

Short Communication

Journal of Mathematical Techniques and Computational Mathematics

Results of a Korteweg-de Vries Equation Generated by a Semigroup of Linear Operators

E E Aribike¹, A Y Akinyele^{2*}, F J Fawehinmi³ and J O Olabode⁴

¹Department of Mathematical Sciences, Lagos State University of Science and Technology, Lagos, Nigeria

²Department of Mathematics, University of Ilorin, Ilorin, Nigeria

³Department of Mathematics, Adeyemi Federal University of Education, Ondo, Nigeria

⁴Department of Statistics, Federal Polytechnic, Ayede, Nigeria

*Corresponding Author

A Y Akinyele, Department of Mathematics, University of Ilorin, Ilorin, Nigeria.

Submitted: 2024, Aug 16; **Accepted**: 2024, Sep 12; **Published**: 2024, Sep 20

Citation: Aribike, E. E., Akinyele, A. Y., Fawehinmi, F. J., Olabode, J. O. (2024). Results of a Korteweg-de Vries Equation Generated by a Semigroup of Linear Operators. *J Math Techniques Comput Math*, *3*(9), 01-07.

Abstract

In this study, partial contraction mapping with ω -order preservation (ω -OCPn,) is shown to provide a broad class of semilinear initial value issues. By starting with certain conclusions pertaining to such fractional powers, we investigated the application of fractional powers of unbounded linear opera- tors. The fractional powers of A for $0 < \alpha \le 1$ are defined on the assumption that A is the infinitesimal generator of an analytic semigroup in a Banach space X, $0 \in \rho(A)$. We demonstrated that the closed linear operator $A\alpha$ with domain $D(A^{\alpha}) \supset D(A)$ is dense in X. Finally, we determined that the operator is Holder continuous, continuous, and bounded.

Keywords: ω-OCP,, Strongly Elliptic, C0-semigroup, Analytic Semigroup

AMS (MOS) Subject Classifications: 15A60, 65F35, 65J05.

1. Introduction

Consider the Korteweg-de Vries equation

$$\begin{cases} u_1 + u_{xxx} + uu_x = 0 & t \ge 0 & -\infty < x < \infty \\ u(0, x) = u_0(x) \end{cases}$$
 (1.1)

such that all function are real valued. For every real s we introduce a Hilbert space $H^s(\mathbb{R})$ as follows: Let $u \in L^2(\mathbb{R})$ and set

$$||u||_s = \left(\int (1+\xi^2)^s |\hat{u}(\xi)|^2 d\xi\right)^{1/2} \tag{1.2}$$

The linear space of functions $u \in L^2(\mathbb{R})$ for which $||u||_L$ is nite is a pre-Hilbert space with the scalar product

$$(u,v) = \int (1+\xi^2)^s \hat{u}(\xi)\overline{\hat{u}}(\xi)d\xi. \tag{1.3}$$

The completion of this space with respect to norm $\| \|_s$ is a Hilbert space which is denoted by $H^s(\mathbb{R})$. It is clear that $H^0(\mathbb{R}) = L^2(\mathbb{R})$. The scalar product and norm in $L^2(\mathbb{R})$ is denoted by (,) and $\| \|_s$. Furthermore, it is easy to check that the spaces $H^s(\mathbb{R})$ with s = n coincide with the spaces $H^n(\mathbb{R})$, $n \ge 1$. Suppose B_r is the ball of radius r > 0 in Y centered at the origin and consider the family of operators A(v), $v \in B_r$. Because of the special form of the family A(v), $v \in B_r$, it follows that it suffices to state the following three

conditions:

 (P_1) The family A(v), $v \in B_2$, is a stable family in X.

