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Abstract
The main features of resonance in scattering are described and resonances are determined on the basis of the theory of collisions 
in a two-body system, as well as resonances emerging as a result of collisions in a few-body system. Regularities in the emergence 
of such resonances and their characteristics are analyzed. The results of calculations of these resonant processes occurring 
during collisions of electrons with diatomic molecules, made on the basis of the quantum theory of scattering in a few-body 
system, based on Faddeev-Yakubovsky equations are discussed. The results of calculations of the resonant cross sections of 
electron and atom collisions with molecules are presented. Obtained results are compared with the available experimental data 
and with the results of calculations based on other approximations. In addition, some biological applications (e.g. properties 
biopolymer molecules) are presented.
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Introduction
Resonances offering a variety and peculiarities of physical pat-
terns of phenomena exist in any branch of physics from mo-
lecular physics to elementary particle physics. The concept of 
resonance is one of fundamental concepts in quantum physics. 
We can attach a broad physical meaning to the term resonance, 
including stable levels and implying their effect on scattering 
processes [1,2].

Resonances play a special role in the physics of irreversible 
processes. In this case, in accordance with the Poincare theo-
rem, resonances are responsible for non-integrability of most 
dynamic systems [3]. A theoretical explanation of resonances 
and their parameters can be constructed on the basis of forces 
of interaction between particles that are treated as elementary 
particles in such processes. For example, resonant processes in 
atomic physics are determined by the forces of interaction be-
tween electrons and nuclei, while resonances in nuclear physics 
are determined by forces acting between nucleons. A resonance 
in scattering is any peak on the experimental curve describing 
the scattering cross section. The resonance is characterized by 
the moment, parity, spin, lifetime, etc. 

Collisions of electrons with molecules often result in the for-
mation of metastable negative molecular ions, which are also 
traditionally referred to as molecular resonances [4-11]. In this 
case, since atoms move slowly as compared to electrons, the 
electron+molecule system can be regarded as a quasi-molecule 
whose electron shell at each instant corresponds to a quasista-
tionary state of such a quasimole-cule. This is in accordance 

with the well-known adia-batic approximation in quantum me-
chanics. In this approximation, various electron transitions (ex-
citation, ionization, charge transfer) are hampered for collisions 
of electrons, atoms, or ions with molecules under ordinary con-
ditions. The necessary condition for such a charge transfer is 
∆E∆τ ~ h, where ∆E is the change in the quasimolecule energy 
and ∆τ is the collision time [5,6]. Thus, for slow collisions, 
when the value of ∆τ is large, transitions can occur only if ∆E is 
small; i.e., two states of the quasimolecule before and after the 
collision must be close and such a process can also be treated 
as a resonant process. Such a treatment of a resonance reveals 
the relation between equilibrium and dynamics on the one hand 
and the physics of dissipative processes on the other hand [12].

The importance of resonant processes is determined by the fact 
that all practical applications of experimental studies are based 
on resonances since it is resonant processes that are character-
ized by large cross sections or long lifetimes as compared to 
nonresonant processes and play an important role in low-tem-
perature plasmas (resonant processes determine the emergence 
and disappearance of excited and charged particles, i.e., deter-
mine optical and electrical properties of a plasma), in controlled 
thermonuclear synthesis, mu-catalysis, and so on [4-12].

Proceeding from the theory of collisions in a two-body system 
in which the target molecule is regarded as a force center, the 
following type of resonances can be distinguished [4-11].

1.	 A form resonance appears in the case when the imping-
ing electron is trapped to a quasi-stationary level separat-



ed from the level in the continuum by a centrifugal barrier 
formed by a combination of attractive and repulsive fields of 
the target molecule. This type of resonance appears only when 
the electron possesses an angular momentum relative to the 
target molecule. In the case of low-energy s scattering (l = 0), 
electron cannot be trapped and form resonance is absent.

2.	 A vibrationally excited resonance appears when the imping-
ing electron excites vibrations of the target molecule and 
is temporally bound. In this case, the kinetic energy of the 
electron is directly transformed into the vibrational energy of 
motion of the nuclei of the negative molecular ion; thus, this 
type of resonance is associated with violation of the Born-Op-
penheimer principle. The lifetimes of such resonant states are 
extremely long (especially for polyatomic molecules) and at-
tain tens of microseconds.

3.	 An electron-excited resonance is formed when the projectile 
electron excites the electron system of the target molecule and 
also becomes temporally bound. In this case, the detachment 
of an electron is impossible as long as the molecule remains 
in the excited state. Nevertheless, an electron still may be de-
tached if closed and open channels are coupled.

Theoretical description of such resonances appearing as a result of 
formation of negative metastable ions is presented in on the basis 
of the theory of scattering in a two-body system [5-11]. In these 
works, resonances are defined as complex poles of the scattering 
matrix 1 continued to the non-physical energy sheet or as poles 
of an analytic continuation of the Green function. Collisions be-
tween electrons and molecules occurring without the formation of 
intermediate complexes as well as collision processes at thermal 
energies of impinging electrons, in which a nonmonotonic energy 
dependence of scattering cross section is also observed, remain 
unstudied. In the latter case, the application of standard techniques 
for calculating cross sections is unjustified in view of violation 
of the Born-Oppenheimer approximation [4-9]. The application of 
the theory of collisions in a two-body system for calculating such 
processes encounters considerable difficulties since the system 
considered here is essentially a many-particle system [13,14].

For this reason, we will describe resonant processes occurring 
during collisions of an electron and atoms with molecules by using 
a more consistent approach based on the quantum theory of scat-
tering in a few-particle system [13,14]. The main approximation 
in this case is that the interaction of the projectile electron or atom 
with the electrons and nuclei of the target molecule is replaced 
by the interaction of the electrons or atoms with the atoms of the 
molecule, the atoms being treated as force centers. Thus, a com-
plex many-particle system consisting of the electron and the nu-
clei is replaced by a system of few interacting bodies, which can 
be described with the help of Faddeev equations [13]. Naturally, 
this approximation imposes certain constraints on the energy of the 
projectile electron: this energy should not be higher than that the 
ionization energy of the atoms constituting the molecule. Howev-
er, it is precisely this energy range that is interesting in connection 
with the presence of resonance peaks in the effective cross sections 
of collisions of electrons with various molecules [4-11].

