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Abstract
In this paper, we explain a process of super-resolution reconstruction allowing to increase the resolution of an image. 
The need for high-resolution digital images exists in diverse domains, for example, the medical and spatial domains. The 
obtaining of high-resolution digital images can be made at the time of the shooting, but it is often synonymic with important 
costs because of the necessary material to avoid such costs, it is known how to use methods of super-resolution reconstruction, 
consisting of one or several low-resolution images to obtain a high-resolution image. The American patent US 9208537 
describes such an algorithm. A zone of one low-resolution image is isolated and categorized according to the information 
contained in pixels forming the borders of the zone. The category of it zone determines the type of interpolation used to 
add pixels in the aforementioned zone, to increase the neatness of the images. It is also known how to reconstruct a low-
resolution image and a high-resolution image by using a model of super-resolution reconstruction whose learning is based 
on networks of neurons and on an image or a picture library. The demand of Chinese patent CN 107563965 and the scientist 
publication “Pixel Recursive Super Resolution “, R. Dahl, M. Norouzi, and  J. Shlens propose such methods. The aim of 
this paper is to demonstrate that it is possible to reconstruct coherent human faces from very degraded pixelated images 
with a very fast algorithm, faster than the compressed sensing (CS) algorithm, easier to compute and without deep learning, 
so without important information technology resources, i.e. a large database of thousand of training images ( https://arxiv.
org/pdf/2003.13063.pdf). This technological breakthrough has been patented in 2018 with the demand of French patent 
FR 1855485 (https://patents.google.com/patent/FR3082980A1, see the HAL reference https://hal.archives-ouvertes.fr/hal-
01875898v1).
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1. Introduction
Last February 2017, three researchers described before from 
Google Brain published their results on Pixel Recursive 
Super Resolution to present the powerful IA (https://arxiv.org/
pdf/1702.00783.pdf). Their technology consists in approaching 
the final picture by combining an algorithm and database pictures 
of Google to obtain from an initial 8x8 definition picture, a 32x32 
definition picture which is very similar to the actual picture. A 
French startup named LABLANCHE (http://www.lablanche-
and-co.com) is said to have developed an innovation based on a 
powerful algorithm that could deliver similar results as Google, 
but, without using any database. If the achievements of this new 
algorithm are confirmed, it would represent a very important 
innovation for any potential end user who would want to operate 
independently of the Google database, and faster. In this paper, 
we present the new technology of interpolation for image super-
resolution based on conditional interpolations in three directions 
called successively to achieve a blurred high-resolution image 
with a lot more details to help the deconvolution algorithm (the 
directional interpolation monitored by the orientation of the 
motion filter) to create truth details at the end (LABLANCHE 
process).

2. Problem
2.1 Presentation
For the tests, we must realize two stages. For stage 1, we do 
a compression of images which consists to fill in each bloc of 
4x4 pixels of R, G, or B channel with an averaging intensity 
of the bloc. For stage 2, we do storage of intensities in a vector 
of unsigned char type for the channel (if monochrome image) 
or three channels (if RGB image). In the C++ language, the 
unsigned char type elements correspond to bytes. This stage 
provides a smaller size file that attains averaging intensities. The 
parameter named step corresponds to the size of the same color 
blocs, step controls the quality of the reconstruction and therefore 
the loss of quality generated by the compression. For step=4, the 
compression rate is equivalent to the JPEG size format (step and 
step/2 must be even numbers to realize the reconstruction). We 
note q=step/2, the number of levels. Here we have two levels 
LEVEL 1 and LEVEL 2 and the step is an even number which 
enables us to share the 4 by 4 pixels bloc in 4 blocs qxq. In the 
case of 2 by 2 pixels blocs, we have one level (step=2).
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2.2 Modelling
Considering that images as vectors, the problem can be modeled 
with a lower solution observation named B of the original image 
I which is obtained by applying an operator of movement M 
(i.e. a geometric transformation), a blur operator F, and with a 
subsampling operator S. An additive noise completes this inverse 
problem: B=SFMI+. The operator SFM (subsampling + blurring 
+ geometric transformation) owns more columns than rows, the 
system is underdetermined. The extension factor between images 
B and the e I is equal to step2.The image H obtained by a super-
resolution algorithm from B must be verified the reconstruction 
constraint, i.e. must give B using the observation model. 

3.Compressed Sensing
The Compressed Sensing technique makes it possible to find 
the most parsimonious solution from an undetermined linear 
system. It involves not only the means of finding such a solution 
but also the linear systems that are acceptable. The process is to 
reconstruct accurately a signal or an image when the number of 
measurements is less than the length of the signal. The paradox 
can be explained by the fact that the signal admits a sparse 
representation on an appropriate basis. This sampling aims to 
replace the classic Shannon sampling. This theory has been 
widely developed in recent years and the amount of applications 
is continuing to rise in diverse fields such as tomography with 
MRI and computed tomography or radar and radar imagery, in 
particular in signal and image compression. We consider a real-
valued signal x, which we will see in the form of a column vector 
of length N. In the case of images or higher-dimension signals, 
we can arrange the data to form a long vector. We indicate 
this signal in a     base such as 	     We wish to select the base 
whereby the majority of coefficients of s are equal to zero, ie x is 
parsimonious in the base    . 

These bases are known and usually used to compress the start-
ing signal. Compressed Sensing proposes to acquire directly the 
compressed version of the signal so that unnecessary samples do 
not need to be processed. The linear measuring process that is 
used consists of making M scalar products, with M much small-
er than N, between x and a collection of vectors going from 1 
to M. We obtain therefore samples              of  measurements. 
Considering that the measurement matrix    has   the (    j) as a 
column, we can thus write x as y                                      The 
measurement matrix design must be able to find the most parsi-
monious signals. In order to do so, the measurement matrix must 
follow certain properties, one of which is called RIP (Restricted 
Isometry Property). The matrix     satisfies the restricted isometry 
property (RIP) of order k if there exists       in (0,1) such that
				       holds for all      	
	        Furthermore, must be inconsistent with,    so the 
coherence of the       matrix must be closest to 0. The coherence 
μ of a matrix     is the largest absolute inner product between any 
two columns of      and is defined by 
It is evident that these properties are satisfied with a high prob-
ability simply by choosing    at random, for example by using 
a Gaussian distribution. Although these RIP or inconsistency 
conditions are satisfactory for some sets of measurements, they 
are only necessary conditions and not sufficient. There are other 
properties, also insufficient, which require us to need even fewer 
samples in order to guarantee a parsimonious signal reconstruc-

tion. The last step of the Compressed Sensing process is the re-
construction of the starting signal. For this, we know the M val-
ues for y, the matrix measurements used as well as the      base. 
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by It is evident that these properties are satisfied with a high 
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a Gaussian distribution. Although these RIP or inconsistency 
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they are only necessary conditions and not sufficient. There 
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is the reconstruction of the starting signal. For this, we know 
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The reconstruction algorithm seeks to find the coefficients of s. 
Thanks to this knowledge, it is then simple to find x, the starting 
signal. There are infinite solutions for the equation s=y, however, 
we are looking for the solution which minimizes a certain norm. 
The L2 norm measures the signal energy which is why by using 
a L2-Minimization, we will hardly ever find a K-parsimonious 
result. The L0 norm measures the parsimony of the signal 
(we count the number of elements not equal to zero), and the 
optimization				    gives a good result 
(L0-Minimization). The disadvantage is that this problem cannot 
be calculated digitally. It has been shown that the optimization 
based on the L1 norm makes it possible to find an exact 
K-parsimonious signal, the problem of the L1-Minimization 
is convex. Its resolution could be reduced to a linear program, 
more often known as basis pursuit. This resolution is not the 
only one and there are other techniques that allow for even better 
results such as Conjugate Gradient Pursuit (CGP) or Stage-wise 
Weak Conjugate Gradient Pursuit (StWCGP). The number of 
necessary measurements M to have an exact recovery of the 
K-parsimonious signal is in the same order as 5K.

4. Model
We use a reconstruction of the pixelated image with an algorithm 
of conditional and directional interpolation. The algorithm owns 
as its scientific base the fact when the ratio of the pixels is 
very small the decoherence used in compressed sensing (CS) 
plays an important role in the quality of reconstruction whereas 
parsimony plays an important role when the ratio is more 

3.Compressed Sensing
The Compressed Sensing technique makes it possible to find the most parsimonious
solution from an undetermined linear system. It involves not only the means
of finding such a solution but also the linear systems that are acceptable. The
process is to reconstruct accurately a signal or an image when the number of
measurements is less than the length of the signal. The paradox can be explained
by the fact that the signal admits a sparse representation in an appropriate basis.
This sampling aims to replace the classic Shannon sampling. This theory has been
widely developed in recent years and the amount of applications is continuing to
rise in diverse fields such as tomography with MRI and computed tomography
or radar and radar imagery, in particular in signal and image compression. We
consider a real valued signal x, which we will see in the form of a column vector
of length N. In the case of images or higher dimension signals, we can arrange
the data to form a long vector. We indicate this signal in a Ψ base such as
x=Ψs. We wish to select the base whereby the majority of coefficients of s
are equal to zero, ie x is parsimonious in the Ψ base. These bases are known
and usually used to compress the starting signal. Compressed Sensing proposes
to acquire directly the compressed version of the signal so that unnecessary
samples do not need to be processed. The linear measuring process that is used
consists of making M scalar products, with M much smaller than N, between
x and a collection of vectors going from 1 to M. We obtain therefore samples
yj = 〈x, Φj〉 of measurements. Considering that the measurement matrix Φ has
the (Φj) as column, we can thus write x as: y=Φx=ΦΨs=Θs (with Θ=ΦΨ). The
measurement matrix design must be able to find the most parsimonious signals.
In order to do so, the measurement matrix must follow certain properties, one of
which is called RIP (Restricted Isometry Property). The matrix Φ satisfies the
restricted isometry property (RIP) of order k if there exists a δk in (0,1) such that
(1-δk)‖x‖2

2≤‖Φx‖2
2≤(1+δk)‖x‖2

2 holds for all x ∈ Σk={x:‖x‖0≤k}. Furthermore,
Φ must be inconsistent with Ψ, so the coherence of the Θ matrix must be closest
to 0. The coherence µ of a matrix Θ is the largest absolute inner product between
any two columns of Θ and is defined by µ(Θ)= max

1≤i≤j≤n

〈Θi,Θj〉
‖Θi‖‖Θj‖ . It is evident

that these properties are satisfied with a high probability simply by choosing Φ
at random, for example by using a Gaussian distribution. Although these RIP
or inconsistency conditions are satisfactory for some sets of measurements, they
are only necessary conditions and not sufficient. There are other properties, also
insufficient, which require us to need even less samples in order to guarantee a
parsimonious signal reconstruction. The last step of the Compressed Sensing
process is the reconstruction of the starting signal. For this, we know the M values
for y, the matrix measurements used as well as the Ψ base. The reconstruction
algorithm seeks to find the coefficients of s. Thanks to the knowledge of Ψ, it
is then simple to find x, the starting signal. There are infinite solutions for
the equation Θs=y, however we are looking for the solution which minimises a
certain norm. The L2 norm measures the signal energy which is why by using
a L2-Minimization, we will hardly ever find a K-parsimonious result. The L0

