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Introduction
Revolution of a body, round a centre of force of attraction, is the 
most common motion in the universe. This comes with revolution 
of planets round the Sun, binary stars round their centre of mass, a 
moon round a planet or an electron round the nucleus of an atom.

The German astronomer, Johannes Kepler early in the 17th century, 
formulated three laws, named after him, concerning the motions 
of planets [1, 2]. Kepler based his laws on astronomical data 
painstakingly collected in 30 years of meticulous observations by 
the Danish astronomer Tycho Brahe, to whom he was an assistant 
[3]. Kepler’s proposals broke with a centuries-old belief based on 
the Ptolemaic system advanced by the Alexandrian astronomer 
Ptolemy, in the 2nd century AD, and the Copernican system put 
forward by the Polish astronomer, Nicolaus Copernicus, in the 16th 
century [4, 5]. 

The Ptolemaic cosmology postulated a geocentric universe in which 
the Earth was stationary and motionless at the centre of several 
concentric rotating spheres, which bore (in order of distance away 

from the earth) the Moon, the planets and the stars. The major 
premises of the Copernican system are that the Earth rotates daily 
on its axis and revolves yearly round the Sun and that the planets 
also circle the Sun. Copernicus’s heliocentric theories of planetary 
motion had the advantage of accounting for the daily and yearly 
motions of the Moon, the Sun and the stars and it neatly explained the 
observed motions of the planets. However, the reigning dogma in the 
16th century, which was that of the Roman Catholic Church, favoured 
the heliocentric Ptolemaic system, it abhorred the Copernican theory 
and it hated its adherents. 

The Copernican theory had some modifications and various degrees 
of acceptance in the 16th and 17th centuries. The most famous 
adherents of Copernican systems were the Italian physicist Galileo 
Galilei [6] and his contemporary, the astronomer Johannes Kepler 
[1, 2].

By December 1609 Galileo had built a telescope of 20 times 
magnification, with which he discovered four of the moons circling 
Jupiter [7]. This showed that at least some heavenly bodies move 
around a centre other than the Earth. By December 1610 Galileo had 
observed the phases of Venus, which could be explained if Venus 
was sometimes nearer the Earth and sometimes farther away from 
the Earth, following a motion round the Sun [7].
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Abstract
A particle of mass nm, carrying the electronic charge -e, revolves in an orbit through angle ψ at distances nr from a center of force 
of attraction, with angular momenta nL perpendicular to the orbital plane, where n is an integer greater than 0, m the electronic 
mass and r1 is the radius of the first circular orbit. The equation of motion of the nth orbit of revolution is derived, revealing 
that an excited particle revolves in an unclosed elliptic orbit, with emission of radiation at the frequency of revolution, before 
settling down, after many cycles of ψ, in a stable circular orbit. In unipolar revolution, a radiating particle settles in a circular 
orbit of radius nr1 round a positively charged nucleus. In bipolar revolution, two radiating particles of the same mass nm and 
charges e and –e, settle in a circular stable orbit of radius ns1 round a common center of mass, where s1 is the radius of the first 
orbit. Discrete masses nm and angular momenta nL lead to quantization of the orbits outside Bohr’s quantum mechanics. The 
frequency of radiation in the bipolar revolution is found to be in conformity with the Balmer-Rydberg formula for the spectral 
lines of radiation from the atom hydrogen gas. There is a spread in frequency of emitted radiation, the frequency in the final 
circle being the highest, which might explain hydrogen fine structure, as observed with a diffraction grating of high resolution. 
The unipolar revolution is identified with the solid or liquid state of hydrogen and bipolar revolution with the gas state. 
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In 1616, Copernican books were subjected to censorship by the 
Church [8]. Galileo was instructed to no longer hold or defend the 
opinion that the Earth moved. He failed to conform to the ruling of 
the Church and after the publication of his book titled Dialogue on 
the Two Chief World Systems, he was accused of heresy, compelled 
to recant his beliefs and then confined to house arrest [9]. Galileo’s 
Dialogue was ordered to be burned and his ideas banned.

The ideas contained in the Dialogue could not be suppressed by the 
Roman Catholic Church. Galileo’s reputation continued to grow in 
Italy and abroad, especially after his final work. Galileo’s final and 
greatest work is the book titled Discourses Concerning Two New 
Sciences, published in 1638. It reviews and refines his earlier studies 
of motion and, in general, the principles of mechanics. The book 
opened a road that was to lead Sir Isaac Newton [10] to the law of 
universal gravitation, which linked the planetary laws discovered 
by astronomer Kepler with Galileo’s mathematical physics [10].

