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Abstract
The intent of the research is to find the dependency of the volume fraction of nanoparticle (φ) and the temperature on the 
absolute viscosity (μnf) of Fe3O4 nanoparticles in Carbopol polymer gel. Rheological and stability analysis of the solution is 
identified. A total of 48 viscosity values has been calculated from experiments using two different base fluid concentrations and 
two different nanofluid concentrations at eight different temperatures. The data gathered are used for the training of an ANN 
(Artificial Neural Network) to observe results in a predefined range of two input criteria. It uses a feed-forward perceptron 
ANN with a temperature input, a volume concentration input, and a viscosity output. The topology was established by trial 
and error, and the two-layer model having ten neurons in the hidden layer that used the tansig function produced the best 
results. Ten training functions were utilized to analyze the best result for nf prediction, and the trainbr algorithm was found 
to be the best ANN. Due to the trained ANN, the anticipated value of viscosity is obtained from each temperature and volume 
concentration combination. The best results were witnessed with trainlm algorithm with an MSE value of 5.92e-4 and a R2 
value of 0.9988 for forecasting of viscosity. Nanoparticle volume concentration increases with viscosity, while temperature 
increases cause viscosity to decrease. As the temperature rises from 15°C to 50°C, the shear stress value drops with a 
corresponding shear rate. The shear stress value of the associated shear rate decreases as the nanoparticle concentration rises.
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Introduction
Water is an excellent base fluid for thermal management appli-
cations available today, and its large heat capacity improves its 
importance. Water, however, has poor thermal conductivity, so 
metals in nanosized are added to it to improve the base fluid's ther-
mal conductivity. The metals have high thermal conductivity as 
compared to non-metals and aqueous solutions, etc [1,2,3]. It is 
significant from the experiment results that increase in heat trans-
fer rate after adding nanoparticles to the base fluid. Newtonian 
fluids like DI water, ethylene glycol, etc. have been the subject of 
numerous experiments, whereas non-Newtonian fluids like Max-
well fluids, dilatant fluids, Rivlin fluids, purely viscous fluids, vis-
coelastic fluids, Reiner materials, couple stress fluids, power-law 
fluids, viscoelastic fluids, pseudo-plastic fluids, Casson fluid, mi-
cro polar fluid, etc. have received less attention. After research on 
nanofluids, some of the researchers have concentrated on magnetic 
nanofluids as it is seen that the magnetic field puts down effect on 
the heat transfer coefficient [4]. These ferrofluids are made by mix-
ing a non-magnetic suitable solvent with magnetic nanoparticles 
and stabilizing the combination using a surfactant like oleic acid. 
Different metal elements, such as iron, cobalt, and nickel, as well 
as their oxide forms, such as spinel-type ferrites and magnetite 
(Fe3O4), are used to create these magnetic nanofluids in a variety 

of shapes and sizes. [5,6].

