B1 (for simple parametric hypotheses).
Notice that when we decide to “accept the null hypothesis” in reality we use a short-hand statement saying that we do

not have enough elements to state the contrary.
It is evident that

𝛼 = 𝑃 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻0 𝑡𝑟𝑢𝑒 and 𝛽 = 𝑃 𝑎𝑐𝑐𝑒𝑝𝑡 𝐻0|𝐻0 𝑓𝑎𝑙𝑠𝑒 (B1)

Suppose R is the rejection region for a test, based on a «statistic s(D)» (the formula to elaborate the sampled data
D).

Then for H0: 0, the test makes a mistake if «s(D)R», so that the probability of a Type I Error is=P(S(D)R)
[S(D) is the random variable giving the result s(D)].

It is important the power of the test 1-, which is the probability of rejecting H0 when in reality H0 is false

Table B1: Statistical Hypotheses and risks

If «actually» H0: {θϵΘ0} is true and the hypothesis test (the rule), due to the collected data, incorrectly decides to reject H0 then the test 
(and the Experimenter, the Manager, the Researcher, the Scholar who follow the rule) makes a Type I Error, whose probability is α. If, 
on the other hand, «actually» θϵΘ1 but the test (the rule), due to the collected data, incorrectly decides to accept H0 then the test (and the 
Experimenter, the Manager, the Researcher, the Scholar who follow the rule) makes a Type II Error, whose probability is β.
	
These two different situations are depicted in the table B1 (for simple parametric hypotheses).
Notice that when we decide to “accept the null hypothesis” in reality we use a short-hand statement saying that we do not have enough 
elements to state the contrary.
It is evident that 
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the parameters of the distribution of the Random Variable under consideration
a. Parametric Hypothesis: it specifies completely the distribution (probabilistic model) and the values (some or all) of the

parameters of the distribution of the Random Variable under consideration
b. Non-parametric Hypothesis: it does not specify the distribution (probabilistic model) of the Random Variable under

consideration
A hypothesis testing procedure (or simply a hypothesis test) is a rule (decision criterion) that specifies
1. for which sample values the decision is made to «accept» H0 as true,
2. for which sample values H0 is rejected and then H1 is accepted as true.
based on managerial/Statistics which defines

the test statistic (a formula to analyse the data)
the critical region R (rejection region)

to be used for decisions, with the stated risks: decision criterion.
The subset of the sample space for which H0 will be rejected is called rejection region (or critical region). The

complement of the rejection region is called the acceptance region.
A hypothesis test of H0: 0 versus the alternative hypothesis H1: 1, (01=) might make one of

two types of errors, traditionally named Type I Error and Type II Error; their probabilities are indicated as and.

Table B1. Statistical Hypotheses and risks

  Decision taken 
due the Reliability test data (sample) 

  Accept Reject 
 UNKNOWN 

REALITY 
H0  H0  

 H0    True 
correct decision 
probability 1- 

Type I error 
risk   

 H0  False, i.e. 1H  True 
Type II error  
risk  

correct decision 
probability 1-  

 

If «actually» H0: 0 is true and the hypothesis test (the rule), due to the collected data, incorrectly decides to
reject H0 then the test (and the Experimenter, the Manager, the Researcher, the Scholar who follow the rule) makes a
Type I Error, whose probability is . If, on the other hand, «actually» 1 but the test (the rule), due to the collected
data, incorrectly decides to accept H0 then the test (and the Experimenter, the Manager, the Researcher, the Scholar
who follow the rule) makes a Type II Error, whose probability is .

These two different situations are depicted in the table B1 (for simple parametric hypotheses).
Notice that when we decide to “accept the null hypothesis” in reality we use a short-hand statement saying that we do

not have enough elements to state the contrary.
It is evident that

𝛼 = 𝑃 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻0 𝑡𝑟𝑢𝑒 and 𝛽 = 𝑃 𝑎𝑐𝑐𝑒𝑝𝑡 𝐻0|𝐻0 𝑓𝑎𝑙𝑠𝑒 (B1)

Suppose R is the rejection region for a test, based on a «statistic s(D)» (the formula to elaborate the sampled data
D).

Then for H0: 0, the test makes a mistake if «s(D)R», so that the probability of a Type I Error is=P(S(D)R)
[S(D) is the random variable giving the result s(D)].

It is important the power of the test 1-, which is the probability of rejecting H0 when in reality H0 is false

Suppose R is the rejection region for a test, based on a «statistic s(D)» (the formula to elaborate the sampled data D).
Then for 

the parameters of the distribution of the Random Variable under consideration
a. Parametric Hypothesis: it specifies completely the distribution (probabilistic model) and the values (some or all) of the

parameters of the distribution of the Random Variable under consideration
b. Non-parametric Hypothesis: it does not specify the distribution (probabilistic model) of the Random Variable under

consideration
A hypothesis testing procedure (or simply a hypothesis test) is a rule (decision criterion) that specifies
1. for which sample values the decision is made to «accept» H0 as true,
2. for which sample values H0 is rejected and then H1 is accepted as true.
based on managerial/Statistics which defines

the test statistic (a formula to analyse the data)
the critical region R (rejection region)

to be used for decisions, with the stated risks: decision criterion.
The subset of the sample space for which H0 will be rejected is called rejection region (or critical region). The

complement of the rejection region is called the acceptance region.
A hypothesis test of H0: 0 versus the alternative hypothesis H1: 1, (01=) might make one of

two types of errors, traditionally named Type I Error and Type II Error; their probabilities are indicated as and.

