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Abstract
Background: Histone deacetylases (HDACs) pertain to the category of Zn2+ or nicotinamide adenine dinucleotide (NAD+)-
dependent proteolytic enzymes. While the antitumor effect of HDAC inhibitors alone has been demonstrated and the effect 
of HDAC inhibitors on solid tumors is not ideal, which considerably limits their clinical use. Therefore, the search for novel 
HDAC inhibitors equipped with specific inhibitors is extremely urgent and necessary.

Methods: 3D-QSAR was employed to investigate insights into the crucial structural element that effect the activity of novel 
HDAC small molecule inhibitors. The best saliency CoMFA and CoMSIA models are obtained using 55 molecules in the 
training set and 16 molecules in the test set.

Results: The statistical quality of the generated model is demonstrated by internal and external cross-validations. The CoMFA 
model obtained satisfactory values (q2 = 0.664, r2 = 0.917, SEE = 0.217) while optimized CoMSIA model exceed with (q2 = 
0.672, r2 = 0.948, SEE = 0.175). 

Conclusion: The statistical parameters from 3D-QSAR models reveal that the results are reliable and significant with strong 
predictive ability. These theoretical results may contribute to the design of novel HDAC small molecule inhibitors with enhanced 
activity for the treatment of cancer.
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1. Introduction
It must be admitted that cancer is a widespread disease with a 
high mortality rate. Other than genetic factors, the development of 
cancer touches upon epigenetic modifications, including covalent 
modifications of DNA (methylation and demethylation) and 
histones [1]. The post-translational modification of histones will 
form the so-called "histone code", which provides a recognition 
marker that regulates gene transcription by inducing the synergistic 
or antagonistic effect on the binding of additional proteins to DNA 
[2,3]. Histone deacetylases (HDACs) pertain to the category of 
Zn2+ or nicotinamide adenine dinucleotide (NAD+)-dependent 
proteolytic enzymes, which could dislodge acetyl groups from the 
ε-amino group of lysine residues located at the N-terminus of core 
histones [4,5]. On account of the deacetylation property, HDACs 
partake in the regulation and modulation of a large amount 
of momentous biological signaling pathways, including cell 

differentiation, proliferation, angiogenesis and apoptosis [6]. Up 
to the present, a total of 18 HDAC isozymes have been identified 
in humans. HDACs are classified into 4 disparate classes on the 
grounds of their structural, number of catalytically active sites and 
the sequence homology to the yeast original enzymes [7]. Among 
the rest, classes I (1, 2, 3, 8), II (4, 5, 6, 7, 9, 10) and IV (11) 
HDACs belong to Zn2+-dependent metalloenzymes, while class Ⅲ 
(SIRT1-7) are NAD+-dependent HDACs [8].

Meanwhile, HDACs attract more and more attention from the 
academia and pharmaceutical industry [9]. There is plenty of 
evidence that HDACs overexpression has been discovered in all 
sorts of human cancers, including myeloma, gastric, pancreatic, 
colorectal and prostate cancers [10]. With the gradual elucidation 
of the relationship between HDACs and tumors, it has been widely 
recognized that HDACs have emerged as extremely attractive 
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targets for the discovery of anticancer agents. Regrettably, only 
a smattering of promising HDAC enzyme inhibitors, which block 
the cancer-preventing process, have been tested and evaluated 
in various stages of clinical trials during the lengthy discovery 
process. Until now, only five HDAC inhibitors namely, Vorinostat 
(SAHA), Romidepsin (FK228), Belinostat (PXD101), Panobinostat 
(LBH589) and Pracinostat (SB939) were resoundingly authorized 
by the United States Food and Drug Administration and one HDAC 
inhibitor namely Chidamide (CS055) obtained the approval from 
the China Food and Drug Administration [11,12]. Both of them 
are approved for the treatment of cutaneous T-cell lymphoma, 
peripheral T-cell lymphoma or multiple myeloma [13]. Although 
HDAC inhibitors reveal potent antitumor effects, most broad-
spectrum HDAC inhibitors may cause severe side effects of which 
the most common symptoms were thrombocytopenia, neutropenia, 
anemia, fatigue, and diarrhea [14]. Therefore, the development of 
novel and efficient HDAC inhibitors with high selectivity and low 
toxicity has the potential to profoundly tap their clinical potential 
in cancer therapy [15].