Researchers are presently concentrating more on the prediction 
of thermal conductivity, viscosity, and stability of nanofluids to 
avoid the experimental expense. These methods include curve fit-
ting, ANN (Artificial Neural Network), fuzzy logic, and genetic 
algorithm. Artificial neural networks, or ANNs, anticipate data us-
ing a model that resembles the structure and goals of biological 
neural networks. Because ANN can forecast the thermal conduc-
tivity, viscosity, and other thermophysical properties of nanofluids 
through nonlinear mapping. For the ANN modeling to forecast 
viscosity and thermal conductivity, old experimental data have re-
cently been gathered [7,8]. By using ANN modelling, Shahsavar et 
al. calculated the thermal conductivity of paraffin-Al2O3 nanoflu-
id [9]. To predict the rheological behaviour of the water-ethylene 
glycol/WO3-MWCNTs nanofluid, Fan et al. created a well-trained 
artificial neural network (ANN) using the trial approach. [10]. The 
algorithm showed an R2 value of 0.996 for predicting viscosity 
and experiments are conducted at 7 different temperatures and 6 
different concentrations. Viscosity decreases with an increase in 
temperature at all volume concentrations. An ANN was modelled 
by Simon et al. to forecast the µnf of a nanoparticle colloidal sus-
pension in water/ethylene glycol [11]. The input parameters used 
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to forecast viscosity include temperature, nanoparticle diameter, 
and base liquid characteristics. By measuring the stability and 
thermophysical characteristics of a Fe3O4-coated MWCNT hy-
brid nanofluid, said et al. created an artificial intelligence (AI) in-
terface to forecast the density, thermal conductivity, viscosity, and 
specific heat using the temperature and mixture concentration as 
input data [12]. The correlation coefficient for the model is be-
tween 0.9938 to 0.9999. In order to forecast the thermal conduc-
tivity and viscosity of a non-Newtonian hybrid nanofluid in which 
CNT/Fe3O4 nanoparticles are embedded, Shahsavar et al. under-
took an experimental research and ANN modelling [13]. Tempera-
tures between 25 and 55 °C, Fe3O4 volume concentrations be-
tween 0.1 and 0.9 %, and CNT concentrations between 0 and 1.35 
% are used to assess the thermal conductivity and viscosity. The 
fluid exhibits non-Newtonian behaviour with a declining viscosity 
trend in the rising shear rate. Experimental research by Bahiraei 
et al. showed that both thermal conductivity and viscosity have a 
non-linear relation with concentration when they were examined 
at various concentrations and temperatures. The Levenberg-Mar-
quardt approach, which is based on Bayesian regularisation, was 
selected for the training of ANN [14]. To anticipate both thermal 
conductivity and viscosity, Shahsavar et al. carried out experimen-
tal research on a liquid paraffin Fe3O4 and combined modeling 
of the GMDH neural network. The fundamental indices used to 
assess the model correctness are Root mean square (RMS), root 
mean square error (RMSE), mean absolute deviation (MAE), and 
coefficient of determination (R2) [15]. In Fe3O4 hybrid nanofluids, 
Said et al. experimentally studied water and water/ethylene glycol 
mixture-based nanodiamonds [16]. In a 60:40 W/EG mixture, the 
thermal conductivity increased to 12.79 percent at the same =0.2 
percent, but it increased by 17.76 percent in a water-based nano-
fluid. Multivariate linear regression (MLR) and Multivariate linear 
regression with interaction (MLRI) models are used to statistical-
ly analyze the experimental data. The thermal conductivity of an 
alumina-silica hybrid nanofluid was predicted using the ANN ap-
proach by Boobalan et al. [17].

After going through a series of research paper modelling, ANN is 
preferred by the researchers as it reduces time-consuming experi-
ments and costs of operating related to it. In this research the μnf 
of Carbopol-Fe3O4 solution in which two different concentrations 
of Carbopol polymer, two different concentrations of Fe3O4 nano-
fluid, and eight different temperatures through a series of experi-
ments. These results helped to train the ANN network in a defined 
range of two input parameters. For which a feed-forward percep-
tron with two input parameters (T and φ) and a output parameter 
of viscosity (μnf). It is a two-layered network with ten neurons in 
the hidden layer following the tansig function for best results. The 
network prepared is checked by ten training methods of which the 
best algorithm obtained by the mean square error and correlation 
coefficient value.

Experimental
Preparation of Nanofluids
There are two steps to prepare the nanofluids i.e., a one-step meth-
od and a two-step method. In a one-step method, the nanoparticles 
are prepared and mixed in the same time in the base fluid. The 
two-step method is more practiced due the formation of nanoparti-
cles and adding it to base-fluid are two different steps. The Fe3O4 
nanoparticles are procured and mixed in the DI water by a ma-
rine blade stirrer. The nanoparticle of concentration 0.05 and 0.1 
wt.% are considered for experiment. The samples are kept under 
an ultrasonicator for about 60 min. Anhydrous Carbopol Ultrez 
30 (purchased from Lubrizol, Belgium) powder is allowed to pass 
through a fine mesh to avoid the effect of agglomeration. The pre-
pared DIW- Fe3O4 nanofluids are stirred constantly at around 
1000 rpm [18.19]. The passed Carbopol is added gently to the stir-
ring nanofluid at its vortex area in the center. The Carbopol are 0.1 
and 0.05 wt.%. The stirring continues till homogeneity establish-
es. The disappearance of lumps formed shows the homogeneity 
of the solution and the complete hydration of Carbopol powder. 
An aqueous solution of 18 wt.% NaOH added dropwise to neu-
tralize the colloidal solution and stirred at 300 rpm. The gel forms 
and reduces the speed of the stirrer. The colloidal solution formed 
is kept for two days in a sealed container and under a controlled 
environment. The formed yield stress nanofluids are complex due 
to their unusual theological behaviour. The pH of the solution is 
maintained at 7.0 ± 0.2. Fig.1 shows the yield stress gel formation 
from an Iron-Oxide nanoparticle.

