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Abstract
Animal production is a significant source of greenhouse gas (GHG) emissions worldwide. This review aimed to summarize the 
current status of feed associated options from ruminants and its implication for their reduced GHG emissions. The emission of 
greenhouse gases (GHG) from ruminant livestock is influenced by different factors such as dietary characteristics as well as the 
fermentation conditions in the rumen. So, reducing greenhouse gas emissions by changing nutrient composition (e.g. shifting 
towards concentrate based diets, use of forages at an earlier stage of maturity). Feed additives have been comprehensively 
studied in vitro and in vivo for their methane reducing potential. The use of fodder trees has been developed through the 
process of pelleting; Leucaena leucocephala leaf pellets (LLP), Moringa oleifera pellets, and Red macroalgae (Asparagopsis 
taxiformis) pellets can be used as good sources of protein to supplement ruminant feeding. Feed additives containing plant 
secondary compounds (tannins, saponins, essential oil), and ionophores (monensin, lasalocid). This approach could help to 
decrease rumen protozoa and methanogens and thus reduce the production of methane gas. Considerable additional research 
is still needed in order to use both conventional and non-conventional feed resources their potential to affect greenhouse gas 
emissions by the animals. 
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1. Introduction
Livestock greenhouse emissions of 44%, 29%, and 27% are CH4, 
N2O, and CO2 respectively [1]. Regardless of the species, ruminant 
livestock is the largest source of methane (CH4) emissions, 
with more than 90% coming from enteric fermentation and the 
rest from manure [1,2]. Cattle account for 77 percent of these 
emissions (2.5 Gt), buffalo for 13 percent (0.43 Gt), and small 
ruminants (sheep and goats) for the remainder (0.31 Gt) are the 
most common ruminant livestock kinds that release CH4, produce 
about 3.3 Gt CO2 eq. of enteric methane annually (FAO, 2021). 
Berhanu et al. (2019) reported that the enteric CH4 emissions from 
ruminants in Ethiopia increased by 12% or ≈ 6197 Gg CO2-eq. 
in 2017 as compared to the year 2011. Greenhouse gas, such as 
those contained in the grass, hay, silage, and grains are a major 
part of bovine diets and are emitted from these biogenic sources 
during the fermentation of starches, lipids, and proteins in the 
digestive system of cattle (enteric fermentation) and later in the 
feces and urine [3]. The production of enteric CH4 from ruminants 
is mainly affected by feed intake and feed quality which, in turn, 
defines the total energy and nutrient intake and consequently 
animal performance. Feeding animals to improve feed efficiency 

and performance has the added benefit of reducing greenhouse 
gas emissions [4]. Rumen digestion of feed components by the 
bacteria, protozoa, and fungi, under anaerobic conditions, results 
in the production of volatile fatty acids (VFA), mainly acetate, 
propionate, and butyrate used by the animal as a source of energy, 
and the production of gases (CO2 and CH4) eliminated through 
eructation (belch) [5,6].

Diverse parameters influence greenhouse gas formation in the 
digestive tract or downstream effects in the farming system, such as 
digestibility, the chemical composition of the diet, and the presence 
of functional additives in the ration [1]. To reduce Greenhouse 
gas emissions from livestock systems must incorporate strategies 
associated with animal feed and nutrition and ultimately evaluate 
their effect through productive parameters [4].There is potential 
for reducing enteric greenhouse gas emissions through a  variety 
of approaches with a focus on the use of feed additives, dietary 
manipulation, and forage quality [7]. Therefore, the objective of 
this paper is to review and illustrate current information on feed-
related solutions for reducing ruminant greenhouse gas emissions.
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Figure 1: Biogenic-carbon-cycle 
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Ruminant livestock contributes to climate change by producing a considerable amount of 

anthropogenic greenhouse gas emissions. Greenhouse emissions (GHGs) emitted from 

livestock are CO2, CH4, and N2O, coming from respiration, enteric fermentation, and manure 

management respectively, with CH4 and N2O having the highest global warming potential [8]. 
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Figure 1: Biogenic-carbon-cycle

