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Abstract
The paper describes schemes for the resource-efficient generation of twiddle factors for the fixed-radix version of the ubiquitous 
fast Fourier transform (FFT) algorithm. The schemes, which are targeted at a parallel implementation of the FFT, provide one with 
the facility for trading off arithmetic complexity, as expressed in terms of the required numbers of multiplications and additions 
(or subtractions), against the memory requirement, as expressed in terms of the amount of random access memory (RAM) required 
for constructing the look-up tables (LUTs) needed for the storage of the two twiddle factor components – one component being 
derived from the sine function and the other from the cosine function. Examples are provided which illustrate the advantages and 
disadvantages of each scheme – which are very much dependent upon the length of the FFT to be computed – for both the single-
level and multi-level LUTs, highlighting those situations where their adoption might be most appropriate. More specifically, it is 
seen that the adoption of a multi-level LUT scheme may be used to facilitate significant reductions in memory – namely, from O(N) 
to an O            requirement, for the case of an N-point FFT, where β ≥ 2 corresponds to the number of distinct angular resolutions 
used – at a relatively small cost in terms of increased FFT latency and arithmetic complexity.

Engineering: Open Access
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1. Introduction
The fixed-radix version of the ubiquitous fast Fourier transform 
(FFT) algorithm [1,2] provides one with an efficient means of 
solving the discrete Fourier transform (DFT) [1,2], as given for the 
case of the N-point transform by the expression

for k = 0,1, … ,N-1, where the inputs/outputs are complex-valued 
and

the primitive Nth complex root of unity [3]. The complex 
exponential terms, WN, each comprise two trigonometric 
components – with each pair being more commonly referred to 
as twiddle factors – that are required to be fed into each instance 
of the FFT’s butterfly, this being the computational engine used 
for carrying out the algorithm’s repetitive arithmetic operations 
[1,2]. Thus, an efficient implementation of the fixed-radix FFT – 
particularly for the processing of large and ultra-large data sets 
– invariably requires an efficient mechanism for the generation 

of the twiddle factors which, for a decimation-in-time (DIT) type 
FFT design, with digit-reversed inputs and naturally-ordered 
outputs, are applied to the butterfly inputs, whilst for a decimation-
in-frequency (DIF) type FFT design, with naturally-ordered inputs 
and digit-reversed outputs, are applied to the butterfly outputs 
[1,2]. Note that a fixed-radix FFT such as this could also be used 
to some effect as one component of a prime factor FFT algorithm, 
where the lengths of the individual small-FFT components are 
constrained to be relatively prime [3,4].

The twiddle factor requirement, more exactly, is that for a radix-2 
FFT algorithm there will be one non-trivial twiddle factor to 
be applied to each butterfly. The twiddle factor possesses two 
components, one defined by the sine function and the other by the 
cosine function, which may be either retrieved directly from the 
coefficient memory or generated on-the-fly in order to be able to 
carry out the necessary processing for the FFT butterfly which is, 
after all, the workhorse for the fixed-radix FFT – as is used today 
in multiple one-dimensional and multi-dimensional digital signal 
processing (DSP) and image processing applications, in real time 
fashion. With a radix-R version of the FFT, however, where R is 
an arbitrary integer greater than one, there will be R-1 non-trivial 
twiddle factors to be applied to each butterfly, rather than just one. 
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Thus, the results to be described in this paper – which are 
targeted, for ease of analysis, at a radix-2 formulation of the FFT 
– will need to be amended to cater for the increased coefficient 
memory needed for the generation of the R-1 non-trivial twiddle 
factors, particularly if a highly-parallel solution to the twiddle 
factor generation (whereby all the non-trivial twiddle factors are 
generated and applied simultaneously), and thus to the FFT, is to 
be achieved.

A radix-R version of the N-point FFT involves a total of logR  (N) 
stages in the temporal domain – where the processing for a given 
stage can only commence once that of its predecessor has been 
completed – with each stage involving the computation of N/R 

radix-R butterflies in the spatial domain. Being independent, in 
terms of distinct input data sets, enables multiple butterflies to 
be computed in parallel in the spatial domain via the use of sin-
gle-instruction multiple data (SIMD) type parallel processing 
techniques [5]. For a fixed-radix version of the FFT such as this a 
single butterfly design is required, with its name deriving from the 
radix-2 design’s resemblance to that of a butterfly, as illustrated in 
Figure 1 – although for a radix-4 algorithm its design more closely 
resembles that of a dragonfly or, for a radix-8 algorithm, that of 
a spider! Clearly, a mixed-radix version of the FFT [1,2], involv-
ing a combination of different radices, such as one exploiting both 
radix-2 and radix-4 components, would require a commensurate 
number of distinct butterfly designs. 
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Task 1: 

Compute LUT addresses and access corresponding trigonometric terms 

Task 2: 

Compute set of four trigonometric products from Task 1 outputs – see Eqtns. 8-9 

Task 3: 

Combine trigonometric product pairs additively to produce pair of twiddle factor  

components – one sinusoidal & one cosinusoidal component – see Eqtns. 8-9 

 

Note: parallel processing required for producing simultaneous outputs from each task 

 

Figure 2 – twiddle factor generation using two-level LUT scheme 

 

 
 