In such a formalism, a resonance in a three-particle system is 
determined by two-particle resonances under certain conditions 
[1,13,14]. Thus, the reason for the emergence of three-particle res-

onances is the existence of resonant states in paired subsystems. 
This not very popular point of view is due to the fact that such a 
coupling does not exist always and cannot be determined explicit-
ly even when it is present. This was demonstrated for the first time 
in nuclear physics and in elementary particle physics where the in-
teraction between particles leading to the existence of resonances 
is determined by the exchange between the particles of the same 
resonances; thus, resonances produce themselves [1, 2].

In atomic physics, coupling between resonances is observed for 
a large number of phenomena (such as scattering of electrons by 
molecules, coupling between clusters in biopolymer molecules, 
and in Bose condensate) [4-7,14,15]. In this type of coupling, 
two-particle resonances lead to a series of three-particle reso-
nance. A peculiar feature of this phenomenon is that the stronger 
the two-particle resonance, the larger the number of three-particle 
resonances produced by it. Experiments show that such resonant 
states in many-particle systems lead to anomalously high rates of 
chemical reactions, dynamic coupling of no interacting particles, 
etc. [1, 14-16]. The importance of studying such states is direct-
ly associated with determining the binding energy of a system of 
N bodies using information on subsystems of this many-particle 
system, i.e., the construction of dependences EN=f (EN−1, EN−2, 
...) and the determination of the conditions for the formation of a 
coupled many-particle system provided that some subsystems are 
not coupled [16].

The physical foundation of the effect considered here is presented 
in, where the following aspects are revealed [1].

1.	 The effect of two-particle resonances on the spectrum of a 
three-particle system is clearly manifested; i.e., a two-parti-
cle resonance can radically reconstruct the discrete spectrum 
of three particles. However, not every two-particle resonant 
state can reconstruct the spectrum of three particles, but only 
the state whose size rres~(2mij|e0|)

1/2 is much larger than the 
range r0 of its action (e0 is the binding energy and mij is the 
reduced mass of a pair of particles. Such a resonance can only 
be an s resonance (l=0) since such resonant states strongly 
differ in size from other types of resonant states. For e0→0, 
size rres→∞. The size of a resonant state is manifested in the 
scattering of particles in the form of a large scattering length 
a, which is equal to the size of this resonant state for small e0. 
Analyzing resonant states from the standpoint of their size, 
we can observe that all these states sharply differ from the 
resonance considered above. For example, the state occupied 
by the system in a partial wave with l ≠ 0 has a size on the 
order of the range of forces due to the centrifugal barrier; a 
compound resonance is not large either. Thus, a two-particle 
s level with a small binding energy occupies an exceptional 
position among resonant states as regards its size.

2.	 Three-particle levels are stable and their number is propor-
tional to ln(a/r). It can be proved that the interaction respon-
sible for the emergence of these levels has the form U~A/R2, 
where R2=2/3(r12 + r2

2 + r3
2), ri is the distance between a pair 

of particle, and is operative in the interval (r0, a) (Figure 1) 
[1, 13-15]. In the general case, the constant A of this inter-
action is a function of quantum numbers of the three-particle 
state, angular momentum, parity, and symmetry relative to 

    Volume 4 | Issue 2 | 135Adv Theo Comp Phy, 2021 www.opastonline.com



the transposition of the particles. The value of A is estimated 
in [1,14,15]. The strongest attraction should be observed for 
the orbital angular momentum L=0 for three particles since 
centrifugal forces are absent in this case. The symmetry of 
this state must be maximal; otherwise, the wave function has 
nodes and the coupling becomes weaker.

3.	 Centrifugal forces suppress the effect.
4.	 Such states possess the maximal symmetry.
5.	 Triple and many particles forces do not influence on the effect.
6.	 The addition of a particle to the three-particle system sup-

presses the effect.
7.	 The particle charge has no influence on the effect which is 

manifested less clearly in this case.
8.	 For particles with spins, the effect is also pronounced less 

clearly.

Figure 1: Effective potential responsible for resonances in a three-
body system.

It should be noted that such peculiar states of three particles are 
independent of the specific form of the potential (i.e., independent 
of the forces of interaction between particles) and are universal 
in the sense that these states reflect only the fact of existence of a 
resonance. Thus, irrespective of the form of pair forces between 
the particles, if it leads to a low-energy two-particle s resonance, 
this automatically leads to the formation of a family of three-par-
ticle resonances. Consequently, the reason for the emergence of 
three-particle level lies in the production of long-range interaction 
between three particles by a two-particle resonance with a large 
spatial size. Thus, the number of resonant states in a three-particle 
system is determined only by specific properties of paired sub-
systems. The masses of the particles have the strongest influence 
on the effect. The following three characteristic regimes can be 
singled out: the mode of identical particles, the mode of a heavy 
center, and the molecular mode [1,13-15]. 

The heavy-center mode takes place when the masses of two par-
ticles are of the same order ml, while the mass mh of the third 
particle is much larger. The pair of light particle has no energy 
level and these particles do not interact with each other, but in-
teract with the heavy particle through the attracting potential. In 
this case, if the mass of the third particle is infinitely large, we 
are dealing with the case of a pair of particles in a force center; 
naturally, three-particle levels do not emerge in such a system. In 
this case, the heavy particle does not respond to the motion of the 
noninteracting particles moving independently from each other in 
the field of the stationary heavy particle. Consequently, in this lim-
it, the binding energy of the three particles is the additive sum of 
the binding energies of two-particle systems. However, for a finite 
mass of the heavy particle, the motion of all the three particles is 
correlated, so that the center of mass of the system remains at rest. 
In this case, the heavy particle responds to a change in the position 

of other particles whose motion becomes correlated in spite of the 
absence of a direct interaction between them. Thus, dynamic cor-
relation in the motion of coupled particles can be treated as a sort 
of attraction. It should be noted that such a dynamic attraction also 
appears in the case when repulsive force act between the particles 
coupled in this way. In this case, dynamic attraction compensates 
mutual repulsion and leads to stabilization of the system. This can 
be clearly seen, for example, for the ion of positronium e+e−e− 
[14-16]. In this case, for any finite mass of a heavy center, the 
number of levels is

A special feature of this mode is that extremely shallow levels in 
paired subsystem are required for the existence of three-particle 
levels in contrast to the molecular mode, where the requirements 
imposed on paired levels are much less stringent and more realis-
tic.

