
 Volume 4 | Issue 1 | 1

Citation: Patil, A. H., Patil, S. A. (2024). Regression Test Suite Study Using Classic Statistical Methods and Machine learning. J Sen
Net Data Comm, 4(1), 01-05.

Regression Test Suite Study Using Classic Statistical Methods and Machine
Learning

Review Article

Abhinandan H. Patil* and Sangeeta A. Patil
*Corresponding Author
 Abhinandan H. Patil, Senior IEEE Member, Karnataka, India.

 Submitted: 2024, Jan 10; Accepted: 2024, Feb 13: Published: 2024, Feb 15

Abstract
This work is interdisciplinary in nature. This work tries to apply latest discoveries in Artificial Intel-ligence to classic testing
methodologies. Machine Learning which is the field of Artificial Intelligence is explored in this work. The work demonstrates
that provided the test team maintains the required data, Machine Learning Algorithms can aid in deciphering patterns from
the test data. Patterns of interest are the relation between testers experience in the project and bugs uncovered, relations
between the testers experience and the efficiency of test case with respect to code coverage and test execution time. Relation
between testers experience and efficiency of test case with respect to code coverage and execution time, relation between
testers experience and bugs uncovered are explored using classic statistical techniques and clustering Machine Learning
Algorithms. This clustering can be of immense help in test selection, prioritization, pruning and Regression test execution
time reduction.

J Sen Net Data Comm, 2024

Educational Content Creators at 14AISS, Karnataka, India

Keywords: Clustering, Statistical Techniques, Weka, New Metric, Machine Learning, Data Science.

Journal of Sensor Networks and Data Communications
ISSN: 2994-6433

1. Introduction
This work assumes few things. Further the work tries to keep
things as simple as possible. The idea of keeping things simple
is with a reason. The final goal is to give workable solution for
projects of Industrial scale. Some readers may find few of the
details debatable. Few things assumed are:
• More time tester spends into a given project, their effectiveness
or rather the test cases devel-oped by the given tester improves.
• While theoretically complex solutions tend to be appealing, their
application to the projects of Industrial scale is far and few.
• The efficiency of the hand crafted test cases is related to time

spent by tester in a given project.
• Machine Learning where used, the number of attributes or
features are kept minimal to avoid running into dimensional issues
and to retain the effectiveness of the solution proposed.

The book by Author Abhinandan H. Patil lays foundation on
studying the relation between effec-tiveness of the test suite and
number of product lines of code traced while having least number
of lines in the test case and having least test execution time [1].
For the benefit of readers, the table is re-introduced.

SI No LOCTesti LOCProdi Ti Nmi
1
2
.
.
n
 Effectiveness of the total test suite = Σ Nmi
 Effectiveness of the test suite per test case = (Σ Nmi)/n

Table 1: Data Maintained for Nmi.

 Volume 4 | Issue 1 | 2J Sen Net Data Comm, 2024

where:
LOCTesti is Lines of Code in the test case number “i”
LOCProdi is Product Lines of code traced by the test case “i”
Ti is the test case execution time of test case “i”
Nmi = (LOCProdi) / (LOCTesti X Ti) (1)

In plain English the test case which traces maximum product lines
of code with least number of lines in itself in least time is termed
efficient.

The Author Abhinandan H. Patil gives hint that this can be starting
point for many things incluing application of classical statistical
techniques and Machine Learning on this type of data [1]. The
work here starts where the book left work as an exercise for the

readers. All the tables used in this work will consist of rows where
each row is the per test case information. Each column is the attrib-
ute or feature of the test case.

2. Historical Data to be Maintained between Successive
Execution of the Test Cases
The work assumes that where possible the test team maintains the
following information:
• Total months spent by the test case developer in testing the
product.
• LOCTesti, LOCProdi, Ti where each one of them retain the
meaning explained in section 1.
• Number of bugs uncovered by the test case.

Texp LOCTesti LOCProdi Ti Nmi Wbug

Table 2: Data Maintained between Successive Execution.

Where:
Texp is testers experience in months in given projects
LOCTesti, LOCProdi, Ti, Nmi retain the usual meaning
Wbug is appropriate weight assigned for the bugs uncovered
We introduce Nm2i which is simply new second metrics. Let us
define the Nm2i as:

Nm2i = (Wbug X LOCProdi) / (LOCTesti X Ti) (2)

3. Classical Statistical Analysis
Classical Statistical analysis in expected situation would reveal
peculiar pattern. The following rela-tions should be straight
forward regression lines:
1) Relation between Texp and Nmi
2) Relation between Texp and Bugs uncovered
3) Relation between Texp and Nmi2

But this is very intuitive and expected behavior of the test suite.
This is the precursor or preamble to the work that we will be
building upon in the subsequent sections. Rather than employing
these classical methods we will be exploring the Machine Learning
techniques to be explained in the sub-sequent sections.