Figure 1 – illustration of butterfly for DIT version of radix-2 FFT algorithm – 
twiddle factor applied to butterfly input 
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Figure 1: Illustration of Butterfly for DIT Version of Radix-2 FFT Algorithm – Twiddle Factor Applied to Butterfly Input 

Schemes are to be described which enable a simple trade-off in 
computational complexity to be made between the arithmetic 
requirement, as expressed in terms of the number of arithmetic 
operations – denoted CM for multiplications and CA for additions 
(or subtractions) – required for obtaining the twiddle factors when 
one or more suitably sized look-up tables (LUTs) are used for 
their storage, and the memory requirement, as expressed in terms 
of the amount of random access memory (RAM) [6] – denoted 
CLUT – required for constructing the one or more suitably sized 
LUTs. The assessment of these schemes assumes the availability 
of parallel computing equipment, such as that provided by means 
of a field programmable gate array (FPGA) device, enabling the 
efficient mapping of the twiddle factor generation – and thus of the 
associated fixed-radix FFT – onto suitably defined computational 
pipelines for optimum implementational efficiency [6,5].
	
Summarizing, when just one LUT is used for the twiddle factor 
storage – as is discussed in Section 2 – the scheme is said to be 
based upon the adoption of a single-level LUT, whereas when more 
than one LUT is used for their storage – as is discussed in Section 
3 – the scheme is said to be based upon the adoption of a multi-
level LUT, composed essentially of multiple single-level LUTs [7]. 
Following these descriptions of the single-level and multi-level 
LUT schemes, the relative advantages and disadvantages of each, 
which are very much dependent upon the length of the FFT to 
be computed, are discussed in some detail in Section 4 together 
with examples highlighting those situations where the adoption 
of the single-level, two-level and three-level LUT schemes might 
be most appropriate. Finally, a brief summary and conclusions is 
provided in Section 5.

2. Single-Level LUT Scheme
As already stated, each twiddle factor comprises two trigonometric 
components: one sinusoidal and the other cosinusoidal. To 
minimize the arithmetic requirement for the generation of the 
twiddle factors, a single LUT may be used whereby the sinusoidal 
and cosinusoidal components are read from a sampled version of 
the sine function with argument defined from 0 up to 2π radians. 
As a result, the LUT may be accessed by means of a single, easy 
to compute address which may be updated from one access to 
another via simple control logic and one addition using a fixed 
increment – that is, the addresses form an arithmetic sequence. 
	
To achieve a memory-efficient implementation of the fixed-radix 
FFT, however, it should be noted that the coefficient memory 
requirement for the case of an N-point transform can be reduced 
from N to just N/4 memory locations by exploiting the relationship 
between the sine and cosine functions, as given by the expression

as well as the periodic nature of each, as given by the expressions

These properties enable the twiddle factors to be obtained from 
a pre-computed trigonometric function defined over a single 
quadrant of just π/2 radians rather than over the full range of 2π 
radians.
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defined over a single quadrant of just 2/  radians 

rather than over the full range of 2π radians. 

 Thus, for the case of an N-point FFT based upon 

the adoption of a single LUT, the arithmetic 

requirement is given by  

 CM = 0    &    CA = 2        (6) 

that is, two additions for the generation of each 

twiddle factor – one for the LUT address of the 

sinusoidal component and one for the LUT address of 

the cosinusoidal component – whilst the LUT needs to 

be of length N/4, yielding a corresponding O(N) 
memory requirement of 

 N4
1CLUT          (7) 

words. This single-quadrant scheme, which exploits a 

single-level LUT, would seem to offer a reasonable 

compromise between the arithmetic requirement and 

the memory requirement, using more than the 

theoretical minimum amount of memory required for 

the storage of the twiddle factors so as to keep the 

arithmetic requirement, for the addressing of the LUT, 

to a minimum. Most FFT algorithms would invariably 

adopt such an approach, although as will be seen in the 

following sections, when the FFT is sufficiently long a 

multi-level scheme based upon the exploitation of 

multiple small LUTs might prove more attractive.  

3. Multi-Level LUT Schemes 
 The aim of the multi-level schemes – which, 

essentially, involves the exploitation of multiple one-

level LUTs – is to reduce the total memory 

requirement at the expense of increased arithmetic 

complexity. The twiddle factors are obtained from the 

contents of the multiple LUTs through the repeated 

application of the standard trigonometric identities 

             sinsincoscoscos    (8) 

             sincoscossinsin     (9) 

as will be applied directly for the two-level case, 

where   corresponds to the angle defined over a 

coarse-resolution angular region and   to the angle 

defined over a fine-resolution angular region. In 

achieving such a reduction in the memory requirement 

it is necessary, given MR different angular resolutions 

– where the mth resolution is represented by LUT(s) of 

length Sm – that the product parameter, P, obtained 

from the product of the MR LUT lengths, is such that 

 N4
1SP

RM

1m
m 


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that is, two additions for the generation of each twiddle factor – 
one for the LUT address of the sinusoidal component and one for 
the LUT address of the cosinusoidal component – whilst the LUT 
needs to be of length N/4, yielding a corresponding O(N) memory 
requirement of

words. This single-quadrant scheme, which exploits a single-level 
LUT, would seem to offer a reasonable compromise between 
the arithmetic requirement and the memory requirement, using 
more than the theoretical minimum amount of memory required 
for the storage of the twiddle factors so as to keep the arithmetic 
requirement, for the addressing of the LUT, to a minimum. 
Most FFT algorithms would invariably adopt such an approach, 
although as will be seen in the following sections, when the FFT is 
sufficiently long a multi-level scheme based upon the exploitation 
of multiple small LUTs might prove more attractive. 