In the molecular mode, when a light particle has shallow levels 
in the interaction with the heavy particles, the number of levels is

and the potential of the interaction produced by the light particle 
has the form

which is precisely the energy of the molecular energy level. The 
simple example of this mode is a system consisting of an electron 
and two neutral atoms. The molecule formed in this way differs 
from a conventional molecule in that its nuclei vibrate in region R 
whose size is determined by the energy e0 of the shallow paired 
level; in addition to vibrational levels, this system also has a rota-
tional spectrum. Thus, two-particle levels in this mode lead to the 
formation of a series of not only vibrational, but also rotational 
levels [1, 13-15]. It should be noted that such peculiar resonance 
states are manifested in a wide range of conditions and form a 
stable phenomenon which can be reliably identified and confirmed 
experimentally.

Basic Equations and Main Approximation
We will analyze these peculiar resonant states quantitatively in the 
case of the molecular mode using the Faddeev integral equations 
[13]. In the given approximation (three particles, viz., two atoms 
and an electron), these equations are formulated for three parts into 
which the total wave function of the three-body system splits,

Each part corresponds to possible divisions of the system of three 
particles into noninterecting subgroups. In the momentum space, 
in the case of scattering of particle 1 from the coupled pair (2,3) the 
equations have the form [13,14].
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Here, Φ1 describes the initial state of the three body systems: 
free motion particle 1 and the bound state of pair (2,3); G0(Z) = 
(H0−Z)−1, Z=E+i0, where H0 is the operator of free motion of three 
particles; E is the total energy of three-body system, which is equal 
to the sum of kinetic energy of projectile 1 and the binding energy 
of pair (2,3); Ti is a paired T-matrix that can be unambigously de-
fined in terms of the paired interaction potential Vi with the help of 
the Lippmann-Schwinger equations

To describe the motion of three particles in center-of-mass sys-
tem we use the generally accepted Jacobi coordinates. It should 
be borne in mind that we must use as integration variables in Eq. 
(1) a certain system of variables which is found to be most con-
venient. For example, in the integral corresponding to the expres-
sion G0T1Ψ2, it is more convenient to take k2 and p2 as integration 
variables. In this case, variables k1 and p1 determining the kernel 
of operator T1 should be expressed in terms of variables k2 and p2. 
Sometimes, it is more convenient to use variables p1 and p2 in the 
same situation. 

Paired T matrices ti(ki, ki
J; Z) appearing in the kernels of the equa-

tions have singularities in variable Z: the poles corresponding to 
the discrete spectrum of paired subsystems and a cut along the 
positive part of the real axis generated by the spectrum of the two-
body problem. The explicit form of these singularities gives the 
spectral representation of matrix T. The poles of the T matrix cor-
responding to the discrete spectrum generate singularities in the 
wave function components Ψi; separating these components, we 
obtain the representation

where

and Qj, Rji are smooth function of their variables. Such a division 
of singularities
appears automatically in the numerical solution of integral equa-
tions. To define functions Qj and Rij unambiguously, we can pro-
ceed as follows. We substitute Ψi in form (3) into initial equations 
(1) and equate the coefficients of identical singularities. This gives 
the equations for these functions which can be used for expressing 
explicitly all main characteristics of the three-body problem: wave 
function, elements of the S matrix, as well as the amplitudes and 
cross sections of all processes occurring in the three-body system.

Thus, the cross section of the elastic scattering process has the 
form

the cross section of rearrangement processes is given by 

and the cross section of the process of decay into three free parti-
cles have the form

where

The main advantage of the Faddeev equations (1) is that
(i).	 the solution of this equation gives simultaneously the am-

plitudes and cross sections of all processes occurring in the 
three-particle system;

(ii).	the accuracy in determining the bound state from the solution 
of the Faddeev equations is much higher than the accuracy 
obtained by solving the Schrodinger equations (this peculiari-
ty is associated with the fact that Eqs. (1) were formulated for 
the wave function components and, hence, take into account 
possible asymptotic forms of the three-particle system);

(iii).	hese equations make it possible to carry out a correct (from 
the standpoint of mathematics) analysis of scattering process-
es, in which all three free particles are in the initial state; this 
is impossible in all approaches proposed earlier [5-13].

In this case, we have the following representation for the wave 
function [13-15].

where functions Mi;j satisfy the following system of equations:

For cross sections of these processes, we obtain the following ex-
pression [13,15]

corresponds to processes in which three free particles are in the 
initial and nal
states,

→ →
→ →

→ →

→
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correspond to processes in which a coupled pair of particles sj is 
present in the initial or the final state. The equations for functions 
Qj, Qj, and Rij are analogous to the equations for Mij and are given 
in [13-15]. It should be noted that potentials do not appear explicit-
ly in integral equations (1); these equations contain a more general 
characteristic, viz., T matrices, which are connected with the po-
tentials of the Lippmann-Schwinger equations (2). Consequently, 
although potentials are formally used in the given method, we es-
sentially model T matrices, which are constructed on the basis of 
the Bateman method suitable for any local potential. This method 
considerably simplifies numerical solution of the system of inte-
gral equations (1) and sometimes even leads an analytic solution 
[13-17].

Integral equations (1) possess good properties (from the math-
ematical point of view) such as the Fredholm property and un-
ambiguous solvability only under certain conditions imposed on 
two-particle data [13].
(i).	 paired potentials Vi(k, kJ), which are nonlocal in the general 

case, are smooth functions of k, kJ and satisfy the condition.

(ii).	point Z = 0 is not a singular point for Equation (2); i.e., all 
three scattering lengths in pair channels are finite;

(iii).	the positive two-particle spectrum is continuous. This condi-
tion is essential for nonlocal potentials since positive eigen-
values may appear only in this case, and this condition is sat-
isfied virtually for all physical processes.

Coulomb potentials and hard-core potentials do not satisfy the 
first condition:
Coulomb potentials lead to a singularity of the type |k − kJ|−2 in T 
matrices, while hard-core potentials result in a slow decrease in the 
T matrix for large momenta. When the second condition is violat-
ed, the Fredholm property of Equation. (1) is lost for Z=0, which 
leads to the above-mentioned effect of emergence of an infinite-
ly large discrete spectrum in a three-body system under certain 
conditions. A similar situation emerges in the case of scattering of 
electrons from diatomic molecules, for which the Efimov levels 
were experimentally observed for the first time. The approxima-
tion considered here reproduces these experimental results in a 
quite natural way.

