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                                                                           LUMOHOMO
Introduction
Flavonoids display a strong antioxidant and radical scavenging 
activity and seem to beassociated with reduced danger for certain 
chronic diseases, the prevention of some cardiovascular sicknesses 
and certain types of cancerous processes [1-4]. Flavonoids show also 
antiviral, antimicrobial, and anti-inflammatory activities, helpful on 
capillary fragility and prevent human platelet aggregation, antiulcer 
and antiallergenic [5-11]. Though, the actual in vivo mechanism 
of action is largely unknown. Most studies have attentivein 
vitro tests at amounts much higher than in humans,however 
few clinical investigations have been carried out around the 
diseases [12].Additional clinical trials are required to evaluate 
a more precise correlation between flavonoids consumption and 
human health benefits [13]. The possible mechanism of potential 
experimentalactionhas been studied [14]. Citrus juices attitude 
among the most significant phenolicrich dietary sources [15]. 

The most common acid Citrus fruits, e.g.lemons, grapefruits and 
bergamots.Although more than thousands of flavonoids have been 
exclusive, only alimited number of characteristic derivatives have 
been creating and identified.Their significance may outweigh their 
simple concentration levels. Overall, flavonoidsdonate to fruit and 
juice, the taste and the nutritional value of the product from the 
plant [16-18].The classes of flavonoids that characterize Citrus 
species flavanones hesperidin present intense peaks at 280 nm. 
The ESI-MS spectrum in negative mode of an O-disaccharide-
substituted flavanone, i.e. hesperidin (hesperetin 7-Orutinoside,1) 
[19]. The fragment m/e 463 was generated by the loss of one sugar 
unit (rhamnose). Lemon (C. limon) juice is characterized by the 
presence of significant amounts of the flavanones, hesperidin (1, 
20.5 mg/100 mL) [20-24].This amount is very small to study and 
reaction. We can synthesize the analogs. Computational chemical 
study and biological evaluation outlined the effect of hesperidin 
was due to the chromone moiety. To ease the reaction, simplicity 
and no cost. We synthesize the newly chromones 2,3 and 4 to study 
their behavior towards some electrophilic and nucleophilic reagents 
beside the biological evaluation.

Result and Discussion
One pot reaction of 2.5-dihydroxyacetophenone, aromatic aldehyde 
namely, 4-chlorobenzaldehyde, 3-hydroxy-4-methoxybenzaldehyde 
(vanillin) and 5-methyl-4-formyl-3-pyrazolone in the presence of 
anhydrous potassium hydroxide under grinding method (15-25 min) 
afforded the corresponding chromone derivatives 2-4 respectively. 
The heat content in grinding method was sufficient to cyclize the 
chalcone to give the desired products (Scheme 1). After several 
hours, autoxidation of the chromone1 afforded the chromone3 
(thermodynamic stable product) (Scheme 2).
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Scheme 1: Outline formation of the chromone products 1 and 2

Quantum chemical computation and antimicrobial evaluation can be 
confirmed that chromone (flavonoid species) were the main structure 
not the glucoside species when we compared between the synthesize 
chromone and extracted hesperidin.Grindingof chromone 3, ethyl-
acetoacetate and sodium acetate afforded ester 6. Formation of 1,3- 
dipolar ylide via three pot reaction of chromone 3, sarcosine and 
maleic acid afforded the Spiro derivative 7. Reaction of chromone 
3 with 4-nitrobenzaldehyde in the presence of anhydrous potassium 
hydroxide afforded the corresponding arylidene 8. Isomerization of 
the chromone 8 to chromone 9 can be investigated by reaction with 
thiourea and hydroxyl amine to give the corresponding thiochromone 
and oxime

HOMO(2)LUMO

HOMO (1)LUMO

Scheme 2: the autoxidation of the chromone 1 to give the product 3

HOMO 3LUMO

HOMO (7)LUMO

HOMO (8)LUMO
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HOMO (Isomerize 8)LUMO

Table 1: Molecular interactions and interacting residues of the 
AchE with Chromene derivatives
S.  
No.