Ruminant livestock contributes to climate change by producing a 
considerable amount of anthropogenic greenhouse gas emissions. 
Greenhouse emissions (GHGs) emitted from livestock are CO2, 
CH4, and N2O, coming from respiration, enteric fermentation, and 
manure management respectively, with CH4 and N2O having the 
highest global warming potential [8]. The primary source of CH4 
from ruminant livestock is the process of enteric fermentation 
during rumination [9]. Initial microbial breakdown (essential in 

ruminant digestion) occurs in the rumen, or large forestomach, 
where microbial fermentation converts fibrous feed into products 
digested and utilized by the animal [10]. Rumination promotes 
digestion of cellulose and hemicelluloses through hydrolysis of 
polysaccharides by microbes and protozoa, which is followed 
by microbial fermentation generating H2 and CO2. Methane is 
produced as a by-product of enteric fermentation and carbohydrate 
digestion and is expelled through the mouth via eructation [11].
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Figure 2: Greenhouse gas emitted from the ruminant animal through the mouth via eructation 
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animals.; Greenhouse gas production varies by animal type and 
is proportional to the animal’s weight and feed intake. In a very 

recent study in Ethiopia year wise total GHG emissions from the 
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national level showed an increasing trend (92.9 Mt CO2-eq in 
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productivity and health [13]. Nitrogen (N) excretion rates, which affect N2O emissions from 

manure, are based on dry matter consumption (DMC) and its N content (Verge et al., 2012). 
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efficiency of N utilization, is one of the most effective measures to reduce emissions from 

manure [14]. Optimizing N supply to animals can achieve between 12 and 21% less N 
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2.1 Feed associated option to reduce greenhouse gas emitted 
from ruminant animals
2.1.1 Animal dietary manipulation
The most promising options for reducing GHG emissions at the 
livestock management level include improving animal production 
through dietary changes. The combination of dietary and rumen 
manipulation options, including feed additives, is expected to 
reduce enteric methane emissions by over 30% in the next decade 
without compromising animal productivity and health [13]. 
Nitrogen (N) excretion rates, which affect N2O emissions from 
manure, are based on dry matter consumption (DMC) and its N 
content (Verge et al., 2012). Therefore, dietary manipulation to 
optimize protein consumption, and thus improve the efficiency 
of N utilization, is one of the most effective measures to reduce 
emissions from manure [14]. Optimizing N supply to animals can 
achieve between 12 and 21% less N excretion and 15–33% less N 

volatilization losses in livestock fed according to the physiological 
status of the animals [15].

Also, plants species such as Lolium perenne, Trifolium repens, and 
Plantago lanceolata, which may exhibit diuretic properties have 
the potential to reduce the urinary-N loading in individual urine 
patches by increasing the urination frequency of grazing animals 
(Des roseaux et al., 2020). Therefore, dietary manipulation is one 
of the approaches that used to reduce the enteric greenhouse gas 
emission from ruminant animals. Dietary strategies can be divided 
into two main categories: i) improving the forage quality and 
changing the proportion of the diet and ii) dietary supplementation 
of feed additives that either directly inhibits methanogens [16].The 
diet has a predominant factor affecting the microbial community 
composition in the rumen on the host and the rumen environment 
as reported by Henderson et al. (2015).
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Animal 

