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Abstract
Current stock market forecasting methods encompass fundamental, technical, emotional, and bargaining factors. Predominantly, 
price prediction hinges on order volume and price, although correlating these two within existing models proves challenging. This 
study employs Cycle Generative Adversarial Network (Cycle GAN) to unravel the intricate price-volume relationship, combining 
it with Bollinger Bands for trading signal analysis, overcoming hurdles in short-term forecasting prevalent in numerical analysis 
and AI.

Focusing on TSMC (2330.TW) stock price, the research leverages Cycle GAN in deep learning to master the price-volume nexus, 
juxtaposed with LSTM and RNN. Historical TSMC closing prices and transaction counts are model inputs, scrutinizing their 
interconnectedness for predictions. This innovative approach aligns stock price, volume, market value, taxes, and prior changes 
via system engineering. By intertwining Bollinger Bands with stock price forecasts, trading signals are distilled, factoring in 
extended index %b for a comprehensive market picture. 

In this research, under the framework of simulation system engineering, the stock price forecasted using RESNET yielded a 20.3% 
return, which represents a significant increase when compared to the original Bollinger Bands average return on investment of 
15.5%.

Engineering: Open Access
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1. Introduction
TSMC, or Taiwan Semiconductor Manufacturing Company, is 
the largest global foundry with a commanding 58.5% share of 
the market. In advanced semiconductor processes, such as those 
with speeds of 5 nanoseconds (ns) or less, TSMC's market share 
surpasses 80%. Key clients of TSMC include industry giants like 
Apple, Qualcomm, Nvidia, and Intel, positioning the company as 
a prominent performer among tier 1 high-tech firms. Additionally, 
over 70% of TSMC's shareholders are international investors. The 
company is also listed as American depositary receipts (ADR) on 
the Nasdaq stock exchange [1].

The significance of TSMC in Taiwan's economic landscape is 
substantial. TSMC's equity represents nearly one-third of the 
total valuation of Taiwan's stock market [2]. Its annual capital 
expenditures make up 13% of private investment in the country, 
and its yearly production contributes approximately 5% to Taiwan's 
Gross Domestic Product (GDP). Moreover, TSMC plays a pivotal 
role in the semiconductor industry chain, stimulating growth among 

downstream manufacturers and facilitating the development of 
other Small and Medium-sized Enterprises (SMEs). TSMC's 
expansion is estimated to boost Taiwan's domestic output by 
NT$1.999 billion and create approximately 364,000 employment 
opportunities, indirectly influencing crucial economic metrics 
like the Consumer Price Index (CPI). Given these contributions, 
TSMC can be seen as the cornerstone of Taiwan's economic 
structure and a central focus for Taiwanese investors. Institutional 
investors predominantly control its equity distribution, while 
individual investors hold a relatively small fraction, accounting 
for less than 10%. Notably, the absence of a coherent and user-
friendly investment metric presents challenges for retail investors, 
especially concerning capital and information disparities, which 
might lead to missed lucrative investment opportunities.

The advancement of deep learning techniques has witnessed rapid 
progression in recent years, offering analysis that often surpasses 
the objectivity of human intuition. Presently, the predominant 
architecture adopted for stock price prediction is the Long Short-
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Term Memory (LSTM), which typically evaluates the volume and 
price of individual stocks in isolation [3][4]. Historical research 
underscores the intricate interplay between volume and price, 
suggesting a synergistic effect between them. Yet, conventional 
statistical models, relying primarily on the Correlation Coefficient, 
often misinterpret high covariance variables as independent, a 
misconception that has led to model inadequacies [5][6]. This 
study, utilizing TSMC stock as a case study, harnesses deep 
learning to scrutinize the interrelationship between stock prices and 
volume. By integrating these insights with stock price technical 
analysis, this research endeavors to offer a comprehensive suite 
of investment tools, bolstering investor confidence, especially in 
stocks with elevated unit prices.

This study aims to address the conjunction effect between stock 
prices and trading volume, with the objective of enhancing 
profitability rates:
1. Evaluation of the Cycle Generative Adversarial Network’s 
efficacy in deciphering the aggregated relationships inherent in 
stock pricing, substantiating the model’s learning proficiency [7].
2.A comparative analysis assessing the precision of Long Short-
Term Memory and Residual Neural Network models in forecasting 
stock prices, utilizing insights gleaned from the aforementioned 
Cycle Generative Adversarial Network outcomes [8].
3. Formulation and assessment of a predictive model for short-term 
stock prices, employing an integrative approach that amalgamates 
system engineering principles with Bollinger Bands analytics [9].

2. Reference Review and Discussion
2.1. The Relationship Between volume and Price
The interrelation between trading volume and stock price delineates 
the nexus between a stock's transactional volume over a specified 
timeframe and its culminating price. Concurrent trajectories 
of volume and price suggest a definitive association between 
transaction volume and the amplitude of price fluctuations. 
Specifically, an augmentation in both stock price and transaction 
volume typically signifies prevailing market optimism. Conversely, 
a diminishing stock price accompanied by contracting volume 
suggests seller hesitancy and prospective future market buoyancy. 
Divergences between stock price and trading volume, where the 
two exhibit antithetical trends [10], bear distinct implications. For 
instance, a surging stock price with a static or diminishing trading 
volume may imply diminished investor endorsement, rendering 
the upward trajectory precarious. On the other hand, a declining 
stock price coupled with an escalating trading volume could be 
perceived as a harbinger of a bleak market forecast, prompting 
shareholders to liquidate. Whether the trajectories of volume and 
price are congruent or display deviations, their combined influence 
is palpable. Ying (1966) postulated that models solely predicated 
on stock prices and trading volumes are predisposed to yield 
erroneous or fragmentary outcomes.

