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Abstract
This paper presents a prototype-based soft feature selection package (Sofes) wrapped around the highly interpretable Matrix 
Robust Soft Learning Vector Quantization (MRSLVQ) and the Local MRSLVQ algorithms. The process of assessing feature 
relevance with Sofes aligns with a comparable approach established in the Nafes package, with the primary distinction being 
the utilization of prototype-based induction learners influenced by a probabilistic framework. The numerical evaluation of 
test results aligns Sofes’ performance with the Nafes package's.
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1. Introduction
A crucial step in the process of building practical machine-learning applications is feature engineering [1]. Among the various aspects 
of feature engineering, feature selection plays a pivotal role, significantly impacting the performance of machine learning models [1]. 
Practitioners in applied machine learning often need to acquire prior knowledge about which attributes in the feature space contribute 
to classifier decisions. Employing an excessively large feature space gives rise to the curse of dimensionality, leading to significant 
computational and performance burdens that require meticulous handling [2]. To address this challenge, a reduced feature space that 
maximizes classification performance can be achieved by considering concurrently and affirmatively learned relevance [3-6]. Many 
feature selection algorithms lack step-by-step mathematical comprehensibility and thus obscure the understanding of their inner 
workings and outputs [1]. In this context, we propose a wrapper-based algorithm that focuses on the Matrix Robust Soft Learning 
Vector Quantization (MRSLVQ) and the Local MRSLVQ model(s) serving as an inductive learner(s) coupled with a target space robust 
evaluation scheme [7-9]. This paper presents a soft variant of the novel feature selection algorithm introduced in Nafes [1] by prioritizing 
mathematical simplicity, computational efficiency, high interpretability, and good learning dynamics as crucial attributes for effective 
feature selection.

1.1 Learning Vector Quantization (LVQ)
A highly interpretable prototype-based supervised machine learning algorithm is Learning Vector Quantization (LVQ) [10]. Since the 
LVQ family of algorithms is a subset of nearest prototype classifiers, learning is spirited on prototypes W = {w1, w2, …, wM} selected 
within the attribute space ℝn of the input vector S = {s1, s2, s3, . . . , sN} and subsequently updated by an attraction and repulsion 
mechanism (2) based on the nearest prototype principle (1), allowing the data patterns to be typically represented by the prototypes for 
class assignments [11]. Inference in LVQ is determined by computing the nearest prototype to a given sample from the test set using a 
dissimilarity measure d mostly chosen as the squared Euclidean distance. However, the choice of dissimilarity measure is not limited to 
the Euclidean distance [7, 10-12]. By the winner-takes-all rule guided by the nearest prototype principle, we have:
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3 Matrix Robust Soft Learning Vector Quantization (MRSLVQ)

A probabilistic LVQ that utilizes a soft model predictor based on prototypical representation from the feature
space that assumes centers of a Gaussian mixture model is introduced by [7] as Robust Soft LVQ (RSLVQ).
Learning in RSLVQ follows probabilistic approach hence maximizes the mutual information between the pre-
dicted probability vector pW (s) = (pW (1|s) , pW (2|s) , . . . , pW (C|s))T and actual class target probability vector
p (s) = (p1 (s) , . . . , pC (s))
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The soft model predictor for Matrix-RSLVQ is given by
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The dissimilarity measure follows the same relevance distance utilized in the Generalized Matrix Learning Vector
Quantization [5, 4, 8] given by
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(9)

Classification in MRSLVQ follows the RSLVQ analogy by learning a full linear transformation matrix of relevances Ω
globally, and for Local MRSLVQ, each learned prototype comes with its respective matrix of relevances Ω.