4. Clustering of Data with Machine Learning
In Clustering the required data is plotted on a two dimensional
graph where each point is instance.
Associating unique number with the instances is clustering. By
assigning the unique number with the instances we cluster the data.

Some clustering Algorithms lead to each instance associating with
one and only one class. This is exclusive clustering.

Some clustering Algorithms lead to instances associating with more
than one class. This will lead to venn diagrams with overlapping
clusters.

Other Algorithms lead to hierarchical clusters called Dendrograms.
Dendrograms are essentially tree structures.

Unlike in classical approach, we will be employing latest Machine
Learning Algorithm to cluster the data in this section. Let us re-
visit the Table 2. We have all the required information to train
the computational machines at our disposal using the Machine
Learning Algorithms. Since we do not have the associated class
information with each test case, we leave it to computational
machine for decoding. We pass 5 attributes excluding the derived
attribute of Table 2 to the Machine Learning Algorithms. The
output of the Algorithm will be Clustered data. These clusters are
“Buckets” in standard terminology of testers. A rush through the
buckets/clusters will tell which clusters/buckets are priority. The
clusters could be ranked. Further these rankings will help in test
selection, prioriti-zation, pruning and Regression test execution
time reduction using the prioritization.

The standard Algorithms at our disposal are:
1) K Means Clustering
2) X Means Clustering
3) EM Classification
4) Cobweb Clustering
5) Hierarchical Clustering

We will not be getting into details of how these Algorithms

 Volume 4 | Issue 1 | 3J Sen Net Data Comm, 204

work or how they are implemented. These Algorithms come as
prepackaged in library or tool that we will be using.

5. Weka as Machine Learning Tool
We will be using Weka as a Machine Learning Tool for our study
however any other tool could be used.

The Authors prefer to use Weka for its simplicity, flexibility and
capabilities.

Weka is a full-fledged tool developed using Java. The owner of
the tool is University of Waikato, New Zealand. The tool comes
with exceptionally well documented manual to aid the users. Weka
could be invoked using:
1) Command line in turn using the shell scripts.
2) Using Graphical User Interface.
3) Using external code with Weka as library.

Weka could be extended for the specific purpose as the tool is
open source. However, users seldom run into this situation. As
mentioned earlier the tool is full-fledged and evolving.

6. Data Supplied to the Weka
@RELATION testsuite

@ATTRIBUTE testexp	 REAL
@ATTRIBUTE loctesti 	 REAL
@ATTRIBUTE locprodi 	 REAL
@ATTRIBUTE ti 	 REAL
@ATTRIBUTE weightforbug REAL

@DATA
24,100,1000,20,100
24,150,1200,25,200
24,120,1000,22,150
24,200,2200,25,200
24,50,750,10,0
24,75,1000,15,100
24,200,2000,23,100
24,300,2800,60,400
24,400,3800,40,300
24,225,2000,35,220
24,275,2700,26,180
24,325,3000,64,300
24,350,3500,50,400
24,225,2300,40,230
24,250,2800,45,280
16,175,1600,20,100
16,120,1300,22,90
16,160,1500,24,105
16,140,1400,23,140
16,120,1200,20,100
16,180,1700,25,160
16,150,1600,26,140
16,200,1900,18,180

16,130,1500,16,120
16,100,1200,20,90
16,120,1300,22,90
16,180,1700,25,160
8,200,2800,55,180
8,250,2000,60,150
8,300,3500,70,350
8,220,2300,38,200
8,100,1200,19,100
8,140,1500,22,150
8,160,1800,32,110
8,180,2000,35,300
8,170,2000,30,280
8,400,3400,70,350
2,30,100,10,15,0
2,40,200,12,15,10
2,80,400,20,22,20
2,50,500,19,24,25

7. Weka Run Information
=== Run information ===

Scheme: weka.clusterers.EM -I 100 -N 4 -X 10 -max -1 -ll-cv
1.0E-6 -ll-iter 1.0E-6 -M 1.0E-6 -K 10 -num-slots 1 -S 100
Relation: testsuite
Instances: 41
Attributes: 5
 testexp
 loctesti
 locprodi
 ti
 weightforbug
Test mode: evaluate on training data

