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Abstract
Quantum Mechanics and Computation has a major problem calledthe measurement problem [7, 19]. This has given physicists 
a very hardtime over the years when I first looked into the problem my approach wassimple find a new number system that can 
go with the uncertainty of aQuantum particle the paper deals with the mathematics of uncertaintywhich has solved 2 millenium 
prize problemsand quantum measurementproblem very efficiently[4, 5]. We divide chaos into two parts lowchaos and high 
chaos then we find the desired value inside the intersectionof both[19]. This helps us find something in a 3 >>>∞ this takesthe 
problems around us to the next level if we are able to control a chaosthen we can achieve pretty muchanything[22]. This paper 
is inspired by .
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Introduction
Mathematics of uncertainty is a new math created specifically 
for Quantumworld and the world we want to understand which is 
weird and very muchchaotic[22]. I have tested this mathematics on 
2 Millennium prize problems namely.1. Riemann Hypothesisand 
gave different approach to solve 2. Navier StokesEquation [4,5]. 
And of course Quantum Mechanics and Quantum Computing-
problems [19]. This is an unique approach to tackle the uncertainty 
of a particleor a Qubit.

This new math has new rules new numbers, new vector fields and 
a new wayto solve and understand chaos/. As we know there aren’t 
many ways to tacklechaos and uncertainty and its considered as 
impossible to get hold of somethingwhich is uncertain in nature 
but this new mathematics might help us uncovermany things we 
didn’t understood. I got into Quantum Mechanics couple ofyears 
back and I noticed we aren’t actually really understanding what 
particleis telling us this whole time. It is uncertain and we need a 
newer method afterI turned my attention towards Quantum Com-
puting and there I noticed thesame thing we are just calculating in 
terms of Probability when we can actuallystudy uncertainty I spent 
a good deal of time in my thought experiments and Ithink I have 
finally figured out a way to not calculate qubits/particles in termsof 
probability but treating them as they are uncertain.I know even I 

couldn’t believe it first but when I actually put my mathematic-
sto test I couldn’t believe it actually worked and now I thought 
I should publishmy findings because I believed we were using a 
wrong approach to get theQuantum Computing to work and I think 
I have found the right way.

Abbreviations and Acronyms
QC: Quantum Computers. Cplane: Chaotic Plane. Un: Uncertain 
Mathematicsk: k from devanagari letters and across paper devana-
gari numbers meanlow chaos. seen: seen from arabic letters and 
across paper arabic numbers meanhigh chaos. kl: k and suffix L 
which is low chaos. seenh: seen and suffix h whichis high cha-
os[22].

Literature Survey
In Quantum Mechanics there is a problem called the quantum 
non-locality orthe measurement problem and you must be know-
ing how a quantum particleworks if we observe a particle it col-
lapses into a different state the researchersaround the globe are 
trying to get the solution for this insanely probabilisticproblem but 
in this paper we have gone through a list of papers and have found-
out how the recent researchers try to tackle this very problem[7]. 
Almost all ofthe paper’s try the probability theory to get the prob-
abilistic solution even afterall these years of Quantum Mechanics 
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it seems probability is the only solutionbut this will change I have 
come up with a new number system a approachthat is completely 
new totally new even the numbers are different and thishelped me 
solve problems that seems impossible to the world until now for 
eg.Riemann Hypothesis Navier Stokes Equations [4, 5]. 

This number system andapproach allowed me to understand how 
chaos works how the unseen which isthe basis of what Quantum 
Technology and particles work so I used this tocreate a Quantum 
Computer of mine with my mathematics which goes hand inhand 
with our today’s modern problems. The literature survey done for 
this isvery quality and easy as it was only a matter to find if any 
other method hasbeen introduced in recent papers other than the 
probability and I found noneso I think my method stands as the 
unique approach ever since the birth ofBohr’s Probability  ap-
proach this paper introduce you with Mathematics of
Uncertainty [7,22].

Uncertainty and Chaos
About Uncertain Space
•	 Uncertain space is an infinite space inside the Hilbert Space as 

H is infiniteand it is denoted as Un
•	 Un has a number system different from our regular system 

called ChaoticNumbers denoted as ñ
•	 ñ= {k, seen, p, h . . . } these are chaotic numbers one devanagri 

and onearabic to denote chaotic numbers this is a set of num-
bers each. Chaoticnumbers have 2 sides low chaos and high 
chaos devanagri and arabic respectively.

•	 Each kl(low chaos) and seenh(highchaos) has its own set [k1, 
k2, k3, k4, . . . ]and [seen1, seen2, seen3, seen4, . . . ]

•	 k1(first  low chaos)= {0.00256,−0.035, 
0.0089,−0.000659.−0.0004698, . . . }. . . k2(second low cha-
os) . . . kl(lowchaos)

•	 seen1(firsthighchaos) = {2.718, 205698,−26, 0.00089, 
25+8i,−6−4i, 58, . . . }. . . seen2(secondhighchaos) . . . seen-
h(highchaos)

•	 A chaotic plane has 2 sides kl and seenh left and right respec-
tively.

Figure (a): Low and High chaos

Rules for Chaotic Plane
1. There are two sides of a chaotic plane low chaos and high chaos 
kland seenh respectively.
2. Points on Cplane gets plotted with their respective chaos for eg. 

Lowchaotic system will be plotted on kl and high chaos will be 
plottedon seenh. refer
3. All the measurement point will start from initial point 0. these 
pointsare movable inside both high and low chaotic sides of the 
plane. Forwhich we have Mov function.
4. Any set operations can be performed in the Cplane as we know 
eachkl and seenh has numbers inside of them labelled as k1, k2 k3, 
. . .and seen1, seen2, seen3, . . .
5. A line, A circle, A triangle are different in this plane we will 
take a
look at them on Theorem 1.1.

Postulates of Uncertain Mathematics
1. There are two types of chaos low and high chaos kl and seenh 
respectively.In which we plot our points and use it as our coordi-
nate system. Oncalculating in Cplane initial point starts with 0.
2. seenh has a very high chaos and seen1(firsthighchaos) = {2.718, 
205698,−26, 0.00089, 25+
8i,−6 − 4i, 5852133997, . . . }, seen2, seen3, . . . ∈seenh = {3} 
(GeorgeCantor discovered 0 which is bigger than infinity I have 
discovered {3}which is even bigger than 0 ) and the chaos increas-
es astoundingly by:seen1 ≤ seen2 ≤ seen3 ≤ . . . ≤ seenh and the 
same goes for low chaoticnumbers by: kl has a low chaos and k1, 
k2, k3, . . . ∈kl and the chaosincreases astoundingly by: k1 ≤ k2 ≤ 
k3 ≤ . . . ≤ kl
3. End points inside the chaotic plane (Cplane) stays fixed but the 
midpointsdon’t.
4. Low chaotic points converge to ∞ and high chaotic points to {3}
5. By default Cplane is a Zero set {0} and any set operations can 
be performedon it.
6. You can create a collection of Cplanes kl and seenh, pl and sodh 
, tl andkalfh as per need. eg: k4l and seen4h which will yield 3.1 
four timessimultaneously.