Figure 1: Fe3O4-Yield stress gel preparation

Nomenclature Subscript
 ANN Artificial Neural Network nf Nanofluid
 µ Viscosity bf Base fluid
 φ Nanoparticle concentration np Nanoparticle
 ANN Artificial Neural Network
 MSE Mean square error
 T Temperature
 R2 Regression coefficient
 DI Deionized 
NaOH Sodium Hydroxide
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Rheological Measurement
Before the rheological measurement, the yield stress fluid is kept 
in a low-pressure place to remove the trapped air bubbles. The 
rheological measurement is performed in Strain controlled Anton 
Paar MCR-92 rheometer. Stress ramps and oscillating sweep both 
are used in the analysis. The cone and plate tool are used for the os-
cillating test, whereas rotational tests are conducted in a concentric 
cylinder of diameter 5cm with a cone angle of two degrees. Peltier 
heating and cooling system are used for controlling temperature. 
The rheological studies are carried out in the temperature range of 

15-50 ℃. After loading the sample, it is kept for a few minutes to 
attain thermal equilibrium. It is presheared for about 30 seconds at 
a shear rate of 1 s-1 and then waited for about 30 s. The rotational 
tests are conducted in a shear rate range of 0.01-100 s-1. Each test 
fluid is loaded cautiously and smoothly to avoid bubble entrap-
ment. The measument of each sample is conducted twice for main-
taining the accuracy and precision. Table 1 represents the wt.% of 
nanofluid and Carbopol in the aqueous solution and its notation as 
A0, A1, A2, A3, A4, A5.

Table 1

Representation Carbopol wt.% Iron-Oxide wt.%
A0 0.05 0
A1 0.05 0.05
A2 0.05 0.1
A3 0.1 0
A4 0.1 0.05
A5 0.1 0.1

Figure 2: Carbopol polymer of 0.05 wt.% Figure 3: Carbopol polymer of 0.1 wt.%

Fig.2 shows the plot of viscosity of Carbopol polymer of 0.05 
wt.% at eight different temperatures. It is evident from the plot that 
Carbopol polymer without any nanoparticle concentration has the 
highest viscosity as they behave as viscoplastic in nature. When 
nanoparticles are added to the Carbopol gel, the viscosity decreas-
es with an increase in concentration because the nanoparticle frac-
tures the gel's polymer chain. An rise in temperature increases the 
kinetic and thermal energy, which promotes ion mobility and a 
decrease in binding energy and viscosity. This has the opposite 
impact on viscosity. The graph of viscosity vs. temperature for two 
distinct concentrations of nanoparticles in 0.1 weight percent of 
Carbopol polymer is shown in Fig. 3. It is clear from the graph that 
viscosity decreases as temperature rises, both with and without the 

addition of nanoparticles at varying quantities.

Stability
The electrokinetic characteristics of nanofluid in an aqueous solu-
tion provide stability and hence improve heat transfer efficiency. 
The nanoparticle consists larger charge density which generates 
a stronger repulsive force as same as charged particles. The sta-
bility of nanoparticles is usually measured by the Zeta potential 
which works on the principle of calculating the potential difference 
between the base fluid and the nanoparticle. As the surface of a 
nanoparticle has less charge density it attracts the ions of opposite 
charge to coat it and creates a double layer of ions which is car-
ried away by the liquid in nanoparticles. As a result, the nanopar-
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ticles moving in the solution can be viewed as a coating in the 
medium's original stationary layer. Zeta potential is the electric 
potential value at the boundary of the created dual layer, between 
the slab grasped by the nanoparticle and the solution. The stable 
range of the zeta potential value is ±30-40mV whereas more than 

±40-60mV is considered highly stable. A potential value less than 
±30mV leads to poor stability as in such condition nanoparticles 
lead to settle down and at such zeta potential values nanoparticles 
feel it difficult to withstand the forces which help in mixing it with 
base fluid.