category 

Measured 

gas 

Feeding measures  Results Authors 

Beef steer Enteric 

CH4 

The supplementation of 

grazing animals with maize 

grain 

CH4 emissions of dung from 4.0 to 1.7 g CH4-C/m2 

compared with dung from non-supplemented animals 

Lombardi et 

al., 2021 

Holstein 

Friesian 

cows 

Enteric 

CH4 

Supplementation with 3-

nitrooxypropanol 3-NOP 

by mixing it with roughage or 

incorporating it into a 

concentrate pellet 

Reduction in CH4 yield (23-24%) with no difference 

weather 3-NOP is mixed with roughage or 

incorporated into concentrate pellet 

Van 

Wesemael et 

al., 2019 

Jersey 

cows 

Enteric 

CH4  

CO2 

The gradual transition from 

indoor winter feeding to 

outdoor spring grazing 

Grazing has no significant impact on average CH4 and 

CO2 concentrations and CH4: CO2 between animals 

Szalanski et 

al., 2019 

Hereford 

heifers 

Enteric 

CH4 

Using contrasting levels of 

pasture quality 

A reduction of 14% in enteric CH4 emissions with 

high quality forage compared to low quality one 

Dini et al., 

2017 

crossbred 

Charolais 

and 

purebred 

Luing 

Enteric 

CH4 

Feeding two different diets 

(concentrate-straw or silage-

based) 

Lower CH4 (18%-25%) when a high proportion of the 

concentrate (92% DMI) rather than equal amounts of 

concentrate and forage in the diet was fed 

Duthie et al., 

2017 

Table 1: Impacts of diet manipulation on GHG emissions

2.1.2 Improved Forage 
Forages contain structural carbohydrates, such as neutral detergent 
fiber (NDF), and have been linked to increased CH4 production 

[17]. A high reduction in enteric methane emissions can be 
achieved by increasing the forage quality combined with the 
management of stocking rates and rotational grazing strategies 
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[18]. Harvesting forages at the right time, depending on the type 
of forage, is important to maximize the amount and digestibility 
of nutrients supplied by forages [7]. Improving DE% and CP% 
content of available feed through the introduction of improved 
forage, improved natural pasture, and supplementation of 
concentrate feed is predicted to reduce CH4 emission by 23% and 
18% for indigenous cattle and crossbred dairy cattle, respectively 
[19].

There is a large number of shrubs and trees, both legume and non-

legume species with great potential for ruminant production in 
the tropics which contain a wide variety of secondary compounds 
with potential methane-suppressing properties. According to a 
recent report, except maize stover, all multipurpose forage species 
such as Lablab purpureus, Crotalaria juncea, Moringa stenopetala, 
Cajanus cajan, Sesban sesban, and Leuceana leucocephala have 
significant CH4 reduction potential and high levels of Crude 
Protein content that could be used for CH4 mitigation while 
simultaneously enhancing protein supply in ruminant forage diets 
in southern Ethiopia [20].
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Multipurpose forage 

species 

GP, mL/0.2 g DM CH4, mL/0.2 g DM CH4 Concentration (%) 

Maize stover 144.06 (37.60)b 44.33 (1.41)a 31.73 (7.30)a 

L. purpureus 206.40 (54.12) 33.00 (4.71)b 16.25 (1.20) 

C. juncea 155.71 (30.43)ab 35.67 (1.41)b 23.45 (5.50)c 

M. stenopetala. 169.80 (33)a 40.50 (2.60)a 24.16 (3.17)c 

S. sesban 137.20 (43.64)b 40.67 (1.41)a 31.06 (8.80)ab 

C. cajan 67.40 (26.73) 32.83 (2.21)b 52.22 (17.60) 

L. leucocephala 142.40 (37.6)b 35.17 (1.2)b 25.48 (5.90)bc 

Sources: Berhanu et al., 2019
Table 2: Total gas production (GP), CH4 production, and concentration (as a proportion (%) of total GP) of multipurpose forage 
species.

2.1.3 Feed supplementation
A. Supplementation of Moringa (Moringa oleifera)
The incorporation of leaves, flour, seeds, or extracts of 
Moringa oleifera, the natural capacity of the species to inhibit 
methanogenesis, has reported successful results in research carried 
out in goats and beef cattle. Moringa oleifera leaves extract 20ml was 
supplemented of lactating Nubian goats without affecting ruminal 
pH and ammonia-N, M. oleifera extracts increased total short-
chain fatty acids (SCFA), branched-chain SCFA, and propionic 
acid concentrations; however, the extract linearly decreased acetic/

propionic ratio and calculated methane production [21].