2.2. Cycle Generative Adversarial Network (Cycle GAN)
The Generative Adversarial Network (GAN), as introduced by 
Ian et al. (2014), employs a binary classification strategy, utilizing 

an adversarial framework comprising both a Generative and a 
Discriminator model [11]. The Generative model, given random 
input values, can metamorphose these into visual representations 
via a deconvolutional neural network. In contrast, the Discriminator 
functions as a classification tool, discerning between authentic 
images sourced from the training dataset and fabricated images 
emanating from the Generative model. GAN's quintessential 
objective is to minimize a specific loss function, thus making 
the differentiation between synthetically produced and authentic 
images challenging. Owing to its design, which optimizes towards 
this end goal, GAN proves to be especially proficient for image 
synthesis tasks.

The transformation between images represents a complex visual 
and graphical challenge. Typically, GAN requires paired images 
within a training set to comprehend the mapping dynamics between 
the input and target images. However, in certain endeavors, paired 
training data might be unavailable. Addressing this challenge, 
the Cycle Generative Adversarial Network was introduced. This 
approach facilitates image transformation from domain X to 
domain Y under two critical stipulations: (1) the domains X and Y 
lack paired data; and (2) it is posited that a latent relationship exists 
between the X and Y domains.

In optimization scenarios involving standalone adversarial 
objectives that are chal lenging to optimize, disruptions during 
training can arise—specifically, all images might be mapped to a 
single output image, leading to optimization failures. The Cycle 
Generative Adversarial Network is architecturally premised on the 
existence of two transformation functions: G(X) → Y and F(Y) → 
X. These functions, G and F, are conceptualized as inverses of each 
other, striving to achieve bijective relations. Through concurrent 
training of these mappings, G and F, a cycle consistency loss is 
introduced to ensure that F(G(x)) approximates x and G(F(y)) 
approximates y. By integrating this loss with the adversarial 
losses associated with domains X and Y, the network facilitates 
transformations between unpaired images. 
 
2.3. Residual Neural Network (Residual Neural Network, 
ResNet)
Deep neural networks grapple with two predominant challenges. 
Firstly, there's the issue of Gradient Vanishing—where excessively 
small gradients during backpropagation hinder the model's ability 
to converge to an optimal solution. Secondly, there's the problem 
of gradient degradation, where errors accumulate as the gradient 
is backpropagated, leading to an escalation in error values as 
the network deepens. The Residual Neural Network introduces 
the Residual Block as depicted in Figure 1. Besides retaining 
the architecture of a conventional neural network, it integrates a 
shortcut connection. Assuming the desired output is H(x) and the 
output of this particular layer in the original network is F(x), if 
H(x) = F(x) + x, it's deducible that the output from this residual 
module, H(x), can enhance the overall optimization of the neural 
network.
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2.4. Long Short-Term Memory (LSTM)
During backpropagation training, Recurrent Neural Networks 
(RNNs) grapple with the challenges posed by evolving hidden 
states over time, notably the issues of gradient vanishing and 
gradient explosion. These obstacles impede their efficacy in 
handling long-term dependencies in time series data. Addressing 
this, the Long Short-Term Memory (LSTM) architecture, 
incorporates a gate mechanism into the RNN structure. This 
mechanism enables the model to retain input information over 
variable time lengths and modulates the model's input and output 
representations, effectively enhancing its capacity to process data 
with long-term dependencies.

2.5. System Engineering and Dynamic Behavior
Seely (1972) classifies system engineering models into three 
fundamental categories: Physical, Analytical, and Descriptive. 
Among these, the physical model stands out as the most 
conventional and prominent [12]. One merit of the physical model 
is its empirical verifiability, though it typically incurs higher costs. 
Descriptive models employ textual and graphical representations 
for decision-making purposes. In contrast, analytical models 
utilize mathematical techniques to depict system characteristics, 
often manifesting as sets of simultaneous equations. In this study, 
we employ various elements from the analytical model:

1. Mass: Invoking Newton's second law of motion, mass M 
is described by the equation: 		  is the speed, d is the 
differential, t is the time, a is the acceleration.
2. Damper (friction force): Friction exhibits three primary 
mechanisms: static, Coulomb, and viscous. This research focuses 
on static friction, which pertains directly to motion. It emerges from 
the interaction at the point of contact between two surfaces: f=Dv, 
Here,D stands for the friction constant,and v signifies velocity.
3. Spring (Elastic Force): A spring is characterized as a component 
that conserves mechanical potential energy through its elastic 
deformation. f=K∫vdt, In this context,K represents the spring 
constant,v is velocity,and ∫vdt is the integral of velocity concerning 
time.