3

3.Compressed Sensing
The Compressed Sensing technique makes it possible to find the most parsimonious
solution from an undetermined linear system. It involves not only the means
of finding such a solution but also the linear systems that are acceptable. The
process is to reconstruct accurately a signal or an image when the number of
measurements is less than the length of the signal. The paradox can be explained
by the fact that the signal admits a sparse representation in an appropriate basis.
This sampling aims to replace the classic Shannon sampling. This theory has been
widely developed in recent years and the amount of applications is continuing to
rise in diverse fields such as tomography with MRI and computed tomography
or radar and radar imagery, in particular in signal and image compression. We
consider a real valued signal x, which we will see in the form of a column vector
of length N. In the case of images or higher dimension signals, we can arrange
the data to form a long vector. We indicate this signal in a Ψ base such as
x=Ψs. We wish to select the base whereby the majority of coefficients of s
are equal to zero, ie x is parsimonious in the Ψ base. These bases are known
and usually used to compress the starting signal. Compressed Sensing proposes
to acquire directly the compressed version of the signal so that unnecessary
samples do not need to be processed. The linear measuring process that is used
consists of making M scalar products, with M much smaller than N, between
x and a collection of vectors going from 1 to M. We obtain therefore samples
yj = 〈x, Φj〉 of measurements. Considering that the measurement matrix Φ has
the (Φj) as column, we can thus write x as: y=Φx=ΦΨs=Θs (with Θ=ΦΨ). The
measurement matrix design must be able to find the most parsimonious signals.
In order to do so, the measurement matrix must follow certain properties, one of
which is called RIP (Restricted Isometry Property). The matrix Φ satisfies the
restricted isometry property (RIP) of order k if there exists a δk in (0,1) such that
(1-δk)‖x‖2

2≤‖Φx‖2
2≤(1+δk)‖x‖2

2 holds for all x ∈ Σk={x:‖x‖0≤k}. Furthermore,
Φ must be inconsistent with Ψ, so the coherence of the Θ matrix must be closest
to 0. The coherence µ of a matrix Θ is the largest absolute inner product between
any two columns of Θ and is defined by µ(Θ)= max

1≤i≤j≤n

〈Θi,Θj〉
‖Θi‖‖Θj‖ . It is evident

that these properties are satisfied with a high probability simply by choosing Φ
at random, for example by using a Gaussian distribution. Although these RIP
or inconsistency conditions are satisfactory for some sets of measurements, they
are only necessary conditions and not sufficient. There are other properties, also
insufficient, which require us to need even less samples in order to guarantee a
parsimonious signal reconstruction. The last step of the Compressed Sensing
process is the reconstruction of the starting signal. For this, we know the M values
for y, the matrix measurements used as well as the Ψ base. The reconstruction
algorithm seeks to find the coefficients of s. Thanks to the knowledge of Ψ, it
is then simple to find x, the starting signal. There are infinite solutions for
the equation Θs=y, however we are looking for the solution which minimises a
certain norm. The L2 norm measures the signal energy which is why by using
a L2-Minimization, we will hardly ever find a K-parsimonious result. The L0

3

3.Compressed Sensing
The Compressed Sensing technique makes it possible to find the most parsimonious
solution from an undetermined linear system. It involves not only the means
of finding such a solution but also the linear systems that are acceptable. The
process is to reconstruct accurately a signal or an image when the number of
measurements is less than the length of the signal. The paradox can be explained
by the fact that the signal admits a sparse representation in an appropriate basis.
This sampling aims to replace the classic Shannon sampling. This theory has been
widely developed in recent years and the amount of applications is continuing to
rise in diverse fields such as tomography with MRI and computed tomography
or radar and radar imagery, in particular in signal and image compression. We
consider a real valued signal x, which we will see in the form of a column vector
of length N. In the case of images or higher dimension signals, we can arrange
the data to form a long vector. We indicate this signal in a Ψ base such as
x=Ψs. We wish to select the base whereby the majority of coefficients of s
are equal to zero, ie x is parsimonious in the Ψ base. These bases are known
and usually used to compress the starting signal. Compressed Sensing proposes
to acquire directly the compressed version of the signal so that unnecessary
samples do not need to be processed. The linear measuring process that is used
consists of making M scalar products, with M much smaller than N, between
x and a collection of vectors going from 1 to M. We obtain therefore samples
yj = 〈x, Φj〉 of measurements. Considering that the measurement matrix Φ has
the (Φj) as column, we can thus write x as: y=Φx=ΦΨs=Θs (with Θ=ΦΨ). The
measurement matrix design must be able to find the most parsimonious signals.
In order to do so, the measurement matrix must follow certain properties, one of
which is called RIP (Restricted Isometry Property). The matrix Φ satisfies the
restricted isometry property (RIP) of order k if there exists a δk in (0,1) such that
(1-δk)‖x‖2

2≤‖Φx‖2
2≤(1+δk)‖x‖2

2 holds for all x ∈ Σk={x:‖x‖0≤k}. Furthermore,
Φ must be inconsistent with Ψ, so the coherence of the Θ matrix must be closest
to 0. The coherence µ of a matrix Θ is the largest absolute inner product between
any two columns of Θ and is defined by µ(Θ)= max

1≤i≤j≤n

〈Θi,Θj〉
‖Θi‖‖Θj‖ . It is evident

that these properties are satisfied with a high probability simply by choosing Φ
at random, for example by using a Gaussian distribution. Although these RIP
or inconsistency conditions are satisfactory for some sets of measurements, they
are only necessary conditions and not sufficient. There are other properties, also
insufficient, which require us to need even less samples in order to guarantee a
parsimonious signal reconstruction. The last step of the Compressed Sensing
process is the reconstruction of the starting signal. For this, we know the M values
for y, the matrix measurements used as well as the Ψ base. The reconstruction
algorithm seeks to find the coefficients of s. Thanks to the knowledge of Ψ, it
is then simple to find x, the starting signal. There are infinite solutions for
the equation Θs=y, however we are looking for the solution which minimises a
certain norm. The L2 norm measures the signal energy which is why by using
a L2-Minimization, we will hardly ever find a K-parsimonious result. The L0

3

3.Compressed Sensing
The Compressed Sensing technique makes it possible to find the most parsimonious
solution from an undetermined linear system. It involves not only the means
of finding such a solution but also the linear systems that are acceptable. The
process is to reconstruct accurately a signal or an image when the number of
measurements is less than the length of the signal. The paradox can be explained
by the fact that the signal admits a sparse representation in an appropriate basis.
This sampling aims to replace the classic Shannon sampling. This theory has been
widely developed in recent years and the amount of applications is continuing to
rise in diverse fields such as tomography with MRI and computed tomography
or radar and radar imagery, in particular in signal and image compression. We
consider a real valued signal x, which we will see in the form of a column vector
of length N. In the case of images or higher dimension signals, we can arrange
the data to form a long vector. We indicate this signal in a Ψ base such as
x=Ψs. We wish to select the base whereby the majority of coefficients of s
are equal to zero, ie x is parsimonious in the Ψ base. These bases are known
and usually used to compress the starting signal. Compressed Sensing proposes
to acquire directly the compressed version of the signal so that unnecessary
samples do not need to be processed. The linear measuring process that is used
consists of making M scalar products, with M much smaller than N, between
x and a collection of vectors going from 1 to M. We obtain therefore samples
yj = 〈x, Φj〉 of measurements. Considering that the measurement matrix Φ has
the (Φj) as column, we can thus write x as: y=Φx=ΦΨs=Θs (with Θ=ΦΨ). The
measurement matrix design must be able to find the most parsimonious signals.
In order to do so, the measurement matrix must follow certain properties, one of
which is called RIP (Restricted Isometry Property). The matrix Φ satisfies the
restricted isometry property (RIP) of order k if there exists a δk in (0,1) such that
(1-δk)‖x‖2

2≤‖Φx‖2
2≤(1+δk)‖x‖2

2 holds for all x ∈ Σk={x:‖x‖0≤k}. Furthermore,
Φ must be inconsistent with Ψ, so the coherence of the Θ matrix must be closest
to 0. The coherence µ of a matrix Θ is the largest absolute inner product between
any two columns of Θ and is defined by µ(Θ)= max

1≤i≤j≤n

〈Θi,Θj〉
‖Θi‖‖Θj‖ . It is evident

that these properties are satisfied with a high probability simply by choosing Φ
at random, for example by using a Gaussian distribution. Although these RIP
or inconsistency conditions are satisfactory for some sets of measurements, they
are only necessary conditions and not sufficient. There are other properties, also
insufficient, which require us to need even less samples in order to guarantee a
parsimonious signal reconstruction. The last step of the Compressed Sensing
process is the reconstruction of the starting signal. For this, we know the M values
for y, the matrix measurements used as well as the Ψ base. The reconstruction
algorithm seeks to find the coefficients of s. Thanks to the knowledge of Ψ, it
is then simple to find x, the starting signal. There are infinite solutions for
the equation Θs=y, however we are looking for the solution which minimises a
certain norm. The L2 norm measures the signal energy which is why by using
a L2-Minimization, we will hardly ever find a K-parsimonious result. The L0

3

3.Compressed Sensing
The Compressed Sensing technique makes it possible to find the most parsimonious
solution from an undetermined linear system. It involves not only the means
of finding such a solution but also the linear systems that are acceptable. The
process is to reconstruct accurately a signal or an image when the number of
measurements is less than the length of the signal. The paradox can be explained
by the fact that the signal admits a sparse representation in an appropriate basis.
This sampling aims to replace the classic Shannon sampling. This theory has been
widely developed in recent years and the amount of applications is continuing to
rise in diverse fields such as tomography with MRI and computed tomography
or radar and radar imagery, in particular in signal and image compression. We
consider a real valued signal x, which we will see in the form of a column vector
of length N. In the case of images or higher dimension signals, we can arrange
the data to form a long vector. We indicate this signal in a Ψ base such as
x=Ψs. We wish to select the base whereby the majority of coefficients of s
are equal to zero, ie x is parsimonious in the Ψ base. These bases are known
and usually used to compress the starting signal. Compressed Sensing proposes
to acquire directly the compressed version of the signal so that unnecessary
samples do not need to be processed. The linear measuring process that is used
consists of making M scalar products, with M much smaller than N, between
x and a collection of vectors going from 1 to M. We obtain therefore samples
yj = 〈x, Φj〉 of measurements. Considering that the measurement matrix Φ has
the (Φj) as column, we can thus write x as: y=Φx=ΦΨs=Θs (with Θ=ΦΨ). The
measurement matrix design must be able to find the most parsimonious signals.
In order to do so, the measurement matrix must follow certain properties, one of
which is called RIP (Restricted Isometry Property). The matrix Φ satisfies the
restricted isometry property (RIP) of order k if there exists a δk in (0,1) such that
(1-δk)‖x‖2

2≤‖Φx‖2
2≤(1+δk)‖x‖2

2 holds for all x ∈ Σk={x:‖x‖0≤k}. Furthermore,
Φ must be inconsistent with Ψ, so the coherence of the Θ matrix must be closest
to 0. The coherence µ of a matrix Θ is the largest absolute inner product between
any two columns of Θ and is defined by µ(Θ)= max

1≤i≤j≤n

〈Θi,Θj〉
‖Θi‖‖Θj‖ . It is evident

that these properties are satisfied with a high probability simply by choosing Φ
at random, for example by using a Gaussian distribution. Although these RIP
or inconsistency conditions are satisfactory for some sets of measurements, they
are only necessary conditions and not sufficient. There are other properties, also
insufficient, which require us to need even less samples in order to guarantee a
parsimonious signal reconstruction. The last step of the Compressed Sensing
process is the reconstruction of the starting signal. For this, we know the M values
for y, the matrix measurements used as well as the Ψ base. The reconstruction
algorithm seeks to find the coefficients of s. Thanks to the knowledge of Ψ, it
is then simple to find x, the starting signal. There are infinite solutions for
the equation Θs=y, however we are looking for the solution which minimises a
certain norm. The L2 norm measures the signal energy which is why by using
a L2-Minimization, we will hardly ever find a K-parsimonious result. The L0