The effects of Moringa oleifera seed inclusion in a beef cattle 
diet on rumen fermentation and methane generation on total 
gas production (ml/day; Table 2.3) where gas production was 
enhanced in the M10 and M20 treatments and decreased in the 
M40 treatment compared to Control [22]. With increasing Moringa 
seed concentrations in the diet, CH4 generation (percent and ppm 
of total gas) was linearly decreased.
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Table 3: Effect of inclusion of Moringa seed in the diet on in vitro gas production using a Rusitec system

Control=no Moringa seeds; M10=100 g/kg dry matter (DM) of 
concentrates inclusion of Moringa seeds; M20=200 g/kg DM of 
concentrates inclusion of Moringa seeds; M40=400 g/kg DM of 
concentrates inclusion of Moringa seeds; CH4=methane.
Values in the same row followed by different superscript letters are 
significantly different at P<0.05. Level of significance indicated by 
*P<0.05, **P<0.01, ns=not significant.

B. Supplementation of Red macroalgae (Asparagopsis taxi-
formis )
Asparagopsis contains the active compound bromoform which 
inhibits the production of methane during digestion. Asparagopsis 
inclusion resulted in a consistent and dose dependent reduction 
in enteric CH4 production over up to 80% CH4 reduction at the 
3% offered rate compared with the group fed no Asparagopsis (Li 
et al., 2016). Inclusion of Asparagopsis armata in lactating dairy 

cows’ diet decreased CH4 by 26.4% at the low (0.5%) level of A. 
armata inclusion and 67.2% at the high (1%) level of inclusion 
(Roque et al., 2019). The red macroalgae Asparagopsis taxiformis 
has the potential to reduce methane (CH4) production from beef 
cattle by up to ~ 99% when added to Rhodes grass hay; a common 
feed in the Australian beef industry (Roque et al., 2019). Beef 
cattle fed an Asparagopsis included in the high grain TMR at 
0.05%, 0.10%, and 0.20% of diet OM resulted in the decrease 
of CH4 production without affecting either meat quality grading 
or consumer sensory evaluations (g/kg DMI) of 9%, 38%, and 
98%, respectively (Kinley et al., 2020). Recent studies using red 
macroalgae (seaweed) Asparagopsis spp. as a feed supplement has 
shown to reduce ruminant enteric methane (CH4) production up 
to 99% in vitro with no differences were found in ADG, carcass 
quality, strip loin proximate analysis, and shear force, or consumer 
taste preferences (Roque et al., 2021.
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Source: Roque et al., 2019
Figure 5: Red macroalgae (Asparagopsis taxiformis )
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2.1.4 Supplementation of Feed additives
A. Tannins
Tannins occur in many plants suitable for feeding, especially in 
the tropics and subtropics. Tannins plant secondary metabolites 
(PSM), play an important role in the efforts to reduce the emissions 
of CH4 from ruminant species. When plant secondary metabolites 
are included in the feed, they alter the availability of nutrients and 
metabolites and/or inhibit ruminal microbial bacteria, protozoa, 

fungi, and archea populations [23]. In a recent in vitro study, 
the same concentration of chestnut tannins was fermented, and 
methane produced was reduced by 12.5% compared to the control 
[24]. Silvopastoral systems use forage species such as Leucaena 
leucocephala, Tithonia diversifolia, and Gliricidia sepium, which 
contain significant amounts of tannins in their leaves and stems 
[25]. Many types of forages known to contain tannin extracts have 
been shown to decrease methane production ( Table 4).
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Scientific 

name 

Family Part of 

plant 

Ta
nn

in
s 

Sa
po

ni
ns

 

  

Methane 

reduction(%) 

over control 

ration 

Authors 

Leucaena 

leucocephala 

Fabaceae Forage +  20 Montoya-Flores et al., 

2020 

Leucaena 

leucocephala 

Fabaceae Forage +  14 Molina et al.,2016 

Enterolobium 

cyclocarpum 

+ 

Gliricidia 

sepium 

Fabaceae Pods + 

forage 

+ + 6.3 Molina-Botero et al., 

2019 

Samanea Fabaceae Pods + + 50 Salazar et al.,2018 

  12 

saman 

Table 4: Effect of plant species or plant extracts containing secondary metabolites on enteric 

methane reduction in ruminants as measured in open-circuit respiration chambers  

 

 

Source Study Secondary 

compound 

Microorganisms affected Authors 

Dolichos labla In 

vitro 

Condensed tannins ↓Fungi; ↑Methanogens; ↓R. 

flavefaciens; ↓F. 