Axioms of Uncertain Mathematics
Chaos Increases in the ascending order
Chaos we defined call low and high chaos respectively have their 
own increasingnumbers every k in low chaos and every seen in 
high chaos have their ownsubscript l and h respectively which in-
creases as the chaos increase.eg: Low Chaos increasing in ascend-
ing order = k1 < k2 < k3 < k4 ・・・< klHigh Chaos increasing in 
ascending order = seen1 < seen2 < seen3 < seen4 <・・・< seenh

Intersection of Earth has kseenand seenk
As we will know more about intersection of earth and it’s impor-
tance as wego to our theorems and problems just to give you an 
idea intersection of earthmeaning, imagine the whole universe we 
know in terms of chaos and uncertaintyuniverse is much much big-
ger than if we compare it to only earth so what I amsaying is we 
have a Cplane that is our universe which has low and high chaos 
andwe have intersection of the both low and high chaos which we 
call intersection of Earth region. Now what this Axiom states is 
that to find the exact valueinside our region of intersection of earth 
since it’s the intersection between bothlow and high chaos we have 
mixed state of the two kseen and seenk. kseen haslow-high chaos 

Figure (a): Low and High chaos
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1. There are two sides of a chaotic plane low chaos and high chaos kland seenh respectively.
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25+
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meaning the value of kseen is actually computeable as it’s in both-
low+high chaos which means it’s more inclined towards the low 
chaos ratherthan our bizarre high chaos. Now if we take a look at 
seenk which is more highchaos than that of low chaos and as kseen 
was a mix of low-high chaos our seenkis high-low chaos and that 
value is inclined towards high chaos than that of lowchaos. So you 
might have a question what it might mean to our mathematicshow 
does it relate? well kseen is a state in which the outcome is chaotic 
but inlow chaos which means kseen = kh1 this tells us that the 
value we got is closerto high chaos and will get into high chaos i.e 
outside intersection region. Samegoes with seenk = seenkl1 this 
expression tells us that we are close to low chaosand will get into 
low chaos i.e outside intersection region.

Chaotic Members are Zero/All Equal only if Un isZero/All 
Equal
This property of chaotic numbers is pretty obvious so we stating it 
as an axiomsince all the members like seen1, . . . , seenh and k1, . . 
. , kl of the chaotic setU⋉ = 0 or U⋉ has same element throughout, 
then members of Un are equal toeach other.

For more reference [22]

Theorem 1
Entries in Low chaos are not far apart but entries inHigh cha-
os are very much far apart.
Proof:
Theorem states that ñ, chaotic numbers kl and seenh low and high 
chaos haveentries in each

set depending on the type of chaos. we know klseenh ∈Un bydefini-
tion of chaotic numbers we can say that each kl in low chaos seenh 
hasascending increasing chaos by Axiom (1).eg: k1 < k2 < k3 < k4 
. . . klseen1 < seen2 < seen3 < seen4 <・・・< seenh (By postu-
late (2)) each is aset and any set operations can be performed (by 
postulate (5)) So, we will defineentries and prove this theorem. k1 
= {0.00025, 0.00002894,−0.00000975, 0.265,−0.125479,−0.125i, 
. . .}now if you compare 1st and 2nd entries in k1 we can see that 
those are not thatfar apart from each other and we can say the same 
for all the elements inside k1because it’s chaotic number is 1 and 
not 2 because on k2 will have a differentchaotic entries and the 
speed of entries will differ.

Let’s see for high chaos,
seen1 = {0.00265,−1.5698763, 0.80,−0.09654, 1.236i, . . .}
Now if we compare high chaotic seen1 1st and 2nd or any oth-
er element wecan see that the elements are very far apart from 
each other. And you mightwant to know how a maximum high 
and low chaos would look like? let meshow you Low Chaos: kl 

= {49.365,−56.23, 8.56i,−150.6, 250,−78i, 5i, . . .} HighChaos: 
seenh = {0.6, 56981.598,−56i,−98i, 8,−0.23, . . .}Now as we can 
see Theorem 1 is proved and entries in low chaos are low anden-
tries in high chaos are very high. Hence Proved

Theorem 2
Dvectors runs and fills up the space (Cplane).
Proof:
We will start by understanding what is meant by a ”Dvector” well 
our classicalmathematics has vectors for example or these vectors 
only can say you adirection and magnitude and it’s static meaning 
if I change the space in whichpointed horizontally into vertically 
well now the vector is useless in direction.Take an example of a 
car moving horizontally and and represent it’s directionand mag-
nitude a long as the car is static/constant the vectors are correct 
butnow I will make the car chaotic meaning now the car runs in 
a chaotic patternnow both the vectors are now useless. But I have 
a solution for this I amintroducing Dvectors vectors with 2 heads 
and no tails. These vectors arerepresented byxd, yd, zd.

which has endpoints xd has x, x′ and same for yd, zd which are 
fixed by postulate(3) and in between endpoints we have inifint-
ly many dvectors which are low andhigh chaos depending upon 
movement of the chaos we are calculating. As theheorem says the 
Dvectors runs by runs I mean scaled, squished, curved etc alltypes 
of chaotic patterns are performed by the midpoints of our dvectors.
Now, Let’s imagine a 3D space and define our dvectors xd, yd, zd 
each hasendpoints xd = E(x),E(x′) and we have midpoints between 
them let’s call them
m1,m2,m3, . . .mn so,

tells us that from endpoints E(x) to E(x′) which will be summed all 
the midpointsbetween our endpoints and 3 tries to fill up our 3D 
space but it can’tthis is the reason we need all 3 dvectors to fill up 
our space. Now we need,

which will help our ?? to fill our 3D space and the same with our 
last thirddvector,
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Our theorem stated the statement that Dvectors fills up the space 
and lookingat equations 3 4 5 we can see that xd, yd, zd fills up the 
whole 3D space with thehelp of chaotic midpoints and endpoints 
so our theorem here is proved. HenceProved.

Theorem 3
A triangle, line, circle are stable in the kland not insinhand are 
not static (preserve shape).
Proof:
We know by postulate 4 that end points in the chaotic plane are 
fixed.Let x, y, z be the points in both the space kl and sinhIn kl 
space, E(x) E(y) kl = EyEx (k1, k2, k3, . . . )with increase in low 
chaos the points between E(x) (Endpoint of x and E(y)(Endpoint 
of y) changes low chaotically). Since by low chaos definition we 
know that low chaos doesn’t move fastand is slower very slower so 
the E(y) and E(x) being fixed the midpoints of klchanges low cha-
otically which in return preserves shape and if we were to dothis in 
sinh we know the first chaos of the sinh it changes rapidly so the 
shapescan’t be preserved.
Hence Proved for a Line and it’s stable in kl

A circle in kl with E(x) and E(y)
We join E(x, y) to create a circle from the line which is stable in 
the aboveproof.
E(x, y) kl = E(x, y) (k1, k2, k3, . . . ) Since we are calculating a 
circle in lowchaos which is not the same as our coordinate geome-
try circle with π r2 willwe get the same answer? I think you know 
we can’t get it because we are nolonger in classical math where 
we have constant numbers like 1, 2, 3, 4, . . . weare in chaotic 
plane and things are different here so how can we define a circlein 
Cplane?we know π is Circumference / Diameter and we know for 
our circle whichis made of bunch of kl points and we know by 
postutlate 4 that end points inCplane are fixed and we already have 
our endpoints of our circle which wereE(x) and E(y) and for circle 
we made it E(x, y) which is our circumference.We can now sum 
up all the midpoints which are not fixed from E(x) to E(y)we gPet, 
E(y)E(x) kl = k3 since k3 is the third low chaotic number and by 
looking atset of first chaotic number above we can say we will find 
3.14 around k3.Hence proved circle in klplane.

Proving triangle with Pythogarus Identity in Cplane
E(x), E(y), E(z) be the endpoints points of a triangle in a Cplane.
As we did it for circle by attaching endpoints by E(x, y, z) is our 
triangle ina Cplane.A line is defined by E(x) E(y) kl= EyEx (k1, 
k2, k3, . . . )so we can define pythogarus identity in Cplane:

Base2 + Perpendicular2 = Hypotunuse2
for a unit triangle (Classical): 12 + 12 =√2
for a unit triangle (Un Math): 12 + 12 = 1.41
Hence Proved triangle with Cplane Pythogarus Identity

Theorem 4
seenhhigh chaos vector space and shapes is not preservedin 
seenhbecause of high chaos.
Proof:
By postulate 3 we know seenh has a very high chaos although 
endpoints arefixed in the chaotic plane we know midpoints are in-
sanely chaotic in seenh (highchaos) we can never find what pat-
terns or shapes seenh space is giving us so weintroduce Chaotic 
vector spaceAs we know from our linear algebra knowledge that 
you need ⃗v which isa single vector in a vector space which tells 
you about the magnitude and adirection. if we need to show op-
posite directions then you need another vectorsay ⃗w which will 
point in opposite direction and now we have 2 different vectorsto 
show the same thing and of course the math we study today is stat-
icand constant linearly we calculate something which has effected 
quantum worldlargely because its dynamic and chaotic in nature. 
As you know we are in thistheorem to prove chaotic vector space 
and we can’t use the traditional vectorspace with multiplying sca-
lars and vectors.