Three-dimensional quantitative structure activity relationship 
(3D-QSAR) is one of the computational methods for drug design 
based on ligands and plays a crucial role in computer-aided drug 
design [16]. At the same time, quantitative relationships between a 
sequence of compounds and the associated biological activity have 
been explored using theoretical calculations and statistical analysis 
tools, providing some useful clues to the structural modifications 
of the compounds. On account of the high-precision features of the 

Comparative Molecular Field Method (CoMFA) and Comparative 
Molecular Similarity Analysis (CoMSIA) models, they have 
emerged as the most resultful 3D-QSAR tools based on statistical 
techniques [17]. In CoMFA, biological activity is related to steric 
and electrostatic parameters. Whereas the advantage of CoMSIA 
is its takes into account five different property fields: hydrophobic, 
hydrogen bond donor (HBD), hydrogen bond acceptor (HBA), 
steric field and electrostatic parameters [18]. The purpose of 
this research work is to produce a model with high predictive 
power, to provide more informed directions for further structural 
modifications, and to guide the design of novel high-potency 
HDAC inhibitors with specific inhibitory effects.

2. Materials and Methods
2.1. 3D-QSAR Dataset
In the present QSAR research, a total of 71 HDAC inhibitors 
and related bioactivities were gathered from the work reported 
in the literature [19]. The experimental IC50 values were 
converted into pIC50 (-log IC50) values as dependent variable and 
QSAR descriptors of CoMFA and CoMSIA were expressed as 
independent variables in 3D-QSAR analysis [20]. The chemical 
structures and corresponding biological data of all compounds are 
presented in Table 1. The range of pIC50 was found to be 4.73-8.28 
(Fig. 1). The extensive dataset covered pIC50 values of 3 log units 
were randomly chosen as the training set (55 molecules, 77%) to 
generate the 3D-QSAR models and assess predictive ability of the 
obtained models with the test set (16 molecules, 23%).

Figure 1: Distribution of experimental inhibitory activities (pIC50) for the training and test sets compounds in the QSAR models.
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Table 1: Structures and Bioactivities of the Training and Test Sets of Molecule.

2.2. Molecular Modeling and Alignment
All the entire molecular modeling and statistical analysis of 
CoMFA and CoMSIA were performed by means of SYBYL-X2.0 
package (Tripos, Inc, St. Louis, MO, USA) [21]. Energy 
minimization was performed using the Tripos Force Field with a 
distance-dependent dielectric function and the Powell conjugate 
gradient algorithm with a convergence criterion of 0.005 kcal/(Å 
mol) and the maximum iteration setting as 1000 [22]. The partial 
atomic charges of each compound structure was calculated by the 
Gasteiger-Huckel method, whereas additional factors were fixed 
as default [23].

During the generation of 3D-QSAR models, the molecular 
alignments of the compounds was considered as the most 
crucial step for the robustness and predictive power of CoMFA 
and CoMSIA models [24]. The most potent compound of the 
dataset, 36r, was chosen as the template on which all molecules 
of the training set were aligned according to the largest common 
substructure. The compound 36r, marked in red by the common 
substructure, and the final superposition of the compounds are 
shown in Figs. (2 and 3), respectively.

Figure 2: Structure of compound 36r regarded as template compound in 3D-QSAR modeling. The compound alignments of common 
substructure is represented in red.
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2.3. CoMFA and CoMSIA Analyses
Both of the CoMFA and CoMSIA models were established based 
on the structural alignments of series. After each alignment, the 
CoMFA and CoMSIA descriptors of different force fields were 
placed in a common rectangular grid with a grid spacing of 2.0 
Å using sp3-hybridised carbon atom with +1.0 charge served as a 
probe atom [25].