3

3.Compressed Sensing
The Compressed Sensing technique makes it possible to find the most parsimonious
solution from an undetermined linear system. It involves not only the means
of finding such a solution but also the linear systems that are acceptable. The
process is to reconstruct accurately a signal or an image when the number of
measurements is less than the length of the signal. The paradox can be explained
by the fact that the signal admits a sparse representation in an appropriate basis.
This sampling aims to replace the classic Shannon sampling. This theory has been
widely developed in recent years and the amount of applications is continuing to
rise in diverse fields such as tomography with MRI and computed tomography
or radar and radar imagery, in particular in signal and image compression. We
consider a real valued signal x, which we will see in the form of a column vector
of length N. In the case of images or higher dimension signals, we can arrange
the data to form a long vector. We indicate this signal in a Ψ base such as
x=Ψs. We wish to select the base whereby the majority of coefficients of s
are equal to zero, ie x is parsimonious in the Ψ base. These bases are known
and usually used to compress the starting signal. Compressed Sensing proposes
to acquire directly the compressed version of the signal so that unnecessary
samples do not need to be processed. The linear measuring process that is used
consists of making M scalar products, with M much smaller than N, between
x and a collection of vectors going from 1 to M. We obtain therefore samples
yj = 〈x, Φj〉 of measurements. Considering that the measurement matrix Φ has
the (Φj) as column, we can thus write x as: y=Φx=ΦΨs=Θs (with Θ=ΦΨ). The
measurement matrix design must be able to find the most parsimonious signals.
In order to do so, the measurement matrix must follow certain properties, one of
which is called RIP (Restricted Isometry Property). The matrix Φ satisfies the
restricted isometry property (RIP) of order k if there exists a δk in (0,1) such that
(1-δk)‖x‖2

2≤‖Φx‖2
2≤(1+δk)‖x‖2

2 holds for all x ∈ Σk={x:‖x‖0≤k}. Furthermore,
Φ must be inconsistent with Ψ, so the coherence of the Θ matrix must be closest
to 0. The coherence µ of a matrix Θ is the largest absolute inner product between
any two columns of Θ and is defined by µ(Θ)= max

1≤i≤j≤n

〈Θi,Θj〉
‖Θi‖‖Θj‖ . It is evident

that these properties are satisfied with a high probability simply by choosing Φ
at random, for example by using a Gaussian distribution. Although these RIP
or inconsistency conditions are satisfactory for some sets of measurements, they
are only necessary conditions and not sufficient. There are other properties, also
insufficient, which require us to need even less samples in order to guarantee a
parsimonious signal reconstruction. The last step of the Compressed Sensing
process is the reconstruction of the starting signal. For this, we know the M values
for y, the matrix measurements used as well as the Ψ base. The reconstruction
algorithm seeks to find the coefficients of s. Thanks to the knowledge of Ψ, it
is then simple to find x, the starting signal. There are infinite solutions for
the equation Θs=y, however we are looking for the solution which minimises a
certain norm. The L2 norm measures the signal energy which is why by using
a L2-Minimization, we will hardly ever find a K-parsimonious result. The L0

3

3.Compressed Sensing
The Compressed Sensing technique makes it possible to find the most parsimonious
solution from an undetermined linear system. It involves not only the means
of finding such a solution but also the linear systems that are acceptable. The
process is to reconstruct accurately a signal or an image when the number of
measurements is less than the length of the signal. The paradox can be explained
by the fact that the signal admits a sparse representation in an appropriate basis.
This sampling aims to replace the classic Shannon sampling. This theory has been
widely developed in recent years and the amount of applications is continuing to
rise in diverse fields such as tomography with MRI and computed tomography
or radar and radar imagery, in particular in signal and image compression. We
consider a real valued signal x, which we will see in the form of a column vector
of length N. In the case of images or higher dimension signals, we can arrange
the data to form a long vector. We indicate this signal in a Ψ base such as
x=Ψs. We wish to select the base whereby the majority of coefficients of s
are equal to zero, ie x is parsimonious in the Ψ base. These bases are known
and usually used to compress the starting signal. Compressed Sensing proposes
to acquire directly the compressed version of the signal so that unnecessary
samples do not need to be processed. The linear measuring process that is used
consists of making M scalar products, with M much smaller than N, between
x and a collection of vectors going from 1 to M. We obtain therefore samples
yj = 〈x, Φj〉 of measurements. Considering that the measurement matrix Φ has
the (Φj) as column, we can thus write x as: y=Φx=ΦΨs=Θs (with Θ=ΦΨ). The
measurement matrix design must be able to find the most parsimonious signals.
In order to do so, the measurement matrix must follow certain properties, one of
which is called RIP (Restricted Isometry Property). The matrix Φ satisfies the
restricted isometry property (RIP) of order k if there exists a δk in (0,1) such that
(1-δk)‖x‖2

2≤‖Φx‖2
2≤(1+δk)‖x‖2

2 holds for all x ∈ Σk={x:‖x‖0≤k}. Furthermore,
Φ must be inconsistent with Ψ, so the coherence of the Θ matrix must be closest
to 0. The coherence µ of a matrix Θ is the largest absolute inner product between
any two columns of Θ and is defined by µ(Θ)= max

1≤i≤j≤n

〈Θi,Θj〉
‖Θi‖‖Θj‖ . It is evident

that these properties are satisfied with a high probability simply by choosing Φ
at random, for example by using a Gaussian distribution. Although these RIP
or inconsistency conditions are satisfactory for some sets of measurements, they
are only necessary conditions and not sufficient. There are other properties, also
insufficient, which require us to need even less samples in order to guarantee a
parsimonious signal reconstruction. The last step of the Compressed Sensing
process is the reconstruction of the starting signal. For this, we know the M values
for y, the matrix measurements used as well as the Ψ base. The reconstruction
algorithm seeks to find the coefficients of s. Thanks to the knowledge of Ψ, it
is then simple to find x, the starting signal. There are infinite solutions for
the equation Θs=y, however we are looking for the solution which minimises a
certain norm. The L2 norm measures the signal energy which is why by using
a L2-Minimization, we will hardly ever find a K-parsimonious result. The L0

3

3.Compressed Sensing
The Compressed Sensing technique makes it possible to find the most parsimonious
solution from an undetermined linear system. It involves not only the means
of finding such a solution but also the linear systems that are acceptable. The
process is to reconstruct accurately a signal or an image when the number of
measurements is less than the length of the signal. The paradox can be explained
by the fact that the signal admits a sparse representation in an appropriate basis.
This sampling aims to replace the classic Shannon sampling. This theory has been
widely developed in recent years and the amount of applications is continuing to
rise in diverse fields such as tomography with MRI and computed tomography
or radar and radar imagery, in particular in signal and image compression. We
consider a real valued signal x, which we will see in the form of a column vector
of length N. In the case of images or higher dimension signals, we can arrange
the data to form a long vector. We indicate this signal in a Ψ base such as
x=Ψs. We wish to select the base whereby the majority of coefficients of s
are equal to zero, ie x is parsimonious in the Ψ base. These bases are known
and usually used to compress the starting signal. Compressed Sensing proposes
to acquire directly the compressed version of the signal so that unnecessary
samples do not need to be processed. The linear measuring process that is used
consists of making M scalar products, with M much smaller than N, between
x and a collection of vectors going from 1 to M. We obtain therefore samples
yj = 〈x, Φj〉 of measurements. Considering that the measurement matrix Φ has
the (Φj) as column, we can thus write x as: y=Φx=ΦΨs=Θs (with Θ=ΦΨ). The
measurement matrix design must be able to find the most parsimonious signals.
In order to do so, the measurement matrix must follow certain properties, one of
which is called RIP (Restricted Isometry Property). The matrix Φ satisfies the
restricted isometry property (RIP) of order k if there exists a δk in (0,1) such that
(1-δk)‖x‖2

2≤‖Φx‖2
2≤(1+δk)‖x‖2

2 holds for all x ∈ Σk={x:‖x‖0≤k}. Furthermore,
Φ must be inconsistent with Ψ, so the coherence of the Θ matrix must be closest
to 0. The coherence µ of a matrix Θ is the largest absolute inner product between
any two columns of Θ and is defined by µ(Θ)= max

1≤i≤j≤n

〈Θi,Θj〉
‖Θi‖‖Θj‖ . It is evident

that these properties are satisfied with a high probability simply by choosing Φ
at random, for example by using a Gaussian distribution. Although these RIP
or inconsistency conditions are satisfactory for some sets of measurements, they
are only necessary conditions and not sufficient. There are other properties, also
insufficient, which require us to need even less samples in order to guarantee a
parsimonious signal reconstruction. The last step of the Compressed Sensing
process is the reconstruction of the starting signal. For this, we know the M values
for y, the matrix measurements used as well as the Ψ base. The reconstruction
algorithm seeks to find the coefficients of s. Thanks to the knowledge of Ψ, it
is then simple to find x, the starting signal. There are infinite solutions for
the equation Θs=y, however we are looking for the solution which minimises a
certain norm. The L2 norm measures the signal energy which is why by using
a L2-Minimization, we will hardly ever find a K-parsimonious result. The L0

3

3.Compressed Sensing
The Compressed Sensing technique makes it possible to find the most parsimonious
solution from an undetermined linear system. It involves not only the means
of finding such a solution but also the linear systems that are acceptable. The
process is to reconstruct accurately a signal or an image when the number of
measurements is less than the length of the signal. The paradox can be explained
by the fact that the signal admits a sparse representation in an appropriate basis.
This sampling aims to replace the classic Shannon sampling. This theory has been
widely developed in recent years and the amount of applications is continuing to
rise in diverse fields such as tomography with MRI and computed tomography
or radar and radar imagery, in particular in signal and image compression. We
consider a real valued signal x, which we will see in the form of a column vector
of length N. In the case of images or higher dimension signals, we can arrange
the data to form a long vector. We indicate this signal in a Ψ base such as
x=Ψs. We wish to select the base whereby the majority of coefficients of s
are equal to zero, ie x is parsimonious in the Ψ base. These bases are known
and usually used to compress the starting signal. Compressed Sensing proposes
to acquire directly the compressed version of the signal so that unnecessary
samples do not need to be processed. The linear measuring process that is used
consists of making M scalar products, with M much smaller than N, between
x and a collection of vectors going from 1 to M. We obtain therefore samples
yj = 〈x, Φj〉 of measurements. Considering that the measurement matrix Φ has
the (Φj) as column, we can thus write x as: y=Φx=ΦΨs=Θs (with Θ=ΦΨ). The
measurement matrix design must be able to find the most parsimonious signals.
In order to do so, the measurement matrix must follow certain properties, one of
which is called RIP (Restricted Isometry Property). The matrix Φ satisfies the
restricted isometry property (RIP) of order k if there exists a δk in (0,1) such that
(1-δk)‖x‖2

2≤‖Φx‖2
2≤(1+δk)‖x‖2

2 holds for all x ∈ Σk={x:‖x‖0≤k}. Furthermore,
Φ must be inconsistent with Ψ, so the coherence of the Θ matrix must be closest
to 0. The coherence µ of a matrix Θ is the largest absolute inner product between
any two columns of Θ and is defined by µ(Θ)= max

1≤i≤j≤n

〈Θi,Θj〉
‖Θi‖‖Θj‖ . It is evident

that these properties are satisfied with a high probability simply by choosing Φ
at random, for example by using a Gaussian distribution. Although these RIP
or inconsistency conditions are satisfactory for some sets of measurements, they
are only necessary conditions and not sufficient. There are other properties, also
insufficient, which require us to need even less samples in order to guarantee a
parsimonious signal reconstruction. The last step of the Compressed Sensing
process is the reconstruction of the starting signal. For this, we know the M values
for y, the matrix measurements used as well as the Ψ base. The reconstruction
algorithm seeks to find the coefficients of s. Thanks to the knowledge of Ψ, it
is then simple to find x, the starting signal. There are infinite solutions for
the equation Θs=y, however we are looking for the solution which minimises a
certain norm. The L2 norm measures the signal energy which is why by using
a L2-Minimization, we will hardly ever find a K-parsimonious result. The L0