2.6. Bollinger Bands
Bollinger Bands (often abbreviated as BBands), sometimes 
referred to as Bollinger Channels or Bollinger Channels, are a 

technical analysis instrument introduced by John Bollinger. This 
methodology integrates the principles of moving averages and 
standard deviations. Fundamentally, it manifests as a channel 
delineated by three bands: a central band complemented by an upper 
and a lower band. The central band represents the average price of 
the stock, while the upper and lower bands can be interpreted as 
the stock price's resistance and support levels, respectively.
1. Bollinger band definition
[1] Middle band
The formula of the simple moving average for N time period is:

 
Where P is the stock price.
[2] Upper band 
Standard deviation of the middle band + K × N time period
[3] Lower band 
Middle track-standard deviation of K × N time period
2. Extended index──%b index
The position of the closing price in the Bollinger Bands is 
presented in digital form as a key indicator for trading decisions. 
The formula is:

%b= (close-lower band)/(upper band-lower band)
Band width= (upper band-lower band)/middle band

Given that the closing price fluctuates between the upper and 
lower bands, its amplitude can often exceed the band range (0~1), 
rendering the %b value unbounded. When there's an upward trend 
breach and the closing price surpasses the upper band, the %b 
value exceeds 1. Conversely, when the trend breaks downward 
and the closing price drops below the lower band, the %b value 
becomes less than 0.
Examining and analyzing the "%b indicator" can offer insights for 
investment considera-tions, enabling trading decisions predicated 
on the indicator's potency and nuances.

2.7. F1 Score Is A Way to Evaluate the Accuracy of The Test. 
It takes into accounts the accuracy and recall in the test to calculate 
this score [13].

Figure 1: Residual Block 
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principles of moving averages and standard deviations. Fundamentally, it manifests as a channel delineated 

by three bands: a central band complemented by an upper and a lower band. The central band represents the 

average price of the stock, while the upper and lower bands can be interpreted as the stock price's resistance 

and support levels, respectively. 

1. Bollinger band definition 

[1] Middle band 

The formula of the simple moving average for N time period is: 

𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 =
(𝑃𝑃𝑃𝑃1 + 𝑃𝑃𝑃𝑃2 + 𝑃𝑃𝑃𝑃3 + ⋯+ 𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛)

𝑠𝑠𝑠𝑠
 

  

Where P is the stock price. 

[2] Upper band 

Standard deviation of the middle band + K × N time period 

[3] Lower band 

 Middle track-standard deviation of K × N time period 

 2. Extended index──%b index 

 The position of the closing price in the Bollinger Bands is presented in digital form as a key indicator for 

trading decisions. The formula is: 

 

%b= (close-lower band)/(upper band-lower band) 

Band width= (upper band-lower band)/middle band 

 

 Given that the closing price fluctuates between the upper and lower bands, its amplitude can often exceed the 

band range (0~1), rendering the %b value unbounded. When there's an upward trend breach and the closing 

price surpasses the upper band, the %b value exceeds 1. Conversely, when the trend breaks downward and the 

closing price drops below the lower band, the %b value becomes less than 0. 
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The model predicts a rise The model predicts a fall
The actual stock price is up True Positive False Negative
The actual stock price is down False Positive True Negative

Table 1: Confusion Matrix

Recall = TP / (TP+FN) represents the model's capacity to identify positive samples; a higher value indicates superior recognition 
capability.

Precision = TP / (TP+FP) signifies the fraction of accurately classified positive samples by the model. A value exceeding 0.5 indicates a 
robust capability to discern rising trends, while a value below 0.5 suggests a strong proficiency in identifying declining trends.
The F1 Score, defined as F1 = 2 * Precision * Recall / (Precision + Recall), serves as a harmonic mean of Precision and Recall. An F1 
Score approaching 1 denotes optimal model classification performance.
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2.8. Imaging time series by GADF
In the realm of linear algebra, the Gram matrix—often referred to as the Gramian ma trix—pertains to a collection of vectors x 1,x 2,…,x 
N situated in an inner product space. This matrix is characterized as a Hermitian matrix, with its components being defined by the inner 
products of these vectors.:
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where (xi, xj) is the inner product of xi and xj. Given a time series data X, we rescale the time series data X so 

that all the values in X will fall in the interval [1, 1], 

. (2) 

After the time series being rescaled, we get a rescaled time series data ˜X. Then we do the coordinate 

transformation. Change the time series data from Cartesian coordinate to polar coordinate. In the Cartesian 

coordinate, the time series data Xi is represented by time stamp and data value, that is (ti, ˜ xi). But in the polar 

coordinate, the time series data is represented by radius and angle, that is (ri, ϕi). We use the equations below 

to do the transformation, Upon rescaling the time series, a transformed time series data, denoted as ˜X , is 

procured. Subsequently, a coordinate transformation is executed, transitioning the data from the Cartesian 

coordinate system to the polar coordinate system. In the Cartesian framework, the time series data xi is 

delineated by a time stamp and its corresponding data value, represented as (ti, ˜ xi). Contrarily, within the 

polar coordinate system, the data is described by its radius and angle, given by (ri, ϕi) . The transformation is 

facilitated using the subsequent equations: 

, (3) 

where ti represents the time stamp, and N serves as a constant factor to normalize the scope of the polar 

coordinate system. In this study, N is set to 64, corresponding to the height and width of the time series image. 

 The transformation represented by equation (3) exhibits two salient characteristics.  