For the CoMFA analysis, the steric and electrostatic fields energy 
were estimated based on the principle of Lennard-Jones and 
Coulomb functions [26]. The energy cutoff was fixed at 30 kcal/
mol for both fields. To reduce noise and speed up the calculation 
of potentials, column filtering was tested in the range of 0.0 to 
2.0 kcal/mol and a threshold column filtering value of 2.0 kcal/
mol [25]. The “StDev*Coefficients” values as various weighting 
factors were performed in addition to grid spacing for getting the 
better models, which can increase the resolution and predictability 
(q2, cross-validated r2) related to the following PLS analysis.

As in the CoMSIA analysis, the calculations were performed 
using the same grid-box similarity index descriptors as used in 
the CoMFA calculations. Five physicochemical properties of 
steric, electrostatic, hydrophobic, hydrogen bonding donor and 
acceptor fields were calculated at each lattice point of the grid 
box consisting of a probe atom with a radius of 1 Å for all five 
fields with +1 charge [26]. In addition, the Gaussian function is 
distinguished in the CoMSIA analysis by the distance dependence 
between the molecular atom and the probe atom, hence no cut-off 

value is required [27].

2.4. Partial Least Square (PLS) Analysis
Partial least squares analysis (PLS) statistical as an extension 
of multiple regression analysis was applied to derive 3D-QSAR 
models [28]. PLS regression analysis was introduced to construct 
a linear correlation between the dependent variable (pIC50 values) 
and the independent variable (CoMFA/CoMSIA energy fields) of 
the dataset. 

In order to better determine the predictive capability of the 
3D-QSAR models, the cross-validated correlation coefficient 
(q2) and optimum number of components (ONC) were calculated 
by the leave-one-out (LOO) method for the optimization of the 
CoMFA and CoMSIA model [29]. For further internal validation 
of the models, the non-cross-validated correlation coefficient 
(r2), F-statistic (F) value, standard error of estimate (SEE) and 
contributions of each model field were determined by using non-
cross-validated analysis.

3. Results and Discussion
3.1. CoMFA and CoMSIA Statistical Results
The statistical parameters obtained for the CoMFA and CoMSIA 
analyses which presented in Table 2 were performed on the 
basis of a 55 molecules training set. These statistics parameters 
indicate the obtained CoMFA and CoMSIA models represented 
the satisfactory internal predictive capability (q2> 0.5) as well as 
robustness (r2> 0.8).

Figure 3: Alignment of 55 compounds of training set for 3D-QSAR studies.
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Parameters CoMFA CoMSIA
q2 a 0.664 0.672
r2 b 0.917 0.948
N c 6 8
F d 100.436 104.543

SEE e 0.217 0.175
Steric 0.417 -

Electrostatic 0.583 0.212
Hydrophobic - 0.389
H-bond donor - 0.399

H-bond acceptor - -
a Cross-validated correlation coefficient.
b Non-cross-validated correlation coefficient.
c Optimal number of components
d F-test value.
e Standard error of estimate.

Table 2: Statistical Parameters of CoMFA and CoMSIA Models by PLS Analysis

Figure 4: Statistical comparison of 31 different combinations of descriptors for the CoMSIA model.

Based on the statistical significance of the data, the result of CoMFA model revealed that it was a cross-validated correlation coefficient 
(q2) of 0.664 with an optimum number of components of 6. The non-cross-validated PLS assessment resulted in a high non-cross-
validated correlation coefficient (r2) of 0.917 with a low standard error estimate (SEE) of 0.217 and F value of 100.436. The contributions 
of the steric and electrostatic field descriptors in the CoMFA model are proportional to 0.417 and 0.583, respectively. 