=== Clustering model (full training set) ===

EM
==

Number of clusters: 4
Number of iterations performed: 3

 Cluster
Attribute 0 1 2 3
 (0.18) (0.22) (0.51) (0.1)
==
=========
testexp
 mean 8 24 17.2909 2.0254
 std. dev. 0 7.71 5.066 0.7472

loctesti
 mean 243.117 284.8986 136.9517 50
 std. dev. 75.4945 61.8854 38.9257 18.6975

 Volume 4 | Issue 1 | 4J Sen Net Data Comm, 2024

locprodi
 mean 2547.9978 2799.6796 1400.1295 300.5195
 std. dev. 620.8212 556.3647 325.276 158.76

ti
 mean 50.561 43.1101 21.3043 15.2439
 std. dev. 15.6316 12.7002 4.3058 4.3241

weightforbug
 mean 254.0893 280.2579 119.1436 18.9781
 std. dev. 78.9008 76.2082 41.8379 4.1106

Time taken to build model (full training data) : 0.04 seconds
=== Model and evaluation on training set ===

Clustered Instances

0 10 (24%)
1 9 (22%)
2 18 (44%)
3 4 (10%)

Log likelihood: -22.15541

8. Weka Clustered Data
@relation testsuite_clustered

@attribute Instance_number numeric
@attribute testexp numeric
@attribute loctesti numeric
@attribute locprodi numeric
@attribute ti numeric
@attribute weightforbug numeric
@attribute Cluster {cluster0,cluster1,cluster2,cluster3}

@data
0,24,100,1000,20,100,cluster2
1,24,150,1200,25,200,cluster2
2,24,120,1000,22,150,cluster2
3,24,200,2200,25,200,cluster1
4,24,50,750,10,0,cluster2
5,24,75,1000,15,100,cluster2
6,24,200,2000,23,100,cluster2
7,24,300,2800,60,400,cluster1
8,24,400,3800,40,300,cluster1
9,24,225,2000,35,220,cluster1
10,24,275,2700,26,180,cluster1
11,24,325,3000,64,300,cluster1
12,24,350,3500,50,400,cluster1
13,24,225,2300,40,230,cluster1
14,24,250,2800,45,280,cluster1
15,16,175,1600,20,100,cluster2
16,16,120,1300,22,90,cluster2
17,16,160,1500,24,105,cluster2

18,16,140,1400,23,140,cluster2
19,16,120,1200,20,100,cluster2
20,16,180,1700,25,160,cluster2
21,16,150,1600,26,140,cluster2
22,16,200,1900,18,180,cluster2
23,16,130,1500,16,120,cluster2
24,16,100,1200,20,90,cluster2
25,16,120,1300,22,90,cluster2
26,16,180,1700,25,160,cluster2
27,8,200,2800,55,180,cluster0
28,8,250,2000,60,150,cluster0
29,8,300,3500,70,350,cluster0
30,8,220,2300,38,200,cluster0
31,8,100,1200,19,100,cluster0
32,8,140,1500,22,150,cluster0
33,8,160,1800,32,110,cluster0
34,8,180,2000,35,300,cluster0
35,8,170,2000,30,280,cluster0
36,8,400,3400,70,350,cluster0
37,2,30,100,10,15,cluster3
38,2,40,200,12,15,cluster3
39,2,80,400,20,22,cluster3
40,2,50,500,19,24,cluster3

9. Steps to be Followed in Weka 3-9-4
1) Preprocess tab open Testsuite.arff
2) Filter→ Choose → unsupervised → Attribute → AddCluster
3) Clustertab → EM → Number of Cluster = 4 and Rest all default
4) Clustertab → start
5) Right Click on the result list → Visualize Cluster Assignments
→ Save results as arff

10. Result and Result Analysis
Before we start the result and result analysis few things need to
be discussed. The supplied data which is the characteristic of the
“Hypothetical” test suite assumes few things. The test team com-
prises of 4 testers with 24, 16, 8 and 2 months of experience into
the project. Since the tester who has spent more time with the
product tends to be well versed with the system and testing he/
she will produce efficiently crafted test cases. Hypothetical data
supplied to the Weka tries to emulate the real test suite as far as
possible. The supplied data has taken into consideration few facts
about the relation between testers experience and effectiveness of
the test case {LOCTesti, LOCProdi, Ti, BugsUncoveredWeight}.
We see that test cases could be clustered in the number of buckets
re-quired. Further cluster0 tends to be the best cluster. Followed
by the cluster 1 and 2. cluster3 con-tains the test cases crafted by
novice tester. This is expected as the tester is still at the starting
point of learning curve. Most of the test cases crafted by tester with
8 months experience are in cluster0. Test cases crafted by tester with
16 months is mostly in cluster2. Test cases crafted by tester with 24
months are shared between cluster1 and cluster2. While labelling
the test cases on the basis of few attribute such as experience of the
tester in the product testing can be controversial from few readers
perspective, it is unavoidable as the result could be analyzed from

 Volume 4 | Issue 1 | 5J Sen Net Data Comm, 2024

Copyright: ©2024 Abhinandan H. Patil, et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

https://opastpublishers.com/

various perspectives. Management could use the data from Return
on Investment (ROI) angle. These are unavoidable situation when
the test result is analyzed from various perspective. This work
consciously wants to avoid such controversy.