 Firstly, it is bijective, implying each time series uniquely maps to a singular transformation  

 due to the monotonic nature of cosϕ when ϕ∈[0,p]. Secondly, this transformation retains  
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where (xi, xj) is the inner product of xi and xj. Given a time series data X, we rescale the time series data X so that all the values in X will 
fall in the interval [1, 1],

After the time series being rescaled, we get a rescaled time series 
data ̃ X. Then we do the coordinate transformation. Change the time 
series data from Cartesian coordinate to polar coordinate. In the 
Cartesian coordinate, the time series data Xi is represented by time 
stamp and data value, that is (ti, ˜ xi). But in the polar coordinate, 
the time series data is represented by radius and angle, that is (ri, 

ϕi). We use the equations below to do the transformation, Upon 
rescaling the time series, a transformed time series data, denoted 
as ˜X , is procured. Subsequently, a coordinate transformation is 
executed, transitioning the data from the Cartesian coordinate 
system to the polar coordinate system. In the Cartesian framework, 
the time series data xi is delineated by a time stamp and its 
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corresponding data value, represented as (ti, ˜ xi). Contrarily, 
within the polar coordinate system, the data is described by its 

radius and angle, given by (ri, ϕi) . The transformation is facilitated 
using the subsequent equations:
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where ti represents the time stamp, and N serves as a constant factor to normalize the scope of the polar coordinate system. In this 
study, N is set to 64, corresponding to the height and width of the time series image. The transformation represented by equation (3) 
exhibits two salient characteristics. Firstly, it is bijective, implying each time series uniquely maps to a singular transformation  due to 
the monotonic nature of cosϕ when ϕ∈[0,p]. Secondly, this transformation retains the absolute temporal relationships. Upon applying 
the coordinate transformation to the  rescaled time series data, the resultant is the Gramian Angular Difference Field (GADF), described 
as follows [14]: 

After getting the GADF, we define a new definition of the inner product as follows,

At last, the GADF are can be regarded as the Gramian matrix 
because every entry in the Gramian angular fields is the inner 
product. The Gramian matrix is different from the traditional 
Gramian matrix in linear algebra for their definitions of inner 
product are different. Finally, with the different colors standing for 
different values of the entries in the Gramian angular fields, we can 
obtain the time series images.

Time Series Image
The generated time series images possess dimensions of 64×64×3 

The objective is to employ the time series image, specifically 
the SSE Composite Index daily closing prices for the preceding 
64 days, to forecast the direction of daily closing prices for the 
subsequent few days. An image receives a label of '1' if the average 
daily closing prices over the forthcoming 5 days is an upward 
trend compared to the previous 5 days; otherwise, it's labeled '0'. 
Ultimately, in the training and validation dataset, there are 3,314 
images labeled '0' and 3,718 labeled '1'. In contrast, the test dataset 
contains 44 images labeled '0' and 51 labeled '1'.
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GADF images with labels 

 

3. Research Methods and Procedures 

 The research methodology was implemented using PyTorch, with the experimental procedures delineated as 

follows: 

 

1. Development of a web crawler to gather historical data on TSMC stock, subsequently tored in a database. 

Data encompassing transaction volumes and closing prices from 2010 to 2020 were sourced from the Taiwan 

Stock Exchange (TWSE). 

2. Data normalization. 

3. Segmentation of data into training and test sets. Utilize the Cycle Generative Adversarial Network to 

discern the correlation between volume and price, subsequently constructing a model and calibrating training 

parameters. 

4. Deployment of the cultivated model to forecast the test set data, integrating the price-volume relationship 

into both the residual neural network and the Long Short-Term Memory (LSTM) model. An assessment of 

the predictive accuracies of both models was undertaken. 

5. Execution of short-term stock price forecasts, with an evaluation of forecasting outcomes achieved via 

dynamic simulation systems. 

GADF images with labels
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3. Research Methods and Procedures
The research methodology was implemented using PyTorch, with 
the experimental procedures delineated as follows:

1.	 Development of a web crawler to gather historical data 
on TSMC stock, subsequently tored in a database. Data 
encompassing transaction volumes and closing prices from 
2010 to 2020 were sourced from the Taiwan Stock Exchange 
(TWSE).

2.	 Data normalization.
3.	 Segmentation of data into training and test sets. Utilize 

the Cycle Generative Adversarial Network to discern 
the correlation between volume and price, subsequently 
constructing a model and calibrating training parameters.

4.	 Deployment of the cultivated model to forecast the test set 
data, integrating the price-volume relationship into both the 
residual neural network and the Long Short-Term Memory 
(LSTM) model. An assessment of the predictive accuracies of 
both models was undertaken.

5.	 Execution of short-term stock price forecasts, with an 
evaluation of forecasting outcomes achieved via dynamic 
simulation systems.

6.	 Synthesis of forecasting outcomes with technical analytical 
tools, specifically Bol linger Bands. The establishment of 
trading signals ensued, followed by an efficacy validation.

3.1 Data Set
1.	 Source: Taiwan Stock Exchange1
2.	 Stock Details: TSMC (2330.TW)
3.	 Data Span: 2010/01/04 - 2020/12/31, encompassing a decade 

of trading day records.
4.	 Historical Records: Closing price and daily trading volume.
5.	 Training Dataset: 90% of the aggregate data designated for 

training, with the remaining 10% allocated for validation.
6.	 Testing Dataset: The final 10% of the comprehensive data.