In terms of CoMSIA, the model comprised steric (S), electrostatic (E), hydrophobic (H), hydrogen bond donor (D) and acceptor (A) 
fields. The optimal CoMSIA model was exhibited by the combined EHD model because it possessed the highest cross-validated q2 value 
of 0.672 with an optimized component of 8 among the diverse 25 permutations and combinations of all CoMSIA properties (Fig. 4). The 
non-cross-validated r2 was found 0.948 with F value of 104.543 and SEE of 0.175. Regarding the CoMSIA model, the contributions from 
the electrostatic, hydrophobic and hydrogen H-bond donor fields are 0.212, 0.389 and 0.399, respectively. 
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3.2. Validation of Models
To further ensure the external predictive power, the predictive 
power of the QSAR model for the external test set of 16 molecules 
was computationally analyzed. The residuals of the CoMFA and 
CoMSIA models with experimental activity pIC50 values and 

predicted activity pIC50 values of all set compounds are represented 
in Figs. (5a and 5b). The correlations between the calculated and 
actual pIC50

 values of the whole data set for the CoMFA and 
CoMSIA model were exhibited in Figs. (6a and 6b). These data 
confirm the satisfactory predictive capability of the model.

Figure 5: The CoMFA (a) and CoMSIA (b) models of residuals with experimental activities pIC50 and predicted activities pIC50 of all 
set compounds.
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Figure 6: Plots of the experimental pIC50 versus predicted pIC50 for CoMFA (a) and CoMSIA (b).
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3.3. Contour Map Analysis
The 3D-QSAR contour maps of the CoMFA/CoMSIA models are 
intuitive tools to visualize the impacts of the various fields on the 
favorable and unfavorable regions of the molecules for biological 
activity. Meanwhile, the CoMFA and CoMSIA contour plots are 
also able to identify molecular fragments, functional groups and 
physicochemical properties that are closely related to the activity 
of the series. The CoMFA and CoMSIA results were demonstrated 
by field contribution maps using the standard deviation (StDev) 
at each grid point and the coefficient from the PLS analysis 
(StDev*Coefficients). For all of the contour maps, the positive and 
negative areas for each field are shown with a contribution of 80% 

and 20%, respectively.

3.4. CoMFA Contour Map Analysis
In the case of the CoMFA contour model, in order to visualize the 
information content of the derived QSAR model, the coefficients 
from the CoMFA model are plotted to generate the steric and 
electrostatic contour maps. The results indicate that the proportion 
of steric field contribution is 41.7%, while the electrostatic field 
accounts for 58.3% in the fractions of contribution of each field. 
The CoMFA contour maps related to the steric and electrostatic 
fields are revealed in Figs. (7a and 7b), along with the most effective 
HDAC inhibitors (compound 36r) as the template molecule.

Figure 7: CoMFA stdev*coeff contour plots for steric (a) and electrostatic (b) fields. Compound 36r was displayed as reference. 
Sterically favored disfavored areas are shown in green/yellow, while the blue/red polyhedra depict the favorable site for positively/
negatively charged groups. Favored and disfavored levels of these displayed interaction fields were fixed at 80% and 20%, respectively. 
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In CoMFA steric map, Fig. (7a) represents favorable groups 
(80% contribution) in green color and unfavorable ones (20% 
contribution) in yellow. The green block indicates a bulky group 
preference region, while the yellow block indicates that a minor 
substitution is preferred to enhance activity. This relationship 
explains that terminal positions in a sequence of compounds are 
responsible for biological activity. It can be seen that there is a 
large green contour around the position near the end of the R 
substitution, which indicates that a large number of substitutions 
in this region is beneficial for the enhancement of inhibition. This 
evidence is extremely valuable as a guide for our future chemical 
structural modifications. For instance, compound 11y (pIC50 = 
8.32) bearing a -OMe group at the 4-position of the benzene ring 
indicated increased potential activity than compound 11e (pIC50 = 
7.98). The similar phenomenon was observed that the comparison 
among compounds 36v, 36t and 36g turns out that 36v (pIC50 = 
8.33) > 36t (pIC50 = 8.07) > 36g (pIC50 = 7.62) which contains 
groups -N(CH3)2, -OMe and -H, respectively.