Table B1. Statistical Hypotheses and risks

  Decision taken 
due the Reliability test data (sample) 

  Accept Reject 
 UNKNOWN 

REALITY 
H0  H0  

 H0    True 
correct decision 
probability 1- 

Type I error 
risk   

 H0  False, i.e. 1H  True 
Type II error  
risk  

correct decision 
probability 1-  

 

If «actually» H0: 0 is true and the hypothesis test (the rule), due to the collected data, incorrectly decides to
reject H0 then the test (and the Experimenter, the Manager, the Researcher, the Scholar who follow the rule) makes a
Type I Error, whose probability is . If, on the other hand, «actually» 1 but the test (the rule), due to the collected
data, incorrectly decides to accept H0 then the test (and the Experimenter, the Manager, the Researcher, the Scholar
who follow the rule) makes a Type II Error, whose probability is .

These two different situations are depicted in the table B1 (for simple parametric hypotheses).
Notice that when we decide to “accept the null hypothesis” in reality we use a short-hand statement saying that we do

not have enough elements to state the contrary.
It is evident that

𝛼 = 𝑃 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻0 𝑡𝑟𝑢𝑒 and 𝛽 = 𝑃 𝑎𝑐𝑐𝑒𝑝𝑡 𝐻0|𝐻0 𝑓𝑎𝑙𝑠𝑒 (B1)

Suppose R is the rejection region for a test, based on a «statistic s(D)» (the formula to elaborate the sampled data
D).

Then for H0: 0, the test makes a mistake if «s(D)R», so that the probability of a Type I Error is=P(S(D)R)
[S(D) is the random variable giving the result s(D)].

It is important the power of the test 1-, which is the probability of rejecting H0 when in reality H0 is false

 the test makes a mistake if «s(D)ϵR», so that the probability of a Type I Error is α=P(S(D)ϵR) [S(D) is the random 
variable giving the result s(D)].
It is important the power of the test 1-β, which is the probability of rejecting H0 when in reality H0 is false

1− 𝛽 = 𝑃 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻0 𝑓𝑎𝑙𝑠𝑒 (B2)

Therefore, the power function of a hypothesis test with rejection region R is the function of  defined by
()=P(S(D)R). The function 1-(), power function, is often named the Operating Characteristic curve [OC curve].

A good test has power function near 1 for most0 and, on the other hand, near 0 and for most0.
From a managerial point of view, it is sound using powerful tests: a powerful test (finds the reality and) rejects what

must be rejected.
It is obvious that we want that the test is the most powerful and therefore one must seek for the statistics which

have the maximum power; it’s absolutely analogous to the search of efficient estimators.
We know that the competition of simple hypotheses can have a good property: the most powerful critical region

[i.e. the rejection region found has the highest power 1-()=P(S(D)R) of H1 against H0, for any  ( sometimes is
called size of the critical region)]; a theorem regarding the likelihood ratio proves that.

Let’s define the likelihood ratio tests; let  denote the entire parameter space; the likelihood ratio test statistic for
testing H0: 0 versus1 is the ratio [which uses the Likelihood function L(|D)]

𝜆 𝐷 =
𝑠𝑢𝑝Θ0𝐿 𝜃 𝐷
𝑠𝑢𝑝Θ𝐿 𝜃 𝐷

(B3)

A likelihood ratio test is any test that has a rejection region that has the form s(D): (D)c, where c is any number
satisfying 0c1 and s(D) is the “statistic” by which we elaborate the data of the empirical sample D. This test is a
measure of how much the evidence, provided by the data D, supports H0.

The previous criterion is very simple if the two competing hypotheses are both simple: H0: = 0 versus H1:
=1.

Let L0 be the Likelihood function L(0|D) and L1 be the Likelihood function L(1|D): the most powerful test is the
one that has the most powerful critical region C=s(D): L1/L0k, where the quantity k is chosen in such a way
that the Type I Error has a risk (probability). The most powerful critical region C has the highest power 1-().

Usually when an efficient estimator exists, this provides then a powerful statistic, giving the most powerful test.
For the Normal model

𝑛(x|𝜇,𝜎2)= 1
2𝜋𝜎

𝑒− 𝑥−𝜇 2/(2𝜎2) (B4)

the test about H0: 0= 𝜇, 𝜎2: 𝜇 = 𝜇0 ; 0 < 𝜎2 < ∞2 where 𝜇0 is a given number, we get

𝜆 𝐷 = 1

1+ 𝑡2
𝑛−1

𝑛
2

(B5)

where 𝒕 has the t distribution with n-1 degrees of freedom when H0 is true.
After some algebra, the test of H0 may be performed as follows: we compute the quantity 𝑡𝑐 =

𝑛 𝑛− 1 𝑥�−𝜇0

𝑥𝑖−𝑥� 2∑
) and if

−𝑡1−𝛼2
< 𝑡𝑐 < 𝑡1−𝛼2 (B6)

H0 is accepted; otherwise H0 is rejected.
It is worthwhile to observe that the Confidence Interval for 𝜇' is

𝐶𝐼 = 𝑥� −
𝑡1−𝛼2

𝑠

𝑛
< 𝜇' < 𝑥� +

𝑡1−𝛼2
𝑠

𝑛
(B7)

Hence, the test of H0 is equivalent to the following points, for any distribution of the data:

1− 𝛽 = 𝑃 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻0 𝑓𝑎𝑙𝑠𝑒 (B2)

Therefore, the power function of a hypothesis test with rejection region R is the function of  defined by
()=P(S(D)R). The function 1-(), power function, is often named the Operating Characteristic curve [OC curve].