Compound  
structure

Binding  
energy
k.cal/ 
mol

Docked complex
(amino acid 
–ligand) 
interactions

Bond
Distance

(Å)

1

Chromene3

-7.0

Hydrogen bonds
TYR456:OH---ligand 1
TYR249:OH---ligand 1
SER250:OH---ligand 1
Pi–Pi interactions
TRP212---ligand 1
TRP212---ligand 1

2.811
2.699
2.825

3.906
3.744

2

Chromene2

-8.2

Hydrogen bonds
TYR249:OH ---ligand 
2
TYR258:OH---ligand 2
Pi–Pi interactions
TRP212---ligand 2
TRP212---ligand 2
Pi-sigma interactions
ASP200---ligand2

2.786
2.801

4.550
5.137

3.707

The chromene derivatives with the best binding energy are represented 
with docking interactions in the table showing H-bonding, Pi-Pi, 
and Pi–sigma interactions. Phenolic moiety is represented in red 
square while the pyran moiety is in green cycle.

Table 2: ADMET proprieties of the chromene derivatives
S.

No.

Compound Molecular

Weight

(g/mol)

Blood- 

Brain

Barrier 

(BBB+)

Human 

Intestinal

Absorption  

(HIA+)

Caco-2 

Permeability 

(Caco2+)

AMES  

toxicity

Carcino-

genicity

1 Chromene3 516.68 0.847 0.994 0.613 Nontoxic Non 

carcinogenic

2 Chromene 2 560.69 0.509 0.977 0.569 Nontoxic Non 

carcinogenic

4-(6-Hydroxy-4-oxochroman-2-yl)-5-methyl-2,4-dihydro-3H-
pyrazol-3-one (1)
Yield 77%.m.p. 154-156 ºC. FT-IR (KBr) spectrum shows absorption 
bands at (in cm-1): 1695, 1655 (CO), 3420 (OH), 3333, 3205 (NH). 
The 1H-NMR (DMSO) spectrum shows signals in ppm at: 2.02 (s, 
3H, CH3 PY), 2.91 (d, CH PY J = 8.3 Hz), 3.63-3.68 (dd, 2H, CH2 
diastereotopic protons, J = 12.6, 5.4 Hz), 4.43 (m, methineproton 
CH), 6.78-7.51 (m, 3ArH), 9.32 (s, acidic OH proton of chromone 
which exchanged in D2O), 12.34 (bs, acidic NH proton which 
exchanged in D2O). EIMS, 260[M+.], 178, 152, 108,77 Elemental 
analysis; M.wt260 Calc. C13H12N2O4, Calc. % C 60.00, H 4.65, N 
10.76; found % C 59.72, H 4.45, N 10.53.

6-Hydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one (2)
Yield 82%.m.p. 174-176 ºC. FT-IR (KBr) spectrum shows absorption 
bands at (in cm-1): 1676 (CO), 3468, 3385 (OH). The 1H-NMR 
(CDCl3) spectrum shows signals in ppm at: 3.71-3.75 (dd, 2H, CH2 
diastereotopic protons, J = 12.6, 5.4 Hz), 4.03 (s, 3H, OCH3), 5.20 
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(dd, methine proton CH, J = 12.6, 5.4 Hz), 6.94-7.73 (m, 6ArH), 9.20 
(s, acidic OH proton of chromone which exchanged in D2O), 9.62 
(bs, acidic OH proton which exchanged in D2O). EIMS, 286[M+.], 
260, 152, 108,77. Elemental analysis; M.wt286 Calc. C16H14O5, 
Calc. % C 67.13, H 4.93; found % C 66.92, H 4.70.

4-(6-Hydroxy-4-oxo-4H-chromen-2-yl)-5-methyl-2,4-dihydro-
3H-pyrazol-3-one (3)
Yield 65%.m.p. 182-184 ºC. FT-IR (KBr) spectrum shows absorption 
bands at (in cm-1): 1673, 1653 (CO), 3484 (OH), 3310, 3243 (NH). 
The 1H-NMR (DMSO) spectrum shows signals in ppm at: 1.92 (s, 
3H, CH3 PY), 3.53 (d, CH PY J = 8.3 Hz), 6.72-7.26 (m, 4ArH), 
9.32 (s, acidic OH proton of chromone which exchanged in D2O), 
12.34 (bs, acidic NH proton which exchanged in D2O). EIMS, 
260[M+.], 178, 152, 108, 77Elemental analysis; M.wt258 Calc. 
C13H10N2O4, Calc. % C 60.47, H 3.90, N 10.85; found % C 60.22, 
H 3.75, N 10.70.