As shown in the electrostatic contour maps (Fig. 7b), the 
preferred regions of the electron-donating group and the electron-
withdrawing group are represented by blue and red outlines, 
where the red contour indicates enhanced biological activity 
with increasing negative charge, the blue contour indicates 

enhanced biological activity with increasing positive charge. The 
red contours around the position of the group attachment to the 
nitrogen, illuminate that the electron withdrawing group in this 
region is favorable for biological activity. This could be due to the 
higher activity of compound 11w (pIC50 = 8.17) compared to 24b 
(pIC50 = 6.83). At the same time, this is consistent with the fact 
that the compounds 36r (pIC50 = 8.82), 36q (pIC50 = 8.62) and 36s 
(pIC50 = 8.43).

3.5. CoMSIA Contour Maps Analysis
The contour maps of all CoMSIA fields (steric and electrostatic, 
hydrophobic, hydrogen bonding (H-bond) donor and acceptor) 
that contributed to biological activity are revealed in Fig. 8. In 
CoMSIA model the contribution for the electrostatic field (21.2%) 
loses importance compared with CoMFA contour maps. The 
contributions from the hydrophobic and hydrogen-bond donor 
fields are 38.9% and 39.9%, respectively.

As shown in Figs. (8a and b), the results of CoMSIA electrostatic 
and steric contour maps are virtually similar to CoMFA electrostatic 
and steric fields. But there are still some differences between the 
steric fields. Even then, the discussion or analysis of these two 
contour maps will be identical to the analysis of the CoMFA 
contour map.

Figure 8: CoMSIA StDev*Coeff contour plots with the combination of compound 36r. (a) Steric contour maps: Green contours indicate 
regions where bulky groups increase activity; yellow contours indicate regions where bulky groups decrease activity; (b) Electrostatic 
contour maps: Blue contours indicate regions where positive charges increase activity; red contours indicate regions where negative 
charges increase activity; (c) Hydrophobic contour maps: yellow contours indicate regions where hydrophobic substituents enhance 
activity; white contours indicate regions where hydrophobic groups decrease activity; (d) Hydrogen bond donor contour maps: Cyan 
contours indicate regions where H-bond donor groups increase activity and purple contours indicate the unfavorable regions for hydrogen 
bond donor substituents; 

a b

c d
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In the following, we mainly discuss and analyze the hydrophobic 
and hydrogen bond acceptor fields with large contribution 
rates. The yellow and gray contours represent hydrophobic and 
hydrophilic groups, respectively, as shown in Fig. (8c). The white 
and yellow contour maps highlight regions that are both hydrophilic 
and hydrophobic in preference. It can be seen that there is a large 

yellow contour around the benzene ring, indicating that a large 
hydrophobic substitution at this position is favorable for enhanced 
affinity. This is a possible reason why compounds 36v (pIC50 = 
8.33) and 36u (pIC50 = 7.89) reveal better potency compared to 
compound 36g (pIC50 = 7.62) due to increased hydrophobicity.

The contour map of the CoMSIA H-bond acceptor is connected to 
the hydrogen bond interaction between the ligand and the target. 
The contour map of the hydrogen bond acceptor (HBA) is shown 
in Fig. (8e), the magenta and red contour maps indicate favorable 
(80% contribution) and unfavorable (20% contribution) H-bond 
acceptor groups. This finding can account for the fact compound 
11l (pIC50 = 6.17) showed less activity by the introduction of HBA 
groups -NHPh(CH3)2.

4. Conclusion
This work provides insight into the design of improved HDAC 
small molecule inhibitors for cancer treatment. The computer-
aided drug design is known to have a wide range of applications in 
drug design and discovery, for example, QSAR analysis supplies 
a promising strategy to explore novel and better HDAC inhibitors. 
The selected 71 HDAC inhibitors from the reported literature were 
used for the 3D-QSAR study. The statistical quality of the generated 
model is demonstrated by internal and external cross-validations. 
The statistical parameters from 3D-QSAR models reveal that the 
results are reliable and significant with strong predictive ability. 
Furthermore, the CoMFA and CoMSIA contour maps reveal that 
steric, electrostatic, hydrophobic, and H-bond donor fields play 
a crucial part in the model. The findings demonstrate that our 
theoretical model results may contribute to the design of novel 

HDAC small molecule inhibitors with enhanced activity for the 
treatment of cancer.
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