A good test has power function near 1 for most0 and, on the other hand, near 0 and for most0.
From a managerial point of view, it is sound using powerful tests: a powerful test (finds the reality and) rejects what

must be rejected.
It is obvious that we want that the test is the most powerful and therefore one must seek for the statistics which

have the maximum power; it’s absolutely analogous to the search of efficient estimators.
We know that the competition of simple hypotheses can have a good property: the most powerful critical region

[i.e. the rejection region found has the highest power 1-()=P(S(D)R) of H1 against H0, for any  ( sometimes is
called size of the critical region)]; a theorem regarding the likelihood ratio proves that.

Let’s define the likelihood ratio tests; let  denote the entire parameter space; the likelihood ratio test statistic for
testing H0: 0 versus1 is the ratio [which uses the Likelihood function L(|D)]

𝜆 𝐷 =
𝑠𝑢𝑝Θ0𝐿 𝜃 𝐷
𝑠𝑢𝑝Θ𝐿 𝜃 𝐷

(B3)

A likelihood ratio test is any test that has a rejection region that has the form s(D): (D)c, where c is any number
satisfying 0c1 and s(D) is the “statistic” by which we elaborate the data of the empirical sample D. This test is a
measure of how much the evidence, provided by the data D, supports H0.

The previous criterion is very simple if the two competing hypotheses are both simple: H0: = 0 versus H1:
=1.

Let L0 be the Likelihood function L(0|D) and L1 be the Likelihood function L(1|D): the most powerful test is the
one that has the most powerful critical region C=s(D): L1/L0k, where the quantity k is chosen in such a way
that the Type I Error has a risk (probability). The most powerful critical region C has the highest power 1-().

Usually when an efficient estimator exists, this provides then a powerful statistic, giving the most powerful test.
For the Normal model

𝑛(x|𝜇,𝜎2)= 1
2𝜋𝜎

𝑒− 𝑥−𝜇 2/(2𝜎2) (B4)

the test about H0: 0= 𝜇, 𝜎2: 𝜇 = 𝜇0 ; 0 < 𝜎2 < ∞2 where 𝜇0 is a given number, we get

𝜆 𝐷 = 1
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where 𝒕 has the t distribution with n-1 degrees of freedom when H0 is true.
After some algebra, the test of H0 may be performed as follows: we compute the quantity 𝑡𝑐 =

𝑛 𝑛− 1 𝑥�−𝜇0

𝑥𝑖−𝑥� 2∑
) and if

−𝑡1−𝛼2
< 𝑡𝑐 < 𝑡1−𝛼2 (B6)

H0 is accepted; otherwise H0 is rejected.
It is worthwhile to observe that the Confidence Interval for 𝜇' is
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𝑡1−𝛼2
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Hence, the test of H0 is equivalent to the following points, for any distribution of the data:

1− 𝛽 = 𝑃 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻0 𝑓𝑎𝑙𝑠𝑒 (B2)

Therefore, the power function of a hypothesis test with rejection region R is the function of  defined by
()=P(S(D)R). The function 1-(), power function, is often named the Operating Characteristic curve [OC curve].

A good test has power function near 1 for most0 and, on the other hand, near 0 and for most0.
From a managerial point of view, it is sound using powerful tests: a powerful test (finds the reality and) rejects what

must be rejected.
It is obvious that we want that the test is the most powerful and therefore one must seek for the statistics which

have the maximum power; it’s absolutely analogous to the search of efficient estimators.
We know that the competition of simple hypotheses can have a good property: the most powerful critical region

[i.e. the rejection region found has the highest power 1-()=P(S(D)R) of H1 against H0, for any  ( sometimes is
called size of the critical region)]; a theorem regarding the likelihood ratio proves that.

Let’s define the likelihood ratio tests; let  denote the entire parameter space; the likelihood ratio test statistic for
testing H0: 0 versus1 is the ratio [which uses the Likelihood function L(|D)]

𝜆 𝐷 =
𝑠𝑢𝑝Θ0𝐿 𝜃 𝐷
𝑠𝑢𝑝Θ𝐿 𝜃 𝐷

(B3)

A likelihood ratio test is any test that has a rejection region that has the form s(D): (D)c, where c is any number
satisfying 0c1 and s(D) is the “statistic” by which we elaborate the data of the empirical sample D. This test is a
measure of how much the evidence, provided by the data D, supports H0.

The previous criterion is very simple if the two competing hypotheses are both simple: H0: = 0 versus H1:
=1.

Let L0 be the Likelihood function L(0|D) and L1 be the Likelihood function L(1|D): the most powerful test is the
one that has the most powerful critical region C=s(D): L1/L0k, where the quantity k is chosen in such a way
that the Type I Error has a risk (probability). The most powerful critical region C has the highest power 1-().