6 - H y d ro x y - 2 - ( 3 - h y d ro x y - 4 - m e t h o x y p h e n y l ) - 1 ’ -
methylspiro[chromane-4,2’-pyrrolidine]-3’,4’-dicarboxylic 
acid (4)
Yield 75%.m.p. 108-110 ºC. FT-IR (KBr) spectrum shows absorption 
bands at (in cm-1): 1705 (CO), 3420, 3373 (OH). The 1H-NMR 
(DMSO) spectrum shows signals in ppm at: 2.43 (s, 3H, NCH3), 
2.71-3.25 (m, 4H, CH2-CH-CH, pyrrolid), 3.53 (s, 3H, OCH3), 3.71-
3.75 (dd, 2H, CH2 diastereotopic protons, J = 12.6, 5.4 Hz), 4.23 (m, 
methine proton CH),7.44-7.73 (m, 6ArH), 9.12-9.20 (bs, acidic 2OH 
protons which exchanged in D2O), 12.01-12.09 (bs, acidic 2COOH 
protons which exchanged in D2O). EIMS, 429[M+.], 260, 252, 208, 
165, 146, 121. Elemental analysis; M.wt429 Calc. C22H23NO8, 
Calc. % C 61.53, H 5.40, N 3.26; found % C 61.31, H 5.16, N3.00.

3-Benzylidene-6-hydroxy-2-(3-hydroxy-4-methoxyphenyl)
chroman-4-one (5)
Yield 75%.m.p. 178-180 ºC. FT-IR (KBr) spectrum shows absorption 
bands at (in cm-1): 1685 (CO), 3500, 3433 (OH). The 1H-NMR 
(DMSO) spectrum shows signals in ppm at: 3.62 (s, 3H, CH3), 5.53 
(s, CH, chrom), 6.72-7.66 (m, 11ArH), 9.32 (s, acidic OH proton 
of chromone which exchanged in D2O), 10.34 (s, acidic OH proton 
which exchanged in D2O). EIMS, 374[M+.], 260, 252, 208, 165, 
146, 121. Elemental analysis; M.wt374 Calc. C23H18O5, Calc. % C 
73.59, H 4.85; found % C 73.41, H 4.62.

3-(4-Chlorobenzylidene)-6-hydroxy-2-(3-hydroxy-4-
methoxyphenyl)chroman-4-one (6)
Yield 77%.m.p. 192-194 ºC. FT-IR (KBr) spectrum shows absorption 
bands at (in cm-1): 1685 (CO), 3500, 3433 (OH). The 1H-NMR 
(DMSO) spectrum shows signals in ppm at: 3.62 (s, 3H, CH3), 5.53 
(s, CH, chrom), 6.72-7.80 (m, 10ArH), 9.32 (s, acidic OH proton 
of chromone which exchanged in D2O), 10.34 (s, acidic OH proton 
which exchanged in D2O). EIMS, 410[M+.+2], 408[M+.], 260, 252, 
208, 165, 146, 121. Elemental analysis; M.wt408 Calc. C23H17ClO5, 
Calc. % C 67.57, H 4.19; found % C 67.34, H 3.92.

3-(4-Nitrobenzylidene)-6-hydroxy-2-(3-hydroxy-4-
methoxyphenyl)chroman-4-one(7)
Yield 75%.m.p.212-214 ºC. FT-IR (KBr) spectrum shows absorption 
bands at (in cm-1): 1685 (CO), 3500, 3433 (OH). The 1H-NMR 
(DMSO) spectrum shows signals in ppm at: 3.62 (s, 3H, CH3), 5.57 
(s, CH, chrom), 6.84-7.96 (m, 10ArH), 9.32 (s, acidic OH proton 
of chromone which exchanged in D2O), 10.34 (s, acidic OH proton 

which exchanged in D2O). EIMS, 419[M+.], 260, 252, 208, 165, 
146, 121. Elemental analysis; M.wt419 Calc. C23H17NO7, Calc. % 
C 65.87, H 4.09, N 3.34; found % C 65.66, H 3.89, N 3.03.