Kepler [1, 2] stamped the final seal of validity on the Copernican 
planetary system in three laws, viz.:
(i)	 The paths of the planets are closed ellipses with the sun as one 

focus.
(ii)	 The line drawn from the sun to the planet sweeps over equal 

areas in equal time.
(iii)	The square of the periods of revolution (T) of the different 

planets are proportional to the cube of their respective mean 
distances (r) from the sun (T2∝ r3) 

The import of Kepler’s first law is that there is no dissipation of 
energy in the revolution of a planet, in a closed orbit, round the Sun. 
Any change of kinetic energy is equal to the change of potential 
energy. The second law means that a planet revolves round the Sun 
with constant angular momentum, which is the case if there is no 
force perpendicular to the radius vector. From the third law (T2∝ r3) 
and relationship between the centripetal force and speed (F∝v2/r), 
with T = 2πr/v, it is deduced that the force of attraction F on a planet 
is inversely proportional to the square of its distance from the Sun, 
as discovered by Newton in 1687 [10].

Kepler’s laws played an important part in the work of the great 
English astronomer, mathematician and physicist, Sir Isaac Newton 
[10]. The laws are significant for the understanding of the orbital 
paths of the moon, the natural satellite of the Earth, and the paths 
of the artificial satellites launched from space stations. 

While the orbital path of a satellite is a closed ellipse, the orbit of 
an electrically charged particle, round a central force of attraction, 
is an unclosed ellipse or a closed circle. A charged particle revolves 
in an unclosed orbit with emission or absorption of radiation. The 
energy radiated is the difference between change in kinetic energy 
and change in potential energy. Revolution in a circular orbit, the 
steady motion, is without radiation and inherently stable as there is 
no change in the kinetic energy or potential energy of a revolving 
particle. 

The purpose of this paper is to derive equations of the orbit of 
revolution of a charged particle round a centre of force of attraction. 
A particle of negative charge may revolve round a relatively much 
heavier positively charged nucleus as a unipolar radiator or two 
oppositely charged particles may revolve round their centre of 
mass as a bipolar radiator, each particle being a pole. The equations 

are used to show that the orbit of a charged particle is an unclosed 
(aperiodic) ellipse where it moves with constant angular momentum 
nL, n being an integer. The discrete masses nm, (m being the 
electronic mass) of revolving particles lead to quantisation of the 
orbits. A particle revolves with emission or absorption of radiation 
of discrete frequencies, in many cycles of revolution, before settling 
into the stable circular orbit.
 
Unipolar revolution under a central force
Consider a particle of charge –e and mass nm at a point P and time 
t revolving round, anticlockwise, in an angle ψ and with velocity v 
in an orbit under the attraction of a positive charge Q fixed at origin 
O, as shown in Figure 1. Here, n is an integer greater than 0, –e 
is the electronic charge and m the electronic mass. The particle at 
P executes unipolar motion under a central force at O. In unipolar 
revolution, a particle, as the pole of the orbit, revolves round a 
stationary center under a force of attraction. The orbit of motion 
is an unclosed (aperiodic) ellipse with emission or absorption of 
radiation or a closed circle without radiation.

In Figure 1, the radius vector OP makes an angle ψ with the OX 
axis in space. The position vector r of the point P, in the direction 
of unit vector û, (radial direction) and the velocity v at time t are 
respectively given by the equations:

                                                                                           (1)

                                                                                           (2)

For orbital motion in the X-Y plane of the Cartesian coordinates, 
dû/dt, the angular velocity, is given by the vector (cross) product:

                                                                                          (3)

The angle ψ is the inclination of the radius vector OP from OX, 
k is a constant unit vector in the Z-direction, perpendicular to the 
orbital plane (out of the page in Figure 1) and (dψ/dt) k is the angular 
velocity. The velocity v is:

                                                                                         (4)

Figure 1: A particle of charge –e and mass nm at a point P revolving 
in the X–Y plane, in angular displacementψ, with velocity v at angle 
θ to force of attraction of a stationary positive charge Q at O
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Noting that (k×û).û = 0, the velocity in the radial û direction is:

                                                                                       (5)
 

The acceleration (noting that k is a constant unit vector) is obtained, 
a vector in two orthogonal directions, as:

                                                                                                   (6)

The acceleration in the radial û direction is:

                                                                                          (7)

From equation (6), the force perpendicular to the radial direction is 
zero and, therefore, the acceleration of mass nm is also zero in the 
kxû direction, so that the equation gives:

This equation can be expressed in terms of angular momentum L, as:

                                                                                        (8)

L is constant angular momentum with respect to the first orbit. 
Equations (7) and equation (8) will be used to derive the equation 
of the orbit of motion of the particle at P (Figure 1).