3.2 Data pre-processing
The trading volume's value spectrum differs from that of the stock's 
value range. Direct normalization using standard techniques might 
lead to significant disparities between these two values, potentially 
disrupting CycleGAN operations. To mitigate this, this research 
transforms the data into incremental changes, applies a logarithmic 
transformation to minimize discrepancies, and ultimately employs 
Min-Max normalization to confine the data range between 0 and 1.
 The Min-Max normalization formula is:

 zi represents the normalized value. Xi denotes the value undergoing 
normalization. min(x) signifies the data's minimum value, while 
max(x) corresponds to its maximum value.

To mitigate the risk of overfitting within the model, the dataset is 
partitioned into three segments. Specifically, 90% constitutes the 
training set, another 10% serves as the validation set, and the final 
10% of the training data is allocated for testing purposes.

3.3 Deep Learning Neural Network Architecture
(1) Cycle Generative Adversarial Network Design
Prior research has highlighted a co-dependency between volume 
and price. Relying solely on one of these metrics for model 
computations will likely yield inaccurate outcomes. To grasp the 
interplay between volume and price, this investigation employs a 
CycleGAN for learning, central to which is the Cycle loss with the 
following loss function:
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 zi represents the normalized value. Xi denotes the value undergoing normalization. min(x) signifies the data's 
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90% constitutes the training set, another 10% serves as the validation set, and the final 10% of the training 

data is allocated for testing purposes. 

 

3.3 Deep Learning Neural Network Architecture 

(1) Cycle Generative Adversarial Network Design 

Prior research has highlighted a co-dependency between volume and price. Relying solely on one of these 

metrics for model computations will likely yield inaccurate outcomes. To grasp the interplay between volume 

and price, this investigation employs a CycleGAN for learning, central to which is the Cycle loss with the 

following loss function: 
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𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐺𝐺𝐺𝐺,𝐹𝐹𝐹𝐹)  =  𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥∼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥) [||𝐹𝐹𝐹𝐹(𝐺𝐺𝐺𝐺(𝑐𝑐𝑐𝑐))  −  𝑐𝑐𝑐𝑐||1]  +  𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐∼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝(𝑐𝑐𝑐𝑐) [||𝐺𝐺𝐺𝐺(𝐹𝐹𝐹𝐹(𝑣𝑣𝑣𝑣))  −  𝑣𝑣𝑣𝑣||1]. 

For each image from the domain, execute the transformation reflecting the domain's combined influence of 

volume and price, specifically, revert to the original image via the cyclic mechanism, using the approach: 

X→G(X)→F(G(X))~~X. 

Another core mechanism of the cyclic Generative Adversarial Networks is to combat loss, and its loss function 

is: 

𝐿𝐿𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐺𝐺𝐺𝐺,𝐷𝐷𝐷𝐷𝑌𝑌𝑌𝑌,𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌)  =  𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐∼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝(𝑐𝑐𝑐𝑐)[𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝐷𝐷𝐷𝐷𝑌𝑌𝑌𝑌(𝑣𝑣𝑣𝑣)] + 𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥∼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥)[𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(1 − 𝐷𝐷𝐷𝐷𝑌𝑌𝑌𝑌(𝐺𝐺𝐺𝐺(𝑐𝑐𝑐𝑐))] 

 

Within this framework, G aims to render the generated image G(x) akin to an image from the Y domain, while 

Dy endeavors to discriminate between the transformed sample G(x) and the genuine sample from the Y 

domain. 

The goals of this network are: 
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Given that CycleGAN was initially employed for mutual conversion in the image domain, the data is first 

transformed into two-dimensional simulate image data. It is then processed through the Convolutional Neural 

Network (CNN), renowned for its effectiveness in image tasks. This architecture, integrated with the residual 

neural network, serves as a generative model, producing outputs capable of deceiving the discriminative 

model. The discriminative model, utilizing a convolutional neural network framework, determines whether 

the two-dimensional data originates from training data or is fabricated by the generative model. 

For each image from the domain, execute the transformation reflecting the domain's combined influence of volume and price, specifically, 
revert to the original image via the cyclic mechanism, using the approach: X→G(X)→F(G(X))~~X.

Another core mechanism of the cyclic Generative Adversarial Networks is to combat loss, and its loss function is:

Within this framework, G aims to render the generated image G(x) akin to an image from the Y domain, while Dy endeavors to 
discriminate between the transformed sample G(x) and the genuine sample from the Y domain.



Volume 1 | Issue 4 | 227Eng OA, 2023

In this study, price is considered the domain and transaction volume 
serves as the input for the cyclical generative adversarial network.
FC stands for Fully Connective layer. Here, stock price and 
transaction volume undergo matrix reshaping, transforming them 
into two-dimensional matrix simulation data. This data is then 
utilized as the input for both the generative and discriminative 
models.