(P2) There is an isomorphism of Y onto X such that for every $v \in B$, $SA(v)S^{-1} - A(v)$ is a bounded operator in X and

$$||SA(v)S^{-1} - A(v)|| \le C_1 \text{ for all } v \in B_r.$$
 (1.4)

 (P_3) For each $v \in B_r$, $D(A(v)) \supset Y$, A(v) is a bounded linear operator from Y into X and

$$||A(v_1) - A(v_2)||_{Y \to X} \le C_2 ||v_1 - v_2||. \tag{1.5}$$

Furthermore, if $\|u_0\|_s < r$ and $v \in B_r$, then

$$||A(v)u_0|| \le ||D^3u_0|| + ||vDu_0||$$

$$\le ||D^3u_0|| + ||v||_{\infty} ||Du_0||$$

$$\le ||u_0||_3 (1+r) \le r(1+r) = k.$$
(1.6)

Suppose X is a Banach space, $X_n \subseteq X$ is a finite set, $\omega - OCP_n$ the ω -order preserving partial contraction mapping, M_m be a matrix, L(X) be a bounded linear operator on X, P_n a partial transformation semigroup, $\rho(A)$ a resolvent set, $\sigma(A)$ a spectrum of A. This paper consist of results of ω - order preserving partial contraction mapping generating a Korteweg-de Vries equation. In and Akinyele et al. obtained differentiable and analytical conclusions on ω -order preserving partial contraction mapping in semigroup of linear operator [1,2]. They also described ω -order reversing partial contraction mapping as a compact semigroup of linear operator. An operator calculus for infinitesimal semigroup generators was presented by Balakrishnan [3]. Ba-nach created and first proposed the idea of Banach spaces [4]. The nonlinear Schrodinger evolution equation was created by Brezis and Gallouet [5]. A resolvent method to the stability operator semigroup was presented by Chill and Tomilov [6]. Davies discovered the spectrum of linear operators [7]. For equations of linear evolution, Engel and Nagel presented the one-parameter semigroup in their paper [8]. As well as introducing dual properties of ω -order reversing partial contraction mapping in semigroup of linear operator in Omosowon et al. produced some analytical results of semigroup of linear operator with dynamic boundary conditions [9,10]. Pazy reported asymptotic behavior of an abstract evolution's solution and various applications, he obtained a class of evolution's semi-linear equations [11,12]. Rauf and Akinyele created ω -order preserving partial contraction mapping and acquired its qualities [13]. Also in Rauf et al. established some results of stability and spectra properties on semigroup of linear operator [14]. Vrabie demonstrated a few applications of the C0-semigroup's findings [15]. Yosida derived several conclusions on the differentiability and representation of a linear operator one-parameter semigroup [16].

2. Preliminaries

Definition 2.1 (C_0 -Semigroup) [15]

A C_0 -Semigroup is a strongly continuous one parameter semigroup of bounded linear operator on Banach space.

Definition 2.2 $(\omega$ - $OCP_{"})$ [13]

A transformation $\alpha \in P_n$ is called ω -order preserving partial contraction mapping if $\forall x, y \in \text{Dom}\alpha$: $x \le y \Longrightarrow \alpha x \le \alpha y$ and at least one of its transformation must satisfy $\alpha y = y$ such that T(t+s) = T(t) T(s) whenever t, s > 0 and otherwise for T(0) = I.

Definition 2.3 (Evolution Equation) [12]

An evolution equation is an equation that can be interpreted as the differ- ential law of the development (evolution) in time of a system. The class of evolution equations includes, first of all, ordinary differential equations and systems of the form

$$u = f(t, u), u = f(t, u, u),$$

etc., in the case where u(t) can be regarded naturally as the solution of the Cauchy problem; these equations describe the evolution of systems with finitely many degrees of freedom.

Definition 2.4 (Mild Solution) [11]

A continuous solution u of the integral equation.

$$u(t) = T(t - t_0)u_0 + \int_{t_0}^t T(t - s)f(s, u(s))ds$$

will be called a mild solution of the initial value problem

$$\begin{cases} \frac{du(t)}{dt} + Au(t) = f(t, u(t)), \ t > t_0 \\ u(t_0) = u_0 \end{cases}$$

if the solution is a Lipschitz continuous function.