It should be emphasized once again that the give approximation 
appears quite reasonable for values of the impinging electron en-
ergy lower than the electron excitation energy of the molecule. As 
the initial data in such a formulation of the problem, we use pair 
interaction potentials, masses, and energies of colliding particles.

Numerical solution of integral equations (1) involves considerable 
difficulties because the kernels of integral equations (1) contain 
the same singularities but here, we propose a quite universal meth-
od for solving system of equations (1) for calculating bound states 
as well as scattering states in systems with arbitrary masses, which 
interact via arbitrary pair short-lived potentials that can also be 
defined numerically [13-15]. In the method proposed here, the do-
main of an unknown function is divided into a number of intervals 
on each of which the function is approximated with the help of 
corresponding interpolation polynomials. The method for solving 
system of equations.

(i)	 is a modification of the standard method for solving in-
tegral equations, in which the integral on the right-hand side is 
replaced with the help of a quadratures formula for solving Equa-
tion (1). As a result, we arrive at a system of algebraic equations 
for values of the sought function at the nodes of the quadratures 
formula. In the proposed method, the domaine of the sought func-
tion is divided into a number of segments, on each of which the 
function is determined with the help of interpolation polynomials 
reproducing the correct behavior of the function in the vicinity of 
the above singularities, after which integration is carried out using 
quadratures formulas. A package of applied programs was used for 
realization of the proposed numerical method for solving system 
of integral equations (1) [13,15].

Computational difficulties encountered in calculation of cross 
sections in the given approximation are mainly associated with 
the long-range Coulomb interaction potentials. It was mentioned 
above that in this case the integral Faddeev equations cannot be 
applied directly; either these equations should be modified, or the 
differential formulation of the Faddeev equations in the coordinate 
state should be used [13-15]. In case for three charged particles 
Faddeev equation in the coordinate space, which have the form 
[13-15].

where

and the coordinates are connected via the relations

Vst being pair short-range interaction potentials. The relation be-
tween the momentum and coordinate representations is defined by 
the Fourier transformation,

To obtain a unique solution of integrodifferential equations in the 
coordinate space, we must add the boundary conditions, which 
have the form [13-15].

where
 

→ →
→→

→ →
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A large number of various numerical methods have been devel-
oped on the basis of approximation of components Ψ by bicubic 
Hermite splines, quintet basis splines, etc. However, an effective, 
reliable, and universal algorithm of numerical solution of Equa-
tion. (6) with boundary conditions (7) and (8) in the coordinate 
space has not been developed for the following reasons.
•	 First, an algorithm of numerical solution for processes with 

three free particles in the initial and final states does not exist 
in view of rather complex boundary conditions.

•	 Second, point-by-point convergence of the obtained result to 
the exact solution upon a decrease in the mesh size cannot be 
proved analytically in any of the known numerical methods 
based on finite different approximation.

Consequently, the application of the mesh method in the polar 
coordinate system for solving numerically the system of coupled 
integrodifferential equations (6) in partial derivatives with bound-
ary conditions (7) and (8) appears as most justified since analytic 
solutions also exist in this case for some potentials determining 
the resonant states under investigation [13,14,18]. This makes it 
possible to monitor the accuracy of the solutions obtained by the 
numerical method.

Let us consider the geometrical (topological, spatial) characteris-
tics of the above-mentioned peculiar resonant states. Since it is 
quite difficult to study these characteristics experimentally in the 
case of electron collisions with molecules, we will consider the 
systems that are accessible for experimental studies, viz., clusters 
of molecules of inert gases [19].
 
It should be noted that these molecular clusters consisting of atoms 
of helium, lithium, and a number of inert gases attract attention of 
both theoreticians and experimentalists primarily due to applied 
studies such as super fluidity, superconductivity, Bose condensa-
tion, chemistry and physics of clusters, laser physics (i.e., the pos-
sibility of developing He2

+ molecular laser), as well as the possi-
bility of  observing such a peculiar quantum effect in real systems 
[19-20].

However, a direct theoretical analysis of even the simplest of the 
above systems, viz., He3 consisting of three helium nuclei and six 
electrons, is an extremely complicated problem. To analyze the 
He3 system, we consider the cluster approximation in which this 
system is replaced by a simpler system consisting of three force 
centers (helium atoms). The validity of this approximation for cal-
culations of bound states is obvious since the difference between 
the binding energy of the system and the ionization energy of the 
atom is several orders of magnitude. It is well known that heli-
um atoms are bosons; consequently, the problem boils down to 
analysis of three pairwise identical neutral spinless particles. To 
solve this problem, we propose mathematically correct model-free 
methods in the theory of scattering in the three-body system [13-
15].

It should be emphasized that virtual levels in paired subsystems in 
the case of complex many-particle systems do not lead to the emer-
gence of resonant states in a many-particle system [1]. This, how-
ever, does not mean that this effect is absent in these systems since 
it can be due to many-particle and not two-particle virtual states.

For this reason, we will consider the interpretation of a number 
of peculiar properties of systems He3, Ar3, Kr3, Ne3, Xe3, Li3, and 
Rn3 precisely on the basis of the three- particle approximation. 
It should be noted that a large number of theoretical and experi-
mental methods exist for studying clusters consisting of atoms of 
helium and a number of inert gases. Most methods are intended 
for studying bound states; however, scattering states, which are 
most informative for confirming the existence of peculiar resonant 
states, were practically ignored [19-22].

It was stated by a number of authors that the main difficulties in 
studying the He3 system are associated with its low binding ener-
gy (1 mK), an unusually large size of the excited state (~150Ao), 
and a strong repulsion at small distances. However, the results ob-
tained in, where an analogous three-particle approximation was 
used for calculating the He3 system, differ from the statements 
made in [15,21,22].

For this reason, it would be also interesting to verify the conclu-
sions drawn in on the basis of the three-particle approximation 
with the short-range pair potentials used in [22,23]. The main pur-
poses of this investigation are
(i).	 determining the number of possible resonant states;
(ii).	clarifying the role of pair interaction potentials in the charac-

teristics of these states;
(iii).	estimating the effect of repulsion at short distances, which can 

be approximated by a hard core in the model for the bound-
ary conditions imposed on the characteristics of these peculiar 
states [13-15].