11. Conclusion
While few things are unavoidable, Data Science and Machine
Learning has its own advantages. The positive side of this
work is that the work could be used for test selection, test suite
prioritization, pruning and Regression test suite execution time
reduction among many other things [2-4].

Acknowledgement
The Authors of this work are indebted to Weka team for the
wonderful tool and library. Authors acknowledge the open source
operating system Kubuntu 19.10 for ease of use and capabilities.

Many thanks to OpenJDK. Many thanks to the LibreOffice team
for the wonderful documentation software.

References
1.	 Patil, A. H. (2019). Design and implementation of

combinatorial testing based test suites for operat-ing systems
used for internet of things. Lulu. com.

2.	 Witten, I. H., Frank, E., Hall, M. A., Pal, C. J., & Data, M.
(2005, June). Practical machine learning tools and techniques.
In Data mining (Vol. 2, No. 4, pp. 403-413). Amsterdam, The
Netherlands: Elsevier.

3.	 Witten Ian H., Frank Eibe, Hall Mark A., and Pal Christopher.
(2016). Data Mining, Fourth Edition: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann
Publishers.

4.	 University of Waikato. Weka Manual for version 3-9-3.

https://books.google.co.in/books?hl=en&lr=&id=SpWmDwAAQBAJ&oi=fnd&pg=PR3&dq=Patil,+A.+H.+(2019).+Design+and+implementation+of+combinatorial+testing+based+test+suites+for+operating+systems+used+for+internet+of+things.+Lulu.+com.&ots=tTI63aocsi&sig=uK-Kl6yV9anineYWRTBvSJzD230&redir_esc=y#v=onepage&q=Patil%2C%20A.%20H.%20(2019).%20Design%20and%20implementation%20of%20combinatorial%20testing%20based%20test%20suites%20for%20operating%20systems%20used%20for%20internet%20of%20things.%20Lulu.%20com.&f=false
https://books.google.co.in/books?hl=en&lr=&id=SpWmDwAAQBAJ&oi=fnd&pg=PR3&dq=Patil,+A.+H.+(2019).+Design+and+implementation+of+combinatorial+testing+based+test+suites+for+operating+systems+used+for+internet+of+things.+Lulu.+com.&ots=tTI63aocsi&sig=uK-Kl6yV9anineYWRTBvSJzD230&redir_esc=y#v=onepage&q=Patil%2C%20A.%20H.%20(2019).%20Design%20and%20implementation%20of%20combinatorial%20testing%20based%20test%20suites%20for%20operating%20systems%20used%20for%20internet%20of%20things.%20Lulu.%20com.&f=false
https://books.google.co.in/books?hl=en&lr=&id=SpWmDwAAQBAJ&oi=fnd&pg=PR3&dq=Patil,+A.+H.+(2019).+Design+and+implementation+of+combinatorial+testing+based+test+suites+for+operating+systems+used+for+internet+of+things.+Lulu.+com.&ots=tTI63aocsi&sig=uK-Kl6yV9anineYWRTBvSJzD230&redir_esc=y#v=onepage&q=Patil%2C%20A.%20H.%20(2019).%20Design%20and%20implementation%20of%20combinatorial%20testing%20based%20test%20suites%20for%20operating%20systems%20used%20for%20internet%20of%20things.%20Lulu.%20com.&f=false
https://doc1.bibliothek.li/acb/FLMF040119.pdf
https://doc1.bibliothek.li/acb/FLMF040119.pdf
https://doc1.bibliothek.li/acb/FLMF040119.pdf
https://doc1.bibliothek.li/acb/FLMF040119.pdf
https://dl.acm.org/doi/10.5555/3086818#cited-by-sec
https://dl.acm.org/doi/10.5555/3086818#cited-by-sec
https://dl.acm.org/doi/10.5555/3086818#cited-by-sec
https://dl.acm.org/doi/10.5555/3086818#cited-by-sec
https://sourceforge.net/projects/weka/files/documentation/3.9.x/WekaManual-3-9-3.pdf/download?use_mirror=excellmedia