3

3.Compressed Sensing
The Compressed Sensing technique makes it possible to find the most parsimonious
solution from an undetermined linear system. It involves not only the means
of finding such a solution but also the linear systems that are acceptable. The
process is to reconstruct accurately a signal or an image when the number of
measurements is less than the length of the signal. The paradox can be explained
by the fact that the signal admits a sparse representation in an appropriate basis.
This sampling aims to replace the classic Shannon sampling. This theory has been
widely developed in recent years and the amount of applications is continuing to
rise in diverse fields such as tomography with MRI and computed tomography
or radar and radar imagery, in particular in signal and image compression. We
consider a real valued signal x, which we will see in the form of a column vector
of length N. In the case of images or higher dimension signals, we can arrange
the data to form a long vector. We indicate this signal in a Ψ base such as
x=Ψs. We wish to select the base whereby the majority of coefficients of s
are equal to zero, ie x is parsimonious in the Ψ base. These bases are known
and usually used to compress the starting signal. Compressed Sensing proposes
to acquire directly the compressed version of the signal so that unnecessary
samples do not need to be processed. The linear measuring process that is used
consists of making M scalar products, with M much smaller than N, between
x and a collection of vectors going from 1 to M. We obtain therefore samples
yj = 〈x, Φj〉 of measurements. Considering that the measurement matrix Φ has
the (Φj) as column, we can thus write x as: y=Φx=ΦΨs=Θs (with Θ=ΦΨ). The
measurement matrix design must be able to find the most parsimonious signals.
In order to do so, the measurement matrix must follow certain properties, one of
which is called RIP (Restricted Isometry Property). The matrix Φ satisfies the
restricted isometry property (RIP) of order k if there exists a δk in (0,1) such that
(1-δk)‖x‖2

2≤‖Φx‖2
2≤(1+δk)‖x‖2

2 holds for all x ∈ Σk={x:‖x‖0≤k}. Furthermore,
Φ must be inconsistent with Ψ, so the coherence of the Θ matrix must be closest
to 0. The coherence µ of a matrix Θ is the largest absolute inner product between
any two columns of Θ and is defined by µ(Θ)= max

1≤i≤j≤n

〈Θi,Θj〉
‖Θi‖‖Θj‖ . It is evident

that these properties are satisfied with a high probability simply by choosing Φ
at random, for example by using a Gaussian distribution. Although these RIP
or inconsistency conditions are satisfactory for some sets of measurements, they
are only necessary conditions and not sufficient. There are other properties, also
insufficient, which require us to need even less samples in order to guarantee a
parsimonious signal reconstruction. The last step of the Compressed Sensing
process is the reconstruction of the starting signal. For this, we know the M values
for y, the matrix measurements used as well as the Ψ base. The reconstruction
algorithm seeks to find the coefficients of s. Thanks to the knowledge of Ψ, it
is then simple to find x, the starting signal. There are infinite solutions for
the equation Θs=y, however we are looking for the solution which minimises a
certain norm. The L2 norm measures the signal energy which is why by using
a L2-Minimization, we will hardly ever find a K-parsimonious result. The L0

3

3.Compressed Sensing
The Compressed Sensing technique makes it possible to find the most parsimonious
solution from an undetermined linear system. It involves not only the means
of finding such a solution but also the linear systems that are acceptable. The
process is to reconstruct accurately a signal or an image when the number of
measurements is less than the length of the signal. The paradox can be explained
by the fact that the signal admits a sparse representation in an appropriate basis.
This sampling aims to replace the classic Shannon sampling. This theory has been
widely developed in recent years and the amount of applications is continuing to
rise in diverse fields such as tomography with MRI and computed tomography
or radar and radar imagery, in particular in signal and image compression. We
consider a real valued signal x, which we will see in the form of a column vector
of length N. In the case of images or higher dimension signals, we can arrange
the data to form a long vector. We indicate this signal in a Ψ base such as
x=Ψs. We wish to select the base whereby the majority of coefficients of s
are equal to zero, ie x is parsimonious in the Ψ base. These bases are known
and usually used to compress the starting signal. Compressed Sensing proposes
to acquire directly the compressed version of the signal so that unnecessary
samples do not need to be processed. The linear measuring process that is used
consists of making M scalar products, with M much smaller than N, between
x and a collection of vectors going from 1 to M. We obtain therefore samples
yj = 〈x, Φj〉 of measurements. Considering that the measurement matrix Φ has
the (Φj) as column, we can thus write x as: y=Φx=ΦΨs=Θs (with Θ=ΦΨ). The
measurement matrix design must be able to find the most parsimonious signals.
In order to do so, the measurement matrix must follow certain properties, one of
which is called RIP (Restricted Isometry Property). The matrix Φ satisfies the
restricted isometry property (RIP) of order k if there exists a δk in (0,1) such that
(1-δk)‖x‖2

2≤‖Φx‖2
2≤(1+δk)‖x‖2

2 holds for all x ∈ Σk={x:‖x‖0≤k}. Furthermore,
Φ must be inconsistent with Ψ, so the coherence of the Θ matrix must be closest
to 0. The coherence µ of a matrix Θ is the largest absolute inner product between
any two columns of Θ and is defined by µ(Θ)= max

1≤i≤j≤n

〈Θi,Θj〉
‖Θi‖‖Θj‖ . It is evident

that these properties are satisfied with a high probability simply by choosing Φ
at random, for example by using a Gaussian distribution. Although these RIP
or inconsistency conditions are satisfactory for some sets of measurements, they
are only necessary conditions and not sufficient. There are other properties, also
insufficient, which require us to need even less samples in order to guarantee a
parsimonious signal reconstruction. The last step of the Compressed Sensing
process is the reconstruction of the starting signal. For this, we know the M values
for y, the matrix measurements used as well as the Ψ base. The reconstruction
algorithm seeks to find the coefficients of s. Thanks to the knowledge of Ψ, it
is then simple to find x, the starting signal. There are infinite solutions for
the equation Θs=y, however we are looking for the solution which minimises a
certain norm. The L2 norm measures the signal energy which is why by using
a L2-Minimization, we will hardly ever find a K-parsimonious result. The L0

3

3.Compressed Sensing
The Compressed Sensing technique makes it possible to find the most parsimonious
solution from an undetermined linear system. It involves not only the means
of finding such a solution but also the linear systems that are acceptable. The
process is to reconstruct accurately a signal or an image when the number of
measurements is less than the length of the signal. The paradox can be explained
by the fact that the signal admits a sparse representation in an appropriate basis.
This sampling aims to replace the classic Shannon sampling. This theory has been
widely developed in recent years and the amount of applications is continuing to
rise in diverse fields such as tomography with MRI and computed tomography
or radar and radar imagery, in particular in signal and image compression. We
consider a real valued signal x, which we will see in the form of a column vector
of length N. In the case of images or higher dimension signals, we can arrange
the data to form a long vector. We indicate this signal in a Ψ base such as
x=Ψs. We wish to select the base whereby the majority of coefficients of s
are equal to zero, ie x is parsimonious in the Ψ base. These bases are known
and usually used to compress the starting signal. Compressed Sensing proposes
to acquire directly the compressed version of the signal so that unnecessary
samples do not need to be processed. The linear measuring process that is used
consists of making M scalar products, with M much smaller than N, between
x and a collection of vectors going from 1 to M. We obtain therefore samples
yj = 〈x, Φj〉 of measurements. Considering that the measurement matrix Φ has
the (Φj) as column, we can thus write x as: y=Φx=ΦΨs=Θs (with Θ=ΦΨ). The
measurement matrix design must be able to find the most parsimonious signals.
In order to do so, the measurement matrix must follow certain properties, one of
which is called RIP (Restricted Isometry Property). The matrix Φ satisfies the
restricted isometry property (RIP) of order k if there exists a δk in (0,1) such that
(1-δk)‖x‖2

2≤‖Φx‖2
2≤(1+δk)‖x‖2

2 holds for all x ∈ Σk={x:‖x‖0≤k}. Furthermore,
Φ must be inconsistent with Ψ, so the coherence of the Θ matrix must be closest
to 0. The coherence µ of a matrix Θ is the largest absolute inner product between
any two columns of Θ and is defined by µ(Θ)= max

1≤i≤j≤n

〈Θi,Θj〉
‖Θi‖‖Θj‖ . It is evident

that these properties are satisfied with a high probability simply by choosing Φ
at random, for example by using a Gaussian distribution. Although these RIP
or inconsistency conditions are satisfactory for some sets of measurements, they
are only necessary conditions and not sufficient. There are other properties, also
insufficient, which require us to need even less samples in order to guarantee a
parsimonious signal reconstruction. The last step of the Compressed Sensing
process is the reconstruction of the starting signal. For this, we know the M values
for y, the matrix measurements used as well as the Ψ base. The reconstruction
algorithm seeks to find the coefficients of s. Thanks to the knowledge of Ψ, it
is then simple to find x, the starting signal. There are infinite solutions for
the equation Θs=y, however we are looking for the solution which minimises a
certain norm. The L2 norm measures the signal energy which is why by using
a L2-Minimization, we will hardly ever find a K-parsimonious result. The L0

3

3.Compressed Sensing
The Compressed Sensing technique makes it possible to find the most parsimonious
solution from an undetermined linear system. It involves not only the means
of finding such a solution but also the linear systems that are acceptable. The
process is to reconstruct accurately a signal or an image when the number of
measurements is less than the length of the signal. The paradox can be explained
by the fact that the signal admits a sparse representation in an appropriate basis.
This sampling aims to replace the classic Shannon sampling. This theory has been
widely developed in recent years and the amount of applications is continuing to
rise in diverse fields such as tomography with MRI and computed tomography
or radar and radar imagery, in particular in signal and image compression. We
consider a real valued signal x, which we will see in the form of a column vector
of length N. In the case of images or higher dimension signals, we can arrange
the data to form a long vector. We indicate this signal in a Ψ base such as
x=Ψs. We wish to select the base whereby the majority of coefficients of s
are equal to zero, ie x is parsimonious in the Ψ base. These bases are known
and usually used to compress the starting signal. Compressed Sensing proposes
to acquire directly the compressed version of the signal so that unnecessary
samples do not need to be processed. The linear measuring process that is used
consists of making M scalar products, with M much smaller than N, between
x and a collection of vectors going from 1 to M. We obtain therefore samples
yj = 〈x, Φj〉 of measurements. Considering that the measurement matrix Φ has
the (Φj) as column, we can thus write x as: y=Φx=ΦΨs=Θs (with Θ=ΦΨ). The
measurement matrix design must be able to find the most parsimonious signals.
In order to do so, the measurement matrix must follow certain properties, one of
which is called RIP (Restricted Isometry Property). The matrix Φ satisfies the
restricted isometry property (RIP) of order k if there exists a δk in (0,1) such that
(1-δk)‖x‖2

2≤‖Φx‖2
2≤(1+δk)‖x‖2

2 holds for all x ∈ Σk={x:‖x‖0≤k}. Furthermore,
Φ must be inconsistent with Ψ, so the coherence of the Θ matrix must be closest
to 0. The coherence µ of a matrix Θ is the largest absolute inner product between
any two columns of Θ and is defined by µ(Θ)= max