Given that CycleGAN was initially employed for mutual 
conversion in the image domain, the data is first transformed 

into two-dimensional simulate image data. It is then processed 
through the Convolutional Neural Network (CNN), renowned 
for its effectiveness in image tasks. This architecture, integrated 
with the residual neural network, serves as a generative model, 
producing outputs capable of deceiving the discriminative model. 
The discriminative model, utilizing a convolutional neural 
network framework, determines whether the two-dimensional 
data originates from training data or is fabricated by the generative 
model. 13 

 

 

 
Figure 2: Cycle Generative Adversarial Network design diagram 

 

Develop the residual neural network model: Feature extraction is facilitated through the convolutional neural 

network, which then links with the residual neural network. This employs 5 days of reconstructed stock prices 

and volume, with the residual neural network designed to encompass 48 layers. 

Establish a Long Short Term Memory model (LSTM): Utilize the LSTM model to reconstruct time series data 

of volume and price. This model incorporates 5 days of restored stock price and volume, and its design 

encompasses 4 LSTM layers. 

 

 

 
Figure 3: Prediction framework of stock price with simulation system engineering 

 

 (2) System engineering behavior and stock price prediction 

Within the context of potential volume-price correlations leading to stock market variations, this study 

employs a system engineering paradigm, as illustrated in Figure 3. It suggests that the Cycle Generative 

Adversarial Network crafts approximated outputs G(x) and F(y) based on the anticipated future trajectory of 

volume and price. Shifts in the interplay between volume and price, perceived as the transformation from 

potential energy to kinetic energy, serve as the foundation for stock price alterations and dictate market 

dynamics. Specifically: 
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Figure 2: Cycle Generative Adversarial Network design diagram

Develop the residual neural network model: Feature extraction is facilitated through the convolutional neural network, which then 
links with the residual neural network. This employs 5 days of reconstructed stock prices and volume, with the residual neural network 
designed to encompass 48 layers.

Establish a Long Short Term Memory model (LSTM): Utilize the LSTM model to reconstruct time series data of volume and price. This 
model incorporates 5 days of restored stock price and volume, and its design encompasses 4 LSTM layers.

Figure 3: Prediction framework of stock price with simulation system engineering

(2) System engineering behavior and stock price prediction
Within the context of potential volume-price correlations leading 
to stock market variations, this study employs a system engineering 
paradigm, as illustrated in Figure 3. It suggests that the Cycle 
Generative Adversarial Network crafts approximated outputs G(x) 
and F(y) based on the anticipated future trajectory of volume and 
price. Shifts in the interplay between volume and price, perceived 
as the transformation from potential energy to kinetic energy, serve 
as the foundation for stock price alterations and dictate market 
dynamics. Specifically:

Propulsive Force (F): Xt, derived from simulated outputs F(y), is 
the difference between the potential and current price; Yt results 
from subtracting G(x) from the difference between potential and 
current quantities. Both Xt and Yt are fed into the neural network to 
replicate the force arising from the conversion of potential energy.

Market Capitalization (M): Market capitalization is computed as 
the product of stock price and shares outstanding. In the stock 
realm, price growth rate interrelates with market capitalization 
and capital influx. A uniform capital injection into varying 
market capitalizations results in distinct growth rates of stock 
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prices. Market capitalization acts as a mass that's impelled by 
the propulsive force, simulating how uniform forces affecting 
disparate market values lead to varied stock price movements.

Drag (f): Represented as a transaction tax, drag is calculated as the 
product of transaction volume, stock price, and 0.3‰. In dynamic 
frameworks, drag correlates with the propulsive force. When 
viewed through the lens of stock market operations, it manifests 
as the transaction tax. Though the primary driver of stock price 
changes remains the volume of trade, the introduction of taxes in 
the market imposes a drag on transactions, justifying the portrayal 
of transaction tax as a form of drag.

Elasticity (R): Determined by the previous day's stock performance, 
a relevant value is assigned. The stock's elasticity pertains to its 
stored potential energy. Persistent effects of stock fluctuations 
greatly influence future prices. It's hypothesized that a steep surge 
in stock prices leads to a higher accumulation of potential energy, 
reducing the likelihood of further rises in the immediate future, 
and the opposite holds true for sharp declines.

Acceleration (a): Acceleration, denoted as 'a', is deduced from a 
distance equation, presuming an initial speed of zero, while 'k' 
stands for the stock price at the projected time point (in days). The 
governing equation is.

a=2(datat+k - datat) / t
2

3.4. Bollinger Band Design
Utilizing the extended %b indicator from the Bollinger Bands as a 
trading signal allows us to gauge the short-term strength of stock 
prices. This metric provides insight into whether the stock price 
currently stands at a relative recent high or low, thus facilitating 
informed trading decisions.

(a) Formulation of Bollinger Bands:
Middle Band: A simple moving average over an N-time period.
Upper Band: Middle Band plus K times the standard deviation 
over an N-time period.
Lower Band: Middle Band minus K times the standard deviation 
over an N-time period.
(b) Trading Strategy:
Take the day's closing price into account.

The parameter K for the three-band setting is determined 
experimentally using the Bollinger Bands. Both Experiment 1 and 
2 aim to identify the optimal K value that yields the best average 
rate of return.
Similarly, the parameter N for the three-band setting is determined 
through experimentation with Bollinger Bands across experiments 
from 5 to 35, at 5-interval increments. The goal is to identify the 
N value that produces the most favorable average rate of return.
If the %b indicator exceeds or equals 1, the stock should be sold 
(with the stipulation that if it hasn't been previously purchased, it 
should not be sold).
Conversely, a stock should be bought when the %b indicator is less 
than or equal to 0.
(c) Integration with Stock Price Forecasting:
Incorporate the predicted stock price into the Bollinger Bands 
for the subsequent day, and discern the stock's current strength 
based on this future information. If the stock price is anticipated to 
increase, it can be inferred that its current position is not relatively 
high, allowing for potential delays in selling. The opposite strategy 
applies if the stock is predicted to decrease. The primary objective 
of this approach is to enhance investment returns.