Definition 2.5 (Analytic Semigroup) [15]

We say that a C_0 -semigroup $\{T(t); t \ge 0\}$ is analytic if there exists $0 < \theta \le \pi$, and a mapping $S : \overline{\mathbb{C}}_{\theta} \to L(X)$ such that:

- (i) T(t) = S(t) for each $t \ge 0$;
- (ii) $S(z_1 + z_2) = S(z_1)S(z_2)$ for $z_1, z_2 \in \overline{\mathbb{C}}_{\theta}$;
- (iii) $\lim_{z_1 \in \overline{C}_{\theta, z_1 \to 0}} S(z_1) x = x$ for $x \in X$; and
- (iv) the mapping $z_1 \to S(z_1)$ is analytic from $\overline{\mathbb{C}}_{\theta}$ to L(X). In addition, for each $0 < \delta < \theta$, the mapping $z_1 \to S(z_1)$ is bounded from \mathbb{C}_{δ} to L(X), then the C_0 -Semigroup $\{T(t); t \ge 0\}$ is called analytic and uniformly bounded.

Definition 2.6 (Strongly Elliptic) [1]

The operator A(x, D) is strongly elliptic if there exists a constant C > 0 such that

$$Re(-1)^m A^1(x, \xi) \ge C|\xi|^{2m}$$

for all $x \in \overline{\Omega}$ and $\xi \in \mathbb{R}^n$.

Example 1

For every 2×2 matrix in $[M_m(\mathbb{R}^n)]$.

Suppose

$$A = \begin{pmatrix} 2 & 0 \\ \Delta & 2 \end{pmatrix}$$

and let $T(t) = e^{tA}$, then we have

$$e^{tA} = \begin{pmatrix} e^{2t} & I \\ e^{\Delta t} & e^{2t} \end{pmatrix}.$$

Example 2

For every 3×3 matrix in $[M_m(\mathbb{C})]$, we have for each $\lambda > 0$ such that $\lambda \in \rho(A)$ where $\rho(A)$ is a resolvent set on X.

Suppose we have

$$A = \begin{pmatrix} 2 & 2 & I \\ 2 & 2 & 2 \\ \Delta & 2 & 2 \end{pmatrix}$$

and let $T(t) = e^{tA\lambda}$, then we have

$$e^{tA_{\lambda}} = \begin{pmatrix} e^{2t\lambda} & e^{2t\lambda} & I \\ e^{2t\lambda} & e^{2t\lambda} & e^{2t\lambda} \\ e^{\Delta t\lambda} & e^{2t\lambda} & e^{2t\lambda} \end{pmatrix}.$$

Example 3

Let $X = C_{ub}(\mathbb{N} \cup \{0\})$ be the space of all bounded and uniformly continuous function from $\mathbb{N} \cup \{0\}$ to \mathbb{R} , endowed with the sup-norm $\| \cdot \|_{\infty}$ and let $\{T(t); t \in \mathbb{R}_+\} \subseteq L(X)$ be defined by

$$[T(t) f](s) = f(t+s)$$

For each $f \in X$ and each $t, s \in \mathbb{R}_+$, one may easily verify that $\{T(t); t \in \mathbb{R}_+\}$ satisfies Examples 1 and 2 above.

Lemma 2.1

Let Ω be a bounded domain in \mathbb{R}^n with boundary $\partial \Omega$ of class C^m and let $u \in W^{m,r}(\Omega) \cap L^q(\Omega)$ where $1 \le r, q \le \infty$. For any integer j, $0 \le j \le m$ and any $j/m \le \theta \le 1$ we have

$$||D^{j}u||_{0,p} \le C||u||_{m,r}^{\vartheta}||u||_{0,q}^{1-\vartheta}$$
(2.1)

provided that

$$\frac{1}{p} = \frac{j}{n} + \vartheta\left(\frac{1}{r} - \frac{m}{n}\right) + (1 - \vartheta)\frac{1}{q} \tag{2.2}$$

and $m-j-\frac{n}{r}$ is not a nonnegative integer, the (2.1) holds with $\vartheta=\frac{j}{m}$.