1≤i≤j≤n

〈Θi,Θj〉
‖Θi‖‖Θj‖ . It is evident

that these properties are satisfied with a high probability simply by choosing Φ
at random, for example by using a Gaussian distribution. Although these RIP
or inconsistency conditions are satisfactory for some sets of measurements, they
are only necessary conditions and not sufficient. There are other properties, also
insufficient, which require us to need even less samples in order to guarantee a
parsimonious signal reconstruction. The last step of the Compressed Sensing
process is the reconstruction of the starting signal. For this, we know the M values
for y, the matrix measurements used as well as the Ψ base. The reconstruction
algorithm seeks to find the coefficients of s. Thanks to the knowledge of Ψ, it
is then simple to find x, the starting signal. There are infinite solutions for
the equation Θs=y, however we are looking for the solution which minimises a
certain norm. The L2 norm measures the signal energy which is why by using
a L2-Minimization, we will hardly ever find a K-parsimonious result. The L0

3

3.Compressed Sensing
The Compressed Sensing technique makes it possible to find the most parsimonious
solution from an undetermined linear system. It involves not only the means
of finding such a solution but also the linear systems that are acceptable. The
process is to reconstruct accurately a signal or an image when the number of
measurements is less than the length of the signal. The paradox can be explained
by the fact that the signal admits a sparse representation in an appropriate basis.
This sampling aims to replace the classic Shannon sampling. This theory has been
widely developed in recent years and the amount of applications is continuing to
rise in diverse fields such as tomography with MRI and computed tomography
or radar and radar imagery, in particular in signal and image compression. We
consider a real valued signal x, which we will see in the form of a column vector
of length N. In the case of images or higher dimension signals, we can arrange
the data to form a long vector. We indicate this signal in a Ψ base such as
x=Ψs. We wish to select the base whereby the majority of coefficients of s
are equal to zero, ie x is parsimonious in the Ψ base. These bases are known
and usually used to compress the starting signal. Compressed Sensing proposes
to acquire directly the compressed version of the signal so that unnecessary
samples do not need to be processed. The linear measuring process that is used
consists of making M scalar products, with M much smaller than N, between
x and a collection of vectors going from 1 to M. We obtain therefore samples
yj = 〈x, Φj〉 of measurements. Considering that the measurement matrix Φ has
the (Φj) as column, we can thus write x as: y=Φx=ΦΨs=Θs (with Θ=ΦΨ). The
measurement matrix design must be able to find the most parsimonious signals.
In order to do so, the measurement matrix must follow certain properties, one of
which is called RIP (Restricted Isometry Property). The matrix Φ satisfies the
restricted isometry property (RIP) of order k if there exists a δk in (0,1) such that
(1-δk)‖x‖2

2≤‖Φx‖2
2≤(1+δk)‖x‖2

2 holds for all x ∈ Σk={x:‖x‖0≤k}. Furthermore,
Φ must be inconsistent with Ψ, so the coherence of the Θ matrix must be closest
to 0. The coherence µ of a matrix Θ is the largest absolute inner product between
any two columns of Θ and is defined by µ(Θ)= max

1≤i≤j≤n

〈Θi,Θj〉
‖Θi‖‖Θj‖ . It is evident

that these properties are satisfied with a high probability simply by choosing Φ
at random, for example by using a Gaussian distribution. Although these RIP
or inconsistency conditions are satisfactory for some sets of measurements, they
are only necessary conditions and not sufficient. There are other properties, also
insufficient, which require us to need even less samples in order to guarantee a
parsimonious signal reconstruction. The last step of the Compressed Sensing
process is the reconstruction of the starting signal. For this, we know the M values
for y, the matrix measurements used as well as the Ψ base. The reconstruction
algorithm seeks to find the coefficients of s. Thanks to the knowledge of Ψ, it
is then simple to find x, the starting signal. There are infinite solutions for
the equation Θs=y, however we are looking for the solution which minimises a
certain norm. The L2 norm measures the signal energy which is why by using
a L2-Minimization, we will hardly ever find a K-parsimonious result. The L0

3

3.Compressed Sensing
The Compressed Sensing technique makes it possible to find the most parsimonious
solution from an undetermined linear system. It involves not only the means
of finding such a solution but also the linear systems that are acceptable. The
process is to reconstruct accurately a signal or an image when the number of
measurements is less than the length of the signal. The paradox can be explained
by the fact that the signal admits a sparse representation in an appropriate basis.
This sampling aims to replace the classic Shannon sampling. This theory has been
widely developed in recent years and the amount of applications is continuing to
rise in diverse fields such as tomography with MRI and computed tomography
or radar and radar imagery, in particular in signal and image compression. We
consider a real valued signal x, which we will see in the form of a column vector
of length N. In the case of images or higher dimension signals, we can arrange
the data to form a long vector. We indicate this signal in a Ψ base such as
x=Ψs. We wish to select the base whereby the majority of coefficients of s
are equal to zero, ie x is parsimonious in the Ψ base. These bases are known
and usually used to compress the starting signal. Compressed Sensing proposes
to acquire directly the compressed version of the signal so that unnecessary
samples do not need to be processed. The linear measuring process that is used
consists of making M scalar products, with M much smaller than N, between
x and a collection of vectors going from 1 to M. We obtain therefore samples
yj = 〈x, Φj〉 of measurements. Considering that the measurement matrix Φ has
the (Φj) as column, we can thus write x as: y=Φx=ΦΨs=Θs (with Θ=ΦΨ). The
measurement matrix design must be able to find the most parsimonious signals.
In order to do so, the measurement matrix must follow certain properties, one of
which is called RIP (Restricted Isometry Property). The matrix Φ satisfies the
restricted isometry property (RIP) of order k if there exists a δk in (0,1) such that
(1-δk)‖x‖2

2≤‖Φx‖2
2≤(1+δk)‖x‖2

2 holds for all x ∈ Σk={x:‖x‖0≤k}. Furthermore,
Φ must be inconsistent with Ψ, so the coherence of the Θ matrix must be closest
to 0. The coherence µ of a matrix Θ is the largest absolute inner product between
any two columns of Θ and is defined by µ(Θ)= max

1≤i≤j≤n

〈Θi,Θj〉
‖Θi‖‖Θj‖ . It is evident

that these properties are satisfied with a high probability simply by choosing Φ
at random, for example by using a Gaussian distribution. Although these RIP
or inconsistency conditions are satisfactory for some sets of measurements, they
are only necessary conditions and not sufficient. There are other properties, also
insufficient, which require us to need even less samples in order to guarantee a
parsimonious signal reconstruction. The last step of the Compressed Sensing
process is the reconstruction of the starting signal. For this, we know the M values
for y, the matrix measurements used as well as the Ψ base. The reconstruction
algorithm seeks to find the coefficients of s. Thanks to the knowledge of Ψ, it
is then simple to find x, the starting signal. There are infinite solutions for
the equation Θs=y, however we are looking for the solution which minimises a
certain norm. The L2 norm measures the signal energy which is why by using
a L2-Minimization, we will hardly ever find a K-parsimonious result. The L0

3

3.Compressed Sensing
The Compressed Sensing technique makes it possible to find the most parsimonious
solution from an undetermined linear system. It involves not only the means
of finding such a solution but also the linear systems that are acceptable. The
process is to reconstruct accurately a signal or an image when the number of
measurements is less than the length of the signal. The paradox can be explained
by the fact that the signal admits a sparse representation in an appropriate basis.
This sampling aims to replace the classic Shannon sampling. This theory has been
widely developed in recent years and the amount of applications is continuing to
rise in diverse fields such as tomography with MRI and computed tomography
or radar and radar imagery, in particular in signal and image compression. We
consider a real valued signal x, which we will see in the form of a column vector
of length N. In the case of images or higher dimension signals, we can arrange
the data to form a long vector. We indicate this signal in a Ψ base such as
x=Ψs. We wish to select the base whereby the majority of coefficients of s
are equal to zero, ie x is parsimonious in the Ψ base. These bases are known
and usually used to compress the starting signal. Compressed Sensing proposes
to acquire directly the compressed version of the signal so that unnecessary
samples do not need to be processed. The linear measuring process that is used
consists of making M scalar products, with M much smaller than N, between
x and a collection of vectors going from 1 to M. We obtain therefore samples
yj = 〈x, Φj〉 of measurements. Considering that the measurement matrix Φ has
the (Φj) as column, we can thus write x as: y=Φx=ΦΨs=Θs (with Θ=ΦΨ). The
measurement matrix design must be able to find the most parsimonious signals.
In order to do so, the measurement matrix must follow certain properties, one of
which is called RIP (Restricted Isometry Property). The matrix Φ satisfies the
restricted isometry property (RIP) of order k if there exists a δk in (0,1) such that
(1-δk)‖x‖2

2≤‖Φx‖2
2≤(1+δk)‖x‖2

2 holds for all x ∈ Σk={x:‖x‖0≤k}. Furthermore,
Φ must be inconsistent with Ψ, so the coherence of the Θ matrix must be closest
to 0. The coherence µ of a matrix Θ is the largest absolute inner product between
any two columns of Θ and is defined by µ(Θ)= max

1≤i≤j≤n

〈Θi,Θj〉
‖Θi‖‖Θj‖ . It is evident

that these properties are satisfied with a high probability simply by choosing Φ
at random, for example by using a Gaussian distribution. Although these RIP
or inconsistency conditions are satisfactory for some sets of measurements, they
are only necessary conditions and not sufficient. There are other properties, also
insufficient, which require us to need even less samples in order to guarantee a
parsimonious signal reconstruction. The last step of the Compressed Sensing
process is the reconstruction of the starting signal. For this, we know the M values
for y, the matrix measurements used as well as the Ψ base. The reconstruction
algorithm seeks to find the coefficients of s. Thanks to the knowledge of Ψ, it
is then simple to find x, the starting signal. There are infinite solutions for
the equation Θs=y, however we are looking for the solution which minimises a
certain norm. The L2 norm measures the signal energy which is why by using
a L2-Minimization, we will hardly ever find a K-parsimonious result. The L0

3

3.Compressed Sensing
The Compressed Sensing technique makes it possible to find the most parsimonious
solution from an undetermined linear system. It involves not only the means
of finding such a solution but also the linear systems that are acceptable. The
process is to reconstruct accurately a signal or an image when the number of
measurements is less than the length of the signal. The paradox can be explained
by the fact that the signal admits a sparse representation in an appropriate basis.
This sampling aims to replace the classic Shannon sampling. This theory has been
widely developed in recent years and the amount of applications is continuing to
rise in diverse fields such as tomography with MRI and computed tomography
or radar and radar imagery, in particular in signal and image compression. We
consider a real valued signal x, which we will see in the form of a column vector
of length N. In the case of images or higher dimension signals, we can arrange
the data to form a long vector. We indicate this signal in a Ψ base such as
x=Ψs. We wish to select the base whereby the majority of coefficients of s
are equal to zero, ie x is parsimonious in the Ψ base. These bases are known
and usually used to compress the starting signal. Compressed Sensing proposes
to acquire directly the compressed version of the signal so that unnecessary
samples do not need to be processed. The linear measuring process that is used
consists of making M scalar products, with M much smaller than N, between
x and a collection of vectors going from 1 to M. We obtain therefore samples
yj = 〈x, Φj〉 of measurements. Considering that the measurement matrix Φ has
the (Φj) as column, we can thus write x as: y=Φx=ΦΨs=Θs (with Θ=ΦΨ). The
measurement matrix design must be able to find the most parsimonious signals.
In order to do so, the measurement matrix must follow certain properties, one of
which is called RIP (Restricted Isometry Property). The matrix Φ satisfies the
restricted isometry property (RIP) of order k if there exists a δk in (0,1) such that
(1-δk)‖x‖2