4. Evaluation and Experimental Results
For predicting and assessing the stock price at the subsequent time 
point, we shall employ three distinct models:
Mean Squared Error (MSE): This metric computes the expected 
value of the squared deviations between the actual and predicted 
values. MSE serves a dual purpose: it assesses the model's 
accuracy and offers a more effective gradient for convergence in 
neural network-like structures. With a consistent learning rate, as 
the loss approaches 0, the gradient is anticipated to diminish.

Mean Absolute Error (MAE): This metric calculates the expected 
value of the absolute discrepancies between the real and forecasted 
values. The MAE offers a more accurate representation of the 
error's true magnitude between predicted and actual values.

Return On Investment (ROI): This metric signifies the percentage 
correlation between the investment returns and associated costs. 
Its formulation is as follows:

4.1 CycleGAN learning results of volume-price relationship
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Figure 4: CycleGAN loss 

 

From the observations, it is evident that as the number of epochs increases, the losses associated with 

Generator G, Generator F, and the cycle loss exhibit substantial reductions. It is hypothesized that the cycle 

loss functions as a hyperparameter and, upon reaching a certain threshold during training, ceases to undergo 

further training. 

 

 

 Training Cycle loss Validation Cycle loss Testing Cycle loss 

20 days 0.031995635 0.038789876 0.036866438 

30 days 0.016229397 0.016477194 0.015846474 

40 days 0.0015571207 0.031062838 0.030280465 
 

Table 1: CycleGAN loss (MSE). 

 

It is evident that the RESNET network architecture effectively captures the relationship between volume and 

price, as reflected by the substantial reduction in Cycle loss during testing. This suggests the capability of the 

cycle generative adversarial network to learn the interplay between volume and price. Utilizing a 30-day span 

for volume and price as input yields the minimal loss value. When the parameter n is set to 30, the cycle loss 

for training, validation, and testing is at its minimum, with only marginal variations. 
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Table 1: CycleGAN loss (MSE).

From the observations, it is evident that as the number of epochs increases, the losses associated with Generator G, Generator F, and the 
cycle loss exhibit substantial reductions. It is hypothesized that the cycle loss functions as a hyperparameter and, upon reaching a certain 
threshold during training, ceases to undergo further training.

Training Cycle loss Validation Cycle loss Testing Cycle loss
20 days 0.031995635 0.038789876 0.036866438
30 days 0.016229397 0.016477194 0.015846474
40 days 0.0015571207 0.031062838 0.030280465

It is evident that the RESNET network architecture effectively captures the relationship between volume and price, as reflected by the 
substantial reduction in Cycle loss during testing. This suggests the capability of the cycle generative adversarial network to learn the 
interplay between volume and price. Utilizing a 30-day span for volume and price as input yields the minimal loss value. When the 
parameter n is set to 30, the cycle loss for training, validation, and testing is at its minimum, with only marginal variations.
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Table 2: Average gap (MAE) of RESNET's forecast stock price 
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Table 3: LSTM predicts the MSE of stock prices 
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 In the context of linear regression neural networks, target data is typically normalized to prevent excessive 

loss, which could result in protracted convergence times or even non-convergence. However, upon 

normalizing the target data in this study, several issues arose: 

a. Discrepancies in normalization restoration: Given that the target data is derived from day-to-day stock 

price differences (and in the simulated system engineering, the target data is divided by the square of the 

number of days), the values might become too minute. Consequently, post-normalization restoration may 

present discrepancies from the original data. 

b. Minimal data discrepancy pre and post-normalization in linear regression: The original data range spans 

from -1.8 to 2.3, thus scenarios of elongated convergence times or non-convergence are unlikely. 
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4.2 The Conclusion of The Stock Price Forecasting.
4.2.1 Normalization and Without Normalization.
In the context of linear regression neural networks, target data 
is typically normalized to prevent excessive loss, which could 
result in protracted convergence times or even non-convergence. 
However, upon normalizing the target data in this study, several 
issues arose:
a. Discrepancies in normalization restoration: Given that the target 
data is derived from day-to-day stock price differences (and in 
the simulated system engineering, the target data is divided by 
the square of the number of days), the values might become too 
minute. Consequently, post-normalization restoration may present 
discrepancies from the original data.
b. Minimal data discrepancy pre and post-normalization in linear 
regression: The original data range spans from -1.8 to 2.3, thus 
scenarios of elongated convergence times or non-convergence are 
unlikely.