Usually when an efficient estimator exists, this provides then a powerful statistic, giving the most powerful test.
For the Normal model

𝑛(x|𝜇,𝜎2)= 1
2𝜋𝜎

𝑒− 𝑥−𝜇 2/(2𝜎2) (B4)

the test about H0: 0= 𝜇, 𝜎2: 𝜇 = 𝜇0 ; 0 < 𝜎2 < ∞2 where 𝜇0 is a given number, we get

𝜆 𝐷 = 1
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where 𝒕 has the t distribution with n-1 degrees of freedom when H0 is true.
After some algebra, the test of H0 may be performed as follows: we compute the quantity 𝑡𝑐 =

𝑛 𝑛− 1 𝑥�−𝜇0

𝑥𝑖−𝑥� 2∑
) and if

−𝑡1−𝛼2
< 𝑡𝑐 < 𝑡1−𝛼2 (B6)

H0 is accepted; otherwise H0 is rejected.
It is worthwhile to observe that the Confidence Interval for 𝜇' is

𝐶𝐼 = 𝑥� −
𝑡1−𝛼2

𝑠
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< 𝜇' < 𝑥� +
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Hence, the test of H0 is equivalent to the following points, for any distribution of the data:

1− 𝛽 = 𝑃 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻0 𝑓𝑎𝑙𝑠𝑒 (B2)

Therefore, the power function of a hypothesis test with rejection region R is the function of  defined by
()=P(S(D)R). The function 1-(), power function, is often named the Operating Characteristic curve [OC curve].

A good test has power function near 1 for most0 and, on the other hand, near 0 and for most0.
From a managerial point of view, it is sound using powerful tests: a powerful test (finds the reality and) rejects what

must be rejected.
It is obvious that we want that the test is the most powerful and therefore one must seek for the statistics which

have the maximum power; it’s absolutely analogous to the search of efficient estimators.
We know that the competition of simple hypotheses can have a good property: the most powerful critical region

[i.e. the rejection region found has the highest power 1-()=P(S(D)R) of H1 against H0, for any  ( sometimes is
called size of the critical region)]; a theorem regarding the likelihood ratio proves that.

Let’s define the likelihood ratio tests; let  denote the entire parameter space; the likelihood ratio test statistic for
testing H0: 0 versus1 is the ratio [which uses the Likelihood function L(|D)]

𝜆 𝐷 =
𝑠𝑢𝑝Θ0𝐿 𝜃 𝐷
𝑠𝑢𝑝Θ𝐿 𝜃 𝐷

(B3)

A likelihood ratio test is any test that has a rejection region that has the form s(D): (D)c, where c is any number
satisfying 0c1 and s(D) is the “statistic” by which we elaborate the data of the empirical sample D. This test is a
measure of how much the evidence, provided by the data D, supports H0.

The previous criterion is very simple if the two competing hypotheses are both simple: H0: = 0 versus H1:
=1.

Let L0 be the Likelihood function L(0|D) and L1 be the Likelihood function L(1|D): the most powerful test is the
one that has the most powerful critical region C=s(D): L1/L0k, where the quantity k is chosen in such a way
that the Type I Error has a risk (probability). The most powerful critical region C has the highest power 1-().

Usually when an efficient estimator exists, this provides then a powerful statistic, giving the most powerful test.
For the Normal model

𝑛(x|𝜇,𝜎2)= 1
2𝜋𝜎

𝑒− 𝑥−𝜇 2/(2𝜎2) (B4)

the test about H0: 0= 𝜇, 𝜎2: 𝜇 = 𝜇0 ; 0 < 𝜎2 < ∞2 where 𝜇0 is a given number, we get

𝜆 𝐷 = 1
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where 𝒕 has the t distribution with n-1 degrees of freedom when H0 is true.
After some algebra, the test of H0 may be performed as follows: we compute the quantity 𝑡𝑐 =

𝑛 𝑛− 1 𝑥�−𝜇0

𝑥𝑖−𝑥� 2∑
) and if

−𝑡1−𝛼2
< 𝑡𝑐 < 𝑡1−𝛼2 (B6)

H0 is accepted; otherwise H0 is rejected.
It is worthwhile to observe that the Confidence Interval for 𝜇' is

𝐶𝐼 = 𝑥� −
𝑡1−𝛼2

𝑠
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Hence, the test of H0 is equivalent to the following points, for any distribution of the data:

Therefore, the power function of a hypothesis test with rejection region R is the function of θ defined by β(θ)=P(S(D)ϵ). The function 
1-β(θ), power function, is often named the Operating Characteristic curve [OC curve]. A good test has power function near 1 for most 

1− 𝛽 = 𝑃 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻0 𝑓𝑎𝑙𝑠𝑒 (B2)

Therefore, the power function of a hypothesis test with rejection region R is the function of  defined by
()=P(S(D)R). The function 1-(), power function, is often named the Operating Characteristic curve [OC curve].

A good test has power function near 1 for most0 and, on the other hand, near 0 and for most0.
From a managerial point of view, it is sound using powerful tests: a powerful test (finds the reality and) rejects what

must be rejected.
It is obvious that we want that the test is the most powerful and therefore one must seek for the statistics which

have the maximum power; it’s absolutely analogous to the search of efficient estimators.
We know that the competition of simple hypotheses can have a good property: the most powerful critical region

[i.e. the rejection region found has the highest power 1-()=P(S(D)R) of H1 against H0, for any  ( sometimes is
called size of the critical region)]; a theorem regarding the likelihood ratio proves that.

Let’s define the likelihood ratio tests; let  denote the entire parameter space; the likelihood ratio test statistic for
testing H0: 0 versus1 is the ratio [which uses the Likelihood function L(|D)]

𝜆 𝐷 =
𝑠𝑢𝑝Θ0𝐿 𝜃 𝐷
𝑠𝑢𝑝Θ𝐿 𝜃 𝐷

(B3)

A likelihood ratio test is any test that has a rejection region that has the form s(D): (D)c, where c is any number
satisfying 0c1 and s(D) is the “statistic” by which we elaborate the data of the empirical sample D. This test is a
measure of how much the evidence, provided by the data D, supports H0.