Succinogenes 

Abdalla et 

al., 2012 

Leucaena 

leucocephala 

In 

vitro 

Condensed tannins ↓Fungi; ↑Methanogens; ↓R. 

flavefaciens; ↓F. 

Succinogenes 

Abdalla et 

al., 2012 

Cajanus cajan In 

vitro 

Condensed tannins ↓Fungi; ↓Methanogens; ↓R. 

flavefaciens; ↓F. 

succinogenes; 

Abdalla et 

al., 2012 

Mangosteen peel In 

vivo 

Condensed tannins ↑Total baceteria; 

↓Methanogens; ↓R. 

flavefaciens; 

=F. succinogenes; = R. albus 

Wanapat et 

al., 2014 

Table 5: Effect of secondary metabolites on rumen microorganisms 

 

B. Saponins 

Saponins play an important role in the efforts to reduce the emissions of CH4 from ruminant 

species. Saponins are complex compounds that are composed of a saccharide attached to a 

steroid or triterpene and have a soapy character due to their surfactant properties. Saponins are 

present in a wide variety of tropical trees and shrubs and ruminant species eagerly consume 

their foliage or pods while browsing [26]. Many studies have reported reductions of methane 

through an inhibitory effect of saponins on methanogens in the rumen (Table 4) In vivo study 

on Mangosteen peel contains saponins ↑Total baceteria; ↓Methanogens; ↓R. flavefaciens;=F. 

succinogenes; = R. albus [27]. 

Table 4: Effect of plant species or plant extracts containing secondary metabolites on enteric methane reduction in ruminants as 
measured in open-circuit respiration chambers
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Source Study Secondary 

compound 

Microorganisms affected Authors 

Dolichos labla In 

vitro 

Condensed tannins ↓Fungi; ↑Methanogens; ↓R. 

flavefaciens; ↓F. 

Succinogenes 

Abdalla et 

al., 2012 

Leucaena 

leucocephala 

In 

vitro 

Condensed tannins ↓Fungi; ↑Methanogens; ↓R. 

flavefaciens; ↓F. 

Succinogenes 

Abdalla et 

al., 2012 

Cajanus cajan In 

vitro 

Condensed tannins ↓Fungi; ↓Methanogens; ↓R. 

flavefaciens; ↓F. 

succinogenes; 

Abdalla et 

al., 2012 

Mangosteen peel In 

vivo 

Condensed tannins ↑Total baceteria; 

↓Methanogens; ↓R. 

flavefaciens; 

=F. succinogenes; = R. albus 

Wanapat et 

al., 2014 

Table 5: Effect of secondary metabolites on rumen microorganisms 
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B. Saponins
Saponins play an important role in the efforts to reduce the 
emissions of CH4 from ruminant species. Saponins are complex 
compounds that are composed of a saccharide attached to a steroid 
or triterpene and have a soapy character due to their surfactant 
properties. Saponins are present in a wide variety of tropical trees 
and shrubs and ruminant species eagerly consume their foliage or 
pods while browsing [26]. Many studies have reported reductions 
of methane through an inhibitory effect of saponins on methanogens 
in the rumen (Table 4) In vivo study on Mangosteen peel contains 
saponins ↑Total baceteria; ↓Methanogens; ↓R. flavefaciens;=F. 
succinogenes; = R. albus [27].