Table 2

Sample U0 U1 U2 U3 U4 U5
mV -27.3 -44.8 -49.2 -28.1 -47.1 -50.2

Table.2 shows the zeta potential values of different samples. The 
sample with zero nanoparticle percentage is highly unstable as 
there is no charged particle present in the base solution for the 
generation of electro potential which results in a low electro-kinet-
ic potential value. It is evident from the value that with the addi-
tion of nanoparticle concentration the stability is increasing as the 
charge density is increasing but it will increase to a certain percent-
age, with further increase in number leads to sedimentation and 
settling of nanoparticles and hence results in lowering of stability. 
With the increase in Carbopol concentration stability increases as 
the intermolecular bond gets strengthened due to gel nature. Sta-
bility is also checked manually by taking photographs each week 
and comparing them with previous one.

ANN configuration
An artificial Neural network (ANN) is a modern tool used by re-
searchers for the optimization and prediction of data in widespread 
scientific and engineering problems in different fields. ANN works 

on the basic structure of the human brain and neurons act as trans-
ferring signals from one end to the other end and the configuration 
of artificial neurons are prepared from several weighted elements. 
The weights build the relationship between inputs and outputs of 
neurons. There are 2 classes of ANN according to morphology. 
One of the group is Feed-forward-network and the other one is 
the recurrent network. The static data formed by the experimental 
work emphasizes a feed-forward perceptron ANN, but the input 
and output results showcase non-linearity. For the non-linearity 
we use Multilayer perceptron ANN which works on 2 layers with 
non-linear equations. Among many training methods, the Back-
propagation algorithm is more effective and capable. In this proj-
ect, we have compared various training methods and compared 
their performance and we have checked different ANN with differ-
ent neuron numbers and transfer functions. A lot of 10 neurons in 
the 2nd layer with hyperbolic tangent function show the best per-
formance. Fig 4 shows a multilayer perceptron ANN with different 
inputs and outputs.

Figure 4: Multilayer perceptron ANN with input and output
For the training purpose of ANN, a database of experimental or 
simulation results is created for the learning of the algorithm. A to-
tal of 48 different samples versus temperature and φ were prepared 
for Carbopol-Fe3O4 nanofluid. Out of 48 samples, 70% of the 
data is used for the training whereas the other 30% is divided into 
equal parts 15% for validation and 15% for testing. The validation 
result protects the neural network from overtraining using early 
stops and concludes the ANN results. Table 3 shows the viscosity 

value used for the learning of the ANN. Due to the unevenness in 
weights of ANN each network is trained 20 times with each train-
ing algorithm. The algorithm with the best results is considered the 
algorithm for the system. We got the best outcome at ten neurons 
in the second layer with hyperbolic sigmoid function and straight 
equation in the output layer. Table 4 gives the idea about the con-
figuration of the network.
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Table 3: μnf of Carbopol – Fe3O4 nanofluid

Temp/Viscosity 15 20 25 30 35 40 45 50
U0 0.1509 0.0855 0.072 0.0706 0.0679 0.0391 0.0406 0.0117
U1 0.0308 0.0203 0.0127 0.0111 0.0086 0.0036 0.0087 0.0093
U2 0.0113 0.0102 0.0084 0.0056 0.0017 0.0011 0.0059 0.0062
U3 1.2054 0.8602 0.7321 0.6585 0.6355 0.5813 0.5598 0.5613
U4 1.7376 1.1789 0.9824 0.8155 0.7554 0.6821 0.6387 0.6261
U5 1.1445 0.7632 0.6256 0.568 0.4988 0.4405 0.4581 0.4621

Table 4: Network Configuration

Network Parameter Data
ANN study Multi-Layer-Perceptron
Network Type Feed-forward
Training Method Back-propagation
No of Train Data 34
No of Validation Data 7
No of Test Data 7
No of Hidden Layer 1
Best Training Method trainbr
Error Criteria Mean square error
 Function in hidden layer tansig
 Function in output Layer linear