Thus, the theoretical analysis of the He3 system is reduced to solv-
ing equations in the quantum theory of scattering in a three-body 
system, which makes it possible to use the well-known methods 
[13-15]. In contrast to, where resonances in a three-particle system 
were studied using the Faddeev equations on the basis of analytic 
continuation of the scattering matrix to the range of complex ener-
gy values, we are using here direct numerical solution without an 
analytic continuation [22].

In this case, after the separation of angular variables, the Faddeev 
equations (6) in the coordinate space for the He3 system in the 
three-particle approximation with pair short-range potentials have 
the form [13,15,23]

Where

For calculations with a hard core in the model of boundary condi-
tions, the right- hand side is equal to zero for x < c, conditions (7), 
(8), where c is the core size. To obtain an unambiguous solution

which assume the following form in the boundary-condition mod-
el:
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For ρ → ∞ the boundary conditions in the case of short-range pair 
potentials can be written in the form [13].

where ψl,v(x) are the partial components of the wave functions of 
paired subsystems with binding energy ϵl,v; ρ = √x2 + y2; θ = arctan 
y/x; aaL,v and AaL(θ) are the scattering amplitudes of processes with 
two or three particles, respectively, in the final state; and Hv(x) are 
the Hankel spherical functions.

In calculations of bound states, the wave functions decrease quite 
rapidly at infinity; consequently, at a large distance x = Rx, y = Ry, 
the asymptotic boundary conditions can be replaced by the condi-
tions

For the He3 system in the three-particle approximation with angu-
lar momentum L = 0, we have

where partial components l assumes even values. l = 0, 2, 4, ...; and 
the expression for functions hL

aa′ (x, y, η) is given in [13-15].

The asymptotic behavior of the components of Eqs. (9) for scatter-
ing processes with short-range potentials can be described by the 
function [13-15].

where a0(z), z = E + i0 is the elastic scattering amplitude for E > ϵd, 
and Al (E, θ) is the decay amplitude for E > 0.

We also assume that the helium molecule He2 has only one bound 
state with binding energy ϵd < 0 and with the corresponding wave 
function ψd(x).

For processes of scattering, the scattering matrix for z = E + i0, 
E > ϵd, the scattering phases and lengths in the s state can be ex-
pressed with help of the following formulas

To solve the system of equations (9) with boundary conditions 
(10), (12) numerically, we used the standard method described in 
detail in [13-15, 17].

Results of Calculations
We will analyze these peculiar resonant states quantitatively using 
the Faddeev equations (1-12) in different systems.

For pair interaction potentials, we used potentials HFDHE2, 
HFD-B, HFDID, LM2M1, LM2M2, and TTYPT with appropriate 
parameters, which reproduce in detail the main parameters of the 
corresponding molecules [23-24].

The results of calculation of the energy of bound states in systems 
He3, He*

3, Ne3 and Ne*
3 with and without taking into account the 

hard core are given in [14-17].

The results of calculation of the ground and the first excited states 
systems Ne3, Ar3, Kr3, Xe3 and Re3 in the given approximation with 
the HFD-B potential and the parameters borrowed from are pre-
sented in Tables 1,2 [23].
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Table 1: Binding energies of inert gas molecules calculated by using HFD-B potential, a.u. 10-6

Energy Ne2 Ar2 Kr2 Xe2 Rn2
Ethr 178 394 619 854 9268
Eexp 135 446 629 874 -

Table 2: Binding energies of the ground state and the rst excited state of the inert gas molecules calculated by using HFD-B 
potential

Ne3 Ne�*3 Ar3 Ar�*3 Kr3 Kr*3 Xe3 Xe�*3 Rn3 Rn�*3

398 330 1278 1215 1885 1811 2509 2438 30875 30801



In calculations based on the boundary-condition model, the value 
of core c was chosen so that even a slight change in this quanti-
ty did not affect the binding energy of paired subsystems. In our 
calculations, c = 1.5Ao, the value of binding energy for the helium 
molecule was 1.69 mK, and the value of r0 was 100 Ao. A detailed 
description of the numerical method for solving system of equa-
tions (9) with asymptotic boundary conditions (11), and (12) is 
given in [13-15].

We will consider the results of calculation of these resonant pro-
cesses using as an example the calculation of cross sections for the 
simplest chemical reaction of dissociative attachment of electrons 
to hydrogen molecules. In this calculations for potentials of pair 
interaction of electrons with atoms of the molecule, we used po-
tentials of the form

whose parameters were determined on the basis of the electron 
binding energy at a negative ion, scattering lengths, and effective 
radius. Allowance for spin (in the case of homo nuclear molecules) 
was made as follows. For the scattering length, we used the quan-
tity [5, 6, 14-17].

where at and as are the triplet and singlet scattering lengths, respec-
tively. Pair potentials of interaction between atoms in molecules 
was simulated by the Morse potentials

whose parameters were determined on the basis of spectroscopic 
data [24].

These results are shown in Figure 2 together with the latest experi-
mental data and the results of calculations based on other approxi-
mations [4,5-11,25-27]. These results confirm the existence in this 
system of the resonant states considered above. It should be noted 
here that experimental results of observation of three-particle res-
onant states were presented for the first time in for the dissociative 
attachment of an electron to hydrogen molecules [3]. However, in 
view of the energy distribution for the electron beam of width 0.1 
eV, only non-monotonicity of the energy dependence of the disso-
ciative attachment cross section was noted in these experiments; 
this non monotonicity was confirmed in theoretical calculations 
published more than 20 years ago [14, 17]. The oscillatory struc-
ture of the dissociative attachment cross sections was confirmed 
only recently in the experiments, in which special technique was 
used for energy stabilization of the electron beam (meV) [25]. The 
detailed structure of cross section in ~3.75eV rigion are presented 
on Figure 3.

Figure 2: Dependences of the cross section of electron dissocia-

tive attachment to hydrogen molecules on the energy of projectile 
electrons: the solid curve corresponds to experimental data [19]; 
the results of calculations performed in [11], [7, 10], [10, 26], [21], 
and [20] are represented by the fine-dash, large-dash, dot-and-
dash, dotted, and double dot-and-dash curves, respectively; our 
results of calculation are presented by circles.