2≤‖Φx‖2
2≤(1+δk)‖x‖2

2 holds for all x ∈ Σk={x:‖x‖0≤k}. Furthermore,
Φ must be inconsistent with Ψ, so the coherence of the Θ matrix must be closest
to 0. The coherence µ of a matrix Θ is the largest absolute inner product between
any two columns of Θ and is defined by µ(Θ)= max

1≤i≤j≤n

〈Θi,Θj〉
‖Θi‖‖Θj‖ . It is evident

that these properties are satisfied with a high probability simply by choosing Φ
at random, for example by using a Gaussian distribution. Although these RIP
or inconsistency conditions are satisfactory for some sets of measurements, they
are only necessary conditions and not sufficient. There are other properties, also
insufficient, which require us to need even less samples in order to guarantee a
parsimonious signal reconstruction. The last step of the Compressed Sensing
process is the reconstruction of the starting signal. For this, we know the M values
for y, the matrix measurements used as well as the Ψ base. The reconstruction
algorithm seeks to find the coefficients of s. Thanks to the knowledge of Ψ, it
is then simple to find x, the starting signal. There are infinite solutions for
the equation Θs=y, however we are looking for the solution which minimises a
certain norm. The L2 norm measures the signal energy which is why by using
a L2-Minimization, we will hardly ever find a K-parsimonious result. The L0

3

3.Compressed Sensing
The Compressed Sensing technique makes it possible to find the most parsimonious
solution from an undetermined linear system. It involves not only the means
of finding such a solution but also the linear systems that are acceptable. The
process is to reconstruct accurately a signal or an image when the number of
measurements is less than the length of the signal. The paradox can be explained
by the fact that the signal admits a sparse representation in an appropriate basis.
This sampling aims to replace the classic Shannon sampling. This theory has been
widely developed in recent years and the amount of applications is continuing to
rise in diverse fields such as tomography with MRI and computed tomography
or radar and radar imagery, in particular in signal and image compression. We
consider a real valued signal x, which we will see in the form of a column vector
of length N. In the case of images or higher dimension signals, we can arrange
the data to form a long vector. We indicate this signal in a Ψ base such as
x=Ψs. We wish to select the base whereby the majority of coefficients of s
are equal to zero, ie x is parsimonious in the Ψ base. These bases are known
and usually used to compress the starting signal. Compressed Sensing proposes
to acquire directly the compressed version of the signal so that unnecessary
samples do not need to be processed. The linear measuring process that is used
consists of making M scalar products, with M much smaller than N, between
x and a collection of vectors going from 1 to M. We obtain therefore samples
yj = 〈x, Φj〉 of measurements. Considering that the measurement matrix Φ has
the (Φj) as column, we can thus write x as: y=Φx=ΦΨs=Θs (with Θ=ΦΨ). The
measurement matrix design must be able to find the most parsimonious signals.
In order to do so, the measurement matrix must follow certain properties, one of
which is called RIP (Restricted Isometry Property). The matrix Φ satisfies the
restricted isometry property (RIP) of order k if there exists a δk in (0,1) such that
(1-δk)‖x‖2

2≤‖Φx‖2
2≤(1+δk)‖x‖2

2 holds for all x ∈ Σk={x:‖x‖0≤k}. Furthermore,
Φ must be inconsistent with Ψ, so the coherence of the Θ matrix must be closest
to 0. The coherence µ of a matrix Θ is the largest absolute inner product between
any two columns of Θ and is defined by µ(Θ)= max

1≤i≤j≤n

〈Θi,Θj〉
‖Θi‖‖Θj‖ . It is evident

that these properties are satisfied with a high probability simply by choosing Φ
at random, for example by using a Gaussian distribution. Although these RIP
or inconsistency conditions are satisfactory for some sets of measurements, they
are only necessary conditions and not sufficient. There are other properties, also
insufficient, which require us to need even less samples in order to guarantee a
parsimonious signal reconstruction. The last step of the Compressed Sensing
process is the reconstruction of the starting signal. For this, we know the M values
for y, the matrix measurements used as well as the Ψ base. The reconstruction
algorithm seeks to find the coefficients of s. Thanks to the knowledge of Ψ, it
is then simple to find x, the starting signal. There are infinite solutions for
the equation Θs=y, however we are looking for the solution which minimises a
certain norm. The L2 norm measures the signal energy which is why by using
a L2-Minimization, we will hardly ever find a K-parsimonious result. The L0

3

3.Compressed Sensing
The Compressed Sensing technique makes it possible to find the most parsimonious
solution from an undetermined linear system. It involves not only the means
of finding such a solution but also the linear systems that are acceptable. The
process is to reconstruct accurately a signal or an image when the number of
measurements is less than the length of the signal. The paradox can be explained
by the fact that the signal admits a sparse representation in an appropriate basis.
This sampling aims to replace the classic Shannon sampling. This theory has been
widely developed in recent years and the amount of applications is continuing to
rise in diverse fields such as tomography with MRI and computed tomography
or radar and radar imagery, in particular in signal and image compression. We
consider a real valued signal x, which we will see in the form of a column vector
of length N. In the case of images or higher dimension signals, we can arrange
the data to form a long vector. We indicate this signal in a Ψ base such as
x=Ψs. We wish to select the base whereby the majority of coefficients of s
are equal to zero, ie x is parsimonious in the Ψ base. These bases are known
and usually used to compress the starting signal. Compressed Sensing proposes
to acquire directly the compressed version of the signal so that unnecessary
samples do not need to be processed. The linear measuring process that is used
consists of making M scalar products, with M much smaller than N, between
x and a collection of vectors going from 1 to M. We obtain therefore samples
yj = 〈x, Φj〉 of measurements. Considering that the measurement matrix Φ has
the (Φj) as column, we can thus write x as: y=Φx=ΦΨs=Θs (with Θ=ΦΨ). The
measurement matrix design must be able to find the most parsimonious signals.
In order to do so, the measurement matrix must follow certain properties, one of
which is called RIP (Restricted Isometry Property). The matrix Φ satisfies the
restricted isometry property (RIP) of order k if there exists a δk in (0,1) such that
(1-δk)‖x‖2

2≤‖Φx‖2
2≤(1+δk)‖x‖2

2 holds for all x ∈ Σk={x:‖x‖0≤k}. Furthermore,
Φ must be inconsistent with Ψ, so the coherence of the Θ matrix must be closest
to 0. The coherence µ of a matrix Θ is the largest absolute inner product between
any two columns of Θ and is defined by µ(Θ)= max

1≤i≤j≤n

〈Θi,Θj〉
‖Θi‖‖Θj‖ . It is evident

that these properties are satisfied with a high probability simply by choosing Φ
at random, for example by using a Gaussian distribution. Although these RIP
or inconsistency conditions are satisfactory for some sets of measurements, they
are only necessary conditions and not sufficient. There are other properties, also
insufficient, which require us to need even less samples in order to guarantee a
parsimonious signal reconstruction. The last step of the Compressed Sensing
process is the reconstruction of the starting signal. For this, we know the M values
for y, the matrix measurements used as well as the Ψ base. The reconstruction
algorithm seeks to find the coefficients of s. Thanks to the knowledge of Ψ, it
is then simple to find x, the starting signal. There are infinite solutions for
the equation Θs=y, however we are looking for the solution which minimises a
certain norm. The L2 norm measures the signal energy which is why by using
a L2-Minimization, we will hardly ever find a K-parsimonious result. The L0

3

norm measures the parsimony of the signal (we count the number of elements
not equal to zero), the optimization ŝ=arg min‖s‖0 such as Θs=y gives a good
result (L0-Minimization). The disadvantage is that this problem can not be
calculated digitally. It has been shown that the optimization based on the L1
norm makes it possible to find an exact K-parsimonious signal, the problem
of the L1-Minimization is convex. Its resolution could be reduced to a linear
program, more often known as basis pursuit. This resolution is not the only
one and there are other techniques which allow for even better results such
as Conjugate Gradient Pursuit (CGP) or Stagewise Weak Conjugate Gradient
Pursuit (StWCGP). The number of necessary measurements M to have an exact
recovery of the K-parsimonious signal is in the same order than 5K.

4.Model
We use a reconstruction of the pixelated image with an algorithm of conditional
and directional interpolation. The algorithm owns as scientific base the fact when
the pixels ratio is very small the decoherence used in compressed sensing (CS)
plays an important role in the quality of reconstruction whereas the parsimony
plays an important role when the ratio is more important (over 10%). So the
parsimony research is efficient for the problem with step=2 but is inefficient for
step=4 and step=3. The algorithm mixes the information in order to approach
the reality because the decoherence is controled with following conditional
interpolations in three possible directions which enables for the deconvolution
(the final step called directional interpolation) to create the details to give an
acceptable reconstruction.

4.1 Conditional interpolation

We start with a 4x4 pixels bloc filled in with an averaging intensity (B bloc). The
B bloc is divided in four similar neighbors 2x2 blocs : B1, B2, B3 and B4. The
B1 bloc (at the top and on the left) always keeps its starting intensity. The B
bloc (4x4) owns three 4 by 4 neighbors blocs C, D and E and data interpolation
is controled by three parameters p2, p3 and p4:

• the C bloc (on the right)

• the D bloc (at the bottom)

• the E bloc (at the bottom and on the right).

• p2 is the parameter which controls the mean between the B bloc and the
C bloc

• p3 is the parameter which controls the mean between the B bloc and the
D bloc

• p4 is the parameter which controls the mean between the B bloc and the
E bloc.
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important (over 10%). So, the parsimony research is efficient for 
the problem with step=2 but is inefficient for step=4 and step=3. 
The algorithm mixes the information in order to approach reality 
because the decoherence is controlled by following conditional 
interpolations in three possible directions which enables the 
deconvolution (the final step called directional interpolation) to 
create the details to give an acceptable reconstruction.

4.1 Conditional Interpolation
We start with a 4x4 pixels bloc filled in with an averaging 
intensity (B bloc). The B block is divided into four similar 
neighbors 2x2 blocs: B1, B2, B3, and B4. The B1 bloc (at the top 
and on the left) always keeps its starting intensity. The B bloc 
(4x4) owns three 4 by 4 neighbors blocs C, D, and, E, and data 
interpolation is controlled by three parameters p2, p3, and p4:
a) The C bloc (on the right)
b) The D bloc (at the bottom)
c) The E bloc (at the bottom and on the right).
d) p2 is the parameter that controls the mean between the B bloc 
and the C bloc
e) p3 is the parameter that controls the mean between the B bloc 
and the D bloc
f) p4 is the parameter that controls the mean between the B bloc 
and the E bloc.

Figure 1: illustration of the image splitting in four neighbor 
blocs B,C,D,E.

Figure 2: illustration of LEVEL 1 interpolation.

i. B1 keeps the color of B bloc (always)
B2 takes the average color 		                and keeps 
the B color otherwise 
ii. B3 takes the average color 		                 and keeps 
the B color otherwise
iii. B4 takes the average color		               and keeps 
the B color otherwise.