3. Main Results

This section presents the semigroup of linear operator's results by creating a Korteweg-de Vries equation using ω - OCP_n :

Theorem 3.1

Let $A:D(A)\subseteq H^s(\mathbb{R})\to H^s(\mathbb{R})$ be the infinitesimal generator of a C_0 - semigroup $\{T(t)_{t\geq 0}\}$ where $A\in \omega-OCP_n$. Then we have: (i) For $t\geq s$, $H^s(\mathbb{R})\supset H^1(\mathbb{R})$ and $\|u\|_t\geq \|u\|_s$ for $u\in H^s(\mathbb{R})$. (ii) For $H^s(\mathbb{R})\subseteq C(\mathbb{R})$ and for $u\in H^s(\mathbb{R})$,

$$||u||_{\infty} \le C||u||_s \tag{3.1}$$

where $||u||_{\infty} = \sup\{|u(x)| : x \in \mathbb{R}\}.$

Proof

Part (i) is obvious from the definitions and the elementary inequality

$$(1+\xi^2)' \ge (1+\xi^2)^s$$
 for $t \ge s$ and $\xi \in \mathbb{R}$.

From the Cauchy-Schwarz inequality we have,

$$|u(x)| = \left| \frac{1}{\sqrt{2\pi}} \int e^{tx\xi} \hat{u}(\xi) d\xi \right| \le \frac{1}{\sqrt{2\pi}} \left(\int \frac{d\xi}{(1+\xi^2)} \right)^{1/2} \left(\int (1+\xi^2)^s |\hat{u}(\xi)|^2 d\xi \right)^{1/2} = C ||u||_s$$

Therefore, that the integral defining u in terms of \hat{u} converges uniformly and u is continuous. Moreover,

$$||u||_{\infty} \le C||u||_s.$$

Hence the proof is completed.

Theorem 3.2

Suppose $A:D(A)\subseteq X\to X$ is a real valued function such that $A\in \omega-OCP_n$. For every $v\in Y$ the operator $A(v)=A_0+A_1(v)$ is the infinitesimal generator of a C_0 -semigroup $T_v(t)$ on X satisfying

$$||T_v(t)|| \le e^{\beta t} \tag{3.2}$$

for every $\beta \ge \beta_0(v) = C_0 \|v\|$, where C_0 is a constant independent of $v \in Y$.

Proof

we note first tat since $v \in H^s(\mathbb{R})$, $Dv \in H^{s-1}(\mathbb{R})$ and since $s \ge 3$, it follows from Theorem 3.1 that $Dv \in L^{\infty}(\mathbb{R})$ and that $||Dv||_{\infty} \le C||Dv||_{s-1} \le C||v||_{s}$.

Now, for every $u \in H^1(\mathbb{R})$ we have

$$(A_1(v)u, u) = \int vDu \cdot u dx = \frac{1}{2} \int vDu^2 dx = \frac{1}{2} \int Dvu^2 dx$$
$$\geq -\frac{1}{2} \|Dv\|_{\infty} \|u\|^2 \geq -C_0 \|v\|_s \|u\|^2.$$

Therefore, $A_1(v) + \beta I$ is dissipative for all $\beta \ge \beta_0(v) = C_0 \|v\|_s$. Since A_0 is skew-adjoint, $A_0 + A_1(v) + \beta I$ is also dissipative for $\beta \ge \beta_0(v)$. Moreover.

$$||(A_1(v) + \beta I)u|| \le ||vDu|| + \beta ||u|| \le ||u||_{\infty} ||Du|| + \beta ||u||.$$
(3.3)

Using integration by parts, it is not difficult to show that for every $u \in H^3(\mathbb{R})$ we have $||Du|| \le ||u||^{2/3} ||D^3u||^{1/3}$ and by polarization we obtain for every $\varepsilon > 0$,

$$||Du|| \le \varepsilon ||D^3u|| + C(\varepsilon)||u||. \tag{3.4}$$

Choosing $\varepsilon = \frac{1}{2} ||v||_{\infty}$ and substituting (3.4) into (3.3) yields

$$||(A_1(v) + \beta I)u|| \le \frac{1}{2}||A_0u|| + C||u||$$
(3.5)

for all $u \in D(A_0)$ and $A \in \omega - OCP_n$.

Therefore, we have that $A_0 + A_1(v) + \beta I = A(v) + \beta I$ is the infinitesimal generator of a C_0 -semigroup of contractions of X for every $\beta \ge \beta_0(v)$.

Hence, A(v) is the infinitesimal generator of a C_0 -semigroup $T_v(t)$ and this achieved the proof.