3. Multi-Level LUT Schemes
The aim of the multi-level schemes – which, essentially, involves 
the exploitation of multiple one-level LUTs – is to reduce the 
total memory requirement at the expense of increased arithmetic 
complexity. The twiddle factors are obtained from the contents of 
the multiple LUTs through the repeated application of the standard 
trigonometric identities

as will be applied directly for the two-level case, where θ 
corresponds to the angle defined over a coarse-resolution angular 
region and φ to the angle defined over a fine-resolution angular 
region. In achieving such a reduction in the memory requirement 
it is necessary, given MR different angular resolutions – where the 
mth resolution is represented by LUT(s) of length Sm – that the 
product parameter, P, obtained from the product of the MR LUT 
lengths, is such that

as expressed by Eqtn. 7, so that the required angular resolution 
is achieved, whilst at the same time ensuring that the summation 
parameter, S, obtained from the sum of all the LUT lengths, is 
such that

where αm represents the number of LUTs required by the mth angular 

resolution region, so that the total coefficient memory requirement 
is minimized. For each LUT-based scheme, the parameter α1 is 
clearly equal to one, as there is only one LUT to consider for the 
coarse-resolution region, whilst it will be seen in this section that 
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over the coarse-resolution region and two to cater for the sine and 
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single LUT may be used whereby the sinusoidal and 

cosinusoidal components are read from a sampled 

version of the sine function with argument defined 

from 0 up to 2π radians. As a result, the LUT may be 

accessed by means of a single, easy to compute 

address which may be updated from one access to 

another via simple control logic and one addition 

using a fixed increment – that is, the addresses form an 

arithmetic sequence.  

 To achieve a memory-efficient implementation of 

the fixed-radix FFT, however, it should be noted that 

the coefficient memory requirement for the case of an 

N-point transform can be reduced from N to just N/4 

memory locations by exploiting the relationship 

between the sine and cosine functions, as given by the 

expression 

     2
1xsinxcos ,               (3) 

as well as the periodic nature of each, as given by the 

expressions 

    xsin2xsin                      (4) 

       xsinxsin  .                    (5) 

These properties enable the twiddle factors to be 

obtained from a pre-computed trigonometric function 

defined over a single quadrant of just 2/  radians 

rather than over the full range of 2π radians. 

 Thus, for the case of an N-point FFT based upon 

the adoption of a single LUT, the arithmetic 

requirement is given by  

 CM = 0    &    CA = 2        (6) 

that is, two additions for the generation of each 

twiddle factor – one for the LUT address of the 

sinusoidal component and one for the LUT address of 

the cosinusoidal component – whilst the LUT needs to 

be of length N/4, yielding a corresponding O(N) 
memory requirement of 

 N4
1CLUT          (7) 

words. This single-quadrant scheme, which exploits a 

single-level LUT, would seem to offer a reasonable 

compromise between the arithmetic requirement and 

the memory requirement, using more than the 

theoretical minimum amount of memory required for 

the storage of the twiddle factors so as to keep the 

arithmetic requirement, for the addressing of the LUT, 

to a minimum. Most FFT algorithms would invariably 

adopt such an approach, although as will be seen in the 

following sections, when the FFT is sufficiently long a 

multi-level scheme based upon the exploitation of 

multiple small LUTs might prove more attractive.  

3. Multi-Level LUT Schemes 
 The aim of the multi-level schemes – which, 

essentially, involves the exploitation of multiple one-

level LUTs – is to reduce the total memory 

requirement at the expense of increased arithmetic 

complexity. The twiddle factors are obtained from the 

contents of the multiple LUTs through the repeated 

application of the standard trigonometric identities 

             sinsincoscoscos    (8) 

             sincoscossinsin     (9) 

as will be applied directly for the two-level case, 

where   corresponds to the angle defined over a 

coarse-resolution angular region and   to the angle 

defined over a fine-resolution angular region. In 

achieving such a reduction in the memory requirement 

it is necessary, given MR different angular resolutions 

– where the mth resolution is represented by LUT(s) of 

length Sm – that the product parameter, P, obtained 

from the product of the MR LUT lengths, is such that 
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as expressed by Eqtn. 7, so that the required angular 

resolution is achieved, whilst at the same time 

ensuring that the summation parameter, S, obtained 

from the sum of all the LUT lengths, is such that 

 



RM

1m
mm SS  is minimized,    (11) 

where m  represents the number of LUTs required by 

the mth angular resolution region, so that the total 

coefficient memory requirement is minimized. For 

each LUT-based scheme, the parameter 1  is clearly 

equal to one, as there is only one LUT to consider for 

the coarse- resolution region, whilst it will be seen in 

this section that for the multi-level case, where m > 1, 

each parameter m  is equal to two as there are two 

identically sized LUTs that need to be considered for 

each fine-resolution region – namely, one for the sine 

function and one for the cosine function.  