In Figure 1, the positively charged particle at O is supposed to be very 
much more massive such that it could be taken as almost stationary. 
In this case, we have revolution with a particle at P carrying the 
electronic charge –e and a multiple nm of the electronic mass m, 
revolving in an orbit, round a stationary particle of charge +Q, as 
nucleus at O. The particle revolves in an electrostatic field Ep under 
a force of attraction and a radiation reaction force. 

The author [11, 12], invoking aberration of electric field, showed 
that the accelerating force F on a particle of charge –e and mass nm 
moving with velocity v at a point P, in an electric field of intensity 
Ep, = Epû, is:

                                                                                         (9)

where the velocity of light c is at aberration angle α to F and velocity 
v is at an angle θ to F. 

In equation (9), taking the scalar products of accelerating force F 
with radial vector û, gives:

                                                                                             

If α is a very small angle, c.û = –ccos≈ –c and v. û = vr = dr/dt 
(equation 5), we get:

                                                                                             (10)

                                                                                              (11)

where dr/dt is the speed in the radial direction, –eEpû is the 
electrostatic force (on a stationary particle) and–{eEp(dr/dt)/c}û 
is the radiation reaction force. The radiation reaction force, akin to 
a frictional force or damping force in dynamics, results in energy 
dissipation or radiation. Dissipation of energy or radiation always 
comes into play when a charged particle is accelerated or decelerated 
by an electric field.

Putting Ep = Q/4πεor
2, in equation (11) gives the magnitude of the 

accelerating force as:

                                                                                              (12)

                                                                                              (13)

where χ = eQ/4πεo is a constant. Equation (13) is the mixed 
differential equation of motion of the particle revolving in an orbit 
through angle ψ and with instantaneous radius r at a time t. We 
need to reduce equation (13) to an equation of r as a function of 
one variable ψ.

In equation (13), taking the angle ψ as the variable, making the 
substitution r = 1/u to give dr/du = –1/u2 and with (dψ/dt) = L/mr2 
(equation 8), we get:

                                                                                             (14)

                                                                                              (15)

Substituting equations (15) and (14) into equation (13) gives:

                                                                                           

                                                                                            (16)
 

22

2.d d r dr
dt dt dt

ψ     = −    
     

v û û û

https://www.opastonline.com/


       Volume 3 | Issue 1 | 6Adv Theo Comp Phy, 2020 www.opastonline.com

Equation (16) is a 2nd order differential equation with constant 
coefficients. A solution is u = Aexp (xψ), the transient, if the auxiliary 
equation, x2 + 2qx + 1 = 0 and q = χ/2ncL, so that:

where α is the “rotation factor” and α2 = 1 – q2, is positive. The 
general solution is:

                                                                                           (17)

The appropriate solution of equation (16) is:

                                                                                            (18)
 
   
where the amplitude A, of the nth orbit, and phase angle β are 
obtained from the initial conditions and mχ/nL2 is the steady state. 

Equation (18) gives the path or the nth unstable orbit of the particle 
(at P, in Figure1) with O as the fixed centre of revolution or nucleus. 
For q > 0 < 1 and α < 1, the orbit is an unclosed (aperiodic) ellipse 
whose major axis (line joining the points of farthest separations of 
the particles) rotates about an axis through the centre, perpendicular 
to the orbital plane. A revolving particle makes a cycle of 2π/α 
radians as the major axis goes through 2π/α – 2π .

The exponential decay factor, exp (–qψ), is due to energy radiation. 
As a result of radiation of energy, after a great number of revolutions 
in the angleψ, the transient, that is Aexp (–qψ), decreases to zero and 
the radius increases to the steady state nL2/mχ, as long as q is greater 
than zero. This is the radius of the stable orbit when the radiator 
settles down from the excited state with the particle revolving in 
the nth stable orbit, a circle of radius nL2/mχ = nr1, shown as WCYD 
in Figure 2. The radius r1 is for the innermost orbit where n = 1.