The previous criterion is very simple if the two competing hypotheses are both simple: H0: = 0 versus H1:
=1.

Let L0 be the Likelihood function L(0|D) and L1 be the Likelihood function L(1|D): the most powerful test is the
one that has the most powerful critical region C=s(D): L1/L0k, where the quantity k is chosen in such a way
that the Type I Error has a risk (probability). The most powerful critical region C has the highest power 1-().

Usually when an efficient estimator exists, this provides then a powerful statistic, giving the most powerful test.
For the Normal model

𝑛(x|𝜇,𝜎2)= 1
2𝜋𝜎

𝑒− 𝑥−𝜇 2/(2𝜎2) (B4)

the test about H0: 0= 𝜇, 𝜎2: 𝜇 = 𝜇0 ; 0 < 𝜎2 < ∞2 where 𝜇0 is a given number, we get

𝜆 𝐷 = 1
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(B5)

where 𝒕 has the t distribution with n-1 degrees of freedom when H0 is true.
After some algebra, the test of H0 may be performed as follows: we compute the quantity 𝑡𝑐 =

𝑛 𝑛− 1 𝑥�−𝜇0

𝑥𝑖−𝑥� 2∑
) and if

−𝑡1−𝛼2
< 𝑡𝑐 < 𝑡1−𝛼2 (B6)

H0 is accepted; otherwise H0 is rejected.
It is worthwhile to observe that the Confidence Interval for 𝜇' is

𝐶𝐼 = 𝑥� −
𝑡1−𝛼2
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Hence, the test of H0 is equivalent to the following points, for any distribution of the data:

 and, on the other hand, near 0 and for most 

1− 𝛽 = 𝑃 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻0 𝑓𝑎𝑙𝑠𝑒 (B2)

Therefore, the power function of a hypothesis test with rejection region R is the function of  defined by
()=P(S(D)R). The function 1-(), power function, is often named the Operating Characteristic curve [OC curve].

A good test has power function near 1 for most0 and, on the other hand, near 0 and for most0.
From a managerial point of view, it is sound using powerful tests: a powerful test (finds the reality and) rejects what

must be rejected.
It is obvious that we want that the test is the most powerful and therefore one must seek for the statistics which

have the maximum power; it’s absolutely analogous to the search of efficient estimators.
We know that the competition of simple hypotheses can have a good property: the most powerful critical region

[i.e. the rejection region found has the highest power 1-()=P(S(D)R) of H1 against H0, for any  ( sometimes is
called size of the critical region)]; a theorem regarding the likelihood ratio proves that.

Let’s define the likelihood ratio tests; let  denote the entire parameter space; the likelihood ratio test statistic for
testing H0: 0 versus1 is the ratio [which uses the Likelihood function L(|D)]

𝜆 𝐷 =
𝑠𝑢𝑝Θ0𝐿 𝜃 𝐷
𝑠𝑢𝑝Θ𝐿 𝜃 𝐷

(B3)

A likelihood ratio test is any test that has a rejection region that has the form s(D): (D)c, where c is any number
satisfying 0c1 and s(D) is the “statistic” by which we elaborate the data of the empirical sample D. This test is a
measure of how much the evidence, provided by the data D, supports H0.

The previous criterion is very simple if the two competing hypotheses are both simple: H0: = 0 versus H1:
=1.

Let L0 be the Likelihood function L(0|D) and L1 be the Likelihood function L(1|D): the most powerful test is the
one that has the most powerful critical region C=s(D): L1/L0k, where the quantity k is chosen in such a way
that the Type I Error has a risk (probability). The most powerful critical region C has the highest power 1-().

Usually when an efficient estimator exists, this provides then a powerful statistic, giving the most powerful test.
For the Normal model

𝑛(x|𝜇,𝜎2)= 1
2𝜋𝜎

𝑒− 𝑥−𝜇 2/(2𝜎2) (B4)

the test about H0: 0= 𝜇, 𝜎2: 𝜇 = 𝜇0 ; 0 < 𝜎2 < ∞2 where 𝜇0 is a given number, we get

𝜆 𝐷 = 1
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where 𝒕 has the t distribution with n-1 degrees of freedom when H0 is true.
After some algebra, the test of H0 may be performed as follows: we compute the quantity 𝑡𝑐 =

𝑛 𝑛− 1 𝑥�−𝜇0

𝑥𝑖−𝑥� 2∑
) and if

−𝑡1−𝛼2
< 𝑡𝑐 < 𝑡1−𝛼2 (B6)

H0 is accepted; otherwise H0 is rejected.
It is worthwhile to observe that the Confidence Interval for 𝜇' is

𝐶𝐼 = 𝑥� −
𝑡1−𝛼2

𝑠

𝑛
< 𝜇' < 𝑥� +

𝑡1−𝛼2
𝑠

𝑛
(B7)

Hence, the test of H0 is equivalent to the following points, for any distribution of the data:

 From a managerial point of view, it is sound using powerful tests: a powerful 
test (finds the reality and) rejects what must be rejected.
	
It is obvious that we want that the test is the most powerful and therefore one must seek for the statistics which have the maximum 
power; it’s absolutely analogous to the search of efficient estimators.