2

with M being the cardinality of the prototype set W. For a given input sample s, the reference vectors wQ(s) is strengthened if c (s) = c 
(wQ(s)) and weakened if c (s) ≠ c (wQ(s))  using the learning rule in (3) regarding (2) with learning rate β.
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1.2 Matrix Robust Soft Learning Vector Quantization (MRSLVQ)
A probabilistic LVQ that utilizes a soft model predictor based on prototypical representation from the feature space that assumes centers 
of a Gaussian mixture model is introduced by [7] as Robust Soft LVQ (RSLVQ). Learning in RSLVQ follows probabilistic approach 
hence maximizes the mutual information between the predicted probability vector pw (s) = (pw (1|s) , pw (2|s) , . . . , pw (C|s))T and 
actual class target probability vector p (s) = (p1 (s) , . . . , pc (s))T by minimizing the cross-entropy loss computed as:

where

and

The soft model predictor for Matrix-RSLVQ is given by

The dissimilarity measure follows the same relevance distance utilized in the Generalized Matrix Learning Vector Quantization [4,5,8] 
given by

Classification in MRSLVQ follows the RSLVQ analogy by learning a full linear transformation matrix of relevances Ω globally, and for 
Local MRSLVQ, each learned prototype comes with its respective matrix of relevances Ω.

1.3 Prototype-Based Soft Feature Selection (Sofes)
Sofes package serves as an interface to the highly interpretable soft feature selection wrapper algorithm built on the prototype-based 
inductive learner(s) MRSLVQ and LMRSLVQ. The wrapper algorithm introduced in this paper is a soft modification of the novel 
algorithm implemented in designed with a broader focus on determining relevant features that ensure a good fit [1].



Volume 5 | Issue 2 |3Adv Mach Lear Art Inte,  2024
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Sofes package serves as an interface to the highly interpretable soft feature selection wrapper algorithm built on the
prototype-based inductive learner(s) MRSLVQ and LMRSLVQ. The wrapper algorithm introduced in this paper is a
soft modification of the novel algorithm implemented in [1] designed with a broader focus on determining relevant
features that ensure a good fit.

Algorithm 1 Soft Prototype-based feature selection algorithm

Require: Training set T = {sn, c (sn)}Nn=1 ∈ {Rn, C}N
1: Initialize: prototype-based classifier (3), nppc ≥ 1, σ2 > 0, 0 < φ, and E > 0
2: Learning Iterations: at step t = 0, 1, 2, .., : do
3: Optimal Search: minimize

t
E(S,W ) using (4) for the Ωt and compute ϑt using (10).

4: Complexity: increment nppct+1 = nppct + 1 at each step
5: Convergence: Compare if ϑt+1 < ϑt or using a convenient matrix norm if, ||Ωt+1 − Ωt|| ≤ E stop
6: Compute: Λ = ΩTΩ ∈ Rn×n based on the learned full matrix of relevances Ωt+1

7: Ranking: Rank by the magnitude of feature relevance Λj,j for global Ω else compute ranks based on the number
of hits from the local Λ respectively based on the local Ω matrices using (12) and (13)

8: Non-Rejection: Select and rank features by order of magnitude for which


i Λi,j ̸= 0
9: Rejection: Reject features if


i Λi,j = 0

10: Return: Ranked significant, insignificant and tentative features
11: End procedure

In order to evaluate the performance of Sofes, we opt for the mutation validation scheme (ϑ) for LVQ[9], as a pragmatic
alternative to cross-validation and holdout schemes.

ϑ = (1− 2φ)
1
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
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
1

#T



(s,ĉ(s))∈T̂

1− ϕ(s)− 1

#T̂



(s,ĉ(s))∈T̂

−ϕ(s)


+ φ (10)

ϕ (s) =




+ 1, c(s) = c(wQ(s))

0, c(s) = ĉ(wQ(s))

− 1, ĉ(s) = ĉ(wQ(s))

(11)

Where the mutation degree (φ) is a small positive yet constant parameter and the mutated set T̂ is represented as
{sn, ĉ (sn)}Nn=1 ∈ {Rn, C}N . The number of significant prototype hits per feature space is defined as:

Pi∗ = #{wL ∈ W | iL ∈ F ∧

i

ΛL
ij ̸= 0} (12)

and the corresponding number of insignificant prototype hits per feature space is given by:

Pi∗ = #{wL ∈ W | iL ∈ F ∧

i

ΛL
ij = 0} (13)

where L is local, F is the feature space, i∗ and i∗ are the significant (S) and insignificant (I) features under
consideration respectively. If Pi∗ = Pi∗ , the feature i is designated as tentative (T) observing that |F| = |{S∪ T∪ I}|.
The feature selection process within the Sofes framework involves considering two settings: global relevance and local
relevances. Due to the complexity associated with local relevances, rejection strategies outlined in (12) and (13) are
introduced. The purpose is to align the behavior of local relevances with that of the global setting, aiming at enhancing
interpretability, simplicity, understandability, comparability, and easy usability. In the context of Sofes, akin to Nafes[1],
employing the LMRSLVQ inductive learner within the feature subset selection algorithm 1 emerges as a highly viable
option for applications, particularly in the domain of machine learning pipelines designed for prototype-based feature
selection.
1

1nppc, σ2 and E herein used in Sofes are user-defined parameters denoted respectively as the number of prototypes per
class, variance and a small but positive number for termination. The source code for the Sofes algorithm is available at https:
//github.com/naotoo1/Prototype-Based-Soft-Feature-Selection-Package
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Algorithm 1 Soft Prototype-based feature selection algorithm

Require: Training set T = {sn, c (sn)}Nn=1 ∈ {Rn, C}N
1: Initialize: prototype-based classifier (3), nppc ≥ 1, σ2 > 0, 0 < φ, and E > 0
2: Learning Iterations: at step t = 0, 1, 2, .., : do
3: Optimal Search: minimize

t
E(S,W ) using (4) for the Ωt and compute ϑt using (10).

4: Complexity: increment nppct+1 = nppct + 1 at each step
5: Convergence: Compare if ϑt+1 < ϑt or using a convenient matrix norm if, ||Ωt+1 − Ωt|| ≤ E stop
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8: Non-Rejection: Select and rank features by order of magnitude for which


i Λi,j ̸= 0
9: Rejection: Reject features if


i Λi,j = 0

10: Return: Ranked significant, insignificant and tentative features
11: End procedure

In order to evaluate the performance of Sofes, we opt for the mutation validation scheme (ϑ) for LVQ[9], as a pragmatic
alternative to cross-validation and holdout schemes.
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{sn, ĉ (sn)}Nn=1 ∈ {Rn, C}N . The number of significant prototype hits per feature space is defined as:

Pi∗ = #{wL ∈ W | iL ∈ F ∧

i

ΛL
ij ̸= 0} (12)

and the corresponding number of insignificant prototype hits per feature space is given by:

Pi∗ = #{wL ∈ W | iL ∈ F ∧

i

ΛL
ij = 0} (13)

where L is local, F is the feature space, i∗ and i∗ are the significant (S) and insignificant (I) features under
consideration respectively. If Pi∗ = Pi∗ , the feature i is designated as tentative (T) observing that |F| = |{S∪ T∪ I}|.
The feature selection process within the Sofes framework involves considering two settings: global relevance and local
relevances. Due to the complexity associated with local relevances, rejection strategies outlined in (12) and (13) are
introduced. The purpose is to align the behavior of local relevances with that of the global setting, aiming at enhancing
interpretability, simplicity, understandability, comparability, and easy usability. In the context of Sofes, akin to Nafes[1],
employing the LMRSLVQ inductive learner within the feature subset selection algorithm 1 emerges as a highly viable
option for applications, particularly in the domain of machine learning pipelines designed for prototype-based feature
selection.
1

1nppc, σ2 and E herein used in Sofes are user-defined parameters denoted respectively as the number of prototypes per
class, variance and a small but positive number for termination. The source code for the Sofes algorithm is available at https:
//github.com/naotoo1/Prototype-Based-Soft-Feature-Selection-Package

