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Abstract
In Nature, 570, 200 (2019), Minev and co-authors’ experiment shows how to deterministically “catch and reverse a quantum 
jump mid-flight” in a continuously-observed Rabi-stimulated qubit. Its interpretation is in debate (La Recherche, 555, 40, (2020)). 
We show that the quantum Zeno effect (QZE) of continuous measurement —by use of photon emission from a 3rd high-rate 
monitored ancilla level— can be described by an action-angle canonical transformation of the original Hamiltonian dynamical 
system (HDS) theory of QZE. Then energy whose mean value yields the well-known resonant Rabi harmonic dynamics is actually 
defined by large-amplitude high-frequency oscillations of the internal as well as of the overall phase of the two-level system. By 
making use of their standard deviation, we show that the separatrix crossing of the HDS trajectory yields the quantized action nh 
where n = 1, 2, 3 .... Therefore, the jump dynamics observed in Minev et al. experiment belongs to a series of discrete quantum 
jumps: it corresponds in this experiment to n = 3.
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Introduction
According to the quantum Zeno effect (QZE), frequent (almost 
continuous) measurements would inhibit the decay of unstable 
quantum systems [1]. It is usually explained by two properties 
[2, 3]: (i) the Schrödinger equation which ensures that the speed 
of transition to the other states at t = 0 is zero (hence the decay 
probability is α t 2); (ii) the system evolves from the same ini-
tial state after every measurement. This latter condition yields the 
controversial interpretation of QZE [4, 5]. Indeed, according to 
some authors [6, 7], the QZE is a pure dynamical process which 
does not involve any projection operator while according to the 
quantum measurement theory [8], the wave-function collapse 
takes place as a consequence of observation and, consequently, 
the density matrix of the system loses its off-diagonal components. 
This latter interpretation has been experimentally verified by use 
of a Rabi driven two-level system —namely, a ground state |G> 
and an excited state |D>— with the addition of a 3rd “ancilla” 
state |B> that actually plays the role of the continuously-operat-
ing ground-state population measurement [3, 9, 10]. Specifically, 
state |B> is connected by a strongly allowed transition to level |G> 
and it can decay only to |G>. The continuous state measurement is 
carried out by resonantly (Rabi) driving the G → B transition with 
an appropriately designed optical pulse. This measurement causes 
a collapse of the wave function. If the system is projected into 
the ground-state level |G> at the beginning of the pulse, it cycles 

between |G> and |B> and emits a series of photons —hence the 
label |B> for “bright”— until the pulse is turned off. If it is project-
ed into the excited level |D> (for “dark”), it scatters no photons. 
Therefore, the wave-function collapse is due to a null measure-
ment [11, 12]. That is, the absence of scattered photons when the 
optical pulse is applied is enough to cause a collapse of the wave 
function to level |D> [10]. 

The results of a recent remarkable experiment using a similar ex-
perimental setup as in QZE pioneering paper [10] with the same 
underlying physical principle have been explained quite success-
fully by the theory of quantum trajectories [13, 14] without any 
explicit reference to QZE [15]. However, the leader of this ex-
perimental group unambiguously states: “Naturally, our work is 
directly related to the QZE which applies to both types of jumps” 
[16]. Therefore, the purpose of the present paper is to recover by 
the sole use of QZE the existence of the abrupt jumps between |G> 
and |D> described in Figures 2a and 3b of experiment [15].