We know that by postulate 3 endpoints in a chaotic plane are fixed.
Let xand x′ be a Dvector (double vector) in seenhspace.
Let y and y′ be a Dvector in seenh space.
And z and z′ be a Dvector in seenh space.
We know seenh cardinality is 3 >>>∞
Classical math vectors have scalars that multiply with vectors to 
scale withsome factors. eg: 2・⃗v which will extend the vector ⃗ v 
by a factor of 2 and enlargeit. but we don’t need anyscalars for our 
chaotic vector space since they are inchaotic nature and they scale 
and descale on thier own so scalars are just outof question in chaot-
ic vector space.Now as we are in high chaotic plane we know that 
x and x′ (Dvectors) haveE(x) and E(x′) as endpoints and there are 
infinitly many midpoints betweenthem which have chaos seenh = 
{sin1, sin2, sin3, . . .} each sin1 has chaos biggerthat the next and 
all of them are midpoints inside or all Dvectors.For explaining this 
chaotic vector space I would like to take a bizzare exampleof a 
fluid any fluid water, honey, oil, with any viscosity and pressure we 
justwant to model our Dvectors so they can work properly.

Let’s define our endpoints for our Dvectors E(x), E(x′), E(y), E(y′), 
E(z),E(z′) be the end points of our Dvectors x, x′, y, y′, z, z′ illus-
trated below is ourseenh space.

Figure (b): It illustrates all 3 Dvector with their distinct color with 
no tail and bothside heads of vectors and X’s on the figure shows 
all the midpoints between theirendpoints.

E(x), E(y), E(z) be the endpoints points of a triangle in a Cplane.As we did it for circle by 

attaching endpoints by E(x, y, z) is our triangle ina Cplane.A line is defined by E(x) E(y) kl=

EyEx (k1, k2, k3, . . . )so we can define pythogarus identity in Cplane:
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Now let’s throw our three Dvectors inside seenh space to mod-
el our fluid.We know endpoints are fixed and midpoints changes 
with high chaos in Theorem1 we proved circle for low chaos and 
we will use that analogy of endpointsand midpoints and summing 
them all up but summing doesn’t mean we areadding all the seenh 
values but we are actually modeling by:

where A is the fluid model we are modeling. This shows that x, 
x′, y, y′, z, z′all the Dvectors and their respective endpoints and 
midpoints works togetherto fill up the whole space A. And all the 
midpoints also are double vectors withablity to stretch from both 
sides and fill up all the space A to model our fluid.Each dvector 
in model has equivalent midpoints and endpoints which goes to 
3 ∞.midpoints changes with seenh chaos and each of them will 
be represented as PE(x′)E(x) seenh which says that summation of 
midpoints of dvector x, x′, y, y′, z, z′will yield a value which fills 
gaps left byby  an                                                    we know how we 
can model a fluid with dvectors and chaotic vector space tosum-
marize we use three dvectors x, y, z and their respective endpoints 
E(x),E(x′), E(y), E(y′), E(z), E(z′) we sum up all the midpoints 
with respect toendpoints and we get our equation which is:

short note: This is not our normal summation we are not actually 
addingup value we are showing that between x, x′ all the chaotic 
points i.e seen1,10seen2, seen3, seen4 . . . are moving at high cha-
os and for this reason seen1 isa dvector and value of seen1 will 
define the trajectory of x, x′ since they arefixed.

Theorem 5
A Quantum Particle in free space can be easily calculatedin 
chaotic plane.
Proof:
Let A be a free quantum particle. Each movement, momentum, su-
perpositioneverything is plotted on our chaotic plane.And since we 
know from 3.1 we have two sides to our chaoticplane kl andseenh 
low and high chaos respectively. All the movement and everything 
about
the particle will be plotted on their respective sides a low chaotic 
movement willbe plotted on kl and high chaos will be plotted on 
seenh. below is the 10.1.1illustrated

Figure (c): Showing the intersection of earth area and points plot-
ted low for lowchaotic side and high for high chaotic points.

Since by postulate 5 we know we can perform any operation we 
want on kland seenh so we can perform intersection operation and 
we can call it intersectionof earth because just like in the entire 
universe their is high chaos andon earth their are high and low both 
chaos at the same time so we can call itthat as in 10.1.1 we can see 
points xy which are any points on the intersectionbetween kl and 
seenh in the middle as we only check the intersection earth area 
where particle was low in chaos and high that region is where our 
answer lies ofwhat is the position of our free particle?

So our equation is,kl∩ seenh= kseen
seenk.                                                (8)

by postulate 6 we know Cplane is a Zero set {0}.

Lets pose a question about about our quantum mechanical parti-
cle A findit’s exact position which is the position which is most 
visited in superpositionand have most visits in entire intersection 
earth area. Lets name our region Zand now assume x, y any point 
on Z region which will help us get our desiredanswer we know 
x, y ∈Z Now we will use x, y to our advantage and with thehelp 
of these points ∈Z we can find the state ⟨↑ | ↓⟩which in classical 
math iscalled superposition state. and we need to find our particle 
A in the same stateand position at which it visited the most in our 
chaotic plane. 

which means wehave in our chaotic plane all the collapsed state 
a quantum particle collapses toeither of these states ⟨↑ | ↓⟩and we 
have all the collapsed states with us whichare points on chaotic 
plane instead of finding positions of particle visited themost we 
can find the most collapsed state between |0⟩, |1⟩which state oc-
cursthe most and we need a generalize state of our free particle 
in space. and weknow wave function collapses and its probabil-
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Now let’s throw our three Dvectors inside seenh space to model our fluid.We know endpoints 
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and we will use that analogy of endpointsand midpoints and summing them all up but 

summing doesn’t mean we areadding all the seenh values but we are actually modeling by:

where A is the fluid model we are modeling. This shows that x, x′, y, y′, z, z′all the Dvectors 

and their respective endpoints and midpoints works togetherto fill up the whole space A. And 

all the midpoints also are double vectors withablity to stretch from both sides and fill up all 

the space A to model our fluid.Each dvector in model has equivalent midpoints and endpoints 

which goes toℵ 3 ∞.midpoints changes with seenh chaos and each of them will be represented 
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(7)

short note:This is not our normal summation we are not actually addingup value we are 

showing that between x, x′ all the chaotic points i.e seen1,10seen2, seen3, seen4 . . . are 

moving at high chaos and for this reason seen1 isa dvector and value of seen1 will define the 

trajectory of x, x′ since they arefixed.

Theorem 5

A Quantum Particle in free space can be easily calculatedin chaotic plane.

Proof:

Let A be a free quantum particle. Each movement, momentum, superpositioneverything is 

plotted on our chaotic plane.And since we know from 3.1 we have two sides to our 

chaoticplane kl andseenh low and high chaos respectively. All the movement and everything 

about

the particle will be plotted on their respective sides a low chaotic movement willbe plotted on 

kl and high chaos will be plotted on seenh. below is the 10.1.1illustrated

Figure (c):Showing the intersection of earth area and points plotted low for lowchaotic side 

and high for high chaotic points.

Since by postulate 5 we know we can perform any operation we want on kland seenh so we 

can perform intersection operation and we can call it intersectionof earth because just like in 

the entire universe their is high chaos andon earth their are high and low both chaos at the 
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ity is given by |a|2 + |b|2 = 1where a, b ∈C. Now we know that 
intersection of Earth region has low chaosplus high chaos points 
which will have state ⟨↑ | ↓⟩and as we know we havecollapsed 
states inside Cplane so we need to find collapsed generalized state 
andposition of A we will name that i.