Theorem 3.3

Assume $A:D(A)\subseteq X\to X$ is a real valued function such that $A\in\omega-OCP_n$. Let $f\in H^s(\mathbb{R}), s>3$ and let $T=(\Delta^sM_f-M_f\Delta^3)\Delta^{1-s}$. Then

T is a bounded operator on $X = L^2(\mathbb{R})$ and

$$||T|| \le C||grad f||_{s-1}. \tag{3.6}$$

Proof

The Fourier transform of T is the integral operator with Kernel $K(\xi, \eta)$ given by

$$K(\xi,\eta) = \{(1+\xi^2)^{s/2} - (1+\eta^2)^{s/2}\}\hat{f}(\xi-\eta)(1+\eta^2)^{(s-1)/2}$$

since

$$|(1+\xi^2)^{s/2} - (1+\eta^2)^{s/2}| \le s|\xi - \eta|(1+\xi^2)^{(s-1)/2} + (1+\eta^2)^{(s-1)/2}$$

we have

$$K(\xi,\eta) \le s(1+\xi^2)^{(s-1)/2} |\xi-\eta| \hat{f}(\xi-\eta) (1+\eta^2)^{(1-s)/2} + s|\xi-\eta| \hat{f}(\xi-\eta) = k_1(\xi,\eta) + k_2(\xi,\eta).$$

To show that T is bounded, it suffices to show that operators T_1 and T_2 with Kernels $k_1(\xi, \eta)$ and $k_2(\xi, \eta)$ are bounded. Using the inverse Fourier transform we find that

$$T_1 = s\Delta^{s-1}M_a\Delta^{1-s}, \quad T_2 = sM_a$$
 (3.7)

Where M_g is the multiplication operator by the function g for which $\hat{g}(\xi) = |\xi| \hat{f}(\xi)$. From (ii) of Theorem 3.1, it follows that

$$||g||_{\infty} \le C||g||_{s-1} \le C||grad f||_{s-1}. \tag{3.8}$$

Now,

$$||T_1 u|| = s||\Delta^{s-1} M_q \Delta^{1-s} u|| = s||M_q \Delta^{1-s} u||_{s-1} \le s||g||_{\infty} ||u||$$
(3.9)

and

$$||T_2u|| = s||gu|| \le s||g||_{\infty}||u||. \tag{3.10}$$

Therefore both T_1 and T_2 are bounded operators in X. Combining (3.8) with (3.7) and (3.10) yields the desired estimate (3.6). Hence the proof is completed.

Theorem 3.4

Let $A: D(A) \subseteq X \to X$ be the infinitesimal generator of a C_0 -semigroup $\{T_v(t)_{t \ge 0}\}$. For every t > 0, the family of operators A(v), $v \in B_r$ satisfies the conditions $(P_1) - (P_3)$.

Proof

Suppose r > 0 is fixed. From Theorem 3.2, it follows that if $\beta \ge C_0 r$, A(v) is the infinitesimal generator of a C_0 -semigroup $T_v(t)$ satisfying $||T_v(t)|| \le e^{\beta t}$ and therefore A(v), $v \in B_r$ is a stable family in X.

Assume $S = \Delta^s$ is an isomorphism of $Y = H^s(\mathbb{R})$ onto $X = L^2(\mathbb{R})$. A simple computation shows that for $u, v \in Y$ we have

$$(SA(v)S^{-1} - A(v))u = (S(vD)S^{-1} - vD)u$$

= $(Sv - vS)S^{-1}Du$

and therefore by Theorem 3.3, we have

$$||(SA(v)S^{-1} - A(v))u|| = ||(\Delta^{s}M_{v} - M_{v}\Delta^{s})\Delta^{t-s}\Delta^{-1}\Delta u||$$

$$\leq ||(\Delta^{s}M_{v} - M_{v}\Delta^{s})\Delta^{1-s}|| ||\Delta^{-1}\Delta u||$$

$$\leq C||grad v||_{s-1}||u|| \leq C||v||_{Y}||u||.$$

Since Y is dense in X it follows that $||SA(v)S^{-1} - A(v)|| \le C||v||_r \le C_r$ and (P2) is satisfied. Finally, since $s \ge 3$, $D(A(v)) \supset Y$ for every $u \in Y$, $A \in \omega - OCP_n$ and $v \in B_r$, we have