We know that the competition of simple hypotheses can have a good property: the most powerful critical region [i.e. the rejection region 
found has the highest power 

1− 𝛽 = 𝑃 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻0 𝑓𝑎𝑙𝑠𝑒 (B2)

Therefore, the power function of a hypothesis test with rejection region R is the function of  defined by
()=P(S(D)R). The function 1-(), power function, is often named the Operating Characteristic curve [OC curve].

A good test has power function near 1 for most0 and, on the other hand, near 0 and for most0.
From a managerial point of view, it is sound using powerful tests: a powerful test (finds the reality and) rejects what

must be rejected.
It is obvious that we want that the test is the most powerful and therefore one must seek for the statistics which

have the maximum power; it’s absolutely analogous to the search of efficient estimators.
We know that the competition of simple hypotheses can have a good property: the most powerful critical region

[i.e. the rejection region found has the highest power 1-()=P(S(D)R) of H1 against H0, for any  ( sometimes is
called size of the critical region)]; a theorem regarding the likelihood ratio proves that.

Let’s define the likelihood ratio tests; let  denote the entire parameter space; the likelihood ratio test statistic for
testing H0: 0 versus1 is the ratio [which uses the Likelihood function L(|D)]

𝜆 𝐷 =
𝑠𝑢𝑝Θ0𝐿 𝜃 𝐷
𝑠𝑢𝑝Θ𝐿 𝜃 𝐷

(B3)

A likelihood ratio test is any test that has a rejection region that has the form s(D): (D)c, where c is any number
satisfying 0c1 and s(D) is the “statistic” by which we elaborate the data of the empirical sample D. This test is a
measure of how much the evidence, provided by the data D, supports H0.

The previous criterion is very simple if the two competing hypotheses are both simple: H0: = 0 versus H1:
=1.

Let L0 be the Likelihood function L(0|D) and L1 be the Likelihood function L(1|D): the most powerful test is the
one that has the most powerful critical region C=s(D): L1/L0k, where the quantity k is chosen in such a way
that the Type I Error has a risk (probability). The most powerful critical region C has the highest power 1-().

Usually when an efficient estimator exists, this provides then a powerful statistic, giving the most powerful test.
For the Normal model

𝑛(x|𝜇,𝜎2)= 1
2𝜋𝜎

𝑒− 𝑥−𝜇 2/(2𝜎2) (B4)

the testabout H0: 0= 𝜇, 𝜎2: 𝜇 = 𝜇0 ; 0 < 𝜎2 < ∞2 where 𝜇0 is a given number, we get
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where 𝒕 has the t distribution with n-1 degrees of freedom when H0 is true.
After some algebra, the test of H0 may be performed as follows: we compute the quantity 𝑡𝑐 =

𝑛 𝑛− 1 𝑥�−𝜇0

𝑥𝑖−𝑥� 2∑
) and if

−𝑡1−𝛼2
< 𝑡𝑐 < 𝑡1−𝛼2 (B6)

H0 is accepted; otherwise H0 is rejected.
It is worthwhile to observe that the Confidence Interval for 𝜇' is
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Hence, the test of H0 is equivalent to the following points, for any distribution of the data:

 of H1 against H0, for any α (α sometimes is called size of the critical region)]; a theorem 
regarding the likelihood ratio proves that.

Let’s define the likelihood ratio tests; let Θ denote the entire parameter space; the likelihood ratio test statistic for testing H0: {θϵΘ0} 
versus θϵΘ1 is the ratio [which uses the Likelihood function L(θ|D)]

A likelihood ratio test is any test that has a rejection region that has the form {s(D): λ(D)≤c}, where c is any number satisfying 0≤c≤1 
and s(D) is the “statistic” by which we elaborate the data of the empirical sample D. This test is a measure of how much the evidence, 
provided by the data D, supports H0.

The previous criterion is very simple if the two competing hypotheses are both simple: H0: {θ=θ0} versus H1: {θ=θ1} . Let L0 be the 
Likelihood function L(θ0|D) and L1 be the Likelihood function L(θ1|D): the most powerful test is the one that has the most powerful 
critical region C={s(D): L1/L0≥kα},  where the quantity kα is chosen in such a way that the Type I Error has a risk (probability) α. The 
most powerful critical region C has the highest power 1-β(θ).

Usually when an efficient estimator exists, this provides then a powerful statistic, giving the most powerful test.
For the Normal model

the test about 

1− 𝛽 = 𝑃 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻0 𝑓𝑎𝑙𝑠𝑒 (B2)

Therefore, the power function of a hypothesis test with rejection region R is the function of  defined by
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satisfying 0c1 and s(D) is the “statistic” by which we elaborate the data of the empirical sample D. This test is a
measure of how much the evidence, provided by the data D, supports H0.
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=1.
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one that has the most powerful critical region C=s(D): L1/L0k, where the quantity k is chosen in such a way
that the Type I Error has a risk (probability). The most powerful critical region C has the highest power 1-().