Movx,y→ıZ = A                                                                                         (9)

Equation 4 states that take points x, y ∈Z region endpoints which 
are fixedby postulate 4 making intersection of Earth infinitely 
smaller till it goes toi which is the desired point we need from 
intersection of Earth region and Movfunction moves the points x, 
y → i.To Summarize the theorem we use our chaotic plane to find 
the exactstate/position of a particle by focusing on the intersection 
of earth sectionwhere you have low and high chaos and you can 
guarantee that the desiredstate/position of the particle is inside our 
Z region and we name our desiredstate/position i which will now 
have a particular point in Z region where i isour exact output and 
we now take endpoints of Z region and and name them x, yand use 
our Mov function to move x, y → i to i which is the point in ques-
tionour 8 has the information about intersection of chaotic plane 
and 9 finds thedesired output.
Hence Proved

Chaotic Normed Space
As mentioned [13] in the rules of functional analysis a space can 
only be consideredas a normed space only if these conditions sat-
isfy So X is consired to benormed space or vector space only if,

(a)x+ y≤ x + y∀x, y ∈X                                                              (10)
(b)αx = αxifx ∈Xandαisascalar.                                                   (11)
(c)x >0ifx≠0                                                                                (12)

For a chaotic normed space. Let’s call it cX be a non abelian vector 
spacewith dvectors (double vectors) xd, yd, zd ∈cX ⊂U⋉ eqns 10 
11 12 are therequirements for this to be a normed space lets start 
with (a) or eqn 10.

The dvectors 1where xd is a double vector with 2 heads and zero 
tails x and x′are the position of the 2 heads whereas seen1 → seenh 
says that between x andx′ there are chaotic numberswhich are mid-
points of xd and k1 → kl is the lowchaotic midpoints with high 
chaosPis used from initial point of xd i.e x tillthe x′ the final or 
latest point of xd. This sums up till the space is filled 2 Nowfor yd,

So eqn 10 is the property of normed space on X and we will use 
eqn 13 and eqn14 to define norm space on cX,

xd + yd ≤ xd + yd∀xdandyd ∈cX                                                      (15)

Now for property (b) or eqn 11 since we know that we don’t need 
a scalar soα is out of the chaotic norm property we only need our 
xd that will define ourchaotic scaling, squishing, multiplying and 
everything a vector should do butwith a very very minimal calcu-
lation errors or parameters. So (b) or eqn 11 isgiven by,

xd = xd/ydsincexd, yd ∈cX                                                                  (16)

And now for the final property (c) eqn 12 we get,

xd >0ifx = 0.                                                                                          (17)

Hence chaotic normed space (cX) is a Linear Space or Vector 
Space.

Navier Usama Stokes Equation using Chaotic NormedSpace
Navier Stokes Equations demand a solution to a equation that both 
navier andstokes given and as for now only 2D problem of this 
has been solved I am not1or Double vectors are the vectors which 
squishes squeezes or scales on it’s on which meanswe don’t need 
any scalars or anyscalar multiplication to specify where dvectors 
should gothey go with the flow of nature.2filled: this word is used 
to describe a movement of double vectors the simple vectors on-
lypoints in one direction whereas double vectors can point in ∞ 
number of direction so if wehave a space Y the space Y is filled 
with xd meaning the space Y has xd filling up the spaceneeded for 
calculation.gonna give the exact answer to this Millennium prob-
lem as I solved for butI will give you a different approach to see at 
this problem[4]. I thought maybewe are looking at the problem in 
a wrong way so I just gave my theorem of 3DCplane and I thought 
maybe I have solved but again I won’t claim I solvedit I just gave 
an idea. Let A be a space of fluid, gas or any smooth viscousdense 
quantity[5].

By chaotic norm space we know, eqn 15 and this equation alone xd 
+ yd ≤xd + yd∀xdandyd ∈cX proves that individual dvector norms 
fills more spaceand much better than combined norm of dvectors 
so we will define Aas,
A = xd + yd + zd + ad + bd + ・・・+ nd                                           (18)

A has infinitly many dvectors and all of them are given by,

A=X(seen1→seenh)(k1→kl)xd+X(seen1→seenh)(k1→kl)yd+X(seen1→-
seenh)(k1→kl)zd+ x y z                                                                           (19)

(seen1→seenh)(k1→kl)ad+(seen1→seenh)(k1→kl)bd+•••+ 
(seen1→seenh)(k1→kl)nd a b	 n

A has like all the dvectors each dvector has a capacity to fill and 
run tillinfinity and when all of these dvectors combine and keep 
moving in space andtime this will model the true nature in R3 3 
Dimensions the problem of NavierStokes Equation was the equa-
tion was going through a hard time if tried for R3this is the reason 
I propose this method and a way to look at physics mathemat-
icswith the lens of chaotic numbers. This section introduced with 
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chaotic normwhich help us look at Navier Stokes Equation with 
a new perspective. HenceProved Navier Usama Stokes Equation 
new approach. 

Theorem 6
Using More than one 3 dimensional chaotic plane tocalculate 
bigger uncertainty:
Proof:
Consider a big uncertainty, weather, fractrals, fluid, smoke, etc any 
uncertaintywhich is big in size and seems to be impossible task to 
solve.Let’s call that space V Now as we know we have a chaotic 
plane with twosides low and high chaos kl and seenh respectively 
and its a single plane withchaotic sides each plane has dvectors 
uncertain points plotted as per need andthat single plane can cal-
culate a free particle uncertainty as we did in theorem3.Now we 
know by postulate 7 that we can take more than one Cplane an-
darrange them any way we like so I would like to take infinitely 
many Cplanesand arrange them one below the other and beside 
each other so low and highchaos don’t mix up in the process just 
like shown in the ??.

for a single Cplane in terms of double vector chaotic plane is.

Aseenh+ Bkl= 0                                                                              (20)

we got 7 from theorem 4 and the 9. As we got Aseenh we can get 
for low chaosas well we will call it Bkl. 20 states that low and 
high chaos are together toform single chaotic plane.In V we have 
infinitely many 20 single planes all over the space V every pointin 
the space is filled with infinitely many and small our 3D Cplanes 
and simplifiedequation 5 remember that each 

Figure (d): The purple sphere is our V space which is opened up 
for better view wecan see Cplanes arranged infinitely many and 
small to cover our V space.

In 12.1.1 we can see infinitely many Cplanes arranged such a way 
we willnow add up all the infinitly many Cplanes we can write as,

21 describes all the planes add up withPto get (Anseenh + Bnkl)
nV space has infinitely many of these single Cplanes and as I men-
tionedabove we will be using integration so we need upper and 
lower bounds for ourintegration to work. Now we get,

l = (A1seenh+ B1kl)1 − LowerBound.                                               (22)

15h = (Anseenh+ Bnkl)n− UpperBound.                                            (23)

Now that we have lower and upper bounds from which plane to 
plane we aregoing to calculate;

This integral will calculate all the Cplanes in each frame and get us 
volume ofthe whole space V.

To let you know what we just defined let me elaborate more to 
you on aclassical math vector field we know that you have one 
vector say ⃗ v this vectoris single vector with only one information, 
direction and magnitude now we aredoing this in Cplane and we 
have Dvectors (double vectors) and each plane i.e(A1seenh+B1kl)1 
has 3 endpoints x, x′, y, y′, z, z′ and their respective dvectorsx, y, 
z which will yield chaos in just that space as we have n number 
of theseplanes and dvectors the amount of chaos is actually huge 
and equation 8 lookssimple but you know the amount of chaos and 
uncertain information it carries.and we know by postulate 2 this 
is bigger than infinity <<< 3 so the chaosand uncertainty it carries 
has numbers we don’t even know yet.Hence Proved

Quantum Computing with Uncertain Mathematics.
U-QC Gates and Un Equations for QC.
Traditional Bell States:
This section is with the help of, Our hadamard has the equation 
1/√2 |0⟩+|1⟩where 1/√2is the amplitude of our quantum qubit[19]. 
and |0⟩+ |1⟩is knowmas superposition of the states. This is repre-
sented on the bloch sphere z axisin bloch sphere represents |0⟩and 
the south pole is our |1⟩which makes ourhadamard gate equation 
also known as bell states in between our bloch sphere.Now I would 
like to talk to you about ”Erwin Schr¨odinger” and his thought-
experiment, a hypothetical cat may be considered simultaneously 
both alive anddead as a result of its fate being linked to a random 
subatomic event that mayor may not occur[7]. 