Figure 3: Dissociative attachment of electrons to H2 molecules. 
Region 3.75 eV. The solid lines correspond results of our calcula-
tion, experimental data presented by circles [4].

To estimate the influence of particle charges on the effect, we con-
sider the scattering of electrons from hydrogen halide molecules. 
Since the electron affinity to the hydrogen atom is much smaller 
than to a halogen atom, a hydrogen halide molecule can be visual-
ized as a system consisting of a proton and a negative halogen ion 
[24]. Thus, in the approach proposed here, the main approximation 
is that the interaction of the projectile electron with the nuclei of 
the target molecule is replaced by the interaction of the impinging 
electron with the proton and the negative halogen ion. The com-
plex many-particle problem of calculation of electron scattering 
cross section at diatomic molecules is reduced to the problem of 
collision in a three-body system, which can be solved using the 
method of quantum scattering problem in a few-particle system. 
Naturally, this approximation is valid for energies of the impinging 
electron lower than the electron excitation energy of the molecule.

Computational difficulties encountered in calculation of cross 
sections in the given approximation is mainly associated with the 
long-range Coulomb interaction potentials between a projectile 
electron, a proton, and a negative halogen ion. It was mentioned 
above that in this case the integral Faddeev equations cannot be 
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applied directly; either these equations should be modified, or the 
differential formulation of the Faddeev equations in the coordinate 
representation should be used [13-15]. It should be noted that in 
the general case of scattering of an electron from halogen mole-
cules in the given approximation,

the Faddeev equations for four mutually interacting bodies (two 
electrons, a halogen atom, and a proton) should be used. However, 
for some processes such as dissociative attachment reactions, we 
can confine our analysis to equations for three pairwise interacting 
bodies.

In our case, to calculate dissociative attachment of an electron to 
hydrogen halide molecules, we apply the Faddeev equation for 
three charged particles in the coordinate space [13-15].

Figures 4 show the results of calculation of the cross sections of 
electron dissociative attachment to hydrogen halide molecules and 
their isotope-substituted modifications in the ground state and in 
excited vibration-rotation states as well as experimental results 
and the results of calculations based on other approximations, 
which demonstrate suppression of oscillations in the scattering 
cross sections [4-11, 25, 27].

Figure 4: Scattering of electrons by hydrogen halide molecules: 
(dots) experimental results of [11, 12] and (solid lines) calculated 
results of this work.

Let us consider the effect of these peculiar resonances on the rates 
of chemical reactions, which appears interesting for explaining 
electron transport in proteins (physically, this transport is one 
of the main functionally important processes in a cell [15,28]). 
Knowing this transport mechanism, it would be possible to explain 
how a transition is made from structurally disorganized chemical 

transformations (e.g., in solutions) to coordinated subsequent 
stages typical of biological systems [15]. It should be noted that 
no new interactions are used in nature and the process is orga-
nized due to an appropriate choice of molecular structures and the 
corresponding well- known interactions. Thus, identification and 
analysis of these interactions will make it possible to understand 
physical mechanisms of processes occurring in proteins and other 
molecular structures such as DNA and RNA.

The application of the method presented above for calculation 
of real biopolimer molecules now encounters many difficulties, 
namely, absenct of reliable spectroscopic data on clasters as dis-
tinct from diatomic and poliatomic molecules and some others. 
Yowever, in some particular cases certain estimates can be made 
[4,7,28]. One can prove that under certain condition biopolimers 
consisting of similar elements from spiral strutures [28]. This is 
experimentally confirmed by sublimation of frozen water solutions 
of organic compounds, including amino acids (protein monomers), 
nucleotides (DNA and RNA vonomers) and their mixtures. In this 
experiments, for solution concentrations exceeding 10−2 gmol/l 
porous remnants (matrices of cristals of dissolved substances) are 
formed, while for lower consrntrations the strurture of matrices 
changes drastically and they have the form ofundirectional tubular 
lines. The formation of this lines is due to solution freezing which 
is accompained by replacement of impurity components be front 
of the newly formed ice and the component density fluctation lead 
to shifts in the ice cristal lattice, i.e. dislocations that form steps. In 
the course of cristallization the step winds, which is shown sche-
matically in Figure 5. Experiments demonsrated that monomers 
may joint in lines in course of their assembly becouse freezing of 
water solutions of amino acids of certain concentration was re-
vealed to initiate, under UV irradiation (λ = 250−300nm), an int-
araction between comonents and to lead to reaction of biopolimer 
synthesis. The calculation dased on the proposed model show that 
the mutual orientation of monomers in chains under self-assembly 
is due to precisely the above-described specific multipartice inter-
action? where molecules attach to each other tending to occupy a 
position wtith minimum potential energy. As a results of assembly 
of L-amino acid chains the role of matrix is played by nucleotides 
and vice of versa. This is how one-to-one correspondence between 
molecules, i.e., a genetic code appears owing to multiparticle dy-
mamic interactions. The estimates obtained of the bases of pro-
posed model shows that
•	 amino acids and nucleotides form their individual chains and 

pracitically no restrictions exist for asstmbly of large (106 − 
109 atoms) molecules of nucleic acid,

•	 alternation of regions with periodic and aperiodic character 
of succession of different monomers in the chains depends 
on the velosities of molecular motion at different dislocation 
steps upon freezing,

•	 not only nucleotides and amino acids but also their isomers, 
if they were present in the initial solution, are distributed in 
independent chains. This proves that L-amino acids that ro-
tate the polarizftion plane of light to the left form the chain 
in space with a shape of the right helix and are located near 
the right helix of nucleotides, while D- amino acids that form 
the left helix are located across the nuclejtide spiral. This fact 
proves the nutural separation of stereoisomers in the course 
of evolution [28]. These results, i.e., the formation of ordered 
helical structures of impurity molecules, or a one-dimentional 
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assembly, are directly related to the problem of appeance of 
life. The practical imporrtance of this phenomenon refers to 
the creation of biopolymers with prescribed properties and to 
the possibility of constraction on their basis of various thech-
nical elements of bioelectronics.

Figuer 5: Schemanic drawing of spiral type structure growth

To study the processes described above, we first consider a simple 
system of two identical coupled particles tunnelling through a po-
tential barrier by using a mathematically correct quantum theory 
of scattering in a few-body system [13-15].