3.1 Two-Level Scheme 
 The first multi-level scheme involves the adoption 

of a two-level LUT, this comprising one coarse-

resolution region of length N/4L catering for both the 

sine and cosine functions, covering 0 up to 2/  

radians, and one fine-resolution region of length L for 

each of the sine and cosine functions, covering 0 up to 

L2/  radians. The required twiddle factors may then 

be obtained from the contents of the two-level LUT 

through the application of the standard trigonometric 

identities, as given by Eqtns. 8 and 9, where   

corresponds to the angle defined over the coarse-

resolution region and   to the angle defined over the 

fine-resolution region. 

 By expressing the combined size of the two-level 

LUT for the sine function as having to cater for 

 LL4
N)L(f        (12) 

words, where the LUTs are assumed for ease of 

analysis to be each of length L, it can be seen from the 

application of the differential calculus [8] that the 

optimum LUT length is obtained when the derivative  

 2L4
N1

dL
df

      (13) 

is set to zero, giving  

 N2
1L         (14) 

and resulting in a total  NO  memory requirement 

of 

 N2
3CLUT       (15) 

words – that is, 2/N  to cater for both the sine and 

cosine functions defined over the coarse-resolution 

region and 2/N  to cater for each of the sine and 

cosine functions defined over the fine-resolution 

region.  

 This scheme therefore yields a reduced memory 

requirement (when compared to that for the single-

level scheme) for the storage of the twiddle factors at 

the expense of an increased arithmetic requirement, 

namely 

 CM = 4    &    CA = 6     (16) 

where four of the additions are for generating the LUT 

addresses – that is, two to cater for both the sine and 

cosine functions defined over the coarse-resolution 

region and two to cater for the sine and cosine 

functions, one per LUT, defined over the 

fine-resolution region.  

 The two-level LUT thus consists of three separate 

single-level LUTs, each of length 2/N , rather than 

a single LUT, where an efficient parallel solution to 

the FFT requires that: a) two locations need to be 

accessed simultaneously from the coarse-resolution 

LUT; and b) two locations need to be accessed 

simultaneously from the two fine-resolution LUTs, 

one per LUT. In addition, for the efficient mapping of 

the FFT onto parallel computing equipment it will be 

necessary for the twiddle factor generation to be 

carried out by means of a suitably defined 

computational pipeline. To achieve this, the problem 

must first be decomposed into a number of 

independent tasks to be performed in the specified 
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cosine functions, one per LUT, defined over the fine-resolution 
region. 

The two-level LUT thus consists of three separate single-level 
LUTs, each of length 	   , rather than a single LUT, where an 
efficient parallel solution to the FFT requires that: a) two locations 
need to be accessed simultaneously from the coarse-resolution 
LUT; and b) two locations need to be accessed simultaneously from 
the two fine-resolution LUTs, one per LUT. In addition, for the 

efficient mapping of the FFT onto parallel computing equipment it 
will be necessary for the twiddle factor generation to be carried out 
by means of a suitably defined computational pipeline. To achieve 
this, the problem must first be decomposed into a number of 
independent tasks to be performed in the specified temporal order 
– the solution here involving three independent tasks, as outlined 
in Figure 2 – so that a new twiddle factor may be produced on the 
completion of the final task. 
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namely 
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addresses – that is, two to cater for both the sine and 

cosine functions defined over the coarse-resolution 

region and two to cater for the sine and cosine 

functions, one per LUT, defined over the 
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 The two-level LUT thus consists of three separate 

single-level LUTs, each of length 2/N , rather than 

a single LUT, where an efficient parallel solution to 

the FFT requires that: a) two locations need to be 

accessed simultaneously from the coarse-resolution 

LUT; and b) two locations need to be accessed 

simultaneously from the two fine-resolution LUTs, 

one per LUT. In addition, for the efficient mapping of 

the FFT onto parallel computing equipment it will be 

necessary for the twiddle factor generation to be 

carried out by means of a suitably defined 

computational pipeline. To achieve this, the problem 

must first be decomposed into a number of 
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Task 1: 

Compute LUT addresses and access corresponding trigonometric terms 

Task 2: 

Compute set of four trigonometric products from Task 1 outputs – see Eqtns. 8-9 

Task 3: 

Combine trigonometric product pairs additively to produce pair of twiddle factor  

components – one sinusoidal & one cosinusoidal component – see Eqtns. 8-9 

 

Note: parallel processing required for producing simultaneous outputs from each task 

 

Figure 2 – twiddle factor generation using two-level LUT scheme 

 

 
 

Figure 1 – illustration of butterfly for DIT version of radix-2 FFT algorithm – 
twiddle factor applied to butterfly input 
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Figure 2: Twiddle Factor Generation Using Two-Level LUT Scheme

Note, however, that with a flexible computing device, such as an 
FPGA, each of the arithmetic operations within each task may 
be efficiently carried out by means of a suitably defined internal 
pipeline, designed around the clock cycle of the chosen computing 
device. This, in turn, enables each task to be carried out with a 
given latency, as expressed in terms of the required number of 
clock cycles, with a new twiddle factor being thus produced with 
every clock cycle at the cost of a time delay, due to the overall 
latency, as represented by the combined duration in clock cycles 
of the three short pipelines. 