In the stable orbit, there is only motion in a perfect circle, 
perpendicular to a radial electric field. No radial motion of the 
charged particle, no change of potential or kinetic energy and, 
therefore, no radiation of energy. Radiation occurs only if there is 
a component of velocity of a particle in the direction of an electric 
field.

Figure 2: Free ellipse WXYZ of eccentricity A/B and steady orbit 
CDEF of revolution of a radiating particle, at P, in the nth circle 
of radius 1/B = nr1 with centre at O as a focus of the free ellipse

Bipolar revolution under a central force
A bipolar orbit consists of two particles of equal mass but oppositely 
charged, each carrying the electronic charge of magnitude e and 
a multiple nm of the electronic mass m, under mutual attraction, 
revolving round their common centre of mass, the common centre 
of revolution, at a point O as depicted in Figure 3. The centripetal 
electrostatic force of attraction F, on a charged particle, is balanced 
by the centrifugal force due to acceleration. 

The two oppositely charged particles at P and S, in Figure 3, 
separated by distance 2r, make up the two poles of the bipolar 
orbit, each particle being one pole in the orbit. Thus, the bipolar 
orbit (in contrast to the unipolar orbit) has no nucleus but an empty 
point as the centre of mass, the centre of revolution, located halfway 
between the revolving charged particles.

In Figure 3, the particle (of mass nm and charge –e) at point P, of 
position vector r, is moving with velocity vp at an angle ψ in the 
electrostatic field Ep of the other particle (of mass nm and charge +e) 
at S. The particle at S of position vector –r, is moving with velocity 
vs in the electrostatic field Es of the particle at P. The velocities vp 
and vs are respectively:

                                                                                          (19)

                                                                                          (20)

Figure 3: Two particles at P and S having electronic charges –e 
and +e and the same mass of multiple nm of electronic mass m, 
revolving in angleψ, under mutual attraction, in an orbit of radius 
r, round the centre O.

The two particles, of equal mass, move with the same angular 
velocity, in a plane orbit, but with relative linear velocity in the 
radial direction. The relative velocity vr of the moving particle at P 
with respect to the moving particle at S is:

                                                                                             (21)

It is shown above that the accelerating force F, due to attraction, 
on a particle of charge –e and mass nm revolving in an ellipse, at 
time t, with speed vr in the direction of an electrostatic field ûEp of 
magnitude Ep (Figure 1), is given by equation (10), with vr = 2dr/dt, 

( ) ( )1 exp cos 2
mu A q

r nL

χψ αψ β= = − + +
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so that we obtain an expression similar to equation (11) as:

                                                                                            (22)

Putting Ep = e/16πεor
2, as the electric field at P, gives the force, like 

equation (12), as:

                                                                                             (23)

Re-arranging equation (23) gives an expression, like equation (13), 
as:

                                                                                             (24)

where κ = e2/16πεo. Equation (24) is the mixed differential equation 
of revolution of the particle in an orbit through angleψ.

In equation (24), taking the angle ψ as the variable and making the 
substitution r = 1/u and with (dψ/dt) = L/mr2 (equation 8) we get 
equations (14) and (15) and the first order differential equation, 
similar to equation (16):

                                                                                            (25)

If u = (Aexp(yψ) is a solution for the nth orbit, the auxiliary equation 
y2 + 2by + 1 = 0, with b = κ/ncL. The general solution is:

 
                                                                                            (26)

The appropriate solution of equation (25) is:

                                                                                           (27)
 

where the amplitude A and phase angle β are determined from the 
initial conditions, α is the “rotation factor” and α2=1 – b2. The steady 
state is mκ/nL2, obtained after many revolutions. 

Equation (27) gives the path or the nth unstable orbit of the particles 
(at P or at S, in Figure 4) with O as the centre of revolution. For b 
> 0 < 1 and α < 1, the orbit is an unclosed (aperiodic) ellipse where 
a particle completes one cycle of revolution in 2π/α radians, with 
relative motion in the radial direction and with emission of radiation.