It should be noted that tunnelling of particles (including structured 
ones) is usually considered on the basis of well-known theories 
and results are automatically extended to many-particle systems 
(especially in applied studied, e.g., in biology [28,29]). Most re-
sults in these applications are associated precisely with analysis of 
tunnelling through various potential barriers of multicomponent 
structured complexes. Quite often, such results do not correspond 
to the initial problem and do not reproduce experimental data. It 
should be noted that if the barrier size is much larger than the char-
acteristic size of a complex, the difference from the structureless 
case is insignificant. If the size of the complex is commensurate 
with the barrier width, mechanisms appear leading to anomalous 
transparency of the barrier (analogously to the Ramsauer effect [4, 
5, 7,15, 30]).

The physical reason for the barrier transparency is associated with 
the possibility of formation of a barrier resonance since the poten-
tial energy of the system may have a local minimum ensuring the 
metastable state of the complex; to this end, the interaction of all 
particles of the complex with the barrier is required.

To demonstrate this effect, we use the quantum scattering theory to 
consider the tunnelling of a pair of identical particles m1 = m2 = m 
coupled through various types of interaction (harmonic oscillator, 
Morse and Gauss potentials) through a potential barrier which was 
simulated by a potential of the form [30].

where a and b are the barrier height and width. The results of cal-
culations are shown in Fig.6. It can be seen from the figure that, for 

a barrier height much larger than the characteristic size of the in-
cident complex, its transmission probability differs insignificantly 
from the transmission probability in the case of structureless par-
ticles. If the size of the complex is commensurate with the spatial 
size of the barrier, mechanisms appear which lead to a substantial 
transparency of the barrier and even to its total transparency in 
some cases.

In the simplest case of a complex consisting of two particles, the 
physical pattern of the barrier transparency is determined by the 
formation of a resonant state upon the passage of only one of the 
particles through the barrier. Thus, two particles are on different 
sides of the barrier (i.e., this resonant state is preserved until the 
other particle passes through the barrier). The barrier width is de-
termined by the lifetime of this resonance.

It should be noted here the penetrability symmetry breaking for 
structured particles may serve as a possible mechanism explaining 
different penetrabilities of biomembranes in opposite directions 
(osmosis). Another explanation of penetrability of a biomembrane 
is given in on the basis of the assumption that an isothermal phase 
transition of the melting/crystallization type occurs in a monolayer 
of the membrane, but in 2D and not in 3D system [28]. This makes 
it possible to interpret some peculiarities of blood circulatory sys-
tem, which could not been explained earlier.

Analogous results are considered in; however, the results concern-
ing the penetrability of potential barriers for structured particles 
are completely different [29]. Figure 12 shows that the tunnelling 
probability in some cases may attain unity, which can be explained 
by interference suppression of the reflected wave (this phenome-
non is widely used for blooming of optical systems). As the num-
ber of interacting particles increases, the effect of enhancement of 
the barrier penetrability may substantially increase. Thus, under 
certain conditions, coupled clusters not only surmount obstacles 
more easily, but can also be themselves transparent to other parti-
cles (this is often encountered in biological systems).

Figure 6: Tunneling probabilities for a structureless (1) and struc-
tured (2, 3) particles as functions of the energy of the projectile 
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particle for the harmonic potential (2) and the Morse potential (3) 
for various characteristics of the barrier a = 1 (a), 6 (b), and 11 (c). 
Energy E is given in units of the corresponding potential.

The most astonishing fact is that this mechanism of potential bar-
rier transparency for structural particles was confirmed in experi-
ments [18,25-30]. These features are commonly observed in real 
systems, e.g., in the simplest chemical reactions induced by elec-
trons:

In the approximation of the quantum theory of scattering in a few-
body system, it is possible to reproduce the experimental data on 
the simplest chemical reactions occurring during the interaction of 
electrons with diatomic molecules in the ground state as well as 
in excited vibration-rotation states. These results are presented in; 
all calculations in this case are performed in the above-mentioned 
approximation, in which the interaction of an electron with nuclei 
and electrons of the target molecule was replaced by the interac-
tion of the electron with each atom as a whole (the atom was treat-
ed as a force center) [9-11, 13-17, 18,25-31]. The same figures also 
show the results of calculations performed in the resonance model 
approximation with nonlocal potentials based on the quantum the-
ory of scattering in a two-body system [31].

It should be noted once again that this approximation appears as 
reasonable for energies of the projectile electron lower than the 
electron excitation energy of the molecule. Otherwise, it is nec-
essary to use the many-particle approximation instead of the 
three-particle approximation since the contributions from the dis-
sociation channels become significant (this is demonstrated in Fig-
ures. 2-4). Consequently, we can speak of the agreement with the 
experimental results only on the average in view of the initial mod-
el of the process as well as the simplest pair potentials simulating 
the interaction of an electron with atoms [14, 15, 17].

A comparison of the results of our calculations with the available 
experimental data shows that simulation of the electron interac-
tion with each atom of the molecule based on Eqs. (1,6), which 
correspond to the multiple scattering pattern, makes it possible to 
attain satisfactory agreement with experiment (coincidence of the 
orders of magnitude of cross sections, including isotopic effects 
and threshold singularities [4-11, 14-17 19-23]).

The well-known theoretical methods for studying resonant pro-
cesses occurring during electron collisions with molecules (the 
boomerang method, the R matrix method, the method of time evo-
lution of the wave function, the Feschbach operator method, etc.) 
are based on interpreting this process as a multistage process [4-
11]. The first stage involves the electron capture by a molecule and 
the formation of a negative molecular ion. The second stage is the 
decay (evolution) of this state to various states of the decay prod-
ucts: a negative ion and a neutral or excited atom, two neutral or 
excited atoms and an electron (dissociation of the molecule), and 

an excited molecule and an electron (excitation of the molecule by 
electron impact). The basis of this formalism i.e., the formation of 
an intermediate state of a negative molecular ion) appears as not 
always substantiated from the physics point of view. For example, 
in the case of dissociative attachment of an electron to a hydro-
gen molecule, the lifetime of this complex is comparable with the 
electron mean free time, during which it covers a distance equal 
to the diameter of the hydrogen molecule. An analogous situation 
also emerges for the reaction O(3P ) + CS(X1Σ+) → CO(X1Σ+) + 
S(3P ), in which a considerable fraction of the translational energy 
(in accordance with the momentum limit Ev/Et ~ 0.88) is trans-
formed into the vibrational energy of the CO molecule [32]. Such 
a reaction also occurs without the formation of an intermediate 
complex. The results of this calculation present in Figure 7. Nat-
urally, many reactions exist in which a long-lived intermediate 
complex is formed in the course of the reaction (see [5-11, 14, 15, 
17] for details) [14, 32]. However, for some processes like those 
described above, a preliminary analysis of experimental data for a 
given processes required for analyzing various collisions; the ab-
sence of such an analysis often leads to erroneous interpretation of 
experimental data.