This really explains our superposition state of bell states.In quan-
tum computing we use the concepts of quantum mechanics and-
computer science to compute and this method was first proposed 
by RichardFeynman and now that we are where IBM and Goo-
gle and China are makingquantum computers where we are using 
more than hundred qubits but we arenot even close to achieving 
a commercial quantum computer so I originallymade this mathe-
matics to solve our quantum computing problems.The errorswhile 
working on QC are very high 90% of the time you are encountered 
witherrors per cycle of qubit calculation imagine the amount of 
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error now[19]. So I havedeveloped some of these techniques that 
might reduce errors by 90% to 95% intheory it’s working abso-
lutely fine but as the independent researcher I lack theexperimental 
side. Now let’s start by defining our Un mathematics for QC my
proposed method.

Quantum Computing concepts for classical math
Let’s look at our theorem 5 8 where we can see kl ∩ seenh = 
kseens˙eenk. Whichsays that inside intersection of earth region 
we have low-high and high-low chaosrefer Axiom (2). Now that I 
have layed down what we have and what we areup against we will 
formulate some algebra for Un Math for QC before this Iwould 
like to compare some of the traditional QC methods with classical 
mathand then we will see for my Math.

Traditional QC concepts
The things you need to know are prettybasic so there are Qubits 
one or more, Qubits are in superposition state, Qubitsare entangled, 
Qubits are represented on bloch sphere, Qubits have probability 
amplitude whose norm squared is always 1 like |α|2, α ∈C pretty 
much thissums it up now when we use these methods it really gets 
messier and messier asyou need phase factors and inner products 
of states outer products then if youhave |1⟩or |0⟩and you wanna 
represent it in the hadamard gates and CNOTgates the things are 
really messy but they workit out and still we have bunchproblems 
ahead of us[19].

Defining Superposition on Cplane
Let A = q1 (q1 = single qubit). As q1 is a qubit it has superposition 
and if ithas superposition then it will be uncertain while using it as 
a computable bit.so we denote our quantum qubit in terms of quan-
tum mechanics as |0⟩+|1⟩which has probabilty amplitude attached 
to each say α and β which ∈C nowas we saw in the theorem 5 we 
had our 9 which uses Mov function to get ourdesired value that 
theorem will be very useful in our QC with Un Math.We place q1 
inside our Cplane which will contain all the possibility plotted(this 
paper shows how marginal probabilities of locality condition but 
mymethod is much better) on our Cplane (Chaotic Plane) till 3 by 
theorem3 we know that Cplane has intersection of earth region 
and x, y points as pointswhich will close and approach the limit 
provided by you[18,19]. 

so,kl ∩ seenh = q1                                                                              (25)

Figure (e): kseen and seenk are inside the intersection of earth 
called Z regionand points outside Z region are chaos which is un-
seen and unwanted. point inblue is i the point we want for our q1 
qubit equation.And we know that our q1 is a single qubit which is 
in superposition. Nowlet’s call our intersection of earth Z region.. 
If q1 ∈Z then ∃i ∈Z which isequal to q1 = |1⟩OR |0⟩which we will 
denote by,

(i=1q1 = 1                                                                                               (26)

(i=0q1 = 0                                                                                                 (27)

As seen in the above figure Z region is the intersection of both low 
andhigh chaos and as I have given the definition of intersection of 
earth beforeexplaining why we named that you might have an idea 
what’s really going onlet me explain.
Now as you know q1 is in superposition state that is interacting 
with thesurrounding and it’s position as well as the momentum is 
not stable at alland of course it’s state is also not stable. In Quan-
tum Mechanics we haveHeisenberg’s uncertainty principle which 
says that there is a limit to accuracy onfinding the position of a par-
ticle and the momentum. These traits of a Quantumparticle is what 
stops us from achieving a functional quantum computer. Andwe 
have a lot of complexity surrounding gates of QC and their circuits 
thestruggle is real. But what I just proposed in 25 and 26 we can 
get the state  q|0⟩, |1⟩, ⟨0| , ⟨1| , |0⟩+ |1⟩, ⟨0| + ⟨1| all the possibility 
of a single qubit withoutany hassle.

U-Z Gate for QC
We can find the exact collapsed state of our q1 by choosing any 
x, y → i this termmeans that moving our endpoints E(x),E(y) ap-
proaching to i to our desiredcollapsed value. Which gives you 
Ak,seen we will call it just A so it will be easierto perform some 
algebra.

Movx,y→i=|o⟩,|1⟩Z = Aq1                                                                   (28)

This equation actually tells us that, Mov points x, y to the desired 
point in Zi.e i and our i = |o⟩or |1⟩or any other state of our qubit. So 
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our qubit can bein kseen or seenk refer Axiom (2).

U-Z Gate for single qubit q1

Figure (f): Our input is q1 and it gives out the output Aq1. Z gate 
in our traditionalQC math consists of Pauli matrices Z from X, 
Y,Z both are very different as Zgate gives you the phase change 
in traditional QC math. U-Z gate will give youthe precise value of 
qubit we desire.

Truth Table for U-Z Gate
heightq1 Z A(q1
0kseen Movx,y→i=0Z = 0 0
1kseen Movx,y→i=1Z = 1 1

Looking at our truth table and 13.1.3 you can have a pretty geo-
metric intuitionon what we just defined. Given a single qubit gate 
in traditional QC and classicalmath we have vectors those vec-
tors have braket notation and we perform Paulimatrices on them 
namely X, Y,Z then we have a bloch sphere representationon that 
qubit we have to keep track of the phase we have to keep track of 
thequbit not changing so we build up circuits on them using had-
amard, X gate, Ygate and Z gate but all those worries have disap-
peared. In theory and on paperthis methodcertainly works. We will 
next define Two Qubit states on Cplaneand Un math.

Cplane Two Qubit States and Algebra
Cplane has all possible states of any number of qubits you need 
and are plottedon the our Cplane as we need 2 qubits now to define 
our 2 qubit state. Let’scall our 2 qubits q1, q2 each qubit is on a 
different Cplane we defined our singlequbit above as A(q1 which 
means that our qubit q1 is inside our Cplane A andnow that we 
have 2 qubits we can call it’s 

Cplane’s as A and B.
(q1+ (q2= A(q1+ B(q2
= A(i=00 + B(i=11

= AB(00 + AB(01 + AB(10 + AB(11

As I said and you can refer 13.1.3 that we have our Cplane our Z 
region andwhich consists of kseen and seenk and variable i rep-
resents our desired stateof q1 the same we are applying to our 2 
qubit state in the above algebra donewe can see that there are 2 
Cplanes namely A and B which is then attachedto our 2 qubits q1 
for A and q2 for B which means that all the states of q2 isinside 
Cplane B and we are taking the classical bits formation 00, 01, 10, 
11 torepresent our Un QC algebra so it’s easier for us to understand 
what really isgoing on. Now that we have our equations in place I 
will build a Truth tablefor our 2 qubit state.