3



Volume 5 | Issue 2 |4Adv Mach Lear Art Inte,  2024

5 Experimentation

To illustrate the performance of the proposed soft prototype-based feature selection wrapper algorithm used in the Sofes
package, two real datasets, namely, the Ozone Level [13] and Wisconsin Breast Cancer (WDBC) [14] datasets, were
used for all experiments. The datasets have 569 and 2536 inputs with corresponding 30 and 73 attributes, respectively.

Table 1: Classification accuracies for WDBC dataset using Nafes[1] and Sofes feature selection Packages
GMLVQ[1] LGMLVQ[1] MRSLVQ LMRSLVQ

Method 1|1 1,2−−→ 3|3, 3|3 1|1 1,2−−→ 2|2, 3|3 1|1 1,2−−→ 5|5, 6|6 1|1 1,2−−→ 3|3, 5|5
1MV(φ = 0.1) 94.64% 94.89%

r−→ 94.89% 91.44% 96.92%
r−→ 96.92%

2MV(φ = 0.2) 94.65% 94.20%
r−→ 94.90% 80.14% 97.84%

r−→ 97.84%

1# features. 30 → 17 30 → 29
r−→ 23 30 → 30 30 → 29

r−→ 20

2# features. 30 → 17 30 → 29
r−→ 23 30 → 30 30 → 29

r−→ 21

Observations from the results in Tables (1,2) show the GMLVQ learner performs better than the MRSLVQ learner
when employed for the relevance feature selection of both the WDBC and Ozone level datasets. GMLVQ reduced the
feature space of the WDBC dataset by way of relevant feature selection from 30 to 17 as compared to MRSLVQ,
which weighted all features with equal relevance.

Table 2: Classification accuracies for Ozone Level dataset using Nafes[1] and Sofes feature selection Package
GMLVQ[1] LGMLVQ[1] MRSLVQ LMRSLVQ

Method 1|1 1,2−−→ 2|2, 3|3 1|1 1,2−−→ 2|2, 2|2 1|1 1,2−−→ 2|2, 2|2 1|1 1,2−−→ 3|3, 3|3
1MV(φ = 0.1) 93.07% 93.21%

r−→ 93.21% 91.94% 92.74%
r−→ 92.74%

2MV(φ = 0.2) 94.65% 94.20%
r−→ 94.90% 94.33% 93.30%

r−→ 93.30%

1# features. 72 → 42 72 → 66
r−→ 43 72 → 72 72 → 72

r−→ 40

2# features. 72 → 42 72 → 21
r−→ 13 72 → 72 72 → 67

r−→ 49

Similar behavior is also witnessed with the Ozone level dataset where the GMLVQ relevantly reduces the feature space
from 72 to 42 as compared with the equalized relevance weighting by the MRSLVQ learner. Furthermore, MRSLVQ,
when wrapped inductively in algorithm (1), records higher complexity (more prototypes per class) as compared with
the GMLVQ inductive learner.

Due to the equalization of relevances recorded with MRSLVQ, we apply a rejection strategy based on (12,13) as shown
in Figures (1,2,3) to the local variants for effective feature reduction. The rejection strategy involves identifying potential
features, which are subsequently excluded from the set of significant attributes based on the number of prototype hits.
Importantly, this elimination does not lead to a significant decline in performance. As a result, it allows for categorizing
the feature space into three distinct groups: significant, insignificant, and tentative.