3.2 Three-Level Scheme
The next multi-level scheme involves the adoption of a three-
level LUT, this comprising one coarse-resolution region of length 
N/4L2 for the sine function, covering 0 up to π/2 radians, and two 
fine-resolution regions, each of length L, covering 0 up to π/2L 
radians and 0 up to π/2L2 radians, respectively, for each of the 
sine and cosine functions. The required twiddle factors may then 
be obtained from the contents of the three-level LUT through the 
double application of the standard trigonometric identities, as 
given by Eqtns. 8 and 9, so that 

where θ corresponds to the angle defined over the coarse-resolution 
region and φ1 and φ2 to the angles defined over the first and second 
fine-resolution regions, respectively. These equations may be 
expanded and expressed as

where

By expressing the combined size of the three-level LUT for the 
sine function as having to cater for

words, where the LUTs are assumed for ease of analysis to be each 
of length L, it can be seen that the optimum LUT length is obtained 
when the derivative 
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temporal order – the solution here involving three 

independent tasks, as outlined in Figure 2 – so that a 

new twiddle factor may be produced on the 

completion of the final task.  

 Note, however, that with a flexible computing 

device, such as an FPGA, each of the arithmetic 

operations within each task may be efficiently carried 

out by means of a suitably defined internal pipeline, 

designed around the clock cycle of the chosen 

computing device. This, in turn, enables each task to 

be carried out with a given latency, as expressed in 

terms of the required number of clock cycles, with a 

new twiddle factor being thus produced with every 

clock cycle at the cost of a time delay, due to the 

overall latency, as represented by the combined 

duration in clock cycles of the three short pipelines.  
3.2 Three-Level Scheme 
 The next multi-level scheme involves the 

adoption of a three-level LUT, this comprising one 

coarse-resolution region of length N/4L2 for the sine 

function, covering 0 up to 2/  radians, and two fine-

resolution regions, each of length L, covering 0 up to 
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respectively, for each of the sine and cosine functions. 

The required twiddle factors may then be obtained 

from the contents of the three-level LUT through the 

double application of the standard trigonometric 

identities, as given by Eqtns. 8 and 9, so that  
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defined over the coarse-resolution region and           to cater for 
each of the sine and cosine functions defined over each of the two 
fine-resolution regions. 

This scheme therefore yields a reduced memory requirement (when 
compared to that for the single-level and two-level schemes) for 
the storage of the twiddle factors at the expense of an increased 
arithmetic requirement, namely

where six of the additions are for generating the LUT addresses – 
that is, two to cater for both the sine and cosine functions defined 
over the coarse-resolution region, two to cater for the sine and 
cosine functions, one per LUT, defined over the first fine-resolution 
region and two to cater for the sine and cosine functions, one per 
LUT, defined over the second fine-resolution region. 
	
The three-level LUT thus consists of five separate single-level 
LUTs, each of length         , rather than a single LUT, where an 
efficient parallel solution to the FFT requires that: a) two locations 
need to be accessed simultaneously from the coarse-resolution 
LUT; and b) two locations need to be accessed simultaneously 
from each of the two pairs of fine-resolution LUTs, one per LUT. 
In addition, for the mapping of the FFT onto parallel computing 
equipment it will be necessary, as with the two-level scheme, 
for the twiddle factor generation to be carried out by means of 
a suitably defined computational pipeline. To achieve this, 
the problem is first decomposed into five independent tasks, as 
outlined in Figure 3, so that a new twiddle factor may be produced 
on the completion of the final task. The internal pipelining of the 
arithmetic operations within each task then enables a new twiddle 
factor to be produced with every clock cycle at the cost of a time 
delay, due to the overall latency, as represented by the combined 
duration in clock cycles of the five short pipelines.
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Task 1: 

Compute LUT addresses and access corresponding trigonometric terms 

Task 2: 

Compute first set of four trigonometric products from Task 1 outputs – see Eqtns. 21-24 

Task 3: 

Combine trigonometric product pairs additively to produce two outputs for use in Eqtns. 19-20 

Task 4: 

Compute second set of four trigonometric products from Task 3 outputs – see Eqtns. 19-20 

Task 5: 

Combine trigonometric product pairs additively to produce pair of twiddle factor  

components – one sinusoidal & one cosinusoidal component – see Eqtns. 19-20 

 

Note: parallel processing required for producing simultaneous outputs from each task 

 

Figure 3 – twiddle factor generation using three-level LUT scheme 

 

 
 
 

Radix-2 
FFT  

Length N 
LUT-Based 

Scheme 

Arithmetic Requirement Memory 
Requirement 

(words) 

Arithmetic +    
Memory Sizing    

(slices) 

No 
Independent 

Tasks No Multiplies No Additions 

210 ~ 103 1-Level 0 2     2.56×102 ~ 6.14×103 1 

220 ~ 106 
1-Level 0 2 ~ 2.62×105 ~ 6.29×106 1 

2-Level 4 6 ~ 1.54×103 ~ 2.58×104 3 

230 ~ 109 
1-Level 0 2 ~ 2.63×108 ~ 6.44×109 1 

3-Level 8 10 ~ 3.07×103 ~ 6.16×104 5 

 
Note: wordlength adopted for silicon sizing = 24 bits 

Table 1 – resource requirements for different LUT-based twiddle factor                                    

generation schemes as required by radix-2 FFT algorithm  

 