Truth Table of 2 Qubit states
q1 q2 Z Aq1, Bq2
(0 (0 Movx2,y2→i=0,0Z= 00 AB(00
(0 (1 Movx2,y2→i=0,1Z= 01 AB(01
(1 (0 Movx2,y2→i=1,0Z= 10 AB(10
(1 (1 Movx2,y2→i=1,1Z= 11 AB(11

You can see in the table abovethat we are using x2, y2 that 2 
indicates we took 2 Cplanes and those Cplaneshad 2 different 
x, y points to approach to our variable i. Now our equation is,                                                                                     
(q1 + (q2 = A(q1 + B(q2(29)

Multi-Qubit States in Un Mathematics
We defined single qubit equation, truth table, symbol and we 
moved to 2 qubitstate and we did the same with 2 qubit states now 
I will define n number ofqubits in other words multiple qubit states 
in a Equation.

SingleQubit= (q1= A(q1
TwoQubit = (q1(q2= A(q1B(q2

As we gave names to our Cplanes as A,B for n number of qubits 
we will defineA,B,C,D, . . .Z,An,Bn,Cn, . . .Zn. each of them is a 
Cplane which has a singlequbit inside each Cplane. So as we have 
n number of Cplanes we need n numberof xn, yn points to ap-
proach our i. we can define this by as our qubits increaseq1, q2, q3, 
. . . we have A・・・ → Zn(0 . . . 0 → 1 . . . 1) and it’s endpoints 
xn, yn andn number of Cplanes. Our equation is.

(q1 + (q2 + ・・・+ (qn = A + B + C+ ・・・+ Zn(qn               (30)

All Quantum Gates in Un Mathematics representation.
Usama’s Z Gate:
Creating a U-Z gate with N number of inputs and N number of out-
puts whereU stands for both Un Math and my name Usama. The 
Z gate in traditional QChas a phase change operation butwhen you 
talk about my Z gate it takes qubitsin whatever state we don’t care 
about that and perform a Mov operation whichwill give us any 
state you desired. Since our Cplane has all states of qubits andwe 
just take intersection of low and high chaos this actually yields 
2 outputs by Axiom (2) one being 0kseen called low-high state 
which is actually a correctstate (desired)and one being 0seenk 
called high-low this gives us a state whichis more in high chaos 
than in low so we can’t rely on that state but it will beused in entan-
glement. How you ask? well you already know that q1 throughqn n 
number of qubits goes into U-Z gate and you get what you wanted 
andthere is the high-low part of the U-Z gate and all Un math gates 
as it’s theonly method we have to get the exact state of a qubit so 
that part of our U-Zgate is always remained but as you might be 
knowing entanglement is when ourqubit is actually connected to 
it’s entangled state which means in traditionalQC entangled states 
can be explained as 
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1/√2 |00⟩+ |11⟩which is saying whenthe state |00⟩is given which 
means the entangled state of this state is |11⟩which is understood 
due to the same reason as entanglement is just this what we ex-
plained the qubits actually talk to each other and that’s what made 
QC sopowerful than our classical computers and also difficult due 
to the same reasonbut worry not I got a brilliant solution to this. 
Since what we are making nowis a U-Z Gate with n number of qu-
bits. I will show you can refer 13.2.1. Inthe first input we have q1 
→ qn qubits which are feeded into U-Z gate whichoutputs kseen 
(low-high) states/chaos which are the states that you told U-Zga-
teto find in Cplane now the entanglement happens when you have 
maximalpure/mixed state in the second output where the output 
yeilds seenk (high-low)states/chaos. Now both of them are en-
tangled one with high-low and secondwith low-high. Remember 
that second input only outputs the high-low chaoswhich is why in 
13.2.1 we see the output as 1seenk . 

The entanglement in generalexplains the phenomenon of one qubit 
entangled with another in a way thatboth have similar or oppo-
site properties if one is 1 state other is definitely inzero state same 
goes with spin of a particle. Now as the second input only hasthe 
seenk state/chaos we will take the second output and put it through 
U-NOTgate which will be entangled with our output of kseen 
since NOT operation justinverts the operation like 1 → 0 and 0 → 
1 this method will be different fromour traditional NOT operation 
we need to entangle our first output of U-Z gatewith the output of 
U-NOT gate so output of U-NOT gate will be explained next.Here 
is the Symbol, operation, and equation for our U-Z gate and we 
alreadyshowed this gate in both single and two qubit gates above:

Figure (g):  Multi-Qubit U-Z gate Equation/Representation for 
U-Zgate:

q1 . . . qn = A. . .Zn = A(q1 . . .Zn(qn                                              (31)

Usama’s U-NOT Gate:The U-Z gate will be used first then comes 
the U-NOT gate to perform entanglementfor a simple calculation 
of extraction of bits from a qubit our U-Z gateis enough but for 
entanglement and use the real beauty of quantum computingin 
action we need the combination of both gates and we have our 
first quantumcircuit. Seeing the 13.2.1 and 13.2.2 the output from 
the second input givedyou seenk chaos/state which then goes as 
a input to U-NOT gate and it outputsthe flipped state as a NOT 
operation q2(1seenk → q2(0kseen which invertsthe output from 0 
→ 1 or 1 → 0 and also NOTs the operation of chaos fromseenk → 
kseen which tells us that the q1 and q2 are entangled and we can 
usethis to our advantage to have faster calculations.

Figure (h): U-NOT gate for Entanglement between 2 qubits:

Grover’s Search Algorithm with My Gates
Grover’s search algorithm is like the first algorithm to really cap-
ture the essenceof Quantum Computers it uses a lot of traditional 
QC gates and mathematics toget the best search algorithm which 
finds the elements from the random set ofnumbers. And you know 
my mathematics itself is random so we will design ourfirst oracle 
which is nothing but Usama’s Z gate. Which gives us the desired-
output from the set of all uncertain qubits that is nothing but the 
definition oftraditional oracle we use in today’s QC.

We will use our kseen and seenk as our set of random numbers and 
bydefinition of our ñnumbers we can definitely use those as our set 
and now wewill use our Cplane and Intersection of Earth concept 
to get our Grover’s searchwork in my method.

Figure (i): U-Oracle for Grover’s Search Algorithm:

Looking the figure above we can see that we are using U-Z Gate 
and UNOT
gate are added together to get our oracle which will take both seen 
and k chaos
and find the desired value quickly.

kl ∩ seenh = kseen, seenk                                                        (32)

Intersection of Earth of low and high chaos is taken to get 2 values 
which isour U-Z gate equation to get the low-high and high-low 
values from U-Z gatenow this is taken and addedto our UNOT 
gate to entangle the qubits now ourGrover’s Search Algorithm de-
mands the search in the random set we got ourdesired value from 
the first output of U-Z gate which finds any value we desirebut 
also gives us the high-low chaotic terms which is then fed into the 
input ofUNOT gate which flips the chaos and the state in which we 
found which is thesame result as doing a entanglement in today’s 
QC math and methods.

Now for example we need the number 5 inside our set of random 
numbersor ñnumbers we will set the value of i = 5 which will help 
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kl ∩ seenh = kseen, seenk(32)

Intersection of Earth of low and high chaos is taken to get 2 values which isour U-Z gate 

equation to get the low-high and high-low values from U-Z gatenow this is taken and addedto 

our UNOT gate to entangle the qubits now ourGrover’s Search Algorithm demands the 

search in the random set we got ourdesired value from the first output of U-Z gate which 

finds any value we desirebut also gives us the high-low chaotic terms which is then fed into 

the input ofUNOT gate which flips the chaos and the state in which we found which is 

thesame result as doing a entanglement in today’s QC math and methods.

Now for example we need the number 5 inside our set of random numbersor ñnumbers we 

will set the value of i = 5 which will help us find the exactnumber inside that 

random/chaosnow we use our Mov function:

Movx,y→ı=5Z = 5 (33)

We have already solved the Grover’s Search algorithm without any non-intuitive

method.