The outcomes presented in Tables (1,2) suggest that LGMLVQ[1] and LMRSLVQ induction learners exhibit a similar
level of performance when it comes to reducing the relevance of features in the WDBC dataset. However, in the case of
the Ozone level dataset, the LGMLVQ approach, as employed in [1], notably surpasses LMRSLVQ in feature space
reduction. The performance discrepancy in LMRSLVQ compared to LGMLVQ can be attributed to the probabilistic
framework utilized in LMRSLVQ, which imposes specific conditions on the input space to achieve optimal results.
Key prerequisites dictate that the input space should exhibit a Gaussian distribution with minimal to no noise, as
described in [15], and that the user-defined variance hyperparameter σ2 must be finely tuned for optimal performance,
as emphasized in [7] and shown in Figures(1,2,3). These conditions, however, do not strictly apply to LGMLVQ
prototype-based induction learners.
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(a) LMRSLVQ (φ = 0.1) (b) LMRSLVQ (φ = 0.2)

Figure 1: Visualization of significant ‘S’, tentative ‘T’ and insignificant ‘I’ features with reject strategy evaluated using
MV scheme against the variance σ2 for the WDBC dataset. The solid, broken and short-dashed lines are indicative of
the behaviour of the LMRSLVQ learner regarding the feature space designations.

Furthermore, the performance evaluation scores of the suggested prototype-based soft feature selection wrapper
algorithm align with the principles of the MV scheme. The aligned behavior is particularly evident when identifying
features that lead to effective learning for classification decisions. We note that soft feature selection is efficient, as
explored in this study, within the context of prototype-based induction models. Efficient feature selection is especially
true when combined with the necessary data preprocessing and transformations, which serve as an initial step for
utilizing probabilistic-inspired learners.

(a) LMRSLVQ(φ = 0.1) (b) LMRSLVQ(φ = 0.2)

Figure 2: Visualization of significant ‘S’, tentative ‘T’ and insignificant ‘I’ features with reject strategy evaluated
using MV scheme against the variance σ2 for the Ozone level dataset. The solid, broken and short-dashed lines are
indicative of the behaviour of the LMRSLVQ learner regarding the feature space designations.

The Figures (1,2) depict the optimal exploration of the feature space F , considering designations {S, T, I}, in terms of
the variance σ2 evaluated by the MV scheme ϑ based on φ. However, an interesting observation emerges: the tentative
class of attributes mirrors the significant class for both the WDBC and Ozone level datasets. This mirroring effect in
the tentative attribute class suggests that our rejection strategy can identify and categorize features that may appear
significant but, in reality, do not significantly contribute to classification decisions. These tentative features may seem
of minor use to prototype-based soft learners, indicating the need for further investigation to confirm this observation. 2

2However, based on the observations in Figures (1,2,3), we propose that if the feature space is excessively large, posing challenges
in handling and complexity, then the tentative class of attributes might be included in the insignificant class. Conversely, if the feature
space is too small, the tentative class of attributes might be considered as part of the significant class through test ascertainment.
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i Λi,j ̸= 0
9: Rejection: Reject features if


i Λi,j = 0

10: Return: Ranked significant, insignificant and tentative features
11: End procedure

In order to evaluate the performance of Sofes, we opt for the mutation validation scheme (ϑ) for LVQ[9], as a pragmatic
alternative to cross-validation and holdout schemes.

ϑ = (1− 2φ)
1

#T


(s,c(s))∈T

ϕ(s) +


1

#T



(s,ĉ(s))∈T̂

1− ϕ(s)− 1

#T̂



(s,ĉ(s))∈T̂

−ϕ(s)


+ φ (10)

ϕ (s) =





+ 1, c(s) = c(wQ(s))

0, c(s) = ĉ(wQ(s))

− 1, ĉ(s) = ĉ(wQ(s))

(11)

Where the mutation degree (φ) is a small positive yet constant parameter and the mutated set T̂ is represented as
{sn, ĉ (sn)}Nn=1 ∈ {Rn, C}N . The number of significant prototype hits per feature space is defined as:

Pi∗ = #{wL ∈ W | iL ∈ F ∧

i

ΛL
ij ̸= 0} (12)

and the corresponding number of insignificant prototype hits per feature space is given by:

Pi∗ = #{wL ∈ W | iL ∈ F ∧

i

ΛL
ij = 0} (13)

where L is local, F is the feature space, i∗ and i∗ are the significant (S) and insignificant (I) features under
consideration respectively. If Pi∗ = Pi∗ , the feature i is designated as tentative (T) observing that |F| = |{S∪ T∪ I}|.
The feature selection process within the Sofes framework involves considering two settings: global relevance and local
relevances. Due to the complexity associated with local relevances, rejection strategies outlined in (12) and (13) are
introduced. The purpose is to align the behavior of local relevances with that of the global setting, aiming at enhancing
interpretability, simplicity, understandability, comparability, and easy usability. In the context of Sofes, akin to Nafes[1],
employing the LMRSLVQ inductive learner within the feature subset selection algorithm 1 emerges as a highly viable
option for applications, particularly in the domain of machine learning pipelines designed for prototype-based feature
selection.
1

1nppc, σ2 and E herein used in Sofes are user-defined parameters denoted respectively as the number of prototypes per
class, variance and a small but positive number for termination. The source code for the Sofes algorithm is available at https:
//github.com/naotoo1/Prototype-Based-Soft-Feature-Selection-Package

3
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Figure 3: Visualization of the accuracies from the MV scheme against the variance σ2 for LMRSLVQ with reject strategy for the WDBC 
and Ozone Level datasets respectively.

3. Discussion
The analysis of the numerical assessment of test results reveals that the proposed soft feature selection wrapper algorithm presents an 
understandable method for feature selection, akin to the Nafes package. The primary distinction lies in Sofes’ utilization of prototype-
based induction learners inspired by a probabilistic framework. For optimal performance of efficient feature space reduction using 
Sofes, practitioners should employ the local version with the optimal rejection strategy and necessary data transforms. The proposed soft 
feature selection algorithm is characterized by its simplicity, consistency, non-heuristic nature, and interpretability while demonstrating 
strong generalization capabilities. The Sofes package offers an intuitive interface, making it a valuable tool for applied machine learning 
practitioners and domain managers when building effective machine learning pipelines.

4. Conclusion
In this paper, a pioneering prototype-based probabilistic feature selection algorithm is introduced. The paper elucidates the mathematical 
underpinnings of the Sofes algorithm and exhibits experimental results derived from real-world datasets. The numerical assessment 
of the experiments indicates that the proposed algorithm meets the requirements of a wrapper-based feature selection approach that is 
highly interpretable. The validation scheme employed in the study is designed to guarantee a well-suited reduced feature set.
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Figure 3: Visualization of the accuracies from the MV scheme against the variance σ2 for LMRSLVQ with reject
strategy for the WDBC and Ozone Level datasets respectively.

6 Discussion

The analysis of the numerical assessment of test results reveals that the proposed soft feature selection wrapper algorithm
presents an understandable method for feature selection, akin to the Nafes package. The primary distinction lies in
Sofes’ utilization of prototype-based induction learners inspired by a probabilistic framework. For optimal performance
of efficient feature space reduction using Sofes, practitioners should employ the local version with the optimal rejection
strategy and necessary data transforms. The proposed soft feature selection algorithm is characterized by its simplicity,
consistency, non-heuristic nature, and interpretability while demonstrating strong generalization capabilities. The Sofes
package offers an intuitive interface, making it a valuable tool for applied machine learning practitioners and domain
managers when building effective machine learning pipelines.

7 Conclusion

In this paper, a pioneering prototype-based probabilistic feature selection algorithm is introduced. The paper elucidates
the mathematical underpinnings of the Sofes algorithm and exhibits experimental results derived from real-world
datasets. The numerical assessment of the experiments indicates that the proposed algorithm meets the requirements of
a wrapper-based feature selection approach that is highly interpretable. The validation scheme employed in the study is
designed to guarantee a well-suited reduced feature set.
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