9-Hydroxy-5-(3-hydroxy-4-methoxyphenyl)-2-oxo-4-phenyl-
1,3,4,5-tetrahydro-2H-chromeno[4,3-b]pyridine-3-carbonitrile (8)
Yield 75%.m.p.236-238 ºC. FT-IR (KBr) spectrum shows absorption 
bands at (in cm-1): 1665 (CO), 3500, 3433 (OH), 3247 (NH). The 
1H-NMR (DMSO) spectrum shows signals in ppm at: 3.62 (s, 3H, 
CH3), 3.82 (d, CH, Pyrid), 3.95 (d, CHCN), 5.57 (s, CH, chrom), 
6.64-7.68 (m, 11ArH), 9.32 (s, acidic OH proton of chromone which 
exchanged in D2O), 10.34 (s, acidic OH proton which exchanged 
in D2O), 11.20 (s, acidic NH proton which exchanged in D2O). 
EIMS, 440[M+.], 260, 252, 208, 165, 146, 121. Elemental analysis; 
M.wt440 Calc. C26H20N2O5, Calc. % C 70.90, H 4.58, N 6.36; found 
% C 70.66, H 4.29, N 6.13.

9-Hydroxy-5-(3-hydroxy-4-methoxyphenyl)-4-phenyl-1,3,4,5-
tetrahydro-2H-chromeno[4,3-d]pyrimidin-2-one (9)
Yield 75%.m.p.260-262 ºC. FT-IR (KBr) spectrum shows absorption 
bands at (in cm-1): 1665 (CO), 3500, 3433 (OH), 3312, 3247 (NH). 
The 1H-NMR (DMSO) spectrum shows signals in ppm at: 3.72 (s, 
3H, CH3), 4.87 (s, CH, Pyrid), 5.49 (s, CH, chrom), 6.57-7.48 (m, 
11ArH), 9.32 (s, acidic OH proton of chromone which exchanged in 
D2O), 9.54 (s, acidic OH proton which exchanged in D2O), 10.03-
10.12 (bs, acidic 2NH proton which exchanged in D2O). EIMS, 
416[M+.], 260, 252, 208, 165, 146, 121. Elemental analysis; M.wt416 
Calc. C24H20N2O5, Calc. % C 69.22, H 4.84, N 6.73; found % C 
69.00, H 4.60, N 6.47.

9-Hydroxy-5-(3-hydroxy-4-methoxyphenyl)-4-phenyl-1,3,4,5-
tetrahydro-2H-chromeno[4,3-d]pyrimidin-2-thione (10)
Yield 75%.m.p.224-226 ºC. FT-IR (KBr) spectrum shows absorption 
bands at (in cm-1): 3500, 3433 (OH), 3312, 3247 (NH). The 1H-NMR 
(DMSO) spectrum shows signals in ppm at: 3.72 (s, 3H, CH3), 4.87 
(s, CH, Pyrid), 5.49 (s, CH, chrom), 6.57-7.48 (m, 11ArH), 9.32 
(s, acidic OH proton of chromone which exchanged in D2O), 9.54 
(s, acidic OH proton which exchanged in D2O), 10.03-10.12 (bs, 
acidic 2NH proton which exchanged in D2O). EIMS, 435, 432[M+.], 
260, 252, 208, 165, 146, 121. Elemental analysis; M.wt432 Calc. 
C24H20N2O4S, Calc. % C 66.65, H 4.66, N 6.48, S 7.41; found 
% C 66.35, H 4.40, N 6.27, S 7.20..

4-(3-hydroxy-4-methoxyphenyl)-3-phenyl-2,3,3a,4-
tetrahydrochromeno[4,3-c]pyrazol-8-ol (11)
Yield 75%.m.p.292-294 ºC. FT-IR (KBr) spectrum shows absorption 
bands at (in cm-1): 3500, 3433 (OH), 3312, 3247 (NH). The 1H-NMR 
(DMSO) spectrum shows signals in ppm at: 3.88 (s, 3H, CH3), 4.54 
(dd, C3H, chrom), 5.17 (d, C2H, Pyrid),5.57 (d, CH, chrom), 6.83-
7.62 (m, 11ArH), 9.13 (s, acidic OH proton of chromone which 
exchanged in D2O), 9.37 (s, acidic OH proton which exchanged 
in D2O), 12.25 (s, acidic 1NH proton which exchanged in D2O). 
EIMS, 388[M+.], 260, 252, 208, 165, 146, 121. Elemental analysis; 
M.wt388 Calc. C23H20N2O4, Calc. % C 71.12, H 5.19, N 7.21; found 
% C 70.90, H 4.93, N 6.97.