 The setting of the p2, p3, and p4 parameters is very important. We 
realize the interpolation between the two blocs only if they have 
enough closed colors. These parameters are integers between 0 
and 255. If the value is equal to 0, there is no interpolation and 
if the value is 255, the interpolation is always realized. In other 
cases, the interpolation is realized if the two adjacent blocs have 
intensities with a smaller difference than the constraint. The goal 
of this step is to separate different interest areas of the image 
and to generate contrast enhancement. We called the LEVEL 1 
routine several times with different parameters p2, p3, and p4 to 
obtain the contrast enhancement, t, and the last call is realized 
with non-conditional interpolations e.g. with p2 = 255, p3 = 255, 
p4 = 255 in order to have a pre-smoothing. We use the mean of 
the central square		             to colorize the 4 by 4 pixels 
bloc in Figures 1 and 2. In this example, the B2 bloc and the B4 
bloc are changed by interpolation and the B3 bloc keeps its color 
because of the constraints. We start with the B1 bloc which is 
divided into 4 neighbors blocs of size 1 (pixels): B11, B12, B13, 
and B14, the B11 pixel (at the top and on the left) always keeps 
the B1 bloc intensity (Figure 3).

iv. B11 keeps the color of B1 bloc (always)
v. B12 takes the average color			   and keeps 
the B1 color otherwise 
vi. B13 takes the average color			   and keeps 
the B1 color otherwise 
vii. B14 takes the average color 			   and keeps 
the B1 color otherwise 
viii. p2’ is the parameter that controls the mean between the B1 
bloc and the B2 bloc
ix. p3’ is the parameter that controls the mean between the B1 
bloc and the B3 bloc
x. p4’ is the parameter that controls the mean between the B1 
bloc and the B4 bloc.

Figure 3: illustration of LEVEL 2 interpolation.   

Figure 1: illustration of the image splitting in four neighbor blocs B,C,D,E.

Figure 2: illustration of LEVEL 1 interpolation.
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• B1 keeps the color of B bloc (always)

• B2 takes the average color (B+C)
2 if |B − C|≤ p2 and keeps the B color

otherwise

• B3 takes the average color (B+D)
2 if |B − D|≤ p3 and keeps the B color

otherwise

• B4 takes the average color (B+E)
2 if |B − E|≤ p4 and keeps the B color

otherwise.

The setting of p2, p3 and p4 parameters is very important. We realize the
interpolation between the two blocs only if they have enough closed colors.
These parameters are integers between 0 and 255. If the value is equal to 0, there
is no interpolation and if the value is 255, the interpolation is always realized. In
other cases, the interpolation is realized if the two adjacent blocs have intensities
with a smaller difference than the constraint. The goal of this step is to separate
different interest areas of the image and to generate contrast enhancement. We
called the LEVEL 1 routine several times with different parameters p2, p3 and
p4 to obtain the contrast enhancement and the last call is realized with non
conditional interpolations e.g. with p2 = 255, p3 = 255, p4 = 255 in order to
have a presmoothing. We use the mean of the central square I2,2+I2,3+I3,2+I3,3

4
to colorize the 4 by 4 pixels bloc on Figures 1 and 2. On this example, the B2
bloc and the B4 bloc are changed by interpolation and the B3 bloc keeps its
color because of the constraints. We start with the B1 bloc which is divided in 4
neighbours blocs of size 1 (pixels) : B11, B12, B13 and B14, the B11 pixel (at
the top and on the left) always keeps the B1 bloc intensity (see Figure 3).

• B11 keeps the color of B1 bloc (always)

• B12 takes the average color (B1+B2)
2 if |B1 − B2|≤ p2′ and keeps the B1

color otherwise

• B13 takes the average color (B1+B3)
2 if |B1 − B3|≤ p3′ and keeps the B1

color otherwise

• B14 takes the average color (B1+B4)
2 if |B1 − B4|≤ p4′ and keeps the B1

color otherwise

• p2’ is the parameter which controls the mean between the B1 bloc and the
B2 bloc

• p3’ is the parameter which controls the mean between the B1 bloc and the
B3 bloc

• p4’ is the parameter which controls the mean between the B1 bloc and the
B4 bloc.
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Figure 3: illustration of LEVEL 2 interpolation.

4.2 Directional interpolation

The deconvolution with the motion blur filter aims to create details of the image.
The deconvolution can be formulated by the inverse problem y =h�x where h is
the motion blur filter, y the observed image, x the unknown image and � is the
convolution operator. The idea is to increase the size of the filter until the details
are created but it is possible only with a well-designed y image built using the
appropriate conditional interpolations. The motion filter owns two parameters,
the distance L and the direction θ (or the angle of deconvolution) . Before the
deconvolution we must increase the size of the image with a magnification factor
γ to avoid the creation of blurred blocs on the image after the deconvolution.
In the practice, γ depends of the geometry of the image (see Tables 2 and 3).
The paramaters of conditional interpolations are known after a step of deep
learning with a large database of HR and LR images and the better values
are chosen to obtain the better interpolation, much less blurred than the other
interpolation methods such as bicubic interpolations. The range of values for
the parameter L begins from 0 to 19 and the range of values begins from 0 to
170 by step of 5 degrees. For an image, there is a resonance angle (by analogy
with the resonance frequency) which appears when the user makes the motion
deconvolution algorithm because the details are created only with this value of θ.
We note θ̂ this unique value. The length parameter L depends of the size of the
image, its value decreases when the size of the image is larger. This phenomenon
leads us to build a new mathematical theory where the structure of images will be
described with an angle of movement instead of a wavelet. The information can
be represented as a matrix with different calls of LEVEL 1 interpolations. In the
practice, we need only three or four LEVEL 1 interpolations, the first have the
role of contrast enhancement and the two last correspond to the presmoothing.
The smoothing has two components: the last call of LEVEL 1 interpolation
just after the different areas are dissociated and the LEVEL 2 interpolation at
the end of the interpolation process. We write the three parameters of the first
LEVEL 1 occurrence p2(1), p3(1), p4(1). For the second occurrence p2(2), p3(2),
p4(2), and for the third occurrence p2(3), p3(3), p4(3) (the fourth occurrence p2(4),
p3(4), p4(4) is optional). There are three deconvolutions, the first γ(1), L(1), θ̂(1)

is the more important to approach the right geometry, and the two others aim to
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(1), θˆ(1) is the more important to approach the right geometry, and 
the two others aim torefine the result: γ(2), L(2), θ̂(2), γ(3), L(3), θ̂(3). Here γ(1)=γ, ˆθ(1)=θ̂ (always)

and γ(2)=γ(3)=1 in general.

LABLANCHE=




p2(1) p3(1) p4(1)

255 255 255
γ(1) L(1) ˆθ(1)

Source(1) Amount(1) Noise(1)

p2(2) p3(2) p4(2)

255 255 255
1 L(2) ˆθ(2)

Source(2) Amount(2) Noise(2)

p2(3) p3(3) p4(3)

255 255 255
1 L(3) ˆθ(3)

Source(3) Amount(3) Noise(3)

p2(4) p3(4) p4(4)

255 255 255
255 255 255




(1)

Source is the source image (DVC: Digital Video Camera or OFC: Old Film
Camera), Amount (to apply to the image) (100, 125, 150, 200, 250 or 300 %)
and Noise the choice Remove noise (Yes/No or DO: Dark Only or LO: Light
Only).

We indicate the motion blur filter h for L=13 and θ=105◦ (13 columns and
5 rows matrix) which is optimal for Marie Bonneau (see Figure 4).

h=




0.0384 0.0310 0 0 0
0.0273 0.0507 0 0 0
0.0078 0.0703 0 0 0

0 0.0612 0.0169 0 0
0 0.0416 0.0364 0 0
0 0.0221 0.0560 0 0
0 0.0026 0.0755 0.0026 0
0 0 0.0560 0.0221 0
0 0 0.0364 0.0416 0
0 0 0.0169 0.0612 0
0 0 0 0.0703 0.0078
0 0 0 0.0507 0.0273
0 0 0 0.0310 0.0384




(2)

h is a vector for horizontal and vertical direction and a matrix otherwise.
The filter h plays the role of the matrix Ψ in the parsimonious research (see
Compressed Sensing section). The columns are symmetrical to the central
column, but they are reversed.
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The source is the source image (DVC: Digital Video Camera or OFC: Old Film Camera), Amount (to apply to the image) (100, 125, 
150, 200, 250, or 300 %) and Noise the choice Remove noise (Yes/No or DO: Dark Only or LO: Light Only).

We indicate the motion blur filter h for L=13 and θ=105◦ (13 columns and 5 rows matrix) which is optimal for Marie Bonneau ( 
Figure 4).

h is a vector for horizontal and vertical direction and a matrix otherwise.  The filter h plays the role of the matrix Ψ in the parsimonious 
research ( Compressed Sensing section). The columns are symmetrical to the central column, but they are reversed.
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�
�
�
��L

θ 5◦ 15◦ 25◦ 35◦ 45◦ 55◦ 65◦ 75◦ 85◦ 95◦ 105◦ ...

0 × × × × × × × × × × ×
1 × × × × × × × × × × ×
2 × × × × × × × × × × ×
3 × × × (L3, θ̂3) × × × × × × ×
4 × × × × × × × × × × ×
5 (L2, θ̂2) × × × × × × × × × ×
6 × × × × × × × × × × ×
7 × × × × × × × × × × ×
8 × × × × × × × × × × ×
9 × × × × × × × × × × ×
10 × × × × × × × × × × ×
11 × × × × × × × × × × ×
12 × × × × × × × × × × ×
13 × × × × × × × × × × (L1, θ̂1)
14 × × × × × × × × × × ×
15 × × × × × × × × × × ×
16 × × × × × × × × × × ×
17 × × × × × × × × × × ×

Figure 4: motion deconvolution grid, (L, θ̂) is optimal for Marie Bonneau.

5.Experiments
In the case where step and q are not even numbers, for example for step=3,
we define q=E(step/2) where E is the integer part. The B1 bloc is a 2 by 2
pixels bloc but the sizes of B2, B3 and B4 are different. The B2 bloc is a 2 by 1
pixels bloc, the B3 bloc is the 1 by 2 pixels bloc and B4 bloc is a pixel. The B2
bloc is stretched in the direction of the right adjacent bloc and the B3 bloc is
stretched in the direction of the bottom adjacent bloc which enables to say that
the geometry of this interpolation method is optimal for the case where step=3
(see Figure 5).

Figure 5: illustration of the case 3 by 3 pixels.
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Figure 4: motion deconvolution grid, (L, θˆ) is optimal for Marie Bonneau.

5. Experiments
In the case where step and q are not even numbers, for example 
for step=3, we define q=E(step/2) where E is the integer part. 
The B1 bloc is a 2 by 2 pixels bloc but the sizes of B2, B3, and 
B4 are different. The B2 bloc is a 2 by 1 pixels bloc, the B3 bloc 

is a 1 by 2 pixels bloc and the B4 bloc is a pixel. The B2 bloc 
is stretched in the direction of the right adjacent bloc and the 
B3 bloc is stretched in the direction of the bottom adjacent bloc 
which enables us to say that the geometry of this interpolation 
method is optimal for the case where step=3 ( Figure 5).

Figure 5: Illustration of the case 3 by 3 pixels.
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Figure 6: Comparison of the decreases of the different wavelet families coefficients
in absolute value (Marie Bonneau image), the largest Villasenor coefficients
(purple dot curve) are lower than for other wavelet families and their decay is
faster (smallest L1 norm). The interpolation wavelets magnitudes (Triangle,
Interpolating, Average-Interpolating) are much lower but are suitable only from
50% of randomly known pixels using L1-minimization (see Figure 10). The decay
of CDF wavelet family is the fastest but the magnitude of larger CDF coefficients
is higher than for the other wavelet families. We observed the same curves for
all images.