C. Supplementation of essential oils (EO)
Supplementation of essential oils plays an important role in the 
efforts to reduce the emissions of CH4 from ruminant species. 
Essential oils are produced in special cells in different parts of 
the plants, including roots, seeds, fruit, leaves, flowers, bark, 
petals, and stems [28]. The beneficial effects of essential oil on 
the animal such as antioxidant, anti-inflammatory, immune status, 
and antimicrobial have been shown against a wide variety of 

microorganisms either gram-positive or Gram-negative bacteria, 
fungi, viruses, and protozoa, but more effective against the Gram-
positive, because most active compounds present in essential oils 
are lipophilic [20]. In vivo study on Origanum vulgare L.contain 
essential oil affected on rumen microorganisms ↑Ruminal fungi; 
↓Protozoa; ↑R. flavefaciens, R. albus and F. succinogenes [29].

D. Nitrates
Adding nitrate to ruminant diets can be an effective CH4 mitigation 
strategy because nitrate competes with methanogens for H2 in the 
rumen. Nitrate (NO3 – ) is reduced to nitrite (NO2 ; NO3 + H2 ! NO2 
+ H2O) and further to ammonia (NH4 + ; NO2 + 3H2 + 2H+!NH4 
+ + 2H2O) by rumen microbes. However, small quantities of 
nitrous oxide may also be produced (Latham et al. 2016). Methane 
production reduced 14.6% in cattle supplemented with nitrate 
at 17.7 g/kg DM [30]. Nitrates can replace CO2 as an electron 
acceptor, forming ammonia, instead of CH4, as an alternative 
H2 sink in the rumen [31]. Cattle have shown promising results 
with nitrate supplementation, indicating reductions in enteric CH4 
production, of up to 50%, especially when supplementing forage-
based diets [32,33].
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Nitrite Adding level/dosage CH4 reduction Authors 

10 g nitrate/kg feed DM 10% Velazco et al., 2014 

20 g/day for beef cattle 

grazing low-quality pasture 

6.5% Callaghan et al,2014 

lactating dairy cows fed 20 g 

nitrate/kg of diet DM 

15% Nolan et al., 2016,and Lee 

and Beauchemin, 2014 
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E. Ionophores
The most effective antibiotic in ruminant fermentation is monensin, 
although others such asnigercin, gramicidin, and lasalocid are 
available [34]. Antibiotic ionophores, of which Monensin is the 
most routinely used, have been reported to reduce CH4 emissions 
in ruminants [35]. The dosage of monensin required to reduce 
direct CH4 emissions are ~32 to 36 mg/kg BW in beef cattle and 
21 mg/kg BW in dairy cattle (Appuhamy et al., 2013), whereas for 
increasing feed efficiency the required dosage can range from 10 to 
40 mg/kg of DM [36]. In contrast, reported no suppression effect of 
monensin on CH4 output when it was administered to dairy cattle 
(0.024 g/kg DM), but there was an increase in the proportion of 
a biohydrogenation intermediate, thus altering rumen metabolism 
patterns ( Benchaar, 2020).

3. Conclusion
From livestock, ruminants are the primary producers of 
greenhouse gas. Reducing options can be broadly categorized into 
dietary and rumen manipulation. Enteric methane emissions are 
strongly correlated to dry matter intake and somewhat sensitive 
to diet composition. Dietary manipulation methods include 
increasing feed digestibility, such as concentrate to forage ratio, or 
increasing fats and oils, which are associated with lower methane 
emissions. These reduce digestible fiber that are positively related 
to methane production and more energy passing the rumen without 
being degraded, respectively.  Rumen manipulation through feed 
additives can be further classified based on the mode of action: 
Rumen environment modifiers indirectly affect emissions and 
direct methanogenesis inhibitors. The rumen environment 
modifiers act on the conditions that promote methanogenesis. 
These include ionophores, plant bioactive compounds such as 
essential oils and tannins, development of pellet products such 
as moringa olifera, and LLP (Leucaena leaf pellet), and nitrate 
rich feeds that serve as alternative hydrogen sinks and directly 
compete with methanogens thereby reducing methane emissions. 
The inhibitor category includes 3-nitroxypropanol and seaweeds 
containing halogenated compounds. Seaweed, in particular 
Asparagopsis spp., reduced emissions intensity (g/kg milk) by up 
to 67% in dairy and emissions yield (g/kg dry matter intake) by 
up to 98% in beef cattle and better to demonstrate this technology 
[37-61].
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