Figure 3: Twiddle Factor Generation Using Three-Level LUT Scheme

3.3 Arbitrary K-Level Scheme
Finally, the results obtained above for the two-level and three-level 
schemes may be straightforwardly extended to the general case of 
an arbitrary K-level scheme. By expressing the combined size of 
the K-level LUT for the sine function as having to cater for

words, where the LUTs are assumed for ease of analysis to be each 

of length L, it can be seen that the optimum LUT length is obtained 
when the derivative 

is set to zero, giving 
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region, two to cater for the sine and cosine functions, 

one per LUT, defined over the first fine-resolution 
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each of the sine and cosine functions defined over each of the K-1 
fine-resolution regions. 
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K > 3 would increase to

where 2K of the additions are for generating the LUT addresses – 
that is, two to cater for both the sine and cosine functions defined 
over the coarse-resolution region and two to cater for the sine and 
cosine functions, one per LUT, defined over each of the K-1 fine-
resolution regions. 
	
The K-level LUT thus consists of 2K-1 separate single level LUTs, 
each of length	      , rather than a single LUT, where an efficient 
parallel solution to the FFT requires that: a) two locations need to 
be accessed simultaneously from the coarse-resolution LUT; and 
b) two locations need to be accessed simultaneously from each of 
the K-1 pairs of fine-resolution LUTs, one per LUT. In addition, 
for the mapping of the FFT onto parallel computing equipment it 
will be necessary, as with the two-level and three-level schemes, 
for the twiddle factor generation to be carried out by means of 
a suitably defined computational pipeline. To achieve this, the 
problem is first decomposed into 2K-1 independent tasks so that a 
new twiddle factor may be produced on the completion of the final 
task. The internal pipelining of the arithmetic operations within 
each task then enables a new twiddle factor to be produced with 
every clock cycle at the cost of a time delay, due to the overall 
latency, as represented by the combined duration in clock cycles 
of the 2K-1 short pipelines.

3.4 Discussion
Note that with each of the multi-level schemes discussed in this 
section, which involves the use of a suitably defined computational 
pipeline, there is a latency associated with the twiddle factor 
generation which is dependent upon the length of the FFT and thus 
upon the length of the pipeline. With regard to the case of a radix-R 
version of the N-point FFT, regardless of how it is implemented 
– whether via the adoption of a pipeline or a memory-based 
architecture – the latency has to account for the computation 
of  	         radix-R butterflies, so that the effect of the additional 
latency due to the twiddle factor generation on the overall latency 
of the fixed-radix FFT will be expected to be minimal [9]. 
	
Also, with each such scheme it is possible that the fixed length 
assigned to each LUT may not necessarily prove to be a positive 
integer, as is required, so that one or more of the LUT lengths 
may need to be modified in order for integer LUT lengths to be 
obtained that still satisfy the product and summation constraints 
of Eqtns. 10 and 11. For example, with the three-level scheme 
discussed in Section 3.2, if rather than constraining all LUTs to be 
of length          (as given by Eqtn. 27), one used instead a coarse-
resolution LUT, of length      , and fine-resolution LUTs, each of 
length           , then the constraint on the product (or multiplicative) 
parameter, P, will still be met whilst the size of the summation (or 
additive) parameter, S, will actually be marginally reduced from 
approximately	         (which is clearly not an integer), for the 
fixed-length case, to just          

4. Complexity Results for LUT-Based Schemes 
To illustrate the trade-off of arithmetic complexity against memory 
requirement, for both the single-level and multi-level LUT 
schemes, a set of results is provided – see Table 1 – which deal with 
a range of radix-2 FFT lengths: 210 (1024), 220 (1,048,576) and 230 
(1,073,741,824) which may be regarded as close approximations 
to 103, 106 and 109, respectively, and which may each be tackled 
with a suitably defined radix-2K algorithm such as a radix-2 or 
radix-4 FFT. 
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where 2K of the additions are for generating the LUT 

addresses – that is, two to cater for both the sine and 

cosine functions defined over the coarse-resolution 

region and two to cater for the sine and cosine 

functions, one per LUT, defined over each of the K-1 

fine-resolution regions.  

 The K-level LUT thus consists of 2K-1 separate 

single-level LUTs, each of length K 4/N , rather than 

a single LUT, where an efficient parallel solution to 

the FFT requires that: a) two locations need to be 

accessed simultaneously from the coarse-resolution 

LUT; and b) two locations need to be accessed 

simultaneously from each of the K-1 pairs of 

fine-resolution LUTs, one per LUT. In addition, for 

the mapping of the FFT onto parallel computing 

equipment it will be necessary, as with the two-level 

and three-level schemes, for the twiddle factor 

generation to be carried out by means of a suitably 

defined computational pipeline. To achieve this, the 

problem is first decomposed into 2K-1 independent 

tasks so that a new twiddle factor may be produced on 

the completion of the final task. The internal 
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pipelining of the arithmetic operations within each 

task then enables a new twiddle factor to be produced 

with every clock cycle at the cost of a time delay, due 

to the overall latency, as represented by the combined 

duration in clock cycles of the 2K-1 short pipelines. 
3.4 Discussion 
 Note that with each of the multi-level schemes 

discussed in this section, which involves the use of a 

suitably defined computational pipeline, there is a 

latency associated with the twiddle factor generation 

which is dependent upon the length of the FFT and 

thus upon the length of the pipeline. With regard to the 

case of a radix-R version of the N-point FFT, 

regardless of how it is implemented – whether via the 

adoption of a pipeline or a memory-based architecture 

[9] – the latency has to account for the computation of 

NlogR
N

R  radix-R butterflies, so that the effect of 

the additional latency due to the twiddle factor 

generation on the overall latency of the fixed-radix 

FFT will be expected to be minimal.   