A Feed-forward-network in a Multi-Layer-perceptron is consid-
ered in the study of Artificial Neural networks. A feedforward type 
network is the simplest model of an Artificial network in which 
information passes in one direction from the input node followed 
through the hidden nodes and finally came out through the output 
node. The Back-propagation algorithm is the best method as it re-
duces the training time and helps to train all neural network frame-
works. Table.5 describes the various training algorithms consid-
ered for the comparison of data training, validation, and testing. 
The R2 value of trainbr is 0.999 is the highest among all other 

algorithms. The tansig hyperbolic sigmoid function followed in 
the hidden layers with an output ranging from -1 to +1 and Pure-
lin linear transfer function for the output layer. Neurons in the 
hidden layer play a vital role in the performance of the network 
due to which different combination of neurons in a medium layer 
is checked with the trial and error technique and the best perfor-
mance is obtained at ten neurons in the hidden layer following 
tangent sigmoid function. The ANN possesses random nature for 
training weights for which each network is trained random wise 
more than 20 times by all training techniques.

Training Techniques

Table 5: Error value and R2 comparison in different training algorithm in MATLAB software

MSE Acronym Algorithm Description R2

0.00059 LM trainlm Levenberg-Marquardt 0.998
0.0842 BFG trainbfg BFGS Quasi-Newton 0.85
0.014 RP trainrp Resilient Back propagation 0.967
0.013 SCG trainscg Scaled Conjugate Gradient 0.988
0.087 GDX traingdx Variable Learning Rate Back propagation 0.752
0.015 GDA traingda Gradient descent with adaptive learning rate 0.96
6.07E-05 BR trainbr Bayesian regularization backpropagation 0.999
0.00051 CGB traincgb Conjugate Gradient with Powell/Beale restarts 0.988
0.0013 CGF traincgf Fletcher-Powell Conjugate Gradient 0.9918
0.029 CGP traincgp Polak-Ribiere Conjugate Gradient 0.845
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Our main focus is to find the best training technique to get more 
accurate predictions with high performance in µnf estimation. A 
feed-forward perceptron ANN following various training tech-
niques using MATLAB software. The error value and the R2 re-
lated to each technique along with its MATLAB function name 
and description are also presented in Table 4. The full comparison 
of error values at various training methods is shown in a 3-D bar 
graph in Figure 5. The error criterion used in every training algo-
rithm situation in which the average of the square of the difference 
between the predicted and actual values of the data are reported 

is a mean squared error. Fig 6 shows the 3-D bar graph of the 
comparison of R2 values in different training methods. R2 value 
indicates the goodness of the fit of the defined model and how well 
the regression value approximates with the predicted one. In this 
paper, it is evident that the trainbr algorithm has the best results 
among all other nine different algorithms in the case of both the 
Mean squared error value as well as the R2 regression value. 

MSE= 1/n ∑i=1
n (Y̅ -X)2  Y̅= predicted value, X=Observed value, 

n=no of data point

Result and Discussion

Figure 5: Mean Squared error vs training algorithm using 
MATLAB

Figure 5: R2 vs Training algorithm using MATLAB neural 
network

The performance graph, which shows the fluctuation of MSE ver-
sus training stages, is one of the most essential indicators for dis-
playing an ANN's training status. Fig.8 shows the viscosity perfor-
mance curve for Carbopol-Ultrez gel and Iron-Oxide Nanoparticle 
in which MSE is plotted on the vertical axis and the training repe-
tition on the horizontal axis of the curve called Epochs. This graph 
shows three different types of data training, validation, and testing, 
which represent MSE for the training validation and test points 
respectively. The MSE value is largest in the training stage where 
the network has random weights, and it reduces after increases in 

training cycles. At the end of the iteration, the MSE value of the 
training data is substantially lower than that of validation and test 
data. This is the result of the early stop technique which presents 
the untrained fresh points have a higher MSE value than that of 
trained points given to the system. The green circle indicated in the 
graph shows the best stop time for the best performance, with the 
lowest MSE among alliteration. As each training scheme utilized 
30 distinct ANNs, the network with the lowest MSE was chosen 
as the optimal solution for estimating the viscosity for each com-
bination of input.
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Figure7: Regression diagram of µnf output Figure7: Performance diagram of µnf output