Specifically, this experiment shows the evolution of the state of 
an unstable two-level system (or qubit), the ground state |G> of 
which is short-lived since it decays to the third, upper level |B> to 
which it is connected by a strong resonant field. The condition to 
observe the evolution found in Figures 2a and 3b of [15] is that the 
decay rate of |G> be much greater than the Rabi frequency for the 
qubit (if this condition is violated, the evolution would have a quite 
different form). This means that the resulting photon emission due 
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to the G → B transition is quasi-continuous within the time scale 
of the Rabi period. Thence, it yields indeed the QZE measurement 
process of the population of unstable ground state |G> displayed in 
[10]. However, the discovery of the sharp quantum jumps between 
|G> and |D> in the long-range evolution of the system [15] seems 
to contradict the very definition of QZE where unstable systems 
should not decay [1]. Instead of following the well-known stan-
dard harmonic decay rate of the Rabi-driven ground state |G> in 
the absence of any measurement process and its subsequent har-
monic probability of finding the system in the excited state |D>, 
the system should tend to remain “frozen” in |G> when the number 
of equally spaced measurements increases [10]. Experiment [15] 
clearly shows that this is not the case. We wish to provide here 
empirical evidence to support the existence of these anomalous 
quantum jumps by the use of QZE and first principles; namely: i) a 
longrange QZE vs Rabi competition between stimulated harmonic 
Rabi transition and QZE population freezing; ii) action quantiza-
tion in order to select the corresponding Hilbert paths in the ap-
propriate energy spectrum. This approach offers the experimental 
prediction of the existence of a possible discrete series n = 1, 2, 3... 
of QZE-vs-Rabi quantum jumps —which we call “quantum Zeno 
jumps”— of the type shown in Figures 2a and 3b of [15]. In this 
latter case, we find n = 3.

In order to define the action of the system, we use the canonical 
action-angle Hamiltonian dynamical description of QZE where 
the Rabi oscillations of the mean energy of the system (which is 
a very old and well-studied topic in a rotating frame) are taken 
into account in their non-rotating (original) frame. The interest 

of this apparently more complicated method is to display by use 
of the strongly time-dependent internal and overall phases of the 
two-level system [17] the surprisingly large standard deviation of 
its energy with respect to the Rabi harmonic mean value: see Fig-
ure 7 below. Then this large available energy range defines the 
discrete quantum Zeno jumps in their appropriate Hilbert space. It 
is worth noting that, contrary to intuitive opinions, the dynamics 
of the overall phase of a quantum state can indeed yield an ob-
servable physical effect (e.g. it causes the famous 4π-symmetry 
of spinor wave functions that have been directly verified in both 
division-of-amplitude [18, 19] and division-of-wave-front [20] 
neutron interferometry experiments).

We believe that this new scope concerning experiment [15] sheds 
an interesting light on the art of manipulating qubits where a con-
tinuous feedback between basic science and technology is essen-
tial. Questions at the foundations of quantum mechanics, which 
had been put to rest by most physicists in the 1930s, were revisited 
starting primarily in the 1960s and put to the test in the 1970s, 
1980s, and 1990s. Of special interest in the present case: do quan-
tum jumps occur and how does a quantum measurement occur in 
continuous time [21].

The Hamiltonian dynamical system (HDS)
Following [17], we adopt a two-state Hamiltonian H that is defined 
by the two Pauli matrices σ

x
 and σ

z
. The corresponding Schröding-

er equation for the two-component normalized spinor wave func-
tion Ψ = {ψ

a
, ψ

b
} becomes:
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Ansatz (2) in (1) yields the non-autonomous Hamiltonian dynamical system (HDS):

(3)
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3

Note that H
aa

 = −H
bb

 = E(t) defines the external drive while H
ab 

= 
H

ba
 = K is real-valued and constant. It defines half the energy gap 

of the system. We introduce the time-dependent internal and over-
all phases δ(t) and Θ(t) according to:

Ansatz (2) in (1) yields the non-autonomous Hamiltonian dynamical system (HDS):
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Figure 1: First half Rabi period 2π/A with A = 0.1: desexcitation 
HDS trajectory starting counter clockwise at α(0) = δ(0) = 0 —i.e. 
at the fixed point corresponding to the eigenvalue +1— and ending 
clockwise at α(2π/A) = 0, δ(2π/A) = π —i.e. at the eigenvalue -1, 
according to (4). The excitation path —namely, the 2nd half of the 
Rabi period— is the “return” HDS trajectory topologically similar 
to the above 1rst half one: it starts clockwise at the previous fixed 
point α(2π/A) = 0, δ(2π/A) = π and ends counter-clockwise at the 
initial fixed point α(4π/A) = δ(4π/A) = 0.

defined by the HDS Hamiltonian:

related to the qubit Hamiltonian H:

Therefore, the HDS Hamiltonian H is the quantum expectation 
value of the qubit energy. The dynamics of the overall phase Θ(t) 
is not a 3rd independent variable: it is given by:

The reduced drive is defined by B(t) = E(t)/K and the dot means the 
derivation with respect to the dimensionless time τ = Ωt related to 
the Larmor frequency of the system Ω = 2K/ħ.

