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Abstract 

By analytically extending the Euler Zeta function, the Riemann Zeta function is 

obtained. The Riemann Zeta function has zero points, which are trivial and non-trivial, 

respectively. By analyzing the internal structure of the Riemann Zeta function, it was 

found that the key to the value of 0 in the complex plane of the Riemann Zeta function 

is sin(sπ)=0, thus proving the validity of the Riemann hypothesis. That is, the real 

parts of all non trivial zeros of the Riemannian Zeta function are on the complex 
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This integral expression is analyzed on the whole Complex plane except that it is 

meaningless at  

1s .According to the integral expression (1) above, it can be proven that )(s  

atisfy algebraic relationship:                                
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Furthermore, it was found that in equation (2), the factors that cause the )(s  to be 
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sin s  ,in fact in )1( s  , if s  in  
2

1sin s  is equal to an 

odd number such as 3, 5, etc., it can also make the value of the )(s  equal to 

zero,This is a new discovery about the trivial zero point. 

 

Next, let's analyze the situation when s  is a complex number. 

On the right side of equation (2),it can be seen that the product of 
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Below is a comparison table for non trivial zero values. 
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From Figure (b), it can be seen that the error between the non trivial zero values 

calculated in this paper and the 13 non trivial zero values currently calculated is 

relatively small.the reason for the error is that modern calculations estimate the results 

of Π (x) and Li (x) functions, while in this paper, non trivial zero values are calculated 

using the exact value of ib=i(1/2+m). 

 

 

From Figure (b), it can be seen that the error between the non 
trivial zero values calculated in this paper and the 13 non trivial 
zero values currently calculated is relatively small.the reason for 
the error is that modern calculations estimate the results of Π (x) 
and Li (x) functions, while in this paper, non trivial zero values 
are calculated using the exact value of ib=i(1/2+m).

Conclusion
The Real Part of All Non trivial Zeros of Riemann Zeta Func-
tions is 1/2,the Riemann hypothesis holds.
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