 Also, with each such scheme it is possible that the 

fixed length assigned to each LUT may not necessarily 

prove to be a positive integer, as is required, so that 

one or more of the LUT lengths may need to be 

modified in order for integer LUT lengths to be 

obtained that still satisfy the product and summation 

constraints of Eqtns. 10 and 11. For example, with the 

three-level scheme discussed in Section 3.2, if rather 

than constraining all LUTs to be of length 3 4/N  (as 

given by Eqtn. 27), one used instead a coarse- 

resolution LUT, of length 3 N , and fine-resolution 

LUTs, each of length 2/N3 , then the constraint on 

the product (or multiplicative) parameter, P, will still 

be met whilst the size of the summation (or additive) 

parameter, S, will actually be marginally reduced from 

approximately 3 N16.3   (which is clearly not an 

integer), for the fixed-length case, to just 3 N3 . 

 

4. Complexity Results for LUT-Based Schemes   
 To illustrate the trade-off of arithmetic complexity 

against memory requirement, for both the single-level 

and multi-level LUT schemes, a set of results is 

provided – see Table 1 – which deal with a range of 

radix-2 FFT lengths: 210 (1024), 220 (1,048,576) and 

230 (1,073,741,824) which may be regarded as close 

approximations to 103, 106 and 109, respectively, and 

which may each be tackled with a suitably defined 

radix-2K algorithm such as a radix-2 or radix-4 FFT.  

 For implementation in silicon of both long and 

ultra-long FFTs – as are becoming of increasing 

interest with the trend in large scale, big data 

applications – such as those transforms of approximate 

lengths 220 (as might be encountered in processing of 

astronomical data) and 230 (as might be encountered in 

processing of cosmic microwave data [10]), 

respectively, considerable resources will inevitably be 

required, as is evidenced from the memory 

requirements obtained via the single-level LUT 

scheme listed in the table. Ways of reducing these 

requirements, therefore, such as via the adoption of 

one or other of the multi-level LUT schemes discussed 

here, need to be carefully considered, as the increased 

arithmetic complexity and pipeline delay (as will be 

required for a real-time parallel implementation) may 

be a cost worth paying for such large reductions in 

memory – namely, from O(N) to an   NO  

requirement, for the case of an N-point FFT, where    

β ≥ 2 corresponds to the number of distinct angular 

resolutions used.   
 Note that Table 1 lists the number of arithmetic 

operations involved for various combinations of FFT 

length and LUT-based scheme. With a fully parallel 

hardware implementation of the FFT, however, the 

number of multiplications would be equivalent to the 

required number of hardware multipliers – which, with 

the availability of fast embedded multipliers as 

provided by an FPGA manufacturer, are particularly 

resource and energy efficient – namely one hardware 
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Task 1: 

Compute LUT addresses and access corresponding trigonometric terms 

Task 2: 

Compute first set of four trigonometric products from Task 1 outputs – see Eqtns. 21-24 

Task 3: 

Combine trigonometric product pairs additively to produce two outputs for use in Eqtns. 19-20 

Task 4: 

Compute second set of four trigonometric products from Task 3 outputs – see Eqtns. 19-20 

Task 5: 

Combine trigonometric product pairs additively to produce pair of twiddle factor  

components – one sinusoidal & one cosinusoidal component – see Eqtns. 19-20 

 

Note: parallel processing required for producing simultaneous outputs from each task 

 

Figure 3 – twiddle factor generation using three-level LUT scheme 

 

 
 
 

Radix-2 
FFT  

Length N 
LUT-Based 

Scheme 

Arithmetic Requirement Memory 
Requirement 

(words) 

Arithmetic +    
Memory Sizing    

(slices) 

No 
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For implementation in silicon of both long and ultra-long 
FFTs – as are becoming of increasing interest with the trend in 
large scale, big data applications – such as those transforms of 
approximate lengths 220 (as might be encountered in processing of 
astronomical data) and 230 (as might be encountered in processing 
of cosmic microwave data), respectively, considerable resources 
will inevitably be required, as is evidenced from the memory 
requirements obtained via the single-level LUT scheme listed in 
the table. Ways of reducing these requirements, therefore, such as 
via the adoption of one or other of the multi-level LUT schemes 
discussed here, need to be carefully considered, as the increased 
arithmetic complexity and pipeline delay (as will be required for 
a real-time parallel implementation) may be a cost worth paying 
for such large reductions in memory – namely, from O(N) to 
an 	  requirement, for the case of an N-point FFT, where β ≥ 
2 corresponds to the number of distinct angular resolutions used 
[10].	  

Note that Table 1 lists the number of arithmetic operations 
involved for various combinations of FFT length and LUT-based 
scheme. With a fully-parallel hardware implementation of the 
FFT, however, the number of multiplications would be equivalent 
to the required number of hardware multipliers – which, with 
the availability of fast embedded multipliers as provided by an 
FPGA manufacturer, are particularly resource and energy efficient 
– namely one hardware multiplier per multiplication, whilst the 
number of additions (or subtractions) would, in turn, be equivalent 
to the required number of hardware adders, namely one hardware 
adder per addition (or subtraction). 
	