Therefore, we have transformed by use of (2) the two-state spinor 
quantum system (1) —or qubit— into the mere classical dynami-
cal system (3-4) where for convenience:

Figure 2: The same as in Figure 1 with A = 0.01. Now the 2nd half 
Rabi period HDS trajectory will end up at α(4π/A) = 0, δ(4π/A) = 
2π instead of δ(4π/A) = 0 as in Figure 1.

This HDS may exhibit all types of classical trajectories in its ap-
propriate {α vs δ} phase space that is defined by the two canonical 
variables α and δ (e.g. a resonant Rabi drive yields an aperiodic 
fractal spectrum [22]) provided the (square) amplitudes (2) yields 
the respective probabilities for any distribution of observables cor-
responding to these HDS trajectories.

Assuming as in [15] a weak resonant Rabi drive B(τ) = Asin τ with 
A << 1, Figure 1 displays the HDS trajectory for A = 0.1 over one 
half Rabi period 2π/A, to be compared with Figure 2 when A = 
0.01. As emphasized in [17], the phase space {α vs δ} is divided 
into cells of width π and height 2 = ±1, each cell corresponding 
to 1/4th of a Rabi period. These cells are centered about the fixed 
points ±1 which define the eigenvalues in units (7). Following a 
dense series of quasi-periodic HDS orbits in the A << 1 weakly 
driven case, the trajectory spirals out of one given cell and in into 
either the next left-hand side or right-hand side one (or reverse). 
The smaller A, the higher the density of such quasi-periodic orbits 
whose period approaches closer and closer the A = 0 conservative 
value ˷  2π: compare Figure 1 and 2. The separatrices between these 
cells are located at α = 0 and δ = π/2 (mod. ±π) and yield in agree-
ment with definitions (2) an extremely fast flipping of the system 
between its two states with the period ˷ 2π << Rabi period 4π/A: 
see Figure 3.

The energy of the Rabi-driven two-level system
The time-dependent qubit energy (5) is [17]:
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Figure 3: The fast flipping of the two π phase-shifted probabilities 
|ψ

a,b
|2 between 0 and 1 when the HDS trajectory crosses the separa-

trix of Figure 2. This latter is defined by δ = π/2 and occurs at 1/4th 

of the Rabi period, i.e. at τ ˷ π/A = 314 for A = 0.01.

Figure 4: The start of the growing-amplitude oscillations with the 
short HDS orbit period ˷ 2π of the two state energies E

a,b
 which 

are phase-shifted by π and defined by equations (9) and (11) in 
the weakly Rabi-driven resonant case A = 0.01. The mean qubit 
energy H defined by equations (8-12) is displayed in yellow bold.

Figure 5: Running on from Figure 4: the high-frequency long-
range oscillations of the two state energies E

a
 (continuous) and 

E
b
 (dotted) in the weakly Rabi-driven resonant case A = 0.01 with 

their divergences about the two separatrices. The mean qubit ener-
gy H defined by equations (8-12) is displayed in yellow bold: it is 
in perfect agreement with Rabi’s well-known harmonic oscillation 
(12) of the resonantly-driven qubit energy between its two eigen-
values ±1. 

Note that

Therefore, the values of the mean state energies are quite close: 
|ψ

a
|2E

a
 ˷ |ψ

b
|2E

b
 ˷ KH/2 while the E

a,b
 state energies themselves are 

phase-shifted by π: see Figures 3 and 4. In terms of the two phases 
Θ(τ) and δ(τ), the state energies E

a,b
 read:

In the weakly driven case 1 >> A ≠ 0, the state energies E
a,b

  are 
oscillating very fast with the short HDS orbit period ˷ 2π while 
their amplitudes are strongly increasing: see Figure 4. These latter 
eventually diverge about the two separatrices: see Figures 5 and 6. 
These high-frequency divergences are counterbalanced by the ap-
propriate vanishing values of their respective high-frequency state 
amplitudes ψ

a,b
 as shown by Figures 3 and 6. Therefore they yield 

(in yellow bold in Figures 4 and 5) Rabi’s regular harmonic time 
dependence of mean energy H:

in accordance with equation (8).
The respective standard deviations σ

a,b
 defined by the variance

Figure 6: High-frequency growing-amplitude energy E
a
 defined 

by equations (9) and (11) together with its high-frequency dot-
ted-brown probability density |ψ

a
|2 defined by (2) in the case A = 

0.01. The HDS separatrix crossing is zoomed in Figure 3.

describe the range of dispersion of the energy values ε(τ) bounded 
by ±σ

a,b
 about the mean energy H at the given time τ:
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their divergences about the two separatrices. The mean qubit energy defined by eqs (8)-(12) is
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FIG. 6: High-frequency growing-amplitude energy defined by eqs (9) and (11) together with
its high-frequency dotted-brown probability density defined by (2) in the case . The
HDS separatrix crossing is zoomed in Fig. 3.

describe the range of dispersion of the energy values bounded by about the mean
energy at the given time :

H(τ)− σa(τ)− σb(τ) ≤ E(τ) ≤ H(τ) + σa(τ) + σb(τ), (14)

see Fig. 7. The darker areas display smaller-amplitude oscillations that are phase-shifted
by with respect to the large-amplitude ones, each oscillation keeping nevertheless its HDS
orbit period . The mean energy itself is shown in light blue while the (purple

) (resp. green ) high-frequency standard deviations display the rather important
dispersion of acceptable energy about in accordance with (14), except at the two
eigenvalues where, as expected, this dispersion vanishes.

D. The action-angle HDS description of the quantum Zeno jump

Due to QZE, continuous measurement (by use of photon emission from the 3rd high-rate
monitored ancilla level |B>) of the Rabi-stimulated ground state transition to excited state
|D> in [15] forces the population —and hence the energy— of ground state to
remain quasi-constant in (14) before the transition to the excited state +1 occurs. There is
clearly a QZE vs Rabi competition between Rabi driving (12) and QZE population freezing
[10]. We wish to describe this competition in the energy regions (14) illustrated by the 2nd
(r.h.s.) half of the energy phase portrait displayed by Fig. 7. Therefore we take the origin
of time at in Fig. 7. We recall that the resonant Rabi drive in [15] is very
weak like in the present case (actually we assume in this section). Therefore the
system is quasi-periodic with the same time scale of any single HDS quasi-orbit period
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see Figure 7. The darker areas display smaller-amplitude oscil-
lations that are phase-shifted by π with respect to the large-am-
plitude ones, each oscillation keeping nevertheless its HDS orbit 
period ˷ 2π. The mean energy H  itself is shown in light blue while 
the (purple +σ

a,b
) (resp. green −σ

a,b
) high-frequency standard devi-

ations display the rather important dispersion of acceptable energy 
ε about H in accordance with (14), except at the two eigenvalues 
±1 where, as expected, this dispersion vanishes.

The action-angle HDS description of the quantum Zeno jump
Due to QZE, continuous measurement (by use of photon emis-
sion from the 3rd high-rate monitored ancilla level |B>) of the Ra-
bi-stimulated ground state transition to excited state |D> in [15] 
forces the population —and hence the energy— of ground state 
ε(τ) ˷ −1 to remain quasi-constant in (14) before the transition to 
the excited state +1 occurs. There is clearly a QZE vs Rabi com-
petition between Rabi driving (12) and QZE population freezing
[10]. We wish to describe this competition in the energy regions 
(14) illustrated by the 2nd (r.h.s.) half of the energy phase portrait 
displayed by Figure 7. Therefore we take the origin of time at τ = 
2π/A = 786 in Figure 7. We recall that the resonant Rabi drive in 
[15] is very weak like in the present case (actually we assume A = 
0.008 in this section). Therefore, the system is quasi-periodic with 
the same ˷ 2π time scale of any single HDS quasi-orbit period