The exponential decay factor, exp (–bψ), is due to radiation. After a 
great number of revolutions in the angle ψ, the transient Aexp (–bψ), 
decreases to zero and the radius settles at the steady state nL2/mκ, 
as long b is greater than zero. This is the radius of the stable orbit 
when the radiating particle settles down from the excited state with 
the two particles revolving in the nth stable orbit, a circle of radius 
nL2/mκ = nr1, shown as WCYD in Figure 4. In the stable orbit there 
is only revolution in a perfect circle and no radiation.

Free ellipse and stable orbit of revolution of a radiating particle
Equation (27), of the bipolar orbit, with the phase angle β being 0, 
may be written as:

where r1 = L2/mk is the radius of the first orbit. If b is negligible, α 
≈ 1, the equation becomes:

                                                                                           (28)

The orbit, shown as WXYZ in Figure 4, an ellipse of eccentricity η 
= Ar1 = A/B, is the free ellipse. This is a hypothetical orbit that the 
particle would have taken if b = 0.

Figure 4: Free ellipse WXYZ of eccentricity A/B and steady orbit 
CDEF of revolution of a radiating particle, at P or S, in the nth circle 
of radius n/B = nr1 with centre at O as a focus of the free ellipse

Revolution of a radiating particle is in an unclosed (aperiodic) 
ellipse, with a decreasing period (increasing frequency). After a 
great number of revolutions (ψ→ ∞), the nth orbit reduces to a 
circle, the stable orbit of radius nr1, shown as CDEF in Figure 4. 
The frequencies of revolution of a radiating particle, in the unstable 
orbits, are very nearly equal to that of revolution in the nth stable 
orbit. So, radiation from a particle, in a bipolar orbit or unipolar 
orbit, is a narrow band of frequencies, very nearly equal to the 
frequency of revolution in the nth stable orbit. This leads to a spread 
of frequencies of revolution, as discussed in section 5 below.

Energy radiated by a charged particle in bipolar revolution
The magnitude of accelerating force on a particle of mass nm and 
charge –e revolving at time t and at a point distance r from the centre 
of a force of attraction due to an electric field of magnitude Ep of 
an electric charge, is given by equation (23). The radiation force is:

where k = e2/16πεo. Energy radiated is obtained by integrating the 
radiation force with respect to displacement (dr) in one cycle, s to 
(s+1), through 2π/α radians, of the nth orbit, to give:

https://www.opastonline.com/
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Substituting for (dr/dt) from equation (14) and with (dr) = –1/u2 
(du), we obtain:

                                                                                            (29)

Substituting for (du/dψ) from equation (26), gives the integral in 
complex form. The energy radiated in the (s+1)th cycle of the nth 
orbit, is given by the [Real Part] of the integral:

                                                                                            (30)

The [Real Part] is obtained as:

                                                                                            (31)

In the final cycle (s→ ∞), the energy radiated is 0. The total energy 
radiated Er, in the nth orbit, after many revolutions ending in the 
nth stable circle, is the sum of geometric series:

                                                                                            (32)

where b = κ/ncL for the nth orbit, A is the amplitude for the nth orbit 
and R for the first orbit. 
The total energy radiated by the atom is obtained by summing Er 
for N orbits. 

Period and Spread of frequency of oscillation of a radiator
Equation (27) gives the bipolar orbit of a charged particle of mass 
nm revolving through angle ψ, in the nth orbit, with constant angular 
momentum nL and with phase angle β = 0, as
                                                                                           

                                                                                               (33)

                                                                                              (34) 

where B = mk/L2. This is the equation of an unclosed (aperiodic) 
ellipse, in the polar coordinates, with η = A/B as the eccentricity of 
the free ellipse. Equation (34) gives r as:

                                                                                              (35)

The angular momentum nL of the particle, of mass nm, gives:

                                                                                              (36)

The period of revolution T(s+1) in the (s + 1)th cycle (s = 0, 1, 2, 3...∞) 
of the nth orbit (n = 1, 2, 3...Nh), is obtained by integrating equation 
(36) for y through an angle 2p/a radians:

                                                                                               (37)

Expanding the integrand, equation (37), into an infinite series, by 
the binomial theorem, gives:

                                                                                                

where p is a positive integer, 0 – ¥. Equation (39) then becomes:

                                                                                             (38)

                                                                                             (39)

https://www.opastonline.com/
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Expressing cosp (ay) as a sum of cosines of multiples of (ay), let 
us take the first five terms of Qp.