Usually when an efficient estimator exists, this provides then a powerful statistic, giving the most powerful test.
For the Normal model
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where 𝒕 has the t distribution with n-1 degrees of freedom when H0 is true.
After some algebra, the test of H0 may be performed as follows: we compute the quantity 𝑡𝑐 =

𝑛 𝑛− 1 𝑥�−𝜇0

𝑥𝑖−𝑥� 2∑
) and if

−𝑡1−𝛼2
< 𝑡𝑐 < 𝑡1−𝛼2 (B6)

H0 is accepted; otherwise H0 is rejected.
It is worthwhile to observe that the Confidence Interval for 𝜇' is
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Hence, the test of H0 is equivalent to the following points, for any distribution of the data:
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Hence, the test of H0 is equivalent to the following points, for any distribution of the data:
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A likelihood ratio test is any test that has a rejection region that has the form s(D): (D)c, where c is any number
satisfying 0c1 and s(D) is the “statistic” by which we elaborate the data of the empirical sample D. This test is a
measure of how much the evidence, provided by the data D, supports H0.

The previous criterion is very simple if the two competing hypotheses are both simple: H0: = 0 versus H1:
=1.

Let L0 be the Likelihood function L(0|D) and L1 be the Likelihood function L(1|D): the most powerful test is the
one that has the most powerful critical region C=s(D): L1/L0k, where the quantity k is chosen in such a way
that the Type I Error has a risk (probability). The most powerful critical region C has the highest power 1-().

Usually when an efficient estimator exists, this provides then a powerful statistic, giving the most powerful test.
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where 𝒕 has the t distribution with n-1 degrees of freedom when H0 is true.
After some algebra, the test of H0 may be performed as follows: we compute the quantity 𝑡𝑐 =
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Hence, the test of H0 is equivalent to the following points, for any distribution of the data:

H0 is accepted; otherwise H0 is rejected.
	
It is worthwhile to observe that the Confidence Interval for μ' is 

Hence, the test of H0 is equivalent to the following points, for any distribution of the data:
	
1. Construct a confidence interval for the population parameter (e.g. mean) we are interested in
2. IF the hypothesised μ0 ϵ CI THEN Accept H0; otherwise H0 is rejected.
Remember that 1) and 2) are suitable for any distribution of the data:
This has great importance for Control Charts, as you can see in the figure B1

1) Construct a confidence interval for the population parameter (e.g. mean) we are interested in
2) IF the hypothesised µ0 ∈ 𝐶𝐼 THEN Accept H0; otherwise H0 is rejected.
Remember that 1) and 2) are suitable for any distribution of the data:
This has great importance for Control Charts, as you can see in the figure B1

Figure B1. LCL and UCL of Control Charts with their risks.

The good Managers, Researchers, Scholars do not forget that the two risks always are present and therefore they
must take care of the power of the test 1-, they use for the decision (as per the principles F1 and F2) [24-30].

Such Managers, Researchers, Scholars use the Scientific Method.
It is important to state immediately and in an explicit way that
 the risks must be stated,
 together with the goals (the hypotheses),
BEFORE any statistical (reliability) test is carried out.
For demonstration of reliability characteristics, with reliability tests, Managers, Students, Researchers and

Scholars must take into account, according the F1 principle, the very great importance of W. E. Deming statements
 A figure without a theory tells nothing.
 There is no substitute for knowledge.
 There is widespread resistance of knowledge.
 Knowledge is a scarce national resource.
 Why waste Knowledge?
 Management need to grow-up their knowledge because experience alone, without theory, teaches nothing what to do to

make Quality
 Anyone that engages teaching by hacks deserves to be rooked.
From these, unfortunately for Quality, for the Customers, for the Users and for the Society, this devastating result
 The result is that hundreds of people are learning what is wrong. I make this statement on the basis of experience, seeing

every day the devastating effects of incompetent teaching and faulty applications.
In many occasions and several Conferences on Total Quality Management for Higher Education Institutions, [Toulon

Figure B1: LCL and UCL of Control Charts with their risks.

The good Managers, Researchers, Scholars do not forget that the two risks always are present and therefore they must take care of the 
power of the test 1-β, they use for the decision (as per the principles F1 and F2) [24-30]. 
	
Such Managers, Researchers, Scholars use the Scientific Method.
It is important to state immediately and in an explicit way that
• the risks must be stated,
•  together with the goals (the hypotheses), 
•  BEFORE any statistical (reliability) test is carried out.
• For demonstration of reliability characteristics, with reliability tests, Managers, Students, Researchers and Scholars must take into 
account, according the F1 principle, the very great importance of W. E. Deming statements
•  A figure without a theory tells nothing.
• There is no substitute for knowledge.
• There is widespread resistance of knowledge.
• Knowledge is a scarce national resource.
• Why waste Knowledge?
• Management need to grow-up their knowledge because experience alone, without theory, teaches nothing what to do to make Quality
•Anyone that engages teaching by hacks deserves to be rooked.
From these, unfortunately for Quality, for the Customers, for the Users and for the Society, this devastating result
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• The result is that hundreds of people are learning what is wrong. I make this statement on the basis of experience, seeing every day the 
devastating effects of incompetent teaching and faulty applications.

In many occasions and several Conferences on Total Quality Management for Higher Education Institutions, [Toulon (1998), Verona 
(1999), Derby (2000), Mons (2001), Lisbon (2002), Oviedo (2003), Palermo (2005), Paisley (2006), Florence (2008), Verona (2009)] the 
author (FG) showed many real cases, found in books and magazines specialized on Quality related to concepts, methods and applications 
wrong, linked to Quality [21-57]. All the very many documents published (more than 250) by F. Galetto show the profound truth that 
facts and figures are useless, if not dangerous, without a sound theory (F. Galetto, 2000),
Brain is the most important asset: let's not forget it. (F. Galetto, 2003). All that is particularly important for the analysis of any type of 
data (quality or reliability).