Figure 7: The dressing of the HDS Hamiltonian H (in continuous 
light blue) by the standard deviations ±σ

a,b
 defined by equations 

(13) and (14) in one Rabi period 4π/A defined by A = 0.008.

in our reduced units (7). Hence the corresponding HDS frequency 
quite close to unity for all quasi-orbits illustrated by Figures 1 and 
2. This remarkable property suggests to make use of the type-2 
canonical transformation from the generalized coordinates δ and 
α defined by (2) to the new action-angle canonical coordinates 
whose action defined along the two QZE paths of (quasi)constant 
energy ε(τ) ˷ +1:

is respectively conjugated to the trajectory angle ˷  ±τ defined by the 
HDS quasi-orbit frequency ˷ ±1. It is displayed by the upper bold 
profile in Figure 8. The peak occurs about the separatrix crossing 
at τ = π/A between the H < 0 and the H > 0 cells of the phase space. 

Therefore, we respectively define the corresponding action before 
and after the separatrix as follows [17]:

where K =∫
0

π/A [1 + H]dτ is the amplitude of the peak.

In order to describe the QZE vs Rabi competition in (14), we intro-
duce the following family of possible transitions from the ground 
state ε(τ) ˷ −1 to the excited state ε(τ) ˷ +1 during 1/2 Rabi period 
2π/A = 786. These transitions are parametrized by p:

Figure 8: A = 0.008. Upper bold profile: The action defined by 
equations (15) or (16) when crossing the separatrix at 1/4th of 
the Rabi period, i.e. here at τ = 394. Three subsequent decreasing 
dashed profiles: typical action profiles (18) for, say, p=201, 152, 
103. The three last lower bold profiles: quantized action (18) cor-
responding in our reduced units (7) to the maxima K

p
 = 3h, K

p
 = 

2h and K
p
 =h where K

p
 is defined by (19). They respectively cor-

respond to p=53, p=35 and p=17 in equations (17-18). The p=53 
action yielding K53 = 37.43 and corresponding to the quantized 
action 3h agrees quite well with the path followed by the jump 
evolutions shown by Figure 3b of [15]: see Figure 9.

and they occur within the standard deviations (14) that are dis-
played by the 2nd (r.h.s.) half of Figure 7. We note that p=250 
reproduces fairly well mean energy (12). Decreasing p defines 
sharper and sharper transitions about the separatrix at 1/4 Rabi pe-
riod τ = π/A: see Figure 8. Using (16), we have:

before:
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FIG. 8: . Upper bold profile: The action defined by eqs ( ) or (16) when crossing the
separatrix at 1/4th of the Rabi period, i.e. here at . Three subsequent decreasing dashed
profiles: typical action profiles (18) for, say, p=201, 152, 103. The three last lower bold profiles:
quantized action (18) corresponding in our reduced units (7) to the maxima h, h
and h where is defined by (19). They respectively correspond to p=53, p=35 and p=17
in eqs (17)-(18). The p=53 action yielding and corresponding to the quantized action
3h agrees quite well with the path followed by the jump evolutions shown by Fig. 3b of [15]: see
Fig. 9.

and they occur within the standard deviations (14) that are displayed by the 2nd (r.h.s.)
half of Fig. 7. We note that p=250 reproduces fairly well mean energy (12). Decreasing
defines sharper and sharper transitions about the separatrix at 1/4 Rabi period :
see Fig. 8. Using (16), we have:

: Sp(τ) ∼

∫ τ<π/A

0

[

1 + Ep(τ)
]

dτ ′ ; after : Sp(τ) ∼ Kp −

∫ τ<2π/A

π/A

[

1− Ep(τ)
]

dτ ′,

(18)
where

(19)

is the amplitude of the peak of action (18): e.g. in Fig. 8 since .
The smaller , the lower .
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where

is the amplitude of the peak of action (18): e.g. K250 = 144 in Figure 
8 since ε250(τ) ˷ H(τ). The smaller p, the lower K

p
.

Figure 9: Second (r.h.s.) part of Figure 7. Circles: the path in the 
Hilbert space followed by the jump evolutions given in Figure 3b 
of [15] using the T

rabi 
= 50 μs Rabi period given in [15] for the 

normalization of the τ -axis. The 13% deviation from the excited 
eigenvalue +1 is due to imperfections, mostly excitations to higher 
levels [15]. Dashed line, dotted-dashed line and thick yellow bold 
line: the energy path (17) with p = 17, p = 35 and p = 53 corre-
sponding respectively to the n = 1, n = 2 and n = 3 quantized action 
(18) in accordance with quantization (20): see Figure 8.

Action quantization
The above action-angle description yieds in the reduced units (7) 
the following quantization of the generalized momentum (19) at 
the separatrix crossing:

Decreasing p from 250 —where ε250 
˷ H reproduces the Rabi os-

cillation (12)— to the particular values p1, 2, 3... such that the corre-
sponding maxima Kp1, 2, 3... = 4π, 8π, 12π... in accordance with (20) 
leads to the three lower bold profiles of Figure 8. We respectively 
find p

1
 = 17, p

2
 = 35 and p

3
 = 53 for n = 1, n = 2 and n = 3. The cor-

responding energy trajectories ε
p1, 2, 3... (τ) defined by (17) are shown 

in Figure 9: dashed line for n = 1, dotted dashed line for n = 2 and 
bold yellow line for n = 3. The observed “times-of-flight” between 
the two eigenvalues ±1 in Figure 3b of [15] are reproduced by 
circles in Figure 9, using the T

rabi
 = 50 μs value of the Rabi period 

given in this paper. Its 13% deviation from the excited eigenvalue 
+1 is due, the authors say, to imperfections, mostly excitations to 
higher levels. We conclude that there is a quite good agreement be-
tween Ref. [15]’s “time-of flight” circled data in Figure 9 and the 
n = 3 discrete action trajectory defined by p = 53 in (17). The fact 
that [15] stimulates this specific third quantized action is probably 
due to particular choices in the experimental conditions. A chal-
lenging experimental confirmation of the present theory would be 
to obtain by use of a similar Rabi vs QZE qubit stimulation set-up 
the sharper n = 1 and/or n = 2 transitions.

Conclusion
We explain the QZE vs Rabi transitions (or “Quantum Zeno 
Jumps”) between the two Rabi-driven states of a continuous-
ly-observed qubit by both QZE and action quantization within the 
standard deviation of the system energy about its Rabi harmonic 
mean value. The equivalence between the quantum description 
of a driven qubit and its dual non-autonomous HDS Hamiltoni-
an model [17] allows the type-2 canonical transformation from 
the generalized HDS coordinates δ and α to new action-angle co-
ordinates. These latter yield the sharp action variation when the 
HDS trajectory crosses the separatrix of the system. This value is 
quantized and yields nh. We find that the n = 3 quantized solution 
agrees quite well with the QZE “time-of-flight” data given in [15]. 
This reference displays the observation and explanation of several 
other spectacular effects that we did not consider in the present 
simple theory; e.g. the mid-flight transition reversal as well as the 
fine-structure of the Rabi driving process in the dynamics of the 
transition. Our aim is merely to show that it suffices to explicitely 
refer to QZE and in addition to make use of action quantization 
for explaining the anomalous quantum Zeno jump described in the 
remarkable experiment [15]. This constitutes a new result in the 
debate concerning the interpretation of this experiment [12]. The 
agreement between Ref. [15]’s quite accurate description in terms 
of the theory of quantum trajectories and our empirical action-an-
gle description in terms of Rabi-vs-QZE competition emphasizes 
the profound coherence of the quantum theory.
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the two eigenvalues in Fig. 3b of [15] are reproduced by circles in Fig. 9, using the

s value of the Rabi period given in this paper. Its deviation from the
excited eigenvalue +1 is due, the authors say, to imperfections, mostly excitations to higher
levels. We conclude that there is a quite good agreement between Ref. [15]’s “time-of-
flight” circled data in Fig. 9 and the discrete action trajectory defined by in
(17). The fact that [15] stimulates this specific third quantized action is probably due to
particular choices in the experimental conditions. A challenging experimental confirmation
of the present theory would be to obtain by use of a similar Rabi vs QZE qubit stimulation
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