9-Hydroxy-5-(3-hydroxy-4-methoxyphenyl)-4-(4-nitrophenyl)-
1,3,4,5-tetrahydro-2H-chromeno[4,3-d] pyrimidin-2-one (12)
Yield 75%.m.p.260-262 ºC. FT-IR (KBr) spectrum shows absorption 
bands at (in cm-1): 1665 (CO), 3500, 3433 (OH), 3312, 3247 (NH). 
The 1H-NMR (DMSO) spectrum shows signals in ppm at: 3.72 (s, 
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3H, CH3), 4.87 (s, CH, Pyrid), 5.49 (s, CH, chrom), 6.57-7.48 (m, 
10ArH), 9.32 (s, acidic OH proton of chromone which exchanged 
in D2O), 9.54 (s, acidic OH proton which exchanged in D2O), 10.03-
10.12 (bs, acidic 2NH proton which exchanged in D2O). EIMS, 
461[M+.], 260, 252, 208, 165, 146, 121. Elemental analysis; M.wt461 
Calc. C24H20N3O7, Calc. % C 62.47, H 4.15, N 9.11; found % C 
62.23, H 3.91, N 8.87.

6-Hydroxy-2-(3-hydroxy-4-methoxyphenyl)-3-(4-nitrobenzyl)-
4H-chromene-4-thione (13)
Yield 75%.m.p.154-156 ºC. FT-IR (KBr) spectrum shows absorption 
bands at (in cm-1): 3500 (OH). The 1H-NMR (DMSO) spectrum 
shows signals in ppm at: 3.53 (s, CH2, benz), 3.62 (s, 3H, CH3), 
6.84-8.16 (m, 10ArH), 9.32 (s, acidic OH proton of chromone which 
exchanged in D2O), 10.34 (s, acidic OH proton which exchanged 
in D2O). EIMS, 435[M+.], 260, 252, 208, 165, 146, 121. Elemental 
analysis; M.wt435 Calc. C23H17NO6S, Calc. % C 63.44, H 3.94, N 
3.22, S 7.36; found % C 63.26, H 3.79, N 3.00, S 7.11.

4-(3-hydroxy-4-methoxyphenyl)-3-(4-nitrophenyl)-2,3,3a,4-
tetrahydro-chromeno[4,3-c]pyrazol-8-ol (14)
 Yield 75%.m.p.308-310 ºC. FT-IR (KBr) spectrum shows absorption 
bands at (in cm-1): 3500, 3433 (OH), 3312, 3247 (NH). The 1H-NMR 
(DMSO) spectrum shows signals in ppm at: 3.88 (s, 3H, CH3), 4.54 
(dd, C3H, chrom), 5.17 (d, C2H, Pyrid), 5.57 (d, CH, chrom), 6.83-
7.62 (m, 10ArH), 9.13 (s, acidic OH proton of chromone which 
exchanged in D2O), 9.37 (s, acidic OH proton which exchanged 
in D2O), 12.25 (s, acidic 1NH proton which exchanged in D2O). 
EIMS, 433[M+.], 260, 252, 208, 165, 146, 121. Elemental analysis; 
M.wt433 Calc. C23H20N3O6, Calc. % C 63.74, H 4.42, N 9.70; found 
% C 63.50, H 4.23, N 9.47.

6-Hydroxy-2-(3-hydroxy-4-methoxyphenyl)-3-(4-nitrobenzyl)-
4H-chromen-4-one oxime (15)
Yield 75%.m.p.128-130 ºC. FT-IR (KBr) spectrum shows absorption 
bands at (in cm-1): 3515, 3465 (OH). The 1H-NMR (DMSO) 
spectrum shows signals in ppm at: 3.59 (s, CH2, benz), 3.68 (s, 
3H, CH3), 6.84-8.16 (m, 10ArH), 9.32 (s, acidic OH proton of 
chromone which exchanged in D2O), 10.34 (s, acidic OH proton 
which exchanged in D2O), 11.14 (s, acidic OH proton of oxime which 
exchanged in D2O). EIMS, 434[M+.], 260, 252, 208, 165, 146, 121. 
Elemental analysis; M.wt434 Calc. C23H18N2O7, Calc. % C 63.59, 
H 4.18, N 6.45; found % C 63.31, H 3.93, N 6.22.
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