                                                                                              (40)

Putting exp (–bψ) cos (αψ) = [Real Part] of {exp (jα – b)ψ}, the 
integral, Q1, is obtained as:

Noting that a2 + b2 = 1, we get:

                                                                                             (41)

                                                                                             (42)

                                                                                                

  
                                                                                             (43)
 

Expressing cos4 (αψ) in terms of cos (2αψ) and cos (4αψ), gives:

Q4 is obtained as:

                                                                                                 
(44)

Note that as s → ∞ or b = 0, only Q0 remains, since Q1 = Q2 = Q3 = 
...Qp = 0. Where b ≠ 0, the period of the (s + 1)th cycle in the nth 
orbit of revolution, is obtained as the sum:

                                                                                                 (45)

Since the eccentricity η is small and b is smaller, neglecting powers 
of η greater than 2 and powers of b greater than 1, we obtain Q1 ≈ Q3 
≈ Q5 ≈ ... ≈ Q2p+1 ≈ 0. An approximate expression for the period of 
revolution in the first cycle (with s = 0), in the nth orbit, is obtained 
as the sum:

                                                                                              (46)

With α2 = 1 - b2, we obtain α ≈ 1 and:

                                                                                              (47)

Equation (47) gives the time taken, in the first cycle, for the particle, 
in the nth orbit, to go through 2π/α-π radians, due to the rotation 
of the major axis that goes through (2π/α-π) radians. After a great 
number of cycles (s→∞), the period of revolution, through 2π 
radians, in the steady circle of the nth orbit, is:

                                                                                              (48)

Tn is the period of revolution of the particle in the steady orbit, a 
circle of radius rn = n/B = 16pnεoL

2/me with speed vn = BL/nm = 
e2/16πnεo L and frequency fn = LB2/2πmn2 = me4/2πL3b (16πnƨo)2.

The period of the first cycle T1, (equation (47), is the highest 
while that in the steady orbit Tn (equation 48) is the least (highest 
frequency). The wavelength, λ1 of radiation, during the 1st cycle of 
the nth orbit, is:

                                                                                           (49)

where c is the speed of light in a vacuum. The separation, splitting 
or increment of the wavelengths ∆λ is:

https://www.opastonline.com/
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                                                                                           (50)

The ratio of the separation of wavelengths and the wavelength, 
with respect to revolution in the nth stable orbit, the same as the 
magnitude of separation of frequencies, is:

                                                                                           (51)

This ratio is related to the splitting, spread or “fine structure” of a 
spectral line due to frequency of radiation from the hydrogen atom. 
The radiation is not of a precise frequency but has a spread around 
the frequency of revolution of a particle in the nth stable orbit.

Results and Discussion 
1.	 A charged particle revolves round a centre of attraction, in an 

unclosed (aperiodic) elliptic orbit, with emission of radiation 
at the frequency of revolution, before settling into a stable 
circular orbit. This explains the source of atomic radiation and 
stability of atoms. 

2.	 The unipolar revolution of an electron round a nucleus, as 
discussed in section 2, leads to the development of unipolar 
model or nuclear model of the hydrogen atom. Similarly, bipolar 
motion of two oppositely charged particles of the same mass 
round a centre of revolution, as discussed under section 3, leads 
to the development of bipolar model or non-nuclear model of 
the hydrogen atom. 

3.	 It is shown by the author that the mass of a particle is independent 
of its speed [11]. Therefore, in the treatment of the motion of 
electrons round a centre of revolution, in the unipolar or bipolar 
models of the hydrogen atom, relativistic effects were not taken 
into consideration. Neither was the spin of a revolving particle 
regarded in the emission of radiation from the hydrogen atom. 

4.	 The narrow spread of frequencies, with respect to revolution in 
the nth orbit, as given by equation (51), may explain the “fine 
structure” of the spectral lines of radiation from the hydrogen 
atom, without considering relativistic effects, electron spin or 
quantum mechanics [12, 13].

Conclusion
The paper concludes that revolution of a charged particle in a 
circular orbit, round a centre of force of attraction, is inherently 
stable. Radiation takes place only if the particle is excited by being 
dislodged from the stable circular orbit. An excited particle revolves 
in an aperiodic elliptic orbit, emitting radiation before reverting into 
the stable circular orbit. This explains the source of radiation from 
atomic particles, outside quantum mechanics. 
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