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Abstract
Among all number series, prime number series is most mysterious. Even after years of work, this series never fail to 
amaze us. Another amazing fact is realized and reciprocated with this research is that any three consecutive prime 
numbers can be reduced to the first prime number present in the series. Also, using this limiting function a question 
is imposed on the existence of negative prime numbers. This series can also be viewed as a symmetric series about 2 
i.e. the first prime number. 
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Prime Limiting Function 
The theorem states that if we took any three consecutive prime 
numbers [1] let say in increasing order then they can be limited as:
Let P1, P2 and P3 be any three consecutive prime numbers then the 
following relation will hold true on integer scale: 
			     	  	

 	  	  	  	  	 (1) 

Equation 1 will also hold true for negative P1, P2 and P3. Thus, it 
can be rewritten as: 

	  	   	  	  	  	  	   	
					     (2) 

Also, if we consider real number scale then regression analysis can 
be used to obtain a straight line passing through 2 where the graph 
is in between prime numbers and prime limiting function. 
 
Verification of Prime Limiting Function 
1. 1213 (P1), 1217 (P2) & 1223 (P3) 
Using equation 1, 

 

On integer scale, 2.00164 ~2 
 

2. 11551 (P1), 11579 (P2) & 11587 (P3) 
Using equation 1, 
 

On integer scale, 1.99827~2 
 
3. 59051 (P1), 59053 (P2) & 59063 (P3) 
Using equation 1, 
 

On integer scale, 2.00074~2 
 
4. 101833 (P1), 101837 (P2) & 101839 (P3) 
Using equation 1, 
 
 

On integer scale, 1.99998~2 
 
5. 184559 (P1), 184567 (P2) & 184571 (P3) 
Using equation 1, 
 
 

On integer scale, 1.99988~2 
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6. 7006693 (P1), 7012367 (P2) & 7034003 (P3) 
Using equation 1, 
 
 

On integer scale, 2.00227~2 
 
7. 123316621 (P1), 123316651 (P2) & 123316703 (P3) 
Using equation 1, 
 

On integer scale, 2.00000~2 
 
8. 237262351 (P1), 237262373 (P2) & 237262393 (P3) 
Using equation 1, 
 

On integer scale, 1.99999~2 
 
9. 256588273 (P1), 256588307 (P2) & 256588313 (P3) 
Using equation 1, 
 
 

On integer scale, 1.99999~2 

Using equation 2, if we apply negative sign before the above prime 
limiting examples, then also we will achieve numerical value of 2 
at integer scale. This prime limiting function holds various advan-
tages in cryptography and will hold various applications in defense 
and technological advancements. 
 
Discussion 
Prime number series holds various algorithmic advantages in var-
ious domains including defense and more. Prime number series 
can also be seen as symmetric about 2 and symmetry holds the 
maximum probability of encryption. I believe that the understand-
ing of the above fact will lead India to a bright future in terms of 
technological revolutions. 
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