Figure  7:  Cross sections of the O(3P ) + CS(X1Σ+) →  CO(X1Σ+, 
v = n) + S(3P ) reaction: (+++) calculated results of this work, 
(ooo) results of calculations based on classical mechanics [2–4, 
10–12],

Thus, a class of processes existing in atomic, chemical, and bio-
logical physics can be referred to as direct processes in analogy 
with nuclear physics. The main feature of these processes is that no 
intermediate long-lived complex is formed in the course of scat-
tering.

Consequently, the most adequate methods for interpreting such di-
rect processes and reaction occurring with the formation of an in-
termediate complex are those proposed by Faddeev, Yakubovskii, 
and Merkur’ev, who developed a quantum theory of scattering 
in few-body systems without model assumptions concerning the 
formation an intermediate complex during a collision [13]. This 
method can be applied for describing direct processes as well as 
processes occurring with the formation of intermediate long-lived 
states. Thus, we can state that quantum transparency effects for 
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various barriers and peculiarities of chemical reaction mechanisms 
described above can take place in various branches of physics, 
chemistry, and biology and can be interpreted in the framework of 
nonrelativ-istic quantum mechanics with the help of the formalism 
proposed in [13-15].

It is especially important for molecular biology, in which a con-
sistent and mathematically correct explanation of fermentation 
reactions has not been obtained as yet [28]. The contemporary de-
scription of these reactions based on the assumption that a part of 
the free energy liberated as a result of a reaction is used for accel-
erating catalysis, i.e., penetration through a barrier (recuperation 
of energy), does not permit to quantitatively analyze the reaction 
energy. For this reason, it is extremely difficult to experimentally 
confirm or reject the proposed model.

On the contrary, the above substantiation of the transparency of po-
tential barriers for structural complexes with a size commensurate 
with the barrier width provides an explanation for such reactions 
based on the well-known physical principles in the framework of 
ordinary quantum theory for a few-body system. Figure 8 pres-
ents the cross sections of reaction Na + I → Na+ + I− – calculated 
with the aid of the quantum scattering theory in a system of three 
particles (Na+, e and I−). In this case, differential equations with 
the corresponding boundary conditions are used. We employ the 
quantum scattering theory in a system of several particles in the 
calculations of the following molecular reactions:

                       CsBr + R → Cs+ + Br− + R,

Figure  8:  Cross  sections  of  the  Na + I  →  Na+ + I−reaction:   
(dots)  calculated results of this work, (solid line) results of calcu-
lations based on classical mechanics [2–4, 10–12], (dashed line) 
results of calculations in the tight-binding approximation [2–4, 
10–12], and (dashed-and-dotted line) results of calculations in the 
quasi-classical approxi- mation [2–4, 10–12].

where R = Xe, Hg (Figures 9 and 10). Note that the calculations 
are performed in the approximation in which the CsBr molecule 
is considered as the Cs+Br– system owing to a relatively high elec-
tron affinity of the halogen atom. Thus, the calculations of such a 
reaction are reduced to the solution of a problem in the system of 
three bodies (negative ion of halogen atom Br–, positive ion Cs+, 
and atom R). The pairwise- interaction potentials are written as 
[14, 15].

Figure  9:    Cross  sections  of  reaction  CsBr+ Xe  →   Cs+  + 
Br− + Xe:   (dots) experimental data of [3, 4, 14], (dashed-and-dot-
ted line) calculated  results  of  this work, and (solid line) results of 
calculations based on classical mechanics [9–12, 14].

Figure  10:   Cross  sections  of  reaction  CsBr + Hg  →  Cs+ + 
Br− + Hg:   (dots) experimental data of [3, 4, 14], (solid line) cal-
culated results of this work, and (dashed- and-dotted line) results 
of calculations based on classical mechanics [9–12, 14].

where Ci, Ai, ρi. αi determinates from experimental data [2-5,10-
15].
To prove the universal character of the proposed method in the 
calculations of cross sections of the following chemical reactions 
in which three (initially free) atoms are involved:
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Figures 11 and 12 present the calculated results for vibrational ex-
citation of the reaction products in reactions H + H + H → H2(v = 
n) + H and He + He + He → He2(v = n) + He.

Figure 11: Plot of the rate of reaction H + H + H → H2(v = n) + H 
vs. vibrational quantum number (calculated results of this work).

Figure 12: Plot of the rate of reaction He + He + He → He2 + He 
vs. energy: (solid line) experimental data of [3, 4], (dashed line) 
calculated results of [9, 12, 14], and (dashed- and-dotted line) cal-
culated results of this work.

Note that the above models allow qualitative estimation of the ex-
perimental data and are not aimed at exact approximation of the 
experimental results. This circumstance can be interpreted as the 
main advantage of the above calculations, which make it possible 
to qualitatively reproduce the experimental data using rough ap-
proximations (approximation of the problem of several bodies, ap-
plication of the Morse pair poten- tials, etc.). The calculated results 
of Figs. 2–4 and 8-11 provide the supporting evidence. 

To study the scattering processes occurring during the collision of 
an atom with a helium molecule and to determine the role of pair 
interaction potentials, we calculated the amplitudes of elastic scat-
tering and decay as well as phase shifts with and without taking 
into account the hard core. The results of these calculations are 
present in [13-17]. The results are almost independent of the form 
of pair interaction potentials and on whether or not the hard core 

was taken into account both for bound states and for scattering 
state. Thus, it can be concluded that the form of pair interaction 
potentials and allowance for a hard core in the boundary-condition 
model in the given approximation does not substantially affect the 
results of calculations.
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