$$||A(v)u|| \le ||\Delta^3 u|| + ||v\Delta u|| \le ||\Delta^3 u|| + ||v||_{\infty} ||\Delta u||$$

$$\le (1 + C||v||_s) ||u||_s \le (1 + Cr) ||u||_r$$

and therefore A(v) is bounded operator from Y into X. Moreover if $v_1, v_2 \in B_r, v \in Y$, then

$$||(A(v_1) - A(v_2))u|| = ||(v_1 - v_2)\Delta u||$$

$$\leq ||v_1 - v_2|| ||\Delta u||_{\infty} \leq C||v_1 - v_2|| ||u||_Y$$

and the proof is competed.

4. Conclusion

It has been demonstrated in this study that various Korteweg-de Vries equations can be generated by partial contraction mapping with ω -order preservation.

Acknowledgment

The authors acknowledge the management of the University of Ilorin for providing us with a suitable research laboratory and library to enable us carried out this research.

References

- 1. Akinyele, A. Y., Jimoh, O. E., Omosowon, J. B., & Bello, K. A. (2022). Results of semigroup of linear operator generating a continuous time Markov semigroup. *Earthline Journal of Mathematical Sciences*, 10(1), 97-108.
- 2. Akinyele, A. Y., Rauf, K., Omosowon, J. B., Sambo, B., & Ibrahim, G. O. (2021). Differentiable and Analytic Results on ω-order preserving Partial Contraction Mapping in Semigroup of Linear Operator. *Asian Pacific Journal of Mathematics and Applications*, 8(2), 1-13.
- 3. Balakrishnan, A. V. (1959). An operational calculus for infinitesimal generators of semigroups. *Transactions of the American Mathematical Society*, 91(2), 330-353.
- 4. Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. *Fundamenta mathematicae*, 3(1), 133-181.
- 5. Brezis, H., & Gallouet, T. (1979). *Nonlinear Schrödinger evolution equations*. Mathematics Research Center, University of Wisconsin.
- 6. Chill, R., & Tomilov, Y. (2007). Stability of operator semigroups: ideas and results. Banach Center Publications, 75, 71-109.
- Davies, E. B. (2007). Linear Operator and their Spectra, Cambridge Studies in Advanced Mathematics. Cambridge University Press, New York.
- 8. Engel, K. J., Nagel, R., & Brendle, S. (2000). *One-parameter semigroups for linear evolution equations* (Vol. 194, pp. xxii+586). New York: Springer.
- 9. Omosowon, J. B., Akinyele, A. Y., & Jimoh, F. M. (2021). Dual properties of ω-order reversing partial contraction mapping in semigroup of linear operator. *Asian Journal of Mathematics and Applications*, 1-10.
- 10. Omosowon, J. B., Akinyele, A. Y., Saka-Balogun, O. Y., & Ganiyu, M. A. (2020). Analytic results of semigroup of linear operator with dynamic boundary conditions. Asian Journal of Mathematics and Applications, 2020.
- 11. Pazy, A. (1968). Asymptotic behavior of the solution of an abstract evolution equation and some applications. *Journal of Differential Equations*, 4(4), 493-509.
- 12. Pazy, A. (1975). A class of semi-linear equations of evolution. Israel Journal of Mathematics, 20, 23-36.
- 13. Rauf, K., & Akinyele, A. Y. (2019). Properties of ω-order-preserving partial contraction mapping and its relation to C0-semigroup. *International Journal of Mathematics and Computer Science*, 14(1), 61-68.
- 14. Rauf, K., Akinyele, A. Y., Etuk, M. O., Zubair, R. O., & Aasa, M. A. (2019). Some result of stability and spectra properties on semigroup of linear operator. *Advances in Pure Mathematics*, 9(1), 43-51.
- 15. Vrabie, I. I. (2003). Co-semigroups and applications. Elsevier.
- 16. Yosida, K. (1948). On the differentiability and the representation of one-parameter semi-group of linear operators. *Journal of the Mathematical Society of Japan*, 1(1), 15-21.

Copyright: ©2024 E. E. Aribike et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.