4.2.2 The Performance of Stock Price Prediction
The efficacy of stock price prediction is contingent upon the 
choice of normalization versus non-normalization, coupled with 
the simulation of the dynamic engineering module.
a. Within the simulation system engineering framework, the 
RESNET deep neural network exhibits superior learning 
capabilities for target data when normalized, surpassing LSTM. 
However, in scenarios devoid of normalization or without target 
data normalization, LSTM outperforms.

b. Excluding the simulation system engineering, normalized target 
data decreases training loss but augments validation and test losses, 
resulting in subpar average outcomes. This impacts the results of 
RESNET more substantially. Conversely, LSTM remains largely 
unaffected, displaying minimal disparities in training, validation, 
and test losses.
c. On aggregate, when integrated with the simulation of system 
engineering, LSTM's performance surpasses that of RESNET. Its 
validation and test losses more closely mirror its training loss than 
its counterpart, boasting an average loss of 4.1958684, marginally 
better than RESNET's 4.235332. Yet, when the simulation system 
engineering component is omitted, RESNET's performance 
parallels LSTM's, with negligible variations in training, validation, 
and test losses. Regarding average loss, RESNET's figure of 
3.464465 slightly edges out LSTM's 3.47009.
d. Result-wise, excluding the integration of simulation system 
engineering, the most optimal stock price prediction, with the 
smallest deviation, is achieved by RESNET combined with non-
normalized target data, registering the best result of 3.464465.

4.3 Trading Signals and The Return Rate Forecast
4.3.1 Research problems of Bollinger Bands
With N set to 35 and K designated as 2, the optimal reporting rate 
is obtained as 
 follows:
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Figure 5: Bollinger Bands Investment Return Rate 

 

4.3.2. Simulation of the integrated solution for stock prediction with LSTM and Bollinger band without 

System Engineering  
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4.3.3. Simulation of the integrated solution for stock price prediction with RESNET and Bolling Band 

with System Engineering 

 

 

 
 

  

 

 

 

Table 8: Simulation of the integrated solution for price prediction and trading signal with ResNet and 

Bollinger Band with System Engineering 
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Trading Signals Training Validation Testing 

Buy 84 33 22 

Sell 132 32 47 

Trading Signal 84 31 16 
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4.3.3. Simulation of the integrated solution for stock price prediction with RESNET and Bolling Band with System Engineering

Trading Signals Training Validation Testing
Buy 84 33 22
Sell 132 32 47
Trading Signal 84 31 16

Table 8: Simulation of the integrated solution for price prediction and trading signal with ResNet and Bollinger Band with System 
Engineering
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LSTM forecast stock price, the return rate was 16.9%, and the average return on investment after integration 
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5. Conclusion of Return on Investment
Bollinger Bands was an effective method originally, through its 
extended index %b, as the basis for buying and selling decisions, 
effective investment strategies can be derived. Notwithstanding 
the above, the return on investment can indeed be increased again 
through the integration with the forecast stock price. Under the 
simulation system engineering, the average return on investment 
after integration with the LSTM forecast stock price is 19.1%, 
and the average return on investment after integration with the 
RESNET forecast stock price is 20.3%; without the simulation 
system engineering, the average investment after integration with 
the LSTM forecast stock price, the return rate was 16.9%, and the 
average return on investment after integration with the RESNET 
forecast stock price was 18.9%. Both under the simulation system 
engineering and without system engineering integration with 
LSTM stock price forecast have return on investment higher 
than the original Bollinger Bands average return on investment 
of 15.5%. The propose of experimental design is accurate that 
the current stock price still represents a relatively high/low point 
at present and in the future through the integration of future 
information to make better decisions.

6. Limitation and Future Study
Addressing the limitations of this study, we propose the following 
directions for future enhancements and development:
Starting from the data perspective, collecting more international 
stock data can help in comparing the effects observed in both 
domestic and international markets. Additionally, exploring data 
from stocks with lower trading volumes domestically can further 
validate the generalizability of the proposed method.

In terms of trading strategies, this study primarily utilizes Bollinger 
Bands and its extended %b indicator as trading signals. Future 
research could explore integrating various trading signals with 
stock price predictions.

Regarding the neural network models and system dynamics 
simulations, while this study employs RESNET and LSTM 
for stock price predictions, the performance was outpaced by 
predictions solely based on neural networks. Future endeavors 
could consider integrating more parameters to enhance the 
accuracy of stock price predictions.

7. Research Conclusions and Recommendations
This research employs neural networks to forecast stock prices, 
drawing from TSMC stock data spanning from January 1, 2010, 
to December 31, 2020. It integrates volume-price relationships, 
system engineering principles, and Bollinger Bands to craft 
decision-making strategies, ultimately substantiating the efficacy 
of stock price predictions. The results highlight an enhanced return 
on investment when incorporating Bollinger Bands. Key findings 
include:
•	 This constitutes the inaugural study proposing the exploration 

of the latent volume-price relationship architecture. Through 
a Cycle Generative Adversarial Network that melds 
convolutional layers with residual networks, the research 
underscores the interconnected dynamics between volume 
and price. The innovative contribution of this research is 

reinforced by experimental validation of the aforementioned 
interconnectedness.

•	 Experimental evaluations with 20, 30, and 40 days of volume-
price input into the Cycle Generative Adversarial Network 
reveal that a 30-day input garners the minimal cycle loss.

•	 By fusing the outcomes of Cycle Generative Adversarial 
Network learning with system engineering parameters, 
assumptions about potential volume-price deviations 
influencing future stock prices were posited and validated 
via system engineering simulations. Experimental analyses 
favored the latter approach, indicating superior stock price 
prediction accuracy. 
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