Other markers for determining the ANN training state include re-
gression diagrams and data correlation coefficients. The relation-
ship of real network outputs (the vertical axis) and target values 
(the horizontal axis) is shown in Fig.7 for viscosity (µnf) (the 
horizontal axis). Three separate parameters are important in this 
diagram. The correlation coefficient value (R), slope value (M), 
and bias value (B) are some of these measures (B). The output of 
an ideal network must match the target values, and the correlation 

value and slope are both 1 in this case, and the bias value should be 
zero. The trend may be noticed in all four graphs. The regression 
line's slope is nearly equal to 1, therefore it can be determined. 
that the outcomes are network output values that are satisfactory 
accuracy and are close enough to the desired values Furthermore, 
the point scattering style is kept to a minimal, and all the points are 
connected and located on the plane's bisector.

Table 5: ANN error rates for viscosity

Desired Output Low error % High error % MSE
Viscosity  -2.83  +2.47 5.90E-04

Figure 9: Error % with Experimental data Figure 9: Error histogram of ANN for µnf
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The error value of trained ANNs for viscosity is shown in Table 5. 
It is observed that the error value are quite small and falls within 
the allowed margin. The frequency of zero-range error values is 
exceptionally high, as evidenced by the error diagrams for various 
experimental data in Fig.9 for µnf, demonstrating that the network 
is well-trained and generates reliable estimates. Another key 
indicator for a well-trained ANN is the error value histograms, as 
shown in Fig. 10 for viscosity. This bar chart shows the frequency 
of error percentage between the actual and predicted value of all 
48 experiments on the horizontal axis. As a result, the frequency 
or counts of errors on the vertical axis are compared with different 
error margin values on the horizontal axis, with the more near-zero 
frequencies on the vertical axis. The zero-error line is highlighted 
in red in this diagram. Most of bins with a high intensity of errors 
tend to group around this line, indicating a good choice of training 
strategy and a satisfactory result. Fig.11 compares the actual output 
with the neural network outputs. Thus, it is seen that experimental 
and ANN output coincides with an excellent regression value 
and best fits with the trainbr algorithm. We may conclude that a 
well-trained ANN can be used as an approximation function for 
estimating the µnf based on all the diagrams shown for the trained 
ANNs. Furthermore, volume concentration (φ) has a significant 
effect on viscosity in contrast to temperature which has a minor 
effect on viscosity. 

Figure 11: Comparison of ANN output with Experimental Data

Conclusions
The effect of volume concentration and temperature on the 
viscosity of Iron-oxide nanofluid in Carbopol Ultrez gel was 
investigated experimentally in this study. As a result, the viscosity 
of 48 samples has been determined through a series of tests, which 
included a combination of 8 different temperatures and 6 different 
samples of nanoparticle and base fluid concentration. In order to 
generalise the results for the two input parameters of temperature 
and volume concentration within predetermined bounds, an 
ANN was trained using these data. As a result, a feedforward 
Perceptron ANN was utilised, with two input result i’e (T and φ) 
and with one output viscosity (µnf). The optimum ANN structure 

was discovered through trial-and-error method in a two-layered 
network with 10 neurons in the hidden layer following the tansig 
function produced the best results. The effectiveness of training 
procedures on the performance of viscosity prediction was also 
investigated using ten different training functions, and the best 
ANN was created when the trainbr was used as a training function. 
The trained ANN functions are used as a prediction function of µnf 
for every combination of temperature and nanoparticle fraction. 
The results are as follows:
• A suitable ANN with an MSE value of 5.92e-4 and a correlation 
coefficient of 0.998 was created using the trainlm algorithm to 
forecast viscosity (µnf).
• It has been observed that by adding nanoparticles to gel solutions, 
the viscosity reduces with an increase in nanoparticle concentration 
and with a rise in temperature from 15⁰C to 50⁰C. This is because 
of the randomness of the nanoparticles which results in rising of 
thermal energy.
• Error diagrams and error histograms used to illustrate the ANN's 
appropriateness as a tool for assessing the competency of the 
training processes used in founding viscosity.
• Viscosity has a significant change with the increase in the 
concentration of Carbopol polymer as the viscosity increases with 
an increase in base gel concentration.
• Stability of the samples is also recorded with an increase in 
nanoparticle concentration from 0.05wt.% to 0.1wt.% it becomes 
more electrokinetically stable.
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