Thus, with a fully-parallel hardware implementation, the num-
bers of arithmetic operations also defines the associated hardware 
complexity which, with an FPGA, may be expressed very sim-
plistically in terms of the required number of ‘slices’ of program-
mable logic, where a slice comprises a number of LUTs (where 
an LUT in this context is a collection of logic gates hard wired 
on the device), flip-flops and multiplexers. With the adoption of 
L-bit fixed-point processing, an L-bit adder may be implemented 
with just L/2 slices and an (L-bit)×(L-bit) multiplier – whose size 
equates, essentially, to that of L adders – with approximately   L2/2 
slices. With regard to memory, an L-bit word of single-port RAM 
(as required for the single-sample addressing of the fine-resolution 
LUTs) may be implemented with L/2 slices and an L-bit word of 
dual-port RAM (as required for the double-sample addressing of 
the coarse-resolution LUTs) with L slices. 
	
Based upon these sizing figures the number of logic slices needed 
for the combined resource requirements of arithmetic and memory 
(but excluding associated control logic) may be expressed as in 
Table 1, for various combinations of FFT length and LUT-based  
scheme, where a wordlength of 24 bits has been assumed for purely 
illustrative purposes. The results highlight the potential benefits 
to be obtained through the adoption of one or other of the multi-
level LUT schemes, particularly for implementation in silicon of 
both long and ultra-long FFTs. When compared to the single-level 

scheme, the two-level scheme (for the long FFT example) offers an 
approximate reduction in the total silicon sizing of O(102) whilst 
the three-level scheme (for the ultra-long FFT example) offers a 
reduction of O(105) – these results holding true regardless of the 
adopted word length.

5. Summary and Conclusions
The paper has described schemes for the resource-efficient 
generation of twiddle factors for the fixed-radix version of the 
FFT algorithm. The schemes, which are targeted at a parallel 
implementation of the FFT, provide one with the facility for trading 
off arithmetic complexity, as expressed in terms of the required 
numbers of multiplications and additions (or subtractions), against 
the memory requirement, as expressed in terms of the amount of 
RAM required for constructing the LUTs needed for the storage of 
the two twiddle factor components – one component being derived 
from the sine function and the other from the cosine function. 
Examples have been provided which illustrate the advantages and 
disadvantages of each scheme – which are very much dependent 
upon the length of the FFT to be computed – for both the single-
level and multi-level LUTs, highlighting those situations where 
their adoption might be most appropriate. More specifically, it 
has been seen that the adoption of a multi-level LUT scheme may 
be used to facilitate significant reductions in memory – namely, 
from O(N) to an            requirement, for the case of an N-point 
FFT, where β ≥ 2 corresponds to the number of distinct angular 
resolutions used – at a relatively small cost in terms of increased 
FFT latency and arithmetic complexity [14]. 

Note that for a radix-R version of the FFT, there will be R-1 non-
trivial twiddle factors to be applied to each butterfly, rather than 
just one, so that the results obtained and discussed in this paper 
– which have been targeted, for ease of analysis, at a radix-2 
formulation of the FFT – will need to be amended to cater for the 
increased coefficient memory, in terms of additional LUTs, needed 
for the generation of the R-1 non-trivial twiddle factors. This 
replication of resources will be necessary, regardless of the LUT-
based scheme adopted, if a highly parallel solution to the twiddle 
factor generation (whereby all the twiddle factors are generated 
and applied simultaneously), and thus to the FFT, is to be achieved.
	
Finally, note that such techniques as those discussed here for dealing 
with the fixed-radix FFT could also be used to the same effect with 
the design of fast solutions to other commonly used orthogonal 
transforms [11]. This includes the design and implementation 
of fast algorithms for the efficient computation of the discrete 
cosine transform (DCT) and the discrete Hartley transform 
(DHT)  where, for the case of the DHT, the regularized version 
of the fast Hartley transform (FHT) [7,9] involves the design of a 
single large double butterfly, with eight real-valued inputs/outputs, 
for its efficient parallel computation. Nearly all such fixed-radix 
transforms, except those based upon the adoption of non-standard 
arithmetic techniques – such as CORDIC arithmetic [7,14] – will 
rely upon the use of a pre-computed trigonometric function for 
their implementational efficiency [12,13].
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given by Eqtn. 27), one used instead a coarse- 

resolution LUT, of length 3 N , and fine-resolution 

LUTs, each of length 2/N3 , then the constraint on 

the product (or multiplicative) parameter, P, will still 

be met whilst the size of the summation (or additive) 

parameter, S, will actually be marginally reduced from 

approximately 3 N16.3   (which is clearly not an 

integer), for the fixed-length case, to just 3 N3 . 
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against memory requirement, for both the single-level 

and multi-level LUT schemes, a set of results is 

provided – see Table 1 – which deal with a range of 
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ultra-long FFTs – as are becoming of increasing 
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requirements obtained via the single-level LUT 

scheme listed in the table. Ways of reducing these 
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operations involved for various combinations of FFT 
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the availability of fast embedded multipliers as 

provided by an FPGA manufacturer, are particularly 

resource and energy efficient – namely one hardware 
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