Sequential Sampling
Sequential sampling refers to a routine in which each unit is “measured” about a kind of quantity of interest (length, weight, defectiveness, 
duration, reliability, failure rate, …) and the “cumulated” quantity is employed in decision taking about the acceptance of the null 
hypothesis H0, with 1-α as the risk of Accepting H0, when it is true. At any “measurement” 1, 2, …, k, decision rules are required to 
provide for a) Acceptance of H0, b) Rejection of H0, or c) continuation of sampling (by taking a new unit); this process continues until a 
decision a) or b) is taken; the number of items then drawn defines the sample size: sequential sampling, in general, leads to an expected 
sample size smaller than other sampling methods.

As seen before, the likelihood ratio test is used; the likelihood ratio test statistic for testing H0 versus H1 is the ratio q(k)=L1(k)/L0(k), 
where k is the present sample size, with the rules (after Whild, 1945), a) if q (k) ≤ β/(1-α) then retain H0, b) if q (k) ≥ (1 - β) / α then 
choose H1 and reject H0, if β  / (1 - α) ≤ q ( k) ≤ (1 - β) / α then continue sampling. These rules, under a suitable transformation of scale, 
lead to two Decision parallel lines, the Acceptance line and the Rejection line: the successive points of q* (k) the “transformed value 
of q(k)” generate a random walk path; when the path reaches a decision line inspection ceases, while when the path is contained within 
the two lines, sampling is continued.

Appendix C (related to [24])

(1998), Verona (1999), Derby (2000), Mons (2001), Lisbon (2002), Oviedo (2003), Palermo (2005), Paisley (2006),
Florence (2008), Verona (2009)] the author (FG) showed many real cases, found in books and magazines specialized
on Quality related to concepts, methods and applications wrong, linked to Quality [21-57]. All the very many
documents published (more than 250) by F. Galetto show the profound truth that

facts and figures are useless, if not dangerous, without a sound theory (F. Galetto, 2000),
Brain is the most important asset: let's not forget it. (F. Galetto, 2003),

All that is particularly important for the analysis of any type of data (quality or reliability).
Sequential sampling
Sequential sampling refers to a routine in which each unit is “measured” about a kind of quantity of

interest (length, weight, defectiveness, duration, reliability, failure rate, …) and the “cumulated” quantity is
employed in decision taking about the acceptance of the null hypothesis H0, with 1- as the risk of Accepting
H0, when it is true. At any “measurement” 1, 2, …, k, decision rules are required to provide for a) Acceptance
of H0, b) Rejection of H0, or c) continuation of sampling (by taking a new unit); this process continues until a
decision a) or b) is taken; the number of items then drawn defines the sample size: sequential sampling, in
general, leads to an expected sample size smaller than other sampling methods.

As seen before, the likelihood ratio test is used; the likelihood ratio test statistic for testing H0 versus H1 is the ratio
q(k)=L1(k)/L0(k), where k is the present sample size, with the rules (after Whild, 1945), a) if 𝑞(𝑘) ≤ 𝛽/(1−𝛼) then
retain H0, b) if 𝑞(𝑘) ≥ (1− 𝛽)/𝛼 then choose H1 and reject H0, if 𝛽/(1− 𝛼) ≤ 𝑞(𝑘) ≤ (1− 𝛽)/𝛼 then continue
sampling. These rules, under a suitable transformation of scale, lead to two Decision parallel lines, the Acceptance
line and the Rejection line: the successive points of 𝑞∗(𝑘) the “transformed value of q(k)” generate a randomwalk path;
when the path reaches a decision line inspection ceases, while when the path is contained within the two lines,
sampling is continued.

Appendix C (related to [24])
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To construct a t chart, we determine the control limits based
on a false alarm rate () of 0.0027, equaling that of an
individual chart of normal data, and use the median as the
centreline”. Whenever historical estimates are not available,
the scale parameter  can be estimated using maximum
likelihood. …. because both control limits and the centerline
are functions of solely , by the invariance property of
MLEs the estimates are 0.00135 t,̅ 6.60773 t ̅, and log(2) t ̅.” .
  𝐿𝐶𝐿𝑇= 0.00135 𝑡̅,            𝑈𝐶𝐿𝑇 = 6.60773 𝑡̅
E. Santiago, J. Smith, Control charts based on the Exponential 
Distribution, Quality Engineering, Vol. 25, Issue 2, 85-96

In a subsequent paper “Improved Shewhart-Type Charts for Monitoring Times Between Events”, Journal of
Quality Technology, 2016 (found online, 2024, March), we find again the same error [formula (2)]:

In another paper we found

TBE data (exponential distribution, r=1)

Chakraborti et. al. (with several papers…)

Excerpt C1. Typical statements in the “Garden …[24]” where the authors name LCL and UCL what actually are the

Probability Limits L and U. See the figure 9 and the Excerpt 12.

Many other cases, with the same errors, can be found in the “Garden …[24], and the Conclusions” where
the authors name LCL and UCL what actually are the Probability Limits L and U.

There is no “free lunch”: metanoia and study are needed and necessary.

Excerpt C1: Typical statements in the “Garden …[24]” where the authors name LCL and UCL what

actually are the Probability Limits L and U. See the figure 9 and the Excerpt 12.

Many other cases, with the same errors, can be found in the “Garden …[24], and the Conclusions” where the authors name LCL and 
UCL what actually are the Probability Limits L and U.
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There is no “free lunch”: metanoia and study are needed and necessary.
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