The algorithm described before is the same with these new B2, B3 and B4
blocs and the L parameter is smaller because we need a weaker deconvolution
than the deconvolution used in the case of 4 by 4 pixels. The angle of resonance
θ̂ is the same for a given image. This case is important because it corresponds
to 11 % of known pixels and we demonstrate that the 11 % larger coefficients
approximation in the best wavelet base (in general Villasenor 1 or Villasenor
5) is very precise for a visual identification by the human eye (see the starry
image on Figure 7). Unfortunately, this algorithm gives catastrophic results, so
we can present only the case 4 by 4 pixels. We have an equivalence between the
pixels ratio and the best wavelet larger coefficients keeped ratio in the quality
of reconstruction and approximation. Villasenor 1 is the wavelet basis used in
the JPEG 2000 standard. The best wavelets are Villasenor 1,2,3,4,5 (see Figure
6). The optimal wavelet for Marie Bonneau is Villasenor 5 (see Figures 7,8
and Table 1). The interest of our algorithm will be to obtain similar quality
reconstructions from 8x8 low resolution images in comparison with 11% larger
coefficients keeped approximations in the optimal wavelet basis (see Figures
9,10).
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The algorithm described before is the same with these new B2, 
B3, and B4 blocs and the L parameter is smaller because we 
need a weaker deconvolution than the deconvolution used in the 
case of 4 by 4 pixels. The angle of resonance θ   is the same for a 
given image. This case is important because it corresponds
to 11 % of known pixels and we demonstrate that the 11 % 
larger coefficients approximation in the best wavelet base (in 
general Villasenor 1 or Villasenor 5) is very precise for visual 
identification by the human eye ( the starry image on Figure 7). 
Unfortunately, this algorithm gives catastrophic results, so we 

can present only the case 4 by 4 pixels. We have an equivalence 
between the pixel’s ratio and the best wavelet larger coefficients 
kept ratio in the quality of reconstruction and approximation. 
Villasenor 1 is the wavelet basis used in the JPEG 2000 standard. 
The best wavelets are Villasenor 1,2,3,4,5 (Figure 6). The 
optimal wavelet for Marie Bonneau is Villasenor 5 (Figures 
7,8 and Table 1). The interest of our algorithm will be to obtain 
similar quality reconstructions from 8x8 low-resolution images 
in comparison with 11% larger coefficients kept approximations 
in the optimal wavelet basis (Figures 9,10).

3k % Villasenor 3k+1 % 3k+2 %

Figure 7: Approximation of Marie Bonneau with 6,7,8%(First line), 9,10,11%
(Second line), 12,13,14%(Third line), 15,16,17%(Fourth line), 18,19,20%(Fifth
line), 21,22,23%(Sixth line) of larger coefficients in Villasenor 5 wavelet basis.
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Figure 7: Approximation of Marie Bonneau with 6,7,8% (First line), 9,10,11% (Second line), 12,13,14% (Third line), 15,16,17% 
(Fourth line), 18,19,20%(Fifth line), 21,22,23%(Sixth line) of larger coefficients in Villasenor 5 wavelet basis.
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Figure 8: cumulative sums of the coefficients in absolute values of the Villasenor
wavelets for Marie Bonneau (1) (illustrating technology image), the lower
magnitude is the purple curve.

Table 1: table of test images.

Part
Name 32x32 optimal wavelet
Google Brain (1) Villasenor 1
Google Brain (2) Villasenor 5
Google Brain (3) Villasenor 1
Marie Bonneau (1) Villasenor 5
Marie Bonneau (2) Villasenor 1
Ellie Goulding Villasenor 1
Ariana Grande Villasenor 5
Shailene Woodley Villasenor 5
Man Villasenor 1
Eye Villasenor 1
Meghan Markle Villasenor 5
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for each of the eleven test images ( Table 1) and the directional 
and conditional interpolations parameters obtained after tests 

on a large dataset of images with different geometries. We have 
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2 + λR(H) ≥treshold do
5 Ĥ ← arg min

p2(i),p3(i),p4(i),L(i),θ(i),Source(i),Amount(i),Noise(i)
‖I − H‖2

2 + λR(H)

;
6 p2(i) ← ˆp2(i) ;
7 p3(i) ← ˆp3(i) ;
8 p4(i) ← ˆp4(i) ;
9 L(i) ← L̂(i) ;

10 θ(i) ← ˆθ(i) ;
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15 H ← Ĥ ;
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2 + λR(H) ;

18 Output: Ĥ

R is a regulator and λ is the compromise between the norm minimization and the
regularization, I is the original image, Ĥ is the solution obtained with optimal
parameters and H is the 8x8 low resolution input image. It is known to use
total variation minimization, but here we define R as the inverse of the sum of
8x8 windows contrasts of the image because on the one hand the aim of these
constraints is to enhance the contrast and on the other hand the contrast of
pixels is low inside a 4x4 window but is very high in a 8x8 window (close to 1).
For a 32x32 image, there are 16 windows of 8 by 8 pixels and R= 1∑16

i=1
Ci

where

Ci is the contrast of the ith bloc defined by Imax−Imin

Imax+Imin
(Imax and Imin are the

maximum and the minimum intensity of the ith bloc).
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R is a regulator and λ is the compromise between the norm minimization and the
regularization, I is the original image, Ĥ is the solution obtained with optimal
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Table 2: table of results (interpolation).

Part
Name 32x32 conditional interpolation parameters (Right image) γ

Google Brain (1) p2(1)=63, p3(1)=255, p4(1)=20 3.80
Google Brain (2) p2(1)=65, p3(1)=0, p4(1)=65 3.40
Google Brain (3) p2(1)=195, p3(1)=0, p4(1)=0 3.62
Marie Bonneau (1) p2(1)=135, p3(1)=10, p4(1)=20 2.25
Marie Bonneau (2) p2(1)=88, p3(1)=70, p4(1)=0 2.25
Ellie Goulding p2(1)=85, p3(1)=55, p4(1)=0 2.20
Ariana Grande p2(1)=50, p3(1)=225, p4(1)=0 3.83
Shailene Woodley p2(1)=75, p3(1)=0, p4(1)=0 3.05
Man p2(1)=90, p3(1)=98, p4(1)=0 3.20
Eye p2(1)=105, p3(1)=110, p4(1)=0 2.05
Meghan Markle p2(1)=98, p3(1)=60, p4(1)=0 2.25

Table 3: table of results (deconvolution).

Part
Name 32x32 deconvolution parameters (Right image) γ

Google Brain (1) L=16, θ=90°; L=7, θ=45°; L=15, θ=75°; 3.80
Google Brain (2) L=15, θ=70°; L=6, θ=150°; 3.40
Google Brain (3) L=17, θ=115°; 3.62
Marie Bonneau (1) L=13, θ=105°; L=5, θ=5°; L=3, θ=35°; 2.25
Marie Bonneau (2) L=12, θ=160°; L=11, θ=155°; L=2, θ=25°; 2.25
Ellie Goulding L=11, θ=125°; L=9, θ=10°; L=5, θ=35°; 2.20
Ariana Grande L=16, θ=100°; L=5, θ=160°; L=5, θ=60°; L=11, θ=35°; L=6, θ=180°; 3.83
Shailene Woodley L=13, θ=120°; L=6, θ=20°; 3.05
Man L=20, θ=140°; L=5, θ=120°; L=5, θ=5°; 3.20
Eye L=10, θ=170°; L=5, θ=25°; 2.05
Meghan Markle L=11, θ=105°; 2.25
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11% Villasenor ground truth 8x8 input ours

15

Figure 9: Reconstruction results (Right column) from 8x8 low resolution
images (Middle Right column), 32x32 ground truth images (Middle Left column)
and 11% of Villasenor 1/Villasenor 5 larger coefficients approximations (Left
column).

We give the complete data results according to the model described before.
The deconvolution algorithm is very easy to use and the choice of parameters
is easy and fast for the user who can see the different possibilities for the
reconstruction. Moreover the complexity of interpolations is very low because
we use only three adjacent blocs (see below the Left matrix: Google Brain (1),
the Middle matrix: Google Brain (2) and the Right matrix: Marie Bonneau (1)).




63 255 20
255 255 255
3.80 16 90◦

DV C LO 100%
1 7 45◦

DV C LO 75%
1 15 75◦

DV C DO 0%
65 0 65
255 255 255
255 255 255




;




65 0 65
255 255 255
3.40 15 70◦

OFC Y ES 300%
65 0 65
255 255 255
1 6 150◦

DV C Y ES 75%
75 0 0
255 255 255
1 6 155◦

DV C DO 50%
75 0 0
255 255 255
255 255 255




;




135 10 20
255 255 255
2.25 13 105◦

DV C DO 100%
1 5 5◦

DV C LO 150%
1 3 35◦

DV C AUTO 125%
135 10 20
255 255 255
255 255 255




;
(

(1), (2), (3)
)
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Figure 9: Reconstruction results (Right column) from 8x8 low-resolution images (Middle Right column), 32x32 ground truth 
images (Middle Left column), and 11% of Villasenor 1/Villasenor 5 larger coefficients approximations (Left column).
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We give the complete data results according to the model 
described before. The deconvolution algorithm is very easy to 
use and the choice of parameters is easy and fast for the user 
who can see the different possibilities for the reconstruction. 

Moreover, the complexity of interpolations is very low because 
we use only three adjacent blocs (below the Left matrix: Google 
Brain (1), the Middle matrix: Google Brain (2), and the Right 
matrix: Marie Bonneau (1)).
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reconstruction. Moreover the complexity of interpolations is very low because
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the Middle matrix: Google Brain (2) and the Right matrix: Marie Bonneau (1)).




63 255 20
255 255 255
3.80 16 90◦

DV C LO 100%
1 7 45◦

DV C LO 75%
1 15 75◦

DV C DO 0%
65 0 65
255 255 255
255 255 255




;




65 0 65
255 255 255
3.40 15 70◦

OFC Y ES 300%
65 0 65
255 255 255
1 6 150◦

DV C Y ES 75%
75 0 0
255 255 255
1 6 155◦

DV C DO 50%
75 0 0
255 255 255
255 255 255




;




135 10 20
255 255 255
2.25 13 105◦

DV C DO 100%
1 5 5◦

DV C LO 150%
1 3 35◦

DV C AUTO 125%
135 10 20
255 255 255
255 255 255




;
(

(1), (2), (3)
)

1611/12%
Villasenor

StWCGP
ratio=60%

L1 MIN
ratio=60%

LABLANCHE
ratio=6.25%

Figure 10: Comparison of the different reconstruction methods. From Left
to Right: 11% and 12% of Villasenor 5 larger coefficients approximations (Left
column), Stagewise Weak Conjugate Gradient Pursuit (StWCGP) in Villasenor 5
basis from 60% of randomly known pixels (Middle Left column), L1-Minimization
in Average-Interpolating 8 basis from 60% of randomly known pixels (Middle
Right column) and our method (Right column) from 6.25% of known pixels (8x8
low resolution input). Our method gives similar quality results than Compressed
Sensing from 60% of pixels, but with only 6.25% of pixels. Moreover, it is easier
to sample the image with a regular grid at the industrial level, therefore our
algorithm can represent a new possible technological solution.

6.Conclusion
We have introduced a new class of algorithms based on new interpretations
of deconvolution. The motion deconvolution is used to reconstruct details of
the image instead of deblur forensic images. We note that the complexity is
low and this process is easy to compute in comparison with deep learning,
compressed sensing, mixture of both or categorization of zones. In the future,
it would be interesting to find a better deconvolution algorithm and to find a
trick to understand the links between conditional interpolations and the optimal
angle of the deconvolution. The interpretation of these results is to see images
as a combination of angles generated by conditional interpolations and the
coherence of these angles is achieved with the optimal orientation of the motion
deconvolution.
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6. Conclusion
We have introduced a new class of algorithms based on new 
interpretations of deconvolution. Motion deconvolution is 
used to reconstruct details of the image instead of deblurring 
forensic images. We note that the complexity is low and this 
process is easy to compute in comparison with deep learning, 
compressed sensing, a mixture of both, or the categorization 
of zones. In the future, it would be interesting to find a better 
deconvolution algorithm and to find a trick to understand the 
links between conditional interpolations and the optimal angle 
of deconvolution. The interpretation of these results is to see 
images as a combination of angles generated by conditional 
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