Shor’s Algorithm with My Method

As you know Shor’s algorithm is the algorithm which really outperforms classicalcomputers 

on the classical computer it takes the complexity exponential whichis very large and on QC it 

will be polynomial time complexity. Now keep inmind we use what is called QFT (find’s 

period of a function) to solve shor’salgorithm with the combination of Hadamard gates and 

connected to it’s entangled state which means in traditionalQC entangled states can be 

explained as 

1/√2 |00⟩+ |11⟩which is saying whenthe state |00⟩is given which means the entangled state of 

this state is |11⟩which is understood due to the same reason as entanglement is just this what

we explained the qubits actually talk to each other and that’s what made QC sopowerful than 

our classical computers and also difficult due to the same reasonbut worry not I got a brilliant 

solution to this. Since what we are making nowis a U-Z Gate with n number of qubits. I will 

show you can refer 13.2.1. Inthe first input we have q1 → qn qubits which are feeded into U-

Z gate whichoutputs kseen (low-high) states/chaos which are the states that you told U-

Zgateto find in Cplane now the entanglement happens when you have maximalpure/mixed 

state in the second output where the output yeilds seenk (high-low)states/chaos. Now both of 

them are entangled one with high-low and secondwith low-high. Remember that second input 

only outputs the high-low chaoswhich is why in 13.2.1 we see the output as 1seenk .

The entanglement in generalexplains the phenomenon of one qubit entangled with another in 

a way thatboth have similar or opposite properties if one is 1 state other is definitely inzero 

state same goes with spin of a particle. Now as the second input only hasthe seenk state/chaos 

we will take the second output and put it through U-NOTgate which will be entangled with 

our output of kseen since NOT operation justinverts the operation like 1 → 0 and 0 → 1 this 

method will be different fromour traditional NOT operation we need to entangle our first 

output of U-Z gatewith the output of U-NOT gate so output of U-NOT gate will be explained

next.Here is the Symbol, operation, and equation for our U-Z gate and we alreadyshowed this 

gate in both single and two qubit gates above:

Fig (g): : Multi-Qubit U-Z gate Equation/Representation for U-Zgate:

q1 . . . qn = A. . .Zn = A(q1 . . .Zn(qn (31)
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us find the exactnumber inside that random/chaosnow we use our 
Mov function:

Movx,y→ı=5Z = 5                                                                    (33)

We have already solved the Grover’s Search algorithm without 
any non-intuitive
method.

Shor’s Algorithm with My Method
As you know Shor’s algorithm is the algorithm which really out-
performs classicalcomputers on the classical computer it takes the 
complexity exponential whichis very large and on QC it will be 
polynomial time complexity. Now keep inmind we use what is 
called QFT (find’s period of a function) to solve shor’salgorithm 
with the combination of Hadamard gates and UROT (rotation) ga-
testo get QFT and use QPE (Quantum Phase Estimation) to inverse 
that operationnow we use that and perform calculations on our tra-
ditional QC which givesusvarious states for say |x⟩= |x1⟩, |x2⟩, . . . , 
|xn⟩which is then passed to ahadamard and then to the UROT gate 
this cycle continues which a really longprocess just for the QFT 
then we perform actual Shor’s algorithm which takesmore time 
approximately O(n3) roughly.

Remember we don’t even care for measurement in my method we 
just getwhat we want with U-Z gate or U-Oracle (used in grover’s 
search algorithm)so my method is much much easier no excess 
use and abusive notations andunnecessary use of gates. And please 
keep in mind I won’t do the classical partof the algorithm you can 
check the classical part.Now how will my method work? There 
are 2 parts to calculate the shor’salgorithm one is the classical 
part done by a classical computer and another withof course our 
quantum computer now the part in traditional quantum comput-
ingmeaning the method we use now uses superposition and en-
tanglement to getthe period of our algorithm. As you know any 
odd prime number when dividedgets stuck in a period some might 
explain it as 1 → 1 which means wheneveryou got 1 the next in 
line 1 is our whole period from one to one. 

So now thatyou know what period is I will go through the tradi-
tional method very quicklynow we take any number say N that 
number will have a period the period forlet’s say 15 is |0⟩, |4⟩, |8⟩, 
|12⟩. Now these are the only values that are left dueto calculations 
from the Oracle of traditional QC so these values are called the-
equally likely probability of getting every number which in my 
opinion a lazyguess, So that’s how we got the period which is the 
hardest part of our algorithmthis alone takes exponential time clas-
sically now let’s see my method:

Now the steps to calculate with My method of shor’s al-
gorithmincludes
• We will use our U-Z gate to get all the values that is a period say 
|0⟩, |4⟩, |8⟩, |12⟩.
• This U-Z gate as you know has 2 output register the second out-
put registerget’s the samevalues but in high-low chaos which will 

next sent to theU-NOT gate to flip the chaos and the values.
• Together they formed the U-Oracle which yeilds values that are 
neededin our case the period and the next register yeilds the same 
values whichmeans the second register output and the first register 
outputs are entangledso we have our CONFIRMED answer as we 
got our period.

This should have cleared how powerful my mathematics and the-
ories are thisconcludes the Quantum Computation with Uncertain 
Mathematics section nextwe will see Quantum Register, Quantum 
Capacitor and a Quantum Processor.

Quantum Resistor
This component was important to add to my quantum computer 
as I think practicallythe computation on my QC will be a little 
slow because we are searchingand getting the desired state inside a 
U-Z gate or U-Oracle the practical approachmight be a little slow 
so I decided to add a necessary component tomy QC a Quantum 
Resister though sounds familiar to the traditional resistorcompo-
nent used in electrical circuits though has a different functionality.
Quantum Resistor will be used before Quantum Capacitor which 
we will lookat in next section that stores healthy qubits inside just 
like a electrical capacitorstores current now before this process we 
need to go through our Quantumresistor which will filter out dam-
aged quantum particles/qubits by damaged Imean very much af-
fected by environment which will create numorous problemswhen 
any Un gates applied so wee need clean qubits to work with that 
are notdamaged.

Figure (j): Quantum Resistor:

In the above figure you can observe that we are taking input as any 
quantummechanical particle/qubit and it outputs a healthy qubit 
which is perfect forour Un gates to compute information in that 
qubit. If qn(0, 1 any state q is inqϕ(× state which means the state 
was noisy and QR will get rid of that stateto get noiseless calcula-
tions.q1 + q2 + . . . + qn = qϕ(× (34)where q1 → qn are the qubits 
passed through quantum resistor and it outputsthe qϕ(× state (ϕ 
is any qubit with noise between the q1 → qn) which was thequbit 
with noise and was eliminated from the n qubits passed through 
the QR.

Quantum Capacitor
This component is placed after the quantum resistor which will 
store the healthy qubits and pass it to the Un Quantum Computer/
Gates.

• Together they formed the U-Oracle which yeilds values that are neededin our case the 

period and the next register yeilds the same values whichmeans the second register output 

and the first register outputs are entangledso we have our CONFIRMED answer as we got 

our period.

This should have cleared how powerful my mathematics and theories are thisconcludes the 

Quantum Computation with Uncertain Mathematics section nextwe will see Quantum 

Register, Quantum Capacitor and a Quantum Processor.

Quantum Resistor:

This component was important to add to my quantum computer as I think practicallythe 

computation on my QC will be a little slow because we are searchingand getting the desired 

state inside a U-Z gate or U-Oracle the practical approachmight be a little slow so I decided 

to add a necessary component tomy QC a Quantum Resister though sounds familiar to the 

traditional resistorcomponent used in electrical circuits though has a different 

functionality.Quantum Resistor will be used before Quantum Capacitor which we will lookat 

in next section that stores healthy qubits inside just like a electrical capacitorstores current 

now before this process we need to go through our Quantumresistor which will filter out 

damaged quantum particles/qubits by damaged Imean very much affected by environment 

which will create numorous problemswhen any Un gates applied so wee need clean qubits to 

work with that are notdamaged.

Fig (j): Quantum Resistor:

In the above figure you can observe that we are taking input as any quantummechanical 

particle/qubit and it outputs a healthy qubit which is perfect forour Un gates to compute 

information in that qubit. If qn(0, 1 any state q is inqϕ(× state which means the state was 

noisy and QR will get rid of that stateto get noiseless calculations.q1 + q2 + . . . + qn = qϕ(×
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Figure (k): Quantum Capacitor:

Above figure states clearly that the inputs from the QR are all the 
healthynoiseless qubits our Quantum Capacitor stores them and 
passes one by one tothe Quantum Gates or Computer. Which helps 
the Quantum Computer bebusy and don’t have to worry about the 
”bad states” coming to it.Qc = q1 + q2 + q3 + . . . + qn = qα(× (35)
where (α is any qubit outputed) qubits q1 → qn are stored inside 
our QCapacitorwhich then will be outputing each qα one by one to 
our Quantum Computer.

Results and Experiments
I am 22 years old living in a small town in India when I stumbled 
upon avideo on Youtube called ”Quantum Machine Learning” by 
Siraj Raval and Isaw him explain what qubits and Quantum Com-
puting was. I was immediatelyattracted to the idea of faster calcu-
lations few months passed and I failed inEngineering Mathematics 
in my diploma in Computer Engineering after thatfailure I started 
to watch Professor Leonard Youtube channel and the way hetaught 
mathematics was when I fully understood how amazing Newton 
andLeibniz were to create Calculus a mathematics of change. I 
started my journeyof learning quantum mechanics and I saw how 
they use probability to solvea particle non locality problem then 
some lectures of Prof. 

John Preskill andNPTEL lectures for Quantum Computation how 
big of a deal it was to solvea Quantum Measurement problem then 
in the vaccation after semester I gavemyself a deadline to find a 
new number system which will define uncertaintyand chaos that’s 
where this paper was born.I first looked at this method as hook 
and point method the approach was toattach a bunch of hooks to 
every movement of a quantum mechanical particleand plot those 
movement on a plane and then find where particle visited themost 
but then I realised how unintutive the idea of hook point is and it’s 
notunique it’s yet another statistical technique but then I found out 
how a chaosis by looking at a smoke from a debris the smoke was 
very less and when thatgas was sent into air the chaos was so high 
we can’t even see the gas particles.
This was the birth of low chaos and high chaos and then I was 
finding theproof of Riemann Hypothesis in the midst of my exper-
iments with QuantumComputation that’s when I realised how 3 
infinitly many numbers have beenplotted onto a Cplane and in the 
collection of such large chaos how can onefind if all the numbers 
on critical line is zero then that experiment gave birthto the idea of 
intersection as in the middle of such large numbers and quantityI 
observed how a chaos is whatever is happening no matter how 
many numbersare governing this universe only the actions of pres-
ent matters and I came upwith intersection of low and high chaos 
which gives low-high and high-low valuesinside the intersection 

the high-low which will enter into the region of low chaosand low-
high into high. This gave a meaning to my work of finding a new-
mathematics for quantum mechanics and computation.

The results I received after such intense experimentation’s was 
amazing thismethod and approach opened a lot of new doors in 
my mind I found peace withthe chaos and I was able to propose 
this method and solve Riemann Hypothesisand gave new mean-
ing to Navier Stokes Equation. Most importantly I was ableto just 
find any state of a particle with just getting the intersection of the 
valuesof particle as particle is uncertain and chaotic the particle 
has speed of eitherhigh chaos or low chaos or both which is our 
intersection region you see when we take intersection and find let’s 
say |0⟩+|1⟩/√2 which is our |+⟩state insidebloch sphere we don’t 
even care about collapsing of this state as we will just getthe exact 
collapsed state of a particle inside my intersection region.This is 
justa proposed method of course with no experimental proof’s but 
I believe this isthe only way we can give meaning to chaos and 
uncertainty.

Conclusion
This paper deals with how in quantum mechanics and computation 
there is ahuge problem of measurement as we try to measure any 
particle it just collapsesto a state opposite to it or any other this is 
the major problem in quantumcomputing which has stopped the 
growth of Quantum Technologies I tried todevelop a new meth-
od other the probability to understand this quantum phenomenon-
with my new number system called chaotic numbers ñwhich has 
it’sown rules and techniques. This new method divides chaos into 
two parts calledthe low and high chaos and then if we need any 
state of a particle in the presentstate we can find by intersecting 
both and getting any desired value this alsohelped me to solve Rie-
mann Hypothesis also Navier Stokes Equation. In Riemann hy-
pothesis we just place my Cplane inside the critical strip which 
thensees if the region is empty as Cplane is a all the plotted points 
till ℵ3 if it’sempty the Riemann Hypothesis is true and for Navier 
Stokes we just take oneCplane place it on any Big Uncertainty 
fluid gas anything and we place Dvectors(Double Vectors) which 
has low and high chaos midpoints which increases andwe place 
infinitely many Cplanes on that space and simply integrate it to 
getthe movement of that at every point in that space.Future of my 
method’s I encourage researcher’s to look into my mathematicsas 
it is immature and as a result of it’s birth and I being alone working 
on thisI couldn’t finish all the parameters in my mathematics I did 
till I was satisfiedto complete this research it has Dvectors Chaot-
ic numbers (ñ) it’s postulateCplane the distribution the operations 
on these numbers the maturity of thismathematics will take many 
many years but it does the work for now. 

I requestto work more on my approach many of the things I didn’t 
mention but can beachieved think about the applications of cryp-
tography in this if we can controlrandomness many problems 
which can be solved. The control of QuantumParticles once we 
know it’s next position, The weather predictions and so manymore 
applications.We started by showing how today’s number system 

(34)where q1 → qn are the qubits passed through quantum resistor and it outputsthe qϕ(×

state (ϕ is any qubit with noise between the q1 → qn) which was thequbit with noise and was 

eliminated from the n qubits passed through the QR.
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This component is placed after the quantum resistor which will store the healthy

qubits and pass it to the Un Quantum Computer/Gates.

 

Fig (k): Quantum Capacitor:

Above figure states clearly that the inputs from the QR are all the healthynoiseless qubits our 

Quantum Capacitor stores them and passes one by one tothe Quantum Gates or Computer. 

Which helps the Quantum Computer bebusy and don’t have to worry about the ”bad states” 

coming to it.Qc = q1 + q2 + q3 + . . . + qn = qα(× (35)where (α is any qubit outputed) qubits 

q1 → qn are stored inside our QCapacitorwhich then will be outputing each qα one by one to 

our Quantum Computer.

Results and Experiments

I am 22 years old living in a small town in India when I stumbled upon avideo on Youtube 

called ”Quantum Machine Learning” by Siraj Raval and Isaw him explain what qubits and 

Quantum Computing was. I was immediatelyattracted to the idea of faster calculations few 

months passed and I failed inEngineering Mathematics in my diploma in Computer 

Engineering after thatfailure I started to watch Professor Leonard Youtube channel and the 

way hetaught mathematics was when I fully understood how amazing Newton andLeibniz 

were to create Calculus a mathematics of change. I started my journeyof learning quantum 

mechanics and I saw how they use probability to solvea particle non locality problem then 

some lectures of Prof. 
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is so fragile and whywe need a new number system and we saw 
how it helped us solve problems wewere just waiting for years 
someone would solve and I have started this newnumber system 
which has potential to do much more this is just my ideas and ap-
proach. I was only able to apply them with the questions I found 
on googlelike millennium prize problems as they are so famous I 
live in a very small townin India where not many people are even 
literate. I found my knowledge throughyoutube and online lectures 
and I was able to try these problems there might bea different prob-
lem that would become easy with this. This paper has a lot totake 
in and many new things to digest but if this work were to ever 
go public itwill be a new opportunity for researchers to use this 
tool shape it the way theylike, I would encourage researchers to 
work on this number system and make itrobust enough as it’s just 
a proposed method from my small mind what morecould I have 
done and what the world might do with this new mathematicaltool 
which is so different in nature. For more information on chaotic 
numbersrefer [22].
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