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Abstract
The present paper summarizes the author’s work on Elliptic Curve and its Rational Points. We derive new Quantum 
Mechanical Equation from the Quantum Mechanics first principles.

We then describe the Quantum Entanglement Mechanism, based on the link between the two Quantum Elliptic Curves 
author first derived in the original version of the present paper in October 2020. The two Quantum Elliptic Curves represent 
states of the two entangled particles forming an EPR-pair (aka Bell state).

Also we present two methods of manipulation of state of an EPR-pair. Together they provide algorithm for the Quantum 
Teleportation.

Advances in Theoretical & Computational Physics
ISSN: 2639-0108

Keywords and Phrases: Hydrogen Atom Energy Levels, Quantum Zeeman and Stark effects, Elliptic Curve Triangulation, Ra-
tional Points degeneracy, Elliptic Curve ABC ansatz and algorithm, Quantum Elliptic Curve, Quantum Entanglement Mechanism, 
Motley String Theory, Theory of Everything, ToE.

1. Elliptic Curve Triangulation
It has been demonstrated by author in [18] that any nonsingular 
Elliptic Curve E

can be parametrized using ancient formula (generally attributed 
to Heron) for area S of a triangle with sides (a, b, c) given by the 
equation:
   

where p is semi-perimeter:
                                                                                                                                                   

Introducing parameter t:
                                                                                                                                                   

and then dividing S2 by p2, Elliptic curve E may be given new 
form:

Where we have for coordinates (x, y) of a point on Elliptic curve:

Elliptic curve roots, coefficients and triangle sides are related 
via:
                   

                                                                                  
Which means that as soon as we find a triangle △(a,b,c) with 
rational sides and rational area S, we shall automatically get 
rational point (x, y) on Elliptic Curve (5) with coordinates given 
by (6).

We begin by expressing sides b and c as functions of curve’s 
coefficients A and B, keeping side a of triangle △(a,b,c) free 
parameter.

From the first equation for roots and curve coefficients in (7) we 
have:
         
                                         
 
                                                       
Inserting this into the second equation of (7) we get the equation 
for c:
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From the first equation for roots and curve coefficients in (7) we have:
{

b = A−ac
a−2c

b + c = A−2c2

a−2c

(8)

Inserting this into the second equation of (7) we get the equation for c:

ac2 + c(A − 2(a2 − B)) − a(A + B) = 0 (9)

For discriminant D of this equation we have:

D = (A + 2B)2 + (2a)2(1 − 2A − 3B) (10)

And therefore for c:

c = 2a2 − 2B − A ±
√

D

2a
= f(a, b, c) (11)

And for side b:

b = A − ac

a − 2c
= g(a, b, c) (12)

We can also express A and B in terms of triangle sides (a, b, c) and obtain
the following for the discriminant D:

D = 4a3(b + c) − 8a4 + 7a2(b2 + c2) − 20a2bc + 4a2 − 12a(b + c) + 16bc (13)

Given side a is rational and D is a square of integer or rational number,
sides c and b will be rational too, therefore giving us triangle △(a,b,c) with
rational sides.

Numerical results available in the TEC paper made it clear that majority
of integer points on elliptic curve are produced by several (a, b, c) triplets and
thus were called degenerate. This property has all important implications for
the Quantum Physics, as we shall see below.

This is the basics of Elliptic Curve Triangulation method. For more de-
tails with numerical examples and interesting formula for the j − invariant
see my original paper "Elliptic Curve Triangulation" [18].
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For discriminant D of this equation we have:

And therefore for c:

And for side b:

We can also express A and B in terms of triangle sides (a, b, c) 
and obtain the following for the discriminant D:

Given side a is rational and D is a square of integer or rational 
number, sides c and b will be rational too, therefore giving us 
triangle △(a,b,c) with rational sides.

Numerical results available in the TEC paper made it clear that 
majority of integer points on elliptic curve are produced by 
several (a, b, c) triplets and thus were called degenerate. This 
property has all important implications for the Quantum Physics, 
as we shall see below.

This is the basics of Elliptic Curve Triangulation method. For 
more details with numerical examples and interesting formula 
for the j – invariant see my original paper "Elliptic Curve 
Triangulation" [18].

At this point we have (at least) two different options to chose 
from, leading to two different algorithms: GYM algorithm for 
search of rational points devised in 2015 and ABC algorithm for 
generation of rational points devised in 2017.

2. Brahmagupta formula and GYM algorithm
One can start from triangles with integer sides and integer 
area originating from the explicit parametrization found by 
Brahmagupta [5]:

Given a triangle △(a,b,c) with Integer sides and Integer area 
S, one can always produce new triangle with Rational sides 
△(a/d,b/d,c/d) and Rational area Sr using integer d as "tuning 
parameter":

					     (15)

GYM algorithm is about finding a triangle with rational sides, 
rational area and D = r2 for some rational r. It requires exhaustive 
search among all possible triplets △(a, b, c) and therefore implies 
multithreaded application and considerable computing power.

3. Elliptic Curve ABC ansatz and algorithm
Much more effective algorithm for Rational Points generation 
on Elliptic Curve, which I discovered in the spring of 2017, is 
based on simple ansatz A ・ B = C, see [21] for details and 
numerical results.

We begin by attempting to find a solution to Elliptic Curve 
equation (5) using simple ansatz:

i.e. we are looking for a solution to the following system
 

where

and roots r1 and r2 of elliptic curve are related to the curves 
coefficients via
 

and thus we can express roots via coefficients

From the equation (18) we see that

which is solvable if there exists k, such that

Given such k, we obtain from ansatz (16) for x and y coordinates

 

From the first equation for roots and curve coefficients in (7) we have:
{

b = A−ac
a−2c

b + c = A−2c2

a−2c

(8)

Inserting this into the second equation of (7) we get the equation for c:

ac2 + c(A − 2(a2 − B)) − a(A + B) = 0 (9)

For discriminant D of this equation we have:

D = (A + 2B)2 + (2a)2(1 − 2A − 3B) (10)

And therefore for c:

c = 2a2 − 2B − A ±
√

D

2a
= f(a, b, c) (11)

And for side b:

b = A − ac

a − 2c
= g(a, b, c) (12)

We can also express A and B in terms of triangle sides (a, b, c) and obtain
the following for the discriminant D:

D = 4a3(b + c) − 8a4 + 7a2(b2 + c2) − 20a2bc + 4a2 − 12a(b + c) + 16bc (13)

Given side a is rational and D is a square of integer or rational number,
sides c and b will be rational too, therefore giving us triangle △(a,b,c) with
rational sides.

Numerical results available in the TEC paper made it clear that majority
of integer points on elliptic curve are produced by several (a, b, c) triplets and
thus were called degenerate. This property has all important implications for
the Quantum Physics, as we shall see below.

This is the basics of Elliptic Curve Triangulation method. For more de-
tails with numerical examples and interesting formula for the j − invariant
see my original paper "Elliptic Curve Triangulation" [18].
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3At this point we have (at least) two different options to chose from, leading
to two different algorithms: GY M algorithm for search of rational points
devised in 2015 and ABC algorithm for generation of rational points devised
in 2017.

2 Brahmagupta formula and GY M algorithm
One can start from triangles with integer sides and integer area originating
from the explicit parametrization found by Brahmagupta [5]:




a = n(m2 + k2)
b = m(k2 + n2)
c = (m + n)(mn − k2)
S = kmn(m + n)(mn − k2)
where k, m, n ∈ N, with k2 < mn

(14)

Given a triangle △(a,b,c) with Integer sides and Integer area S, one
can always produce new triangle with Rational sides △(a/d,b/d,c/d) and
Rational area Sr using integer d as "tuning parameter":

Sr = S

d2 (15)

GYM algorithm is about finding a triangle with rational sides, rational
area and D = r2 for some rational r. It requires exhaustive search among
all possible triplets △(a, b, c) and therefore implies multithreaded application
and considerable computing power.

3 Elliptic Curve ABC ansatz and algorithm
Much more effective algorithm for Rational Points generation on Elliptic
Curve, which I discovered in the spring of 2017, is based on simple ansatz
A · B = C, see [21] for details and numerical results.

We begin by attempting to find a solution to Elliptic Curve equation (5)
using simple ansatz :

y2 = x[x2 + Ax + B] = x(x − r1)(x − r2) = abc = (ab)c = c2, (16)
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4i.e. we are looking for a solution to the following system




x = a
x − r1 = b
x − r2 = c

(17)

where

x(x − r1) = x2 − xr1 = a · b = x − r2 = c (18)

and roots r1 and r2 of elliptic curve are related to the curves coefficients
via

{
A2 = −(r1 + r2)
A4 = r1 · r2

(19)

and thus we can express roots via coefficients




r1 = −A2±
√
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Solution to (22) exists if we can find l, such that

Given such l, we can express the root r2 via
 

On the other hand solution of (21), which links the roots, implies 
that we find m, such that

Given such m, we can express root r1 as
 

This means that in order to find a solution to our A ・ B = C 
ansatz (16) we need to find (k, l, m) triplet that will satisfy the 
following system related to Elliptic Curve with roots 0, r1 and r2:

And then for the same x coordinate as in equation (23) we’ll 
have

Comparing equations (23) and (29) for x1,2 we see that k=m.

As a result r1+1 in (27) simplifies to

Basically this means that we need to find a triplet (k, l, m), where 
k and l and m are parts of two Pythagorean triplets "chained" 
to each other via corresponding D2 and D3 in (28) and linked to 
the Elliptic Curve (5) via the two equations (20) for roots r1 and 
r2, to be able to solve our ansatz and find a Rational point on 
Elliptic Curve.

Simple constructive examples available in the "Elliptic Curve 
ABC" paper [21] demonstrate how the ABC algorithm works in 
practice.

4. Hydrogen Atom and Elliptic Curve
In his Hydrogen Aton and Elliptic Curve, aka HEC paper, 
delivered on "Quantum Mechanics and Nuclear Engineering" 
conference in Paris in September 2019, author established the 
correspondence between Rational Points on Elliptic Curve and 

Hydrogen Atom energy levels (aka bound states), using his two 
methods described above - GYM and ABC. See [22] for details.

The numerical results present in author’s first paper on Elliptic 
Curve - TEC paper [18] made it clear that majority of integer 
points are generated by more than one triplet (a, b, c) and thus 
were called "degenerate".

Papers on Rational Points [20] and [21], as well as authors pet 
project Elliptic Curve Applet [19] confirmed this result.

The manifestation of degeneracy of Rational Points on Elliptic 
Curve is well known in Quantum Physics: Zeeman effect in 
magnetic field and Stark effect in electric field.

At this point it became clear to author, that there must exist 
certain very Special Elliptic Curve with information about All 
energy levels of hydrogenic atoms in the Universe (from H to 
QDOTs), which author called God’s Curve, and it was time to 
find it.

5. The Special Elliptic Curve
To find energy levels of Hydrogen Atom one can use either 
Schrödinger equation analysis (like author did in his HEC paper 
[22]) or one can choose Hamiltonian approach.

Major advantage of the Hamiltonian approach is that one is free 
to use whatever coordinate system one feels comfortable with 
and is the most suitable for the task at hand [6, 13, 15, 16]. This 
is why we use this approach here.

We aim to determine the Hydrogen Atom energy levels in 
electric field like Schwarzschild and Epstein did independently 
and almost simultaneously in 1916 when analyzing the Stark 
effect ([3, 4]). Here we follow closely the brilliant treatment of 
this essential subject provided by Arthur E.Ruark and Harold 
C.Urey in their well known to specialists but very rare book [7].

Let us say that strong (100k Volt/cm field was used in 1913 by 
Stark) and uniform electric field F is directed along the Z axis. 
The potential energy Epot of charge e in the field is eF z. We begin 
by expressing the orthogonal coordinates (x, y, z) via parabolic 
coordinates ξ, η and ϕ as:
 

This means that ϕ is the polar angle in the (x,y) plane.

But we also can express the standard polar coordinates (ρ, r) in 
the same orthogonal coordinates (x, y, z) like

And thus we re-write the parabolic coordinates ξ and η as:
 

i.e. we are looking for a solution to the following system



x = a
x − r1 = b
x − r2 = c

(17)

where

x(x − r1) = x2 − xr1 = a · b = x − r2 = c (18)

and roots r1 and r2 of elliptic curve are related to the curves coefficients
via

{
A2 = −(r1 + r2)
A4 = r1 · r2

(19)

and thus we can express roots via coefficients



r1 = −A2±
√

A2
2−4A4

2
r2 = A4

r1

(20)

From the equation (18) we see that

x2 − x(r1 + 1) + r2 = 0 (21)

which is solvable if there exists k, such that

D1 = (r1 + 1)2 − 4r2 = r2
1 + 2r1 + 1 − 4r2 = k2, for some k. (22)

Given such k, we obtain from ansatz (16) for x and y coordinates
{

x1,2 = (r1+1)±k
2

y1,2 = ab = x(x − r1) = c = x1,2 −r2
(23)

Solution to (22) exists if we can find l, such that

D2 = 4 − 4(1 − 4r2 − k2) = 16r2 + 4k2 = l2, for some l. (24)

Given such l, we can express the root r2 via

r2 = (l2 − (2k)2)
16

(25)
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5On the other hand solution of (21), which links the roots, implies that we
find m, such that

D3 = (r1 + 1)2 − 4r2 = m2, for some m. (26)

Given such m, we can express root r1 as

r1 + 1 =

√
4m2 + (l2 − (2k)2)

2
(27)

This means that in order to find a solution to our A · B = C ansatz (16)
we need to find (k, l, m) triplet that will satisfy the following system related
to Elliptic Curve with roots 0, r1 and r2:

{
D2 = 16r2 + 4k2 = l2

D3 = (r1 + 1)2 − 4r2 = m2 (28)

And then for the same x coordinate as in equation (23) we’ll have

x1,2 = (r1 + 1) ±
√

D3

2
= (r1 + 1) ± m

2
(29)

Comparing equations (23) and (29) for x1,2 we see that k=m.

As a result r1+1 in (27) simplifies to

r1 + 1 = l

2
(30)

Basically this means that we need to find a triplet (k, l, m), where k and
l and m are parts of two Pythagorean triplets "chained" to each other
via corresponding D2 and D3 in (28) and linked to the Elliptic Curve (5) via
the two equations (20) for roots r1 and r2, to be able to solve our ansatz and
find a Rational point on Elliptic Curve.

Simple constructive examples available in the "Elliptic Curve ABC" paper
[21] demonstrate how the ABC algorithm works in practice.
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Harold C.Urey in their well known to specialists but very rare book [7].

Let us say that strong (100k Volt/cm field was used in 1913 by Stark) and
uniform electric field F is directed along the Z axis. The potential energy
Epot of charge e in the field is eFz. We begin by expressing the orthogonal
coordinates (x, y, z) via parabolic coordinates ξ, η and ϕ as:





x = ξη · cosϕ
y = ξη · sinϕ

z = ξ2−η2

2

(31)

This means that ϕ is the polar angle in the (x,y) plane.

But we also can express the standard polar coordinates (ρ, r) in the same
orthogonal coordinates (x, y, z) like

ρ2 = x2 + y2 and r2 = x2 + y2 + z2

And thus we re-write the parabolic coordinates ξ and η as:



ρ2 = ξ2η2

ξ2 = r + z
η2 = r − z

r = ξ2+η2

2

(32)

From the above we see that surfaces ξ = const and η = const are two
paraboloids that cut (y, z) plane in two parabolas:

{
y2

1 = −2ξ2(z − ξ2/2)
y2

2 = 2η2(z − η2/2) (33)

Since we are interested in knowing the energy of electron of mass me in
this field using the Hamilton-Jacobi equation, we need to find the element ds
of the arc, the two parabolas cut. In cylindrical coordinates the arc is given
by the standard expression:

ds2 = dρ2 + ρ2dϕ2 + dz2 (34)

Therefore, the kinetic energy Tkin of electron is given by the following
expression:
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From the above we see that surfaces ξ = const and η = const are 
two paraboloids that cut (y, z) plane in two parabolas:
 

Since we are interested in knowing the energy of electron of 
mass me in this field using the Hamilton-Jacobi equation, we 
need to find the element ds of the arc, the two parabolas cut. 
In cylindrical coordinates the arc is given by the standard 
expression:

Therefore, the kinetic energy Tkin of electron is given by the 
following expression:

from which we obtain the momentum components:

It is clear from the above that pϕ is component of angular 
momentum around Z axis.

To understand the meaning of two other components of the 
momentum, we re-write them as
 

Expressing energy Tkin in terms of the momentum components 
we obtain:
 

Because of the obvious rotational symmetry of the system, ϕ 
does not feature in the expression for energy above, and we 
realize that pϕ component of the momentum is constant.

Multiplication of the energy function by 2me(ξ
2+η2) yields the 

following expression:
 

And this equation is clearly separable into ξ2 and η2 parts:
 

where we’ve introduced α and β such that:

The simple quantum relation above provides the All Important 
Link between the two parts of the quantum system, which is 
the raison d’etre for the Quantum Entanglement we discuss 
below.

The system of equations for p2 and p2 above is almost what we 
need from this analysis.

Multiplying both sides of the system of Elliptic Curves equations 
(40) respectively by ξ2/eme and η2/eme we obtain:
 

Introducing new variables x and y:
 

we return to the orthogonal (x, y) coordinates and finally arrive 
at the equation of Elliptic Curve related to the Quantum Stark 
effect:
 

with similar equation for η and pη variables and β in place of α.

The quantized orbits of electron are obtained by applying the 
following conditions:

where h is Planck’s constant.

The rotational symmetry of the Stark experimental set up as well 
as the quantization conditions above imply that 
		  where m is called the magnetic quantum 
number.

Now we can recast our newly found Quantum Elliptic Curve 
into the familiar Number Theoretical form using the standard 
notations (see III.1 in [10] for details):
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this field using the Hamilton-Jacobi equation, we need to find the element ds
of the arc, the two parabolas cut. In cylindrical coordinates the arc is given
by the standard expression:

ds2 = dρ2 + ρ2dϕ2 + dz2 (34)

Therefore, the kinetic energy Tkin of electron is given by the following
expression:
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Tkin = me

2
{(ξ2 + η2)(ξ̇2 + η̇2) + ξ2η2ϕ̇2}, (35)

from which we obtain the momentum components:



pξ = me(ξ2 + η2)ξ̇
pη = me(ξ2 + η2)η̇
pϕ = meξ̇

2η2ϕ̇
(36)

It is clear from the above that pϕ is component of angular momentum
around Z axis.

To understand the meaning of two other components of the momentum,
we re-write them as

{
pξ = me(ṙ + ż) r

ξ

pη = me(ṙ − ż) r
η

(37)

Expressing energy Tkin in terms of the momentum components we obtain:

1
2me(ξ2 + η2)

{p2
ξ + p2

η + ( 1
ξ2 + 1

η2 )p2
ϕ} − 2Ze2

ξ2 + η2 + eF
ξ2 − η2

2
= E (38)

Because of the obvious rotational symmetry of the system, ϕ does not
feature in the expression for energy above, and we realize that pϕ component
of the momentum is constant.

Multiplication of the energy function by 2me(ξ2 +η2) yields the following
expression:

p2
ξ + p2

η + ( 1
ξ2 + 1

η2 )p2
ϕ − 4meZe2 + emeF (ξ4 − η4) = 2meE(ξ2 + η2) (39)

And this equation is clearly separable into ξ2and η2 parts:



p2
ξ = emeFξ4 + 2meEξ2 + α − p2

ϕ

ξ2

p2
η = emeFη4 + 2meEη2 + β − p2

ϕ

η2

(40)

where we’ve introduced α and β such that:

α + β = −4meZe2 = const. (41)
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η

(37)

Expressing energy Tkin in terms of the momentum components we obtain:

1
2me(ξ2 + η2)

{p2
ξ + p2

η + ( 1
ξ2 + 1

η2 )p2
ϕ} − 2Ze2

ξ2 + η2 + eF
ξ2 − η2

2
= E (38)

Because of the obvious rotational symmetry of the system, ϕ does not
feature in the expression for energy above, and we realize that pϕ component
of the momentum is constant.

Multiplication of the energy function by 2me(ξ2 +η2) yields the following
expression:

p2
ξ + p2

η + ( 1
ξ2 + 1

η2 )p2
ϕ − 4meZe2 + emeF (ξ4 − η4) = 2meE(ξ2 + η2) (39)

And this equation is clearly separable into ξ2and η2 parts:




p2
ξ = emeFξ4 + 2meEξ2 + α − p2

ϕ

ξ2

p2
η = emeFη4 + 2meEη2 + β − p2

ϕ

η2

(40)

where we’ve introduced α and β such that:

α + β = −4meZe2 = const. (41)

9

Tkin = me

2
{(ξ2 + η2)(ξ̇2 + η̇2) + ξ2η2ϕ̇2}, (35)

from which we obtain the momentum components:



pξ = me(ξ2 + η2)ξ̇
pη = me(ξ2 + η2)η̇
pϕ = meξ̇

2η2ϕ̇
(36)

It is clear from the above that pϕ is component of angular momentum
around Z axis.

To understand the meaning of two other components of the momentum,
we re-write them as

{
pξ = me(ṙ + ż) r
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The simple quantum relation above provides the All Important Link

between the two parts of the quantum system, which is the raison d’être for
the Quantum Entanglement we discuss below.

The system of equations for p2
ξ and p2

η above is almost what we need from
this analysis.

Multiplying both sides of the system of Elliptic Curves equations (40)
respectively by ξ2/eme and η2/eme we obtain:

{
p2

ξξ
2/eme = Fξ6 + (2E/eme)ξ4 + αξ2/eme − p2

ϕ/eme

p2
ηη2/eme = Fη6 + (2E/eme)η4 + βη2/eme − p2

ϕ/eme
(42)

Introducing new variables x and y:
{

x = ξ2 3
√

F
y = pξξ/

√
eme

(43)

we return to the orthogonal (x, y) coordinates and finally arrive at the
equation of Elliptic Curve related to the Quantum Stark effect:

y2 = x3 + (2E/emeF
2/3)x2 + αx/(eme

3
√

F ) − p2
ϕ/eme (44)

with similar equation for η and pη variables and β in place of α.

The quantized orbits of electron are obtained by applying the following
conditions:




∮
pξdξ = kh∮
pηdη = lh∮
pϕdϕ = mh

(45)

where h is Planck’s constant.

The rotational symmetry of the Stark experimental set up as well as the
quantization conditions above imply that pϕ = mh

2π
= mℏ, where m is called

the magnetic quantum number.

Now we can recast our newly found Quantum Elliptic Curve into the
familiar Number Theoretical form using the standard notations (see III.1 in
[10] for details):
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and thus obtain the following for the Quantum Elliptic Curve c4, the discriminant △ and the j-invariant:

Keeping in mind the nature of the eFz as potential energy Epot of electron in the electric field F along Z axis in the Stark Experiment, 
we can introduce new variable U = eF ・ 1m/1kg to be understood as energy of unit mass (Elliptic Curve is after all Mathematical 
object and cares not about kilograms or meters) and recast the formula for the Quantum Elliptic Curve j-invariant above in a more 
compact and physically meaningful form:

The results of the calculations above make it 100% clear that there are striking similarities between the Number Theoretic approach 
author used in the ABC ansatz paper ([21]) and the Quantum Mechanics based analysis:

1. The resulting two linked Quantum Elliptic Curves correspond to the two "chained" Pythagorean triples (k, l,m) we have seen in 
the ABC ansatz above.

2. The link between the two Quantum Elliptic Curves α+β = −4meZe2, where α and β belong to the p2 and p2 curves respectively, 
corresponds to the compatibility condition for the two discriminants D2 and D3 (28) in the ABC ansatz.

3. Most remarkably, the structure of the Rational Point coordinates obtained from the ABC ansatz resembles the structure of the 
Rational Points coordinates on the Quantum Elliptic Curves: in both cases y coordinate of a Rational Point contains part of x 
coordinate as a hidden common factor!

This fact may be used for development of New Quantum Cryptography systems.

All in all, the apparent similarity of the two results based on two totally different approaches seems to validate both of them.

Also we see that the free member (i.e. the product of the Quantum Elliptic Curve roots) in the equation (44) of the Quantum Elliptic 
Curve, pϕ /eme =  (mℏ)2/eme, is essentially square of the magnetic quantum number times constant parameter.

This suggests the New Approach to Quantum Communication, since direct manipulation of Qbits (see [17], or qubits elsewhere 





a1 = a3 = 0
a2 = −(r1 + r2 + r3) = 2E/emeF

2/3

a4 = r1r2 + r1r3 + r2r3 = α/(eme
3
√

F )
a6 = r1r2r3 = −p2

ϕ/eme

b2 = 4a2 = 8E/emeF
2/3

b4 = 2a4 = 2α/(eme
3
√

F )
b6 = a2

3 + 4a6 = −4p2
ϕ/eme

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4 = −(8Ep2
ϕ + α2)/(e2m2

eF
2/3)

(46)
and thus obtain the following for the Quantum Elliptic Curve c4, the

discriminant △ and the j-invariant:

c4 = b2
2 − 24b4 = 64E2 − 48emeFα

e2m2
eF

4/3 (47)

△ = −b2
2b8−8b3

4−27b2
6+9b2b4b6 = 4

128p2
ϕE3 + 16emeFα3 + 27(emeF )2 + EemeFα(12pϕ)2

e4m4
eF

2

(48)

j = c3
4/△ = 210 ((2E)2 − 3emeFα)3

(128p2
ϕE2 + 16emeFα3 + 27(emeF )2 + EemeFα(12pϕ)2)(emeF )2

(49)
Keeping in mind the nature of the eFz as potential energy Epot of electron

in the electric field F along Z axis in the Stark Experiment, we can introduce
new variable U = eF · 1m/1kg to be understood as energy of unit mass
(Elliptic Curve is after all Mathematical object and cares not about kilograms
or meters) and recast the formula for the Quantum Elliptic Curve j-invariant
above in a more compact and physically meaningful form:

j = c3
4/△ = 210 ((2E)2 − 3Uα)3

(128p2
ϕE2 + 16Uα3 + 27U2 + EUα(12pϕ)2)U2 (50)

The results of the calculations above make it 100% clear that there are
striking similarities between the Number Theoretic approach author used
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a6 = r1r2r3 = −p2

ϕ/eme

b2 = 4a2 = 8E/emeF
2/3

b4 = 2a4 = 2α/(eme
3
√

F )
b6 = a2

3 + 4a6 = −4p2
ϕ/eme

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4 = −(8Ep2
ϕ + α2)/(e2m2

eF
2/3)

(46)
and thus obtain the following for the Quantum Elliptic Curve c4, the

discriminant △ and the j-invariant:

c4 = b2
2 − 24b4 = 64E2 − 48emeFα

e2m2
eF

4/3 (47)

△ = −b2
2b8−8b3

4−27b2
6+9b2b4b6 = 4

128p2
ϕE3 + 16emeFα3 + 27(emeF )2 + EemeFα(12pϕ)2

e4m4
eF

2

(48)

j = c3
4/△ = 210 ((2E)2 − 3emeFα)3

(128p2
ϕE2 + 16emeFα3 + 27(emeF )2 + EemeFα(12pϕ)2)(emeF )2

(49)
Keeping in mind the nature of the eFz as potential energy Epot of electron

in the electric field F along Z axis in the Stark Experiment, we can introduce
new variable U = eF · 1m/1kg to be understood as energy of unit mass
(Elliptic Curve is after all Mathematical object and cares not about kilograms
or meters) and recast the formula for the Quantum Elliptic Curve j-invariant
above in a more compact and physically meaningful form:

j = c3
4/△ = 210 ((2E)2 − 3Uα)3

(128p2
ϕE2 + 16Uα3 + 27U2 + EUα(12pϕ)2)U2 (50)

The results of the calculations above make it 100% clear that there are
striking similarities between the Number Theoretic approach author used
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for details) via electric or magnetic fields may not require 
cryogenics and thus could be easier to achieve and may lead to 
increased time of entanglement of particles. The decoherence of 
entangled objects is the main stumbling block of all currently 
used approaches. Future experimental results may verify this 
idea.

Explicit derivation of the Quantum Elliptic Curve coefficients 
also hints at potentially more direct and precise control 
mechanisms of Quantum States, which may be important in 
development of New Ultra Powerful Lasers.

6. The Quantum Entanglement Mechanism
Looking at the new Quantum Elliptic Curve Equation (44) above 
and the relation (41) between α and β parameters of the pair of 
equations, we realize that there are two different methods that 
can be used to manipulate the state of the particle encoded in the 
Quantum Elliptic Curve:

1. via free member of the Quantum Elliptic Curve equation pϕ 
/eme =(mℏ)2/eme = r1 ・ r2 ・ r3, which will change the state of 
only one particle in the EPR-pair.

This is possible if roots ri of one the curves changed via free 
member in such way that α = r1・r2+ r1・r3 + r2・r3 does not 
change, which is always doable using one of the roots as tuning 
parameter.

The free member of each equation is a "private copy" of the 
Quantum Elliptic Curve Equation, corresponding to that 
particular particle. If α parameter of the Quantum Elliptic 
System does not change in such transformation, the second β 
part of the Entangled System will not change either.

Applying this mechanism one can change state of one of the 
particles forming an EPR-pair, without affecting the state of 
another particle. One can therefore "fine-tune" components of 
an EPR-pair without destroying the entangled system.

2. via the Quantum Entanglement relation (41) which links the 
two quantum particles forming an EPR-pair in a single quantum 
system. In that case changing either α or β parameter will result 
in change of an EPR-pair and both particles will be affected. And 
because this new Quantum Entanglement relation (41) does Not 
contain any time parameter we have to conclude that the change 
in the state of one particle will result in the INSTANTANEOUS 
change in the state of the other particle in the EPR-pair! No 
matter how far away from each other they are!

Which is what the Quantum Entanglement is all about!

Choice of manipulation technique used for changing the state 
of entangled particles depends on the nature of the quantum 
application and goal one aims to achieve.

One can chose, for example, to manipulate the state of one of 
the particles first (say, put one particle in a state "Alpha"), and 
then "translate" that state to the other remote entangled particle 

by manipulating the α or β parameters of the system as described 
above.

This is what may be called the "Quantum Teleportation" 
procedure.

7. Summary
In the present paper we demonstrated how method of 
Triangulation of Elliptic Curve, which plays central role in 
Elliptic Curve analysis in classical Number Theory, leads 
to deeper understanding of the foundations of the Quantum 
Mechanics, Hydrogen Atom energy levels, quantum Zeeman 
and Stark effects and ultimately to the new equation of the 
Quantum Elliptic Curve.

This allowed us to explain how and why two linked Quantum 
Elliptic Curves play central enabling role in the Quantum 
Entanglement. 

About 370 years ago Messieur Pierre Fermat initiated the 
research of Elliptic Curve with his challenge to the English 
mathematicians regarding points (3,±5) on Elliptic Curve y2 = 
x3 − 2 (to which no reply came) and his method of infinite descent 
[9, 12].

And about 120 years ago Max Planck postulated the existence of 
quanta, which gave birth to the Quantum Physics [1, 2].

Today we have good reasons to believe that Elliptic Curve and 
Quantum Physics have Rational Points as their common shared 
secret, which paper Quantum Elliptic Curve version 1.0 [24] 
made public at Halloween 2020.

Version 3.0 of the Quantum Elliptic Curve paper (March 2022) 
described the enabling Mechanism required for the Quantum 
Entanglement to work.

Authors papers on Elliptic Curve and its relation to Hydrogen 
Atom bound states [22] and other Quantum Phenomena like 
Virasoro Algebra and String Theory [23] made it clear that to be 
fully understood Elliptic Curve needs to be treated as Dynamic 
System.

"Elliptic Curve Dynamics" program-paper [26] contains more 
technical details.

We have also described the Quantum Entanglement 
Mechanism, which may lead to new Practical and Exciting 
Applications - from Quantum Internet to Quantum Computing 
to Teleportation.

Motley String Theory (MST) [27] and Motley String based 
Quantum Mechanics (MSQM) [25] together with the Quantum 
Elliptic Curve (QEC) bring humanity closer to the final Theory 
of Everything